Lesson A1 Introduction to statistics, Visualisation

GE01001.2020

Clara García-Sánchez, Stelios Vitalis

Resources adapted from:

- David M. Lane et al. (http://onlinestatbook.com)
- Allen B. Downey et al. (https://greenteapress.com/wp/think-stats-2e/)

Lesson A1 Introduction to Statistics

Overview

- Introduction
- Descriptive statistics
- Inferential statistics
- Percentiles
- Distributions
- Significance
- Mean and variance

Overview

- Introduction
- Descriptive statistics
- Inferential statistics
- Percentiles
- Distributions
- Significance
- Mean and variance

The study of statistics involves:
Math $+\underset{\substack{\text { Calculation of } \\ \text { numbers }}}{ }+$

How those
numbers are
chosen
:---:
results are
interpreted

What is wrong with this affirmations:

1) A new ad for Ben and Jerry's ice cream introduced in late May resulted in 30% increase in ice cream sales for the following 3 months.
2) The more churches in a city, the more crime there is $\rightarrow+$ churches $==+$ crimes
3) 75% more international marriages are occurring this year than 25 years ago, so our society accepts international marriages.

Introduction

Statistics are not only facts and figures, but they refer to a range of techniques and procedures for analysing, interpreting, displaying, and making decisions based on data.

A statistical approach

To address the limitations of anecdotes, a statistical approach uses tools like:

1. Data collection
2. Descriptive Statistics
3. Exploratory data analysis
4. Hypothesis testing
5. Estimation

Overview

- Introduction
- Descriptive statistics
- Inferential statistics
- Percentiles
- Distributions
- Significance
- Mean and variance

Descriptive Statistics

Descriptive statistics are numbers that are used to summarise and describe data.

They just describe the data in numbers, and they do not generalise beyond the numbers

$\$ 112,760$	pediatricians
$\$ 106,130$	dentists
$\$ 100,090$	podiatrists
$\$ 76,140$	physicists
$\$ 53,410$	architects,
$\$ 49,720$	school, clinical, and counseling psychologists
$\$ 47,910$	flight attendants
$\$ 39,560$	elementary school teachers
$\$ 38,710$	police officers
$\$ 18,980$	floral designers

Overview

- Introduction
- Descriptive statistics
- Inferential statistics
- Percentiles
- Distributions
- Significance
- Mean and variance

Inferential Statistics

They rely on a sample (small subset) of a larger set of data.
Inferential statistics are the mathematical procedures whereby we convert information about the sample into intelligent guesses about the population.

Statistics over Europe population
Finite individuals from Europe

Choosing the sample is crucial, but why?

Inferential Statistics

Inferential statistics are based on:

1. Assumption of random sampling

Every member of the population needs to have an equal chance of being selected into the sample.
2. Sample is large enough to represent the population

More complex sampling:
Random assignment (medical treatments where the sample is divided in two groups), stratified sampling (samples from groups with sizes that represent the population)

Practice

To figure out who wants to remain in EU and who wants to quit the EU from the country member states

Statistics over Europe population
Finite individuals from Europe

Which type of sampling would you choose for this case?

Overview

- Introduction
- Descriptive statistics
- Inferential statistics
- Percentiles
- Distributions
- Significance
- Mean and variance

Percentiles

Test scores

Percentile: the 65th percentile can be defined as the lowest score that is greater than 65% of the scores

How to compute the 25th percentile?

1. Compute the rank: $\quad R=\frac{P}{100} \cdot(N+1) \rightarrow R=\frac{25}{100} \cdot(8+1)=2.25$
2. R is integer $\longrightarrow>$ percentile is the number with that rank
R is not an integer \rightarrow
25th percentile

$$
I R=2 \quad F R=0.25 \quad(0.25) \cdot(7-5)+5=5.5
$$

Overview

- Introduction
- Descriptive statistics
- Inferential statistics
- Percentiles
- Distributions
- Significance
- Mean and variance

Continuous distributions: we focus in them because they are similar to geospatial data. For example a list of response times to perform an activity (table 2)

Table 2. Response Times

568	720
577	728
581	729
640	777
641	808
645	824
657	825
673	865
696	875
703	1007

Figure 3. A histogram of the grouped frequency distribution shown in Table
3. The labels on the X -axis are the middle values of the range they represent.

