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Central Tendency

't is about determining where is the centre of the distribution. There
are different ways to calculate it. The message after all is, how far your
grade for example is from the centre of the distribution?

m Dataset A Dataset B Dataset C
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Central Tendency

1.Balance scale

12345&8910111213141516

2.Smallest Absolute Deviation

3. Smallest Squared Deviation

Absolute Deviations
Values from 10
2 8
3 7
4 6
9 1
16 6
Sum 28
Squared Deviations
Values from 10
2 64
3 49
4 36
9 1
16 36
Sum 186
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Central Tendency - Measures

1. Arithmetic mean (mean)

2. Median

Odd number of numbers: the median is the middle number
Even number of numbers: the median is the mean of the two middle numbers

When there are numbers with the same values —> 50th percentile formula

3. Mode

It is the most frequently occurring value in the list

The mode of continuous data is normally computed from a grouped frequency

distribution 7148



Overview

= Central Tendency
= Variability

= Shape



Variability - Measures

The term variability refers to how spread out is a distribution. It can
also be referred as spread or dispersion of the distribution.

There are 4 frequently used measures of variability:

1. Range: simply the highest and the lowest number in the
distribution.

2. Interquartile Range (IQR): it is the range of the middle 50% of the
scores in a distribution, as we saw before.

3. Variance: is the averaged squared difference of the scores from

the mean.
: 2 Z (X ,U B
variance = o° = = — E

4. Standard deviation: is simply the square root of the variance
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Shapes and distributions

We focused in two measures of shape distributions: skew and
kurtosis (also know as 3rd and 4th order moments (1st and 2nd being

o and 62))

1. Skewness: distributions with + skew normally means
mean>>median
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2. Kurtosis: the value 3is subtracted to define no kurtosis of a
normal distribution, otherwise a normal distribution would have a
kurtosis 3. (X — ,u)4

0422 i 3
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Probability Mass Functions (PMFs)

't is a way to represent a distribution, which maps from each value its
probability. Probability is a frequency expressed as a fraction of the
sample size, n. To get from frequencies to probabilities, we divide
through by n, which is called normalization.

0.6 \ \ \ 0.6

= Toplot a PMF you can use =i — st |
“ ] ’ other - other
pyplot.hist”.

0.5} 1 o5}

0.4} { o4}

= By plotting PMF, instead
of histogram, we can
compare two distributions
without being mislead by

the differencein sample .ol = - BREEEEER. R el -h:'L

size (since PMFs are
normalized)

8 0.3f

probability

0.2} i 0.2}

Figure 3.1: PMF of pregnancy lengths for first babies and others, using bar
graphs and step functions.
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Cumulative Density Functions (CDFs)

The CDF is the function that maps from a value to its percentile rank.

It is a function of x, where x is any value that might appear in the
distribution, and to evaluate the CDF(x) for a particular value of x, we
compute the fraction of values in the distribution less than or equal to

X.

Example:

- Suppose a sample
[1,2,2,3,5].

- Some values of the CDF are:

CD
CD
CD

-(0)=0, CDF(1)=0.2,
-(2)=0.6, CDF(3)=0.8,

-(4)=0.8, CDF(5)=1

1.0

0.8}

0.6}

CDF

0.41

0.2+

1 2 3 4 5 6

Figure 4.2: Example of a CDF. 18/48
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Probability Density Functions (PDFs)

The derivative of a CDF is called “probability density function”

PDF cppo(7) = Ae™™ < CDF(z)=1—e

Evaluating a PDF for a particular value of x is usually not that useful.
The result is not a probability, but a probability density.

Probability density measures the probability per unit of x, but if you
want to get the probability mass you need to integrate over x.
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Kernel Density Estimation

Kernel density estimation (KDE) is an algorithm that takes a sample
and finds an appropriately smooth PDF that fits the data.

To compute it with python, you can use the library “scipy”

P = normal
- sample KDE

130 140 150 160 170 180 190
Height (cm)

Figure 6.1: A normal PDF that models adult female height in the U.S., and
the kernel density estimate of a sample with n = 500.

22/48



Kernel Density Estimation

Why KDE is useful?

= Visualization: during a project, the CDFs are usually the best
visualisation of the data. However, for audiences, understanding
PDFs is much easier than CDFs.

= Interpolation: an estimated PDF is a way to get from a sample to a
model of the population. If you think the population distribution is
smooth, then you can use KDE to interpolate the density values that
don’t appear in the sample data.

= Simulation: simulations are often based on the distribution of a

sample, if the sample size is small, it might be appropriate to smooth
the sample distribution with the KDE.
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The distribution Framework

Discrete Continuous
CDF | smooth
Cumulative (CMF) CDF
sum ( > diff integrate )differentiate
Non-cumulative PMF PDF
bin

Figure 6.2: A framework that relates representations of distribution func-
tions.

To get from discrete to continuous you can use different forms of smoothing:

1) Assume the data come from an analytic continuous distribution (like
exponential or normal) and to estimate the parameters of that distribution.

2) Use kernel density
25/48



Practice (Optional)

Python practice to implement hist, pmf, and cdf using classes. This can
be found in thinkStats book starting a page 80. This is optional for
those who want to reinforce their python skills and probability
concepts, no classes knowledge is required for this part of the course.

This practice won't be corrected or addressed in class, since it is
optional.
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Whenever you take a data sample and reduce it to one number, that number
is a statistic. We have seen several of them: mean, variance, median and IR.

