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Central Tendency

It is about determining where is the centre of the distribution. There 
are different ways to calculate it. The message after all is, how far your 
grade for example is from the centre of the distribution?
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the three datasets would make you happiest? In other words, in comparing your 
score with your fellow students' scores, in which dataset would your score of 3 be 
the most impressive?

In Dataset A, everyone's score is 3. This puts your score at the exact center 
of the distribution. You can draw satisfaction from the fact that you did as well as 
everyone else. But of course it cuts both ways: everyone else did just as well as 
you.

Table 1. Three possible datasets for the 5-point make-up quiz.

Now consider the possibility that the scores are described as in Dataset B. This is a 
depressing outcome even though your score is no different than the one in Dataset 
A. The problem is that the other four students had higher grades, putting yours 
below the center of the distribution.

Finally, let's look at Dataset C. This is more like it! All of your classmates 
score lower than you so your score is above the center of the distribution.

Now let's change the example in order to develop more insight into the 
center of a distribution. Figure 1 shows the results of an experiment on memory for 
chess positions. Subjects were shown a chess position and then asked to 
reconstruct it on an empty chess board. The number of pieces correctly placed was 
recorded. This was repeated for two more chess positions. The scores represent the 
total number of chess pieces correctly placed for the three chess positions. The 
maximum possible score was 89.

Student Dataset A Dataset B Dataset C

You 3 3 3

John's 3 4 2

Maria's 3 4 2

Shareecia's 3 4 2

Luther's 3 5 1
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Central Tendency
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1. Balance scale 

2. Smallest Absolute Deviation 

3. Smallest Squared Deviation

position along the number line, then it would be possible to balance them by 
placing a fulcrum at 6.8.

�
Figure 2. A balance scale.

For another example, consider the distribution shown in Figure 3. It is balanced by 
placing the fulcrum in the geometric middle.  

�
Figure 3. A distribution balanced on the tip of a triangle.

Figure 4 illustrates that the same distribution can't be balanced by placing the 
fulcrum to the left of center.
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�
Figure 4. The distribution is not balanced.

Figure 5 shows an asymmetric distribution. To balance it, we cannot put the 
fulcrum halfway between the lowest and highest values (as we did in Figure 3). 
Placing the fulcrum at the “half way” point would cause it to tip towards the left.  

�
Figure 5. An asymmetric distribution balanced on the tip of a triangle.

The balance point defines one sense of a distribution's center.

Smallest Absolute Deviation 

Another way to define the center of a distribution is based on the concept of the 
sum of the absolute deviations (differences). Consider the distribution made up of 
the five numbers 2, 3, 4, 9, 16. Let's see how far the distribution is from 10 
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(picking a number arbitrarily). Table 2 shows the sum of the absolute deviations of 
these numbers from the number 10.

Table 2. An example of the sum of absolute deviations

The first row of the table shows that the absolute value of the difference between 2 
and 10 is 8; the second row shows that the absolute difference between 3 and 10 is 
7, and similarly for the other rows. When we add up the five absolute deviations, 
we get 28. So, the sum of the absolute deviations from 10 is 28. Likewise, the sum 
of the absolute deviations from 5 equals 3 + 2 + 1 + 4 + 11 = 21. So, the sum of the 
absolute deviations from 5 is smaller than the sum of the absolute deviations from 
10. In this sense, 5 is closer, overall, to the other numbers than is 10.
We are now in a position to define a second measure of central tendency, this time 
in terms of absolute deviations. Specifically, according to our second definition, the 
center of a distribution is the number for which the sum of the absolute deviations 
is smallest. As we just saw, the sum of the absolute deviations from 10 is 28 and 
the sum of the absolute deviations from 5 is 21. Is there a value for which the sum 
of the absolute deviations is even smaller than 21? Yes. For these data, there is a 
value for which the sum of absolute deviations is only 20. See if you can find it.

Smallest Squared Deviation 

We shall discuss one more way to define the center of a distribution. It is based on 
the concept of the sum of squared deviations (differences). Again, consider the 
distribution of the five numbers 2, 3, 4, 9, 16. Table 3 shows the sum of the squared 
deviations of these numbers from the number 10.