Table 3. Grouped frequency distribution

Range	Frequency
$500-600$	3
$600-700$	6
$700-800$	5
$800-900$	5
$900-1000$	0
$1000-1100$	1

Distributions

- This is a distribution of continuous variable, which is also called: "probability density (function) (pdf)"

Figure 3. A histogram of the grouped frequency distribution shown in Table
3. The labels on the X -axis are the middle values of the range they represent.

- Some pdfs have particular importance in statistics, such as the normal distribution \rightarrow because many naturallyoccurring phenomena can be approximated surprisingly well by this distribution.
- What is the area under the curve?

Distributions

- The distribution that your data follows gives you already a lot of information regarding the data you are dealing with.

Figure 5. A distribution with a positive skew.

Figure 6. A distribution with a very large positive skew.

Figure 8. A distribution with negative skew. This histogram shows the frequencies of various scores on a 20 -point question on a statistics test.

Overview

- Introduction
- Descriptive statistics
- Inferential statistics
- Percentiles
- Distributions
- Significance
- Mean and variance

Significance

Plenty of times in statistics we compare two sets of data or distributions looking for significant differences. Some of the questions we ask are:

- If the two groups have different means, what about other summary statistics, like median and variance? Can we be more precise about how the groups differ?
- Is it possible that the difference we saw could occur by chance, even if the groups we compared were actually the same? If so, we would conclude that the effect was not statistically significant.
- Is it possible that the apparent effect is due to selection bias or some other error in the experimental setup? If so, then we might conclude that the effect is an artefact; that is, something we created (by accident) rather than found.

Overview

- Introduction
- Descriptive statistics
- Inferential statistics
- Percentiles
- Distributions
- Significance
- Mean and variance

Mean and Variance

- Mean: if you have a sample of n values, x_{i}, the mean, μ, is the sum of the values divided by the number of values:

$$
\mu=\frac{1}{n} \sum_{i} x_{i}
$$

- Variance: in the same way that the mean describes the central tendency, the variance describes the spread. The variance can be calculated as:

$$
\sigma^{2}=\frac{1}{n} \sum_{i}\left(x_{i}-\mu\right)^{2}
$$

- Standard deviation: is the square root fo the variance:

$$
\sigma=\sqrt{\sigma^{2}}
$$

Practice

Go to Gitlab if you haven't already download the materials.
Download the scripts and data inside folder "lectureA1" and the folder "data".

Keep these, we will use them in future lectures.

Compute mean, variance and standard deviation using standard libraries from python for wind direction and wind speed!

Practice

The best way to learn statistics is to find a set of data that are interesting for you.

For next Tuesday, I would like you to:

1) Think about and find a set of data that you think might be interesting to analyse and try to pose a question you are curious about.

An example from thinkStats:
> "Do first babies arrive late" —> National Survey of Family Growth (NSFG)

You could think in sports results, COVID data, meteorological data, look at the 4TU repository...
2) Use the data to compute mean, variance and standard deviation with python for some of the dataset variables (not using predefined functions) and put it on Git!

Practice

The best way to learn statistics is to find a set of data that are interesting for you.

2) Use the data to compute mean, variance and standard deviation with python for some of the dataset variables (not using predefined functions) and put it on Git!

Lesson A1
 Visualisation

Overview

- Histograms
- Frequency Polygons
- Box Plots
- Line Graphs
- Scatter/dot plots

Overview

- Histograms
- Frequency Polygons
- Box Plots
- Line Graphs
- Scatter/dot plots

Histograms

It is a graphical method for displaying the shape of a distribution. This type of visualisation is particularly useful with a lot of data/ observations.

Figure 1. Histogram of scores on a psychology test.