Raw moments are kind of statistics, the kth raw moment of a sample is:
1
_ k
my, = . Z i
i
If k=1 the result is the sample mean.

The central moments are more useful, the kth central moment is:

If k=2, the result is the second central moment, which is actually the
variance.

When you report a moment-based statistic it is important to think about
the units!
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Skewness

We have heard already from skewness. It is a property that describes
the shape of a distribution, if the distribution is symmetric around its
central tendency, it is unskewed. Otherwise it can be “right/left
skewed”.

Skewness is the the third standardised moment, which means it has
been normalised and it has no units.

mng (

T —H)3_
o

Negative skewness indicates skew to the left, and positive skew to
the right.

In practice it is not good idea to compute it if there are outliers, since
they have a large impact. A better way to do it is using Pearson’s
median skewness coefficient which is a measure of the skewness
based on the difference between the sample mean and the median:

9p = 3( —m)/S 0/



Download code exercise6-1.py and extract female heights. Using that distribution
compute:

1) Compute and print median, mean, standard deviation, variance skewness,
kurtosis

2) Plot a PMF, PDF and CDF of the female heights. You will need to code a
function for PMF, while PDF and CDF have already functions defined within
python libraries.
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Introduction

All the distributions we have plotted based on data are called:
“empirical distributions”, because they are based on empirical
observations with finite samples.

An alternative are the so called: continuous distributions, which are
characterised by CDFs that is a continuous function (as opposed to a
step function).

Many real world phenomena can be approximated by continuous
distributions —> why this is important?

Discuss for 5min in the chat
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The Exponential distribution

Exponential distributions come up when we look at a series of events
and measure the times between events, which are called “interarrival
times” —> if the events are equally likely to occur at any time, the
distribution of inter arrival times tends to look like an exponential

function

CDF(z)=1—¢e ™

1.0 | Exponeqtlal CDF |

— T

PDF(z) = Xe

CDF

The parameter A
determines the shape of
the distribution (A=2 in fig)

1, 1
p— —;0‘ —
B \2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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Let’s look at the inter arrival time of births. Using the data downloaded
from the repository, lets make this small program:

df = ReadBabyBoom()
diffs = df .minutes.diff ()
cdf = thinkstats2.Cdf(diffs, label='actual')

thinkplot.Cdf (cdf)
thinkplot.Show(xlabel='minutes', ylabel='CDF')

1.0

1) Download
Lecture2ContinuousDistributions.py

2) Comment the script with the
specifications of what ReadBabyRoom(), | ..
diff(), thinkstats2.Cdf and thinkplot.Cdf

0.8f

CDF

functions do 0.4]
Seems exponential, but how can we be
sure? Find a way to proof it is or not 02f
exponential and plot the solution (think

about complementary CDFs —> 1-CDF)

0.0 ] ] ] ] ] ] ]
0 20 40 60 80 100 120 140 160

minutes 88/48
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The Normal distribution

The normal distribution is the most important and most widely used
distribution in statistics:

= Also called “"Gaussian distribution”

Which on has the largest mean?

\Which one has the smallest
standard deviation?

L

Figure 1. Normal distributions differing in mean and standard deviation.
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The Normal distribution

The density of the normal distribution (the height for a given value on the x-axis) can
be computed as:

1 —(z—p)?

— € 202
V 27mo?

f()

Properties of normal distributions:
1. They are symmetric around their mean

2. The mean, median, and mode are equal

3. The are under the curve is equal to 1

4. They are defined by two parameters: y, o

b. They are denser in the centre than in the tails
6. 68% of the area is within one standard deviation of the mean

7.98% is approximately within 2 standard deviations from the mean
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Areas under Normal distribution

20 30 40 50 60 70 80

Figure 1. Normal distribution with a mean of 50 and standard deviation of
10. 68% of the area is within one standard deviation (10) of the mean
(50).

45 55 65 75 85 95 105

Figure 3. A normal distribution with a mean of 75 and a standard deviation
of 10. 95% of the area i1s within 1.96 standard deviations of the mean.

43/48



Overview

» |ntroduction

» The exponential distribution
= The Normal distribution

= Areas of Normal Distribution
= The lognormal distribution

= The Pareto distribution



The Lognormal distribution

f the logarithms of a set of values have a normal distribution, the
values have a lognormal distribution

CDEognormal ($) — CDFnormal (108; 56)

[f a sample is lognormal and you plot its CDF on a log-x scale, it will
have the characteristic shape of a normal distribution:

200

2.6

model model

- Weights Sall — weights

150f

weights (kg)

50}

-50 I I I I I 1.2 I I I I I
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Figure 5.8: Normal probability plots for adult weight on a linear scale (left)
and log scale (right). A5/48
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The Pareto distribution

The pareto distribution has been used to describe phenomena in the
natural and social sciences, including sizes of cities and towns, sand
particles and meteorites, forest fires or earthquakes.

CDF(z) =1 — (i)a

Lm

Where the parameters xm and o determine the location and shape of
the distribution. 5

0.8f
0.6f
W
o
O
0.4

Figure 5.9: CDF's of Pareto distributions with different parameters. 47148
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Practice (optional)

Simple visual test that indicates whether an empirical distribution fits
a Pareto distribution: on a log-log scale, the CCDF looks like a straight

line
CDF(z)=1— (i)a

Lm

Use the datain the repository (PEP_2012 PEPANNRES with_ann.csv) and

populations.py to check if the sizes of cities and towns follows a pareto
distribution
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