Values
Absolute Deviations 

from 10

2 
3 
4 
9 
16

8 
7 
6 
1 
6

Sum 28
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Table 3. An example of the sum of squared deviations.

The first row in the table shows that the squared value of the difference between 2 
and 10 is 64; the second row shows that the squared difference between 3 and 10 is 
49, and so forth. When we add up all these squared deviations, we get 186. 
Changing the target from 10 to 5, we calculate the sum of the squared deviations 
from 5 as 9 + 4 + 1 + 16 + 121 = 151. So, the sum of the squared deviations from 5 
is smaller than the sum of the squared deviations from 10. Is there a value for 
which the sum of the squared deviations is even smaller than 151? Yes, it is 
possible to reach 134.8. Can you find the target number for which the sum of 
squared deviations is 134.8?

The target that minimizes the sum of squared deviations provides another 
useful definition of central tendency (the last one to be discussed in this section). It 
can be challenging to find the value that minimizes this sum.

Values
Squared Deviations 

from 10

2 
3 
4 
9 

16

64 
49 
36 
1 

36

Sum 186
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Central Tendency - Measures
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1. Arithmetic mean (mean) 

2. Median 

3. Mode

Odd number of numbers: the median is the middle number 

Even number of numbers: the median is the mean of the two middle numbers 

When there are numbers with the same values —> 50th percentile formula

It is the most frequently occurring value in the list 

The mode of continuous data is normally computed from a grouped frequency 
distribution 
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Variability - Measures
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The term variability refers to how spread out is a distribution. It can 
also be referred as spread or dispersion of the distribution.  

There are 4 frequently used measures of variability:  

1. Range: simply the highest and the lowest number in the 
distribution. 

2. Interquartile Range (IQR): it is the range of the middle 50% of the 
scores in a distribution, as we saw before.  

3. Variance: is the averaged squared difference of the scores from 
the mean.  

4. Standard deviation: is simply the square root of the variance
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Shapes and distributions
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We focused in two measures of shape distributions: skew and 
kurtosis (also know as 3rd and 4th order moments (1st and 2nd being 

𝝈 and 𝝈2)) 

1. Skewness: distributions with + skew normally means 
mean>>median 

2. Kurtosis:  the value 3 is subtracted to define no kurtosis of a 
normal distribution, otherwise a normal distribution would have a 
kurtosis 3.

Shapes of  Distributions 
by David M. Lane 

Prerequisites
• Chapter 1: Distributions
• Chapter 3: Measures of Central Tendency
• Chapter 3: Variability

Learning Objectives
1. Compute skew using two different formulas
2. Compute kurtosis
We saw in the section on distributions in Chapter 1 that shapes of distributions can 
differ in skew and/or kurtosis. This section presents numerical indexes of these two 
measures of shape.

Skew 
Figure 1 shows a distribution with a very large positive skew. Recall that 
distributions with positive skew have tails that extend to the right.

�

Figure 1. A distribution with a very large positive skew. This histogram 
shows the salaries of major league baseball players (in thousands of 
dollars).
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Probability Mass Functions (PMFs)
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It is a way to represent a distribution, which maps from each value its 
probability. Probability is a frequency expressed as a fraction of the 
sample size, n. To get from frequencies to probabilities, we divide 
through by n, which is called normalization.  

34 Chapter 3. Probability mass functions

Figure 3.1: PMF of pregnancy lengths for first babies and others, using bar
graphs and step functions.

thinkplot.PrePlot(2, cols=2)
thinkplot.Hist(first_pmf, align='right', width=width)
thinkplot.Hist(other_pmf, align='left', width=width)
thinkplot.Config(xlabel='weeks',

ylabel='probability',
axis=[27, 46, 0, 0.6])

thinkplot.PrePlot(2)
thinkplot.SubPlot(2)
thinkplot.Pmfs([first_pmf, other_pmf])
thinkplot.Show(xlabel='weeks',

axis=[27, 46, 0, 0.6])

PrePlot takes optional parameters rows and cols to make a grid of figures,
in this case one row of two figures. The first figure (on the left) displays the
Pmfs using thinkplot.Hist, as we have seen before.