Histograms

Now it is your turn to experiment. These are two wind measurement series with a frequency of 10 s at 15 m height.

What can your say already about the time series?

Go to Gitlab if you haven't already download the materials.
Download the scripts and data inside folder "lectureA1"

> Try changing the number of bins in the histogram, use Rice's rule and then try to increase it or reduce it.

Comment with the class, what do you see? How many bins are necessary to extract conclusions about the data?

How can you normalise the frequency?

Now it is your turn to experiment. These are two wind measurement series with a frequency of 10 s at 15 m height.

We can also plot the envelope of the histogram as you can see in the leftmost plot

Cumulative density functions (cdf, rightmost plot) are very useful to determine locations for confidence intervals in statistics.

Overview

- Histograms
- Frequency Polygons
- Box Plots
- Line Graphs
- Scatter/dot plots

Frequency polygons

Graphical device for understanding the shapes of distributions, specially useful to compare diverse distributions.

They normally provide the same kind of information as histogram plots.

Overview

- Histograms
- Frequency Polygons
- Box Plots
- Line Graphs
- Scatter/dot plots

Box plots

Box plots are useful for identifying outliers and for comparing distributions

Steps to construct a box plot:

1. Compute 25th (Q1), 50th (Q2) and 75th (Q3) percentiles in the distribution scores.
2. Compute distance between Q3 and Q1 (Interquartile Range, IQR).
3. Compute the whiskers:

3.1. Q1-1.5IQR and Q3+1.5IQR

3.2. Find the largest value below upper whisker and smallest value above lower whisker
4. Compute outliers, values outside the whiskers
5. Add means in the plot

Table 1. Women's times.

14	17	18	19	20	21	29
15	17	18	19	20	22	
16	17	18	19	20	23	
16	17	18	20	20	24	
17	18	18	20	21	24	

1. Compute 25th (Q1), 50th (Q2) and 75th (Q3) percentiles in the distribution scores.

$$
\begin{gathered}
R=\frac{P}{100} \cdot(N+1) \longrightarrow \quad R(25)=8, R(75)=24 \longrightarrow Q 1=17, Q 3=20 \\
Q 2=19
\end{gathered}
$$

Box plots

Table 1. Women's times.

14	17	18	19	20	21	29
15	17	18	19	20	22	
16	17	18	19	20	23	
16	17	18	20	20	24	
17	18	18	20	21	24	

Times in seconds to identify distribution of colours in plot.
2. Compute distance between Q3 and Q1 (Interquartile Range, IQR).

$$
I Q R=20-17=3
$$

3. Compute the whiskers:

$$
\begin{aligned}
& Q 1-1.5 I Q R=17-4.5=12.5 \\
& Q 3+1.5 I Q R=20+4.5=24.5
\end{aligned}
$$

$$
\begin{aligned}
& W 1=14 \\
& W 2=24
\end{aligned}
$$

Box plots

Table 1. Women's times.

14	17	18	19	20	21	29
15	17	18	19	20	22	
16	17	18	19	20	23	
16	17	18	20	20	24	
17	18	18	20	21	24	

Times in seconds to identify distribution of colours in plot.
4. Compute outliers, values outside the whiskers

outlier $=29$

5. Add means in the plot

$$
m e a n=\mu=19.19
$$

Practice

Using the wind data provided in the previous exercise, construct the box plots for the wind speed and wind direction variables.

Bar charts

Bar charts are particularly effective for showing change over time, specially over long times.

Bar charts

Bar charts are particularly effective for showing change over time, specially over long times.

Bar charts

Bar charts are particularly effective for showing change over time, specially over long times.

Overview

- Histograms
- Frequency Polygons
- Box Plots
- Line Graphs
- Scatter/dot plots

Line graphs

Line graphs are particularly effective for showing change over time as well, and they only make sense when both X and Y axes display ordered. For example for time series of measurements:

Overview

- Histograms
- Frequency Polygons
- Box Plots
- Line Graphs
- Scatter/dot plots

Scatter/dot plots

Scatter plots can be used in the variety of ways. When presenting experiments, the first plot normally used is typically a scatter point, since we perform discrete measurements most of the time.

