Lesson B2

Image processing + geometric aspects
GE01001.2020

Hugo Ledoux

Cathode-ray tube (CRT), eg old television and computer screens

https://commons.wikimedia.org/wiki/File:Cathode_ray_Tube.PNG

https://commons.wikimedia.org/wiki/File:Cathode_ray_Tube.PNG

Perception of colours

- Colour perception takes places in human eyes and brain
- It's not completely known how human works
- But we have models that are accepted

Tri-stimuli model

- The eye's general sensitivity is to wavelengths between $400-700 \mathrm{~nm}$
- The retinas in our eyes have cones (light-sensitive receptors) that send signals to the brain when they are hit by photons with energy levels that correspond to different wavelengths in the visible range of the EM spectrum
- 3 diff kinds of cones, responding to blue, green and red wavelengths
- 3 colour spaces (or models):

1. RBG [additive]
2. Intensity Hue Saturation (IHS)
3. Yellow Magenta Cyan (YMC) [subtractive]

- Additive model
- 3 sources
- When we look at the result, our brain combines the stimuli from the red, green and blue dots and enables us to perceive all possible colours from the visible part of the spectrum.
- During the combination, the three colours are added.
- Our computer screens work this way

- Intensity describes whether a colour is light or dark
- Hue refers to the names that we give to colours: red, green, yellow, orange, purple, etc.
- Saturation describes a colour in terms of pale versus vivid (pastel colours have low saturation)
- In daily speech we do not express colours in the red, green and blue
- "Light, pale red" is easier to imagine than "a lot of red with considerable amounts of green and blue"
- Also 3 values, RGB can be transformed to IHS, and vice-versa

Opacity
100\%

YMC (Yellow Magenta Cyan)

- YMC colour description is used in colour definition on hard copies (printers)
- each component can be seen as a coloured filter
- the filters are yellow, magenta and cyan

- each filter subtracts one primary colour from the white light: the magenta filter subtracts green, so that only red and blue are left; the cyan filter subtracts red, and the yellow one blue.

Histograms

In [4]: from rasterio.plot import show_hist show_hist(bands, bins=50, lw=0.0, stacked=False, alpha=0.3, histtype='stepfilled', title="Histogram")

Histogram

Transfer function maps the values for one band into (grey) shades

- True colour composite
- False colour composite

Pseudo-natural colour composite $(3,5,2)$

- local image transformations: a new image is calculated and the value of a pixel depends on the values of its former neighbours.
- like focal operators in Map Algebra (GEO1002)
- kernel is used: $3 \times 3,4 \times 4$ or larger

Output

Figure 10.10: Original image (middle), edge enhanced image (left) and smoothed image (right).

Colour composites: intensity substitution

- Image fusion: displaying images from diff sensors (and diff resolutions) to enhance display

(4) fused image

Transformation of an image and resampling

Original image

Corrected image

Image after transformation

Corrected image

https://3d.bk.tudelft.nl/courses/geo1001/