The second call to PrePlot resets the color generator. Then SubPlot
switches to the second figure (on the right) and displays the Pmfs using
thinkplot.Pmfs. I used the axis option to ensure that the two figures are

• To plot a PMF you can use 
“pyplot.hist”.  

• By plotting PMF, instead 
of histogram, we can 
compare two distributions 
without being mislead by 
the difference in sample 
size (since PMFs are 
normalized)
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Cumulative Density Functions (CDFs)
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The CDF is the function that maps from a value to its percentile rank. 

It is a function of x, where x is any value that might appear in the 
distribution, and to evaluate the CDF(x) for a particular value of x, we 
compute the fraction of values in the distribution less than or equal to 
x.  4.4. Representing CDFs 49

Figure 4.2: Example of a CDF.

If x is greater than the largest value, CDF(x) is 1.

Figure 4.2 is a graphical representation of this CDF. The CDF of a sample
is a step function.

4.4 Representing CDFs

thinkstats2 provides a class named Cdf that represents CDFs. The funda-
mental methods Cdf provides are:

• Prob(x): Given a value x, computes the probability p = CDF(x). The
bracket operator is equivalent to Prob.

• Value(p): Given a probability p, computes the corresponding value,
x; that is, the inverse CDF of p.

The Cdf constructor can take as an argument a list of values, a pandas
Series, a Hist, Pmf, or another Cdf. The following code makes a Cdf for the
distribution of pregnancy lengths in the NSFG:

live, firsts, others = first.MakeFrames()
cdf = thinkstats2.Cdf(live.prglngth, label='prglngth')

Example:  

- Suppose a sample 
[1,2,2,3,5].  

- Some values of the CDF are: 
CDF(0)=0, CDF(1)=0.2, 
CDF(2)=0.6, CDF(3)=0.8, 
CDF(4)=0.8, CDF(5)=1
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Probability Density Functions (PDFs)
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The derivative of a CDF is called “probability density function” 

Evaluating a PDF for a particular value of x is usually not that useful. 
The result is not a probability, but a probability density. 

Probability density measures the probability per unit of x, but if you 
want to get the probability mass you need to integrate over x. 

Chapter 6

Probability density functions

The code for this chapter is in density.py. For information about down-
loading and working with this code, see Section 0.2.

6.1 PDFs

The derivative of a CDF is called a probability density function, or PDF.
For example, the PDF of an exponential distribution is

PDFexpo(x) = �e
��x

The PDF of a normal distribution is

PDFnormal(x) =
1

�
p
2⇡

exp

"
�1

2

✓
x� µ

�

◆2
#

Evaluating a PDF for a particular value of x is usually not useful. The result
is not a probability; it is a probability density.

In physics, density is mass per unit of volume; in order to get a mass, you
have to multiply by volume or, if the density is not constant, you have to
integrate over volume.

Similarly, probability density measures probability per unit of x. In order
to get a probability mass, you have to integrate over x.
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Kernel Density Estimation
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Kernel density estimation (KDE) is an algorithm that takes a sample 
and finds an appropriately smooth PDF that fits the data.  

To compute it with python, you can use the library “scipy”
78 Chapter 6. Probability density functions

Figure 6.1: A normal PDF that models adult female height in the U.S., and
the kernel density estimate of a sample with n = 500.

class EstimatedPdf(Pdf):

def __init__(self, sample):
self.kde = scipy.stats.gaussian_kde(sample)

def Density(self, xs):
return self.kde.evaluate(xs)

__init__ takes a sample and computes a kernel density estimate. The result
is a gaussian_kde object that provides an evaluate method.

Density takes a value or sequence, calls gaussian_kde.evaluate, and re-
turns the resulting density. The word “Gaussian” appears in the name be-
cause it uses a filter based on a Gaussian distribution to smooth the KDE.

Here’s an example that generates a sample from a normal distribution and
then makes an EstimatedPdf to fit it:

>>> sample = [random.gauss(mean, std) for i in range(500)]
>>> sample_pdf = thinkstats2.EstimatedPdf(sample)
>>> thinkplot.Pdf(sample_pdf, label='sample KDE')

sample is a list of 500 random heights. sample_pdf is a Pdf object that
contains the estimated KDE of the sample.