It is very easy to combine data together through legends.

Lesson $Z 1$
 Linux basics \& console

Linux basics \& console

Does anyone worked with Linux before?

Linux basics \& console

Linux basics \& console

Files system is a tree:

	\square Classes			
	\# 三	- Q sea		
Classes		Downloads	videos	
Favourites @) AirDrop Recents A. Applications Desktop Documents Downloads surfdrive Locations iPhone... Clara's i... Network	Name	Date Modified	Size	Kind
	- 3DcityModellin...rbanApplications	18 Mar 2020 at 09:43	--	Folder
	- GE01001	21 Aug 2020 at 10:59	--	Folder
	- AssignmentsExams	18 Aug 2020 at 10:53	--	Folder
		21 Aug 2020 at 10:56	32 KB	Micros...ok (.x\|s)
	\checkmark geo1001.2020	18 Aug 2020 at 16:09	--	Folder
	\square geo1001.website. 2020	Today at 09:08	--	Folder
	XimadingOverall.xlsx	18 Aug 2020 at 09:13	9 KB	Micros...k (.x\|sx)
	- MathsTechs4Geomatics	14 Nov 2019 at 10:14	--	Folder
	Xia Proposal sche...GEO1001.xlsx	2 Jul 2020 at 10:58	12 KB	Micros...k (.xlsx)
	\checkmark Reference_Books	12 Aug 2020 at 10:45	--	Folder
	∇ Scripts	12 Aug 2020 at 16:02	--	Folder
	\checkmark _ _pycache_	12 Aug 2020 at 12:17	--	Folder
	7 analytic.py	12 Aug 2020 at 12:17	6 KB	Python Source
	\checkmark data	12 Aug 2020 at 15:59	--	Folder
	I frequencyP...WIDSdata.py	18 Jun 2020 at 11:17	2 KB	Python Source
	E Macintosh HD > Users > ficlaragarciasan > Documents > TuD > Classes			
40 items, 147,66 GB available				

Linux basics \& console

pwd	Returning working directory
Is	List directory contents
cd	Current directory
mkdir	Make directories
cd ../../	Going out from the current directory, two tree layers up
cat ./myfile.txt	Concatenate and print files
exit	Exit the shell
nano/vim	Command line text editors
touch myfile.txt	Change a file access and modification times
mv	Move files
rm	Remove directory entries
tldr	Shorter man
apt	Annotation processing tool

Ownership of files:

To see: Is -I
To change: chmod -+ u/g/a/or/w/x
Example: chmod a-rw file1

```
# ls -l file
    Trw-r--r-- 1 root root 0 Nov 19 23:49 file
    -7----
    Other (r - -)
Group (r- -)
Owner (rw-)
```

r = Readable

```
r = Readable
w = Writeable
w = Writeable
x = Executable
x = Executable
- = Denied
```

```
- = Denied
```

```

\section*{File type}

\section*{Linux basics \& console}


\section*{Linux basics \& console}
\begin{tabular}{|c|c|c|c|c|}
\hline Linux Cheat sheet by A.Mahouachi & \begin{tabular}{l}
o: others \\
a: all
\end{tabular} & -P: pattern is a perl regex -m : stop after m matches & df [options] file options: & 3 Network \& Remote ssh [options] user@host ["cmd1;cmd2"] \\
\hline 1 File Comman & -: remove mode & -R: recurse directories & -h: human readable & opti \\
\hline Is [options] file & \(=\) : exact mode & -c: only show matching lines count & --P: no dereference of sym links & -2: force protocol 2 \\
\hline options & r : & -exclude=glob: exclude these & & warnings due to remote host key \\
\hline -a: show hidden files & w: write execute files and search for dirs & -include=glob: only cons & 2 Process Commands & change \\
\hline -A: show hidden files except . and .. & X : search for dirs & & ps [optio & -X: forward X11 displ \\
\hline -d: only show directories & s : setuid or setguid & ption & options & wget [options] url \\
\hline -h: human readable size -i: inode info & t: sticky bit & -v: non ascii chars except tab and eol & -e: all processes & options: \\
\hline -1: long list format & numeric mode & -t: equivalent to -v & -f: full listing & -b: run in background \\
\hline -m: output as csv & fo & -E: show eol end of li & -H: show hierarchy & -o file: print wget output in file \\
\hline -n: numeric uid and gu & examp & -e: equivalent to & -p pid: this process pid & -o / dev/null: suppress wget output \\
\hline -r: sort in reverse order & first digit: set & -A: equivalent to -vET &  & \begin{tabular}{l}
-q: be quiet \\
-d: debug
\end{tabular} \\
\hline -S: sort by file size & second digit: owner perm & -s: remove repeat empty lines & -ww: to show long command lines & -O file: save response to file \\
\hline -t: sort by modification & third digit: group perms & tail [options] file & -1: long listing, including wchan & -c: resume file download \\
\hline tree [options] dir & fourth digit: others perms read: 4 & options & -o x,y,z: show columns x y z & -S: print server head \\
\hline options & write: 2 & -f: show end of file & -o user,pid,cmd: show columns user, & -T : timeout after N \\
\hline -d: only directories & execute: 1 & -35: show last 35 li & \begin{tabular}{l}
pid command \\
-N : negation
\end{tabular} & -user=user: basic http auth user \\
\hline \begin{tabular}{l}
-f: show full paths \\
-P pattern: only matching pattern
\end{tabular} & find path [options] [tests] [actions] & -q: be quiet \({ }^{\text {head [options] file }}\) & - - - userer: processes owned by user & \[
\begin{aligned}
& \text {-password } \\
& \text { password }
\end{aligned}
\] \\
\hline -I pattern: except matching pattern
-h: print sizes in human readable & options: & options & -u user -N : processes not owned by user -sort \(=\mathrm{x}, \mathrm{y}\) : x y are columns in ps output & save-cookies file: save cookies to file oad-cookies file: use file as cookies \\
\hline mat & archy & -35: show first 35 lines -q: be quiet & -sort=user: sort by user & post-data=string \\
\hline \begin{tabular}{l}
-C: use colors \\
-L max: max level depth
\end{tabular} & \begin{tabular}{l}
-maxdepth: end with max level in hierarchy \\
tests:
\end{tabular} & \begin{tabular}{l}
tac file(s) \\
print files starting from last line
\end{tabular} & \begin{tabular}{l}
-sort=+time: sort by cpu time asc \\
-sort=-time: sort by cpu time desc \\
-sort=size: sort by memory size
\end{tabular} & -post-file=f-ce -no-check-certificate: ignore ssl certificate \\
\hline cp [options] source dest options & \begin{tabular}{l}
-name "xyz*": name like \(x y z^{*}\) \\
-iname "xyz*": like -name but case in-
\end{tabular} & cut [options] file options & -sort=vsize: sort by vm size
top [options] & curl [options] url options: \\
\hline -b: backup dest before overwr & & -d char: use char as delimite & options & -H header: like -H "Host: st.com \\
\hline -r: recursive
-f: force & -type f:only files & -f 1,3,5: print fields 1,3 and & - d x : refresh every x second & -u <user:password>: basic http auth