Kernel Density Estimation

23/48

Why KDE is useful? 

• Visualization: during a project, the CDFs are usually the best 
visualisation of the data. However, for audiences, understanding 
PDFs is much easier than CDFs. 

• Interpolation: an estimated PDF is a way to get from a sample to a 
model of the population. If you think the population distribution is 
smooth, then you can use KDE to interpolate the density values that 
don’t appear in the sample data.  

• Simulation: simulations are often based on the distribution of a 
sample, if the sample size is small, it might be appropriate to smooth 
the sample distribution with the KDE.
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The distribution Framework
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80 Chapter 6. Probability density functions

CDF

(CMF)

PMF

sum diff integrate

PDF

CDF
smooth

bin

Continuous

Cumulative

Discrete

Non−cumulative

differentiate

Figure 6.2: A framework that relates representations of distribution func-
tions.

from an analytic continuous distribution (like exponential or normal) and
to estimate the parameters of that distribution. Another option is kernel
density estimation.

The opposite of smoothing is discretizing, or quantizing. If you evaluate a
PDF at discrete points, you can generate a PMF that is an approximation of
the PDF. You can get a better approximation using numerical integration.

To distinguish between continuous and discrete CDFs, it might be better for
a discrete CDF to be a “cumulative mass function,” but as far as I can tell
no one uses that term.

6.4 Hist implementation

At this point you should know how to use the basic types provided by
thinkstats2: Hist, Pmf, Cdf, and Pdf. The next few sections provide de-
tails about how they are implemented. This material might help you use
these classes more e↵ectively, but it is not strictly necessary.

Hist and Pmf inherit from a parent class called _DictWrapper. The leading
underscore indicates that this class is “internal;” that is, it should not be
used by code in other modules. The name indicates what it is: a dictionary

To get from discrete to continuous you can use different forms of smoothing: 

1) Assume the data come from an analytic continuous distribution (like 
exponential or normal) and to estimate the parameters of that distribution. 

2) Use kernel density



Practice (Optional)
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Python practice to implement hist, pmf, and cdf using classes. This can 
be found in thinkStats book starting a page 80. This is optional for 
those who want to reinforce their python skills and probability 
concepts, no classes knowledge is required for this part of the course.  

This practice won’t be corrected or addressed in class, since it is 
optional.
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Moments
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Whenever you take a data sample and reduce it to one number, that number 
is a statistic. We have seen several of them: mean, variance, median and IR.  

Raw moments are kind of statistics, the kth raw moment of a sample is:  

If k=1 the result is the sample mean. 

The central moments are more useful, the kth central moment is: 

If k=2, the result is the second central moment, which is actually the 
variance.  

When you report a moment-based statistic it is important to think about 
the units!
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Skewness
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We have heard already from skewness. It is a property that describes 
the shape of a distribution, if the distribution is symmetric around its 
central tendency, it is unskewed. Otherwise it can be “right/left 
skewed”. 

Skewness is the the third standardised moment, which means it has 
been normalised and it has no units. 

Negative skewness indicates skew to the left, and positive skew to 
the right.  

In practice it is not good idea to compute it if there are outliers, since 
they have a large impact. A better way to do it is using Pearson’s 
median skewness coefficient which is a measure of the skewness 
based on the difference between the sample mean and the median:

86 Chapter 6. Probability density functions

Negative skewness indicates that a distribution skews left; positive skewness
indicates that a distribution skews right. The magnitude of g1 indicates the
strength of the skewness, but by itself it is not easy to interpret.

In practice, computing sample skewness is usually not a good idea. If there
are any outliers, they have a disproportionate e↵ect on g1.

Another way to evaluate the asymmetry of a distribution is to look at the
relationship between the mean and median. Extreme values have more e↵ect
on the mean than the median, so in a distribution that skews left, the mean is
less than the median. In a distribution that skews right, the mean is greater.