-s: be silent \\
\hline -1: link files instead of copy & -mtime 0: modified \(<1\) day & uniq [options] input output options & -p pid1 -p pid2: only processes with & -S: show errors if silent mode \\
\hline -P: dont follow sym links & -mtime \(-x\) : modified \(<x\) days
-mtime \(+x\) : modified \(>x\) days & -c: prefix lines by number & \begin{tabular}{l}
pid1 pid2 \\
-c : show command lines
\end{tabular} & -L: follow new location in case 301 -data "field=value": x-www-for \\
\hline \begin{tabular}{l}
-i: interactive \\
-u: copy only if source newer than
\end{tabular} & -mmin: like -mtime but in minutes & rences & interactive command & urlencoded query \\
\hline & e +100 M : size > 100 mb & -d: only print duplicate line & space. udpdate display & -data-binary data: post data as is wi- \\
\hline mv [options] source dest options & -size -100M: size < 100 mb (k for \(\mathrm{kb}, \mathrm{G}\) for gb ) & -u: only print unique lines & n : change number of displayed proce ses & \begin{tabular}{l}
thout encoding \\
-data-binary @filename: post filename
\end{tabular} \\
\hline -b: backup dest before overwrite & -perm /o+w: writable by & options & up and down: browse process & content as is \\
\hline -f: force & --perm /o+r : not readable by o & -n: numeric sort & k : kill a process & -X method: use PUT, GET, POST \\
\hline -i: interactive & actions: & -b: ignore blank & 0 : change order & -request method: use PUT, GET, POS \\
\hline -u: move only if source newer than de & \begin{tabular}{l}
-print: print matching \\
-delete: rm matching files
\end{tabular} & -f: ignore case & T: sort by time A. sort by age & \\
\hline In [options] file link options & -exec cmd ' \(\|\) ' ; : run cmd for every & -r: reverse order tar [options] file & \begin{tabular}{l}
A: sort by age \\
P: sort by cpu
\end{tabular} & mail [options] to-address options: \\
\hline -s: sym link (hard by default & -execcm & options & M: Sort by memory & -s subject: email with subject \\
\hline -f: overwrite link if exists & search & -f file: archive file & : display/hide memory & -c address1, address2: cc copy \\
\hline -b: backup old link before overwrite & -exec rm -rf " : rm -rf matching items & -c: create & t: display/hide cpu & -b address1,address2: bcc copy \({ }^{\text {mail }}\)-s'hello there' \({ }^{\text {a }}\) - \({ }^{\text {ast.com' }}\) - so- \\
\hline rm [options] file options & -fprint /tmp/result: write matches to /tmp/result & -t: list & f : manage list of displayed columns & \[
\begin{aligned}
& \text { mail-s -s } \\
& \text { mefile }
\end{aligned}
\] \\
\hline -f: force & diff [options] files & -C DIR: cd to DIR & d: display/hide the selected column & 4 Terminal Ctrl +C : halt current command \\
\hline -i: interactiv & opti & -z: gzip & q : apply and quit the field mgmt & \(\mathrm{Ctrl}+\mathrm{Z}\) : pause current command \\
\hline rm - -foo if file & -r: & du [options] & & g \%1: resume paused command in \\
\hline chmod [options] mode file(s) options & -w: ignore whitespaces -B: ignore blank lines & options: & pgrep [options] pattern & \(\% 1\) : resume paused command in fo- \\
\hline \(\overline{\text {-R: recursive }}\) & -q; only show file names & -c: a grand total & options & reground \\
\hline symbolic mode & \(-x^{\prime \prime}\). sync* \(^{* ": ~ e x c l u d e ~ f i l e s ~ w i t h ~ p a t h ~ l i k e ~}\) sync* & -h: human readab -L. dereference sy & -1 : show pid and process name a show pid and full command lis & Ctrl+D: logout \\
\hline format: [ugoa][ \([+=][\) perms]], & & -P: no dereference of sym lin & -n : if more than one show new & \\
\hline example: \(\mathrm{u}+\mathrm{x}, \mathrm{o}-\mathrm{wx}, \mathrm{g}-\mathrm{w}\) & op & -s: total for each argument & -o : if more than one show oldest & \(\mathrm{Ctrl}+\mathrm{U}\) : remove curre \\
\hline u: owner & options & -exclude=pattern & -u uid : show only processes of uid & Ctrl+A: go to beginning of current line \\
\hline g: group & -i: ignore case & -max-depth=N: dont go deeper than N & -c : count results & Ctrl+E: go to end of current line \\
\hline
\end{tabular}

\section*{Linux basics \& console}

\section*{}

\section*{Linux basics \& console}

\section*{}```