Pearson’s median skewness coe�cient is a measure of skewness based
on the di↵erence between the sample mean and median:

gp = 3(x̄�m)/S

Where x̄ is the sample mean, m is the median, and S is the standard devia-
tion. Or in Python:

def Median(xs):
cdf = thinkstats2.Cdf(xs)
return cdf.Value(0.5)

def PearsonMedianSkewness(xs):
median = Median(xs)
mean = RawMoment(xs, 1)
var = CentralMoment(xs, 2)
std = math.sqrt(var)
gp = 3 * (mean - median) / std
return gp

This statistic is robust, which means that it is less vulnerable to the e↵ect
of outliers.

As an example, let’s look at the skewness of birth weights in the NSFG
pregnancy data. Here’s the code to estimate and plot the PDF:

live, firsts, others = first.MakeFrames()
data = live.totalwgt_lb.dropna()



Practice
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Download code exercise6-1.py and extract female heights. Using that distribution 

compute: 

1) Compute and print median, mean, standard deviation, variance skewness, 

kurtosis 

2) Plot a PMF, PDF and CDF of the female heights. You will need to code a 

function for PMF, while PDF and CDF have already functions defined within 

python libraries.
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Introduction
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All the distributions we have plotted based on data are called: 
“empirical distributions”, because they are based on empirical 
observations with finite samples. 

An alternative are the so called: continuous distributions, which are 
characterised by CDFs that is a continuous function (as opposed to a 
step function). 

Many real world phenomena can be approximated by continuous 
distributions —> why this is important?

Discuss for 5min in the chat
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The Exponential distribution

Exponential distributions come up when we look at a series of events 
and measure the times between events, which are called “interarrival 
times” —> if the events are equally likely to occur at any time, the 
distribution of inter arrival times tends to look like an exponential 
function

The parameter λ 
determines the shape of 
the distribution (λ=2 in fig)
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Figure 5.1: CDFs of exponential distributions with various parameters.

In the real world, exponential distributions come up when we look at a series
of events and measure the times between events, called interarrival times.
If the events are equally likely to occur at any time, the distribution of
interarrival times tends to look like an exponential distribution.

As an example, we will look at the interarrival time of births. On December
18, 1997, 44 babies were born in a hospital in Brisbane, Australia.1 The
time of birth for all 44 babies was reported in the local paper; the complete
dataset is in a file called babyboom.dat, in the ThinkStats2 repository.

df = ReadBabyBoom()
diffs = df.minutes.diff()
cdf = thinkstats2.Cdf(diffs, label='actual')

thinkplot.Cdf(cdf)
thinkplot.Show(xlabel='minutes', ylabel='CDF')

ReadBabyBoom reads the data file and returns a DataFrame with columns
time, sex, weight_g, and minutes, where minutes is time of birth converted
to minutes since midnight.

diffs is the di↵erence between consecutive birth times, and cdf is the distri-

1This example is based on information and data from Dunn, “A Simple Dataset for
Demonstrating Common Distributions,” Journal of Statistics Education v.7, n.3 (1999).
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Practice

Let’s look at the inter arrival time of births. Using the data downloaded 
from the repository, lets make this small program:
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Figure 5.1: CDFs of exponential distributions with various parameters.

In the real world, exponential distributions come up when we look at a series
of events and measure the times between events, called interarrival times.
If the events are equally likely to occur at any time, the distribution of
interarrival times tends to look like an exponential distribution.

As an example, we will look at the interarrival time of births. On December
18, 1997, 44 babies were born in a hospital in Brisbane, Australia.1 The
time of birth for all 44 babies was reported in the local paper; the complete
dataset is in a file called babyboom.dat, in the ThinkStats2 repository.

df = ReadBabyBoom()
diffs = df.minutes.diff()
cdf = thinkstats2.Cdf(diffs, label='actual')

thinkplot.Cdf(cdf)
thinkplot.Show(xlabel='minutes', ylabel='CDF')

ReadBabyBoom reads the data file and returns a DataFrame with columns
time, sex, weight_g, and minutes, where minutes is time of birth converted
to minutes since midnight.

diffs is the di↵erence between consecutive birth times, and cdf is the distri-

1This example is based on information and data from Dunn, “A Simple Dataset for
Demonstrating Common Distributions,” Journal of Statistics Education v.7, n.3 (1999).

5.1. The exponential distribution 59

Figure 5.2: CDF of interarrival times (left) and CCDF on a log-y scale (right).

bution of these interarrival times. Figure 5.2 (left) shows the CDF. It seems
to have the general shape of an exponential distribution, but how can we
tell?

One way is to plot the complementary CDF, which is 1 � CDF(x), on a
log-y scale. For data from an exponential distribution, the result is a straight
line. Let’s see why that works.

If you plot the complementary CDF (CCDF) of a dataset that you think is
exponential, you expect to see a function like:

y ⇡ e
��x

Taking the log of both sides yields:

log y ⇡ ��x

So on a log-y scale the CCDF is a straight line with slope ��. Here’s how
we can generate a plot like that:

thinkplot.Cdf(cdf, complement=True)
thinkplot.Show(xlabel='minutes',

ylabel='CCDF',
yscale='log')

1) Download 
Lecture2ContinuousDistributions.py 

2) Comment the script with the 
specifications of what ReadBabyRoom(), 
diff(), thinkstats2.Cdf and thinkplot.Cdf 
functions do 

3) Seems exponential, but how can we be 
sure? Find a way to proof it is or not 
exponential and plot the solution (think 
about complementary CDFs —> 1-CDF)
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The Normal distribution
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The normal distribution is the most important and most widely used 
distribution in statistics: 

• Also called “Gaussian distribution” 

�
Figure 1. Normal distributions differing in mean and standard deviation.

The density of the normal distribution (the height for a given value on the x-axis) is 
shown below. The parameters μ and σ are the mean and standard deviation, 
respectively, and define the normal distribution. The symbol e is the base of the 
natural logarithm and π is the constant pi.

�
Since this is a non-mathematical treatment of statistics, do not worry if this 
expression confuses you. We will not be referring back to it in later sections.

Seven features of normal distributions are listed below. These features are 
illustrated in more detail in the remaining sections of this chapter.

1. Normal distributions are symmetric around their mean.
2. The mean, median, and mode of a normal distribution are equal.

3. The area under the normal curve is equal to 1.0.
4. Normal distributions are denser in the center and less dense in the tails.

5. Normal distributions are defined by two parameters, the mean (μ) and the 
standard deviation (σ).

6. 68% of the area of a normal distribution is within one standard deviation of the 
mean.
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Which on has the largest mean? 

Which one has the smallest 
standard deviation? 



The Normal distribution
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The density of the normal distribution (the height for a given value on the x-axis) can 
be computed as: 

Properties of normal distributions: 

1. They are symmetric around their mean 

2. The mean, median, and mode are equal 

3. The are under the curve is equal to 1 

4. They are defined by two parameters: μ, 𝝈 

5. They are denser in the centre than in the tails 

6. 68% of the area is within one standard deviation of the mean 

7. 98% is approximately within 2 standard deviations from the mean
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Areas Under Normal Distributions 
by David M. Lane 

Prerequisites
• Chapter 1: Distributions
• Chapter 3: Central Tendency
• Chapter 3: Variability
• Chapter 7: Introduction to Normal Distributions 

Learning Objectives
1. State the proportion of a normal distribution within 1 standard deviation of the 

mean
2. State the proportion of a normal distribution that is more than 1.96 standard 

deviations from the mean
3. Use the normal calculator  to calculate an area for a given X”
4. Use the normal calculator to calculate X for a given area
Areas under portions of a normal distribution can be computed by using calculus. 
Since this is a non-mathematical treatment of statistics, we will rely on computer 
programs and tables to determine these areas. Figure 1 shows a normal distribution 
with a mean of 50 and a standard deviation of 10. The shaded area between 40 and 
60 contains 68% of the distribution.

�
Figure 1. Normal distribution with a mean of 50 and standard deviation of 

10. 68% of the area is within one standard deviation (10) of the mean 
(50).

!256

�
Figure 3. A normal distribution with a mean of 75 and a standard deviation 

of 10. 95% of the area is within 1.96 standard deviations of the mean.

Areas under the normal distribution can be calculated with this online calculator.
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If the logarithms of a set of values have a normal distribution, the 
values have a lognormal distribution 

If a sample is lognormal and you plot its CDF on a log-x scale, it will 
have the characteristic shape of a normal distribution: 

5.4. The lognormal distribution 65

Figure 5.7: CDF of adult weights on a linear scale (left) and log scale (right).

within a few standard deviations from the mean, but not in the tails.
Whether it is good enough for practical purposes depends on the purposes.

5.4 The lognormal distribution

If the logarithms of a set of values have a normal distribution, the values
have a lognormal distribution. The CDF of the lognormal distribution is
the same as the CDF of the normal distribution, with log x substituted for
x.

CDFlognormal(x) = CDFnormal(log x)

The parameters of the lognormal distribution are usually denoted µ and
�. But remember that these parameters are not the mean and standard
deviation; the mean of a lognormal distribution is exp(µ + �

2
/2) and the

standard deviation is ugly (see http://wikipedia.org/wiki/Log-normal_
distribution).

If a sample is approximately lognormal and you plot its CDF on a log-x scale,
it will have the characteristic shape of a normal distribution. To test how
well the sample fits a lognormal model, you can make a normal probability
plot using the log of the values in the sample.

66 Chapter 5. Modeling distributions

Figure 5.8: Normal probability plots for adult weight on a linear scale (left)
and log scale (right).

As an example, let’s look at the distribution of adult weights, which is ap-
proximately lognormal.2

The National Center for Chronic Disease Prevention and Health Promotion
conducts an annual survey as part of the Behavioral Risk Factor Surveillance
System (BRFSS).3 In 2008, they interviewed 414,509 respondents and asked
about their demographics, health, and health risks. Among the data they
collected are the weights in kilograms of 398,484 respondents.

The repository for this book contains CDBRFS08.ASC.gz, a fixed-width ASCII
file that contains data from the BRFSS, and brfss.py, which reads the file
and analyzes the data.

Figure 5.7 (left) shows the distribution of adult weights on a linear scale

2I was tipped o↵ to this possibility by a comment (without citation) at http:
//mathworld.wolfram.com/LogNormalDistribution.html. Subsequently I found a pa-
per that proposes the log transform and suggests a cause: Penman and Johnson, “The
Changing Shape of the Body Mass Index Distribution Curve in the Population,” Prevent-
ing Chronic Disease, 2006 July; 3(3): A74. Online at http://www.ncbi.nlm.nih.gov/
pmc/articles/PMC1636707.

3Centers for Disease Control and Prevention (CDC). Behavioral Risk Factor Surveil-
lance System Survey Data. Atlanta, Georgia: U.S. Department of Health and Human
Services, Centers for Disease Control and Prevention, 2008.
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The pareto distribution has been used to describe phenomena in the 
natural and social sciences, including sizes of cities and towns, sand 
particles and meteorites, forest fires or earthquakes.  

Where the parameters xm and 𝝰 determine the location and shape of 

the distribution. 

68 Chapter 5. Modeling distributions

Figure 5.9: CDFs of Pareto distributions with di↵erent parameters.

So if you plot log y versus log x, it should look like a straight line with slope
�↵ and intercept ↵ log xm.

As an example, let’s look at the sizes of cities and towns. The U.S. Census
Bureau publishes the population of every incorporated city and town in the
United States.

I downloaded their data from http://www.census.gov/popest/data/
cities/totals/2012/SUB-EST2012-3.html; it is in the repository for this
book in a file named PEP_2012_PEPANNRES_with_ann.csv. The repository
also contains populations.py, which reads the file and plots the distribution
of populations.

Figure 5.10 shows the CCDF of populations on a log-log scale. The largest
1% of cities and towns, below 10�2, fall along a straight line. So we could
conclude, as some researchers have, that the tail of this distribution fits a
Pareto model.

On the other hand, a lognormal distribution also models the data well. Fig-
ure 5.11 shows the CDF of populations and a lognormal model (left), and
a normal probability plot (right). Both plots show good agreement between
the data and the model.

Neither model is perfect. The Pareto model only applies to the largest 1% of
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Simple visual test that indicates whether an empirical distribution fits 
a Pareto distribution: on a log-log scale, the CCDF looks like a straight 
line 

Use the data in the repository (PEP_2012_PEPANNRES_with_ann.csv) and 

populations.py  to check if the sizes of cities and towns follows a pareto 

distribution


