arXiv:1612.00593v2 [cs.CV] 10 Apr 2017

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

Charles R. Qi Hao Su*

Kaichun Mo Leonidas J. Guibas

Stanford University

Abstract

Point cloud is an important type of geometric data
structure. Due to its irregular format, most researchers
transform such data to regular 3D voxel grids or collections
of images. This, however, renders data unnecessarily
voluminous and causes issues. In this paper, we design a
novel type of neural network that directly consumes point
clouds, which well respects the permutation invariance of
points in the input. Our network, named PointNet, pro-
vides a unified architecture for applications ranging from
object classification, part segmentation, to scene semantic
parsing. Though simple, PointNet is highly efficient and
effective. Empirically, it shows strong performance on
par or even better than state of the art. Theoretically,
we provide anal; towards understanding of what the
network has learnt and why the network is robust with
respect to input perturbation and corruption.

1. Introduction

In this paper we explore deep learning architectures
capable of reasoning about 3D geometric data such as
point clouds or meshes. Typical convolutional architectures
require highly regular input data formats, like those of
image grids or 3D voxels, in order to perform weight
sharing and other kernel optimizations. Since point clouds
or meshes are not in a regular format, most researchers
typically transform such data to regular 3D voxel grids or
collections of images (e.g. views) before feeding them to
a deep net architecture. This data representation transfor-
mation, however, renders the resulting data unnecessarily

i — while also i antiza artifacts
that can obscure natural invariances of the data.

For this reason we focus on a different input rep-
resentation for 3D geometry using simply point clouds
— and name our resulting deep nets PointNets. Point
clouds are simple and unified structures that avoid the
combinatorial irregularities and complexities of meshes,
and thus are easier to leam from. The PointNet, however,

s cqual contributions.

| e
l] PointNet l
7 e i LA
>, table? | 3
g L

car?

Cl Part Semantic
Figure 1. Applications of PointNet. We propose a novel deep net
architecture that consumes raw point cloud (set of points) without
voxelization or rendering. It is a unified architecture that learns
both global and local point features, providing a simple, efficient
and effective approach for a number of 3D recognition tas

still has to respect the fact that a point cloud is just a
set of points and therefore invariant to permutations of its
members, necessitating certain symmetrizations in the net
computation. Further invariances to rigid motions also need
to be considered.

Our PointNet is a unified architecture that directly
takes point clouds as input and outputs either class labels
for the entire input or per point segment/part labels for
each point of the input. The basic architecture of our
network is surprisingly simple as in the initial stages each
point is processed identically and independently. In the
basic setting cach point is represented by just its three

i (2. y,). Additional di i may be added
by computing normals and other local or global features.

Key to our approach is the use of a single symmetric
function, max pooling. Effectively the network learns a
set of izati i iteria that select i i
or informative points of the point cloud and encode the
reason for their selection. The final fully connected layers
of the network aggregate these learnt optimal values into the
global descriptor for the entire shape as mentioned above
(shape classification) or are used to predict per point labels
(shape segmentation).

Our input format is easy to apply rigid or affine transfor-
mations to, as each point transforms independently. Thus
we can add a data-dependent spatial transformer network
that attempts to canonicalize the data before the PointNet
processes them, 5o as to further improve the results.

PointNet Paper

Nail Ibrahimli

arXiv:1612.00593v2 [cs.CV] 10 Apr 2017

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

Charles R. Qi* Hao Su*

Kaichun Mo Leonidas J. Guibas

Stanford University

Abstract

Point cloud is an important type of geometric data
structure. Due to its irregular format, most researchers
transform such data to regular 3D voxel grids or collections
of images. This, however, renders data unnecessarily
voluminous and causes issues. In this paper, we design a
novel type of neural network that directly consumes point
clouds, which well respects the permutation invariance of
points in the input. Our network, named PointNet, pro-
vides a unified architecture for applications ranging from
object classification, part segmentation, to scene semantic
parsing. Though simple, PointNet is highly efficient and
effective. Empirically, it shows strong performance on
par or even better than state of the art. Theoretically,
we provide analysis towards understanding of what the
network has learnt and why the network is robust with
respect to input perturbation and corruption.

1. Introduction

In this paper we explore deep learning architectures
capable of reasoning about 3D geometric data such as
point clouds or meshes. Typical convolutional architectures
require highly regular input data formats, like those of
image grids or 3D voxels, in order to perform weight
sharing and other kernel optimizations. Since point clouds
or meshes are not in a regular format, most researchers
typically transform such data to regular 3D voxel grids or
collections of images (e.g, views) before feeding them to
a deep net architecture. This data representation transfor-
mation, however, renders the resulting data unnecessarily
voluminous — while also introducing quantization artifacts
that can obscure natural invariances of the data.

For this reason we focus on a different input rep-
resentation for 3D geometry using simply point clouds
— and name our resulting deep nets PointNets. Point
clouds are simple and unified structures that avoid the
combinatorial irregularities and complexities of meshes,
and thus are easier to leam from. The PointNet, however,

* indicates equal contributions.

e e

.y table?
K -

L o
-

car?

Classification Part S i S ic S

Figure 1. Applications of PointNet. We propose a novel deep net
architecture that consumes raw point cloud (set of points) without
voxelization or rendering. It is a unified architecture that learns

both global and local point features, providing a simple, efficient
and effective approach for a number of 3D recognition tasks.

still has to respect the fact that a point cloud is just a
set of points and therefore invariant to permutations of its
members, necessitating certain symmetrizations in the net
computation. Further invariances to rigid motions also need
to be considered.

Our PointNet is a unified architecture that directly
takes point clouds as input and outputs either class labels
for the entire input or per point segment/part labels for
each point of the input. The basic architecture of our
network is surprisingly simple as in the initial stages each
point is processed identically and independently. In the
basic setting each point is represented by just its three
coordinates (z,y, z). Additional dimensions may be added
by computing normals and other local or global features.

Key to our approach is the use of a single symmetric
function, max pooling. Effectively the network learns a
set of optimization functions/criteria that select interesting
or informative points of the point cloud and encode the
reason for their selection. The final fully connected layers
of the network aggregate these learnt optimal values into the
global descriptor for the entire shape as mentioned above
(shape classification) or are used to predict per point labels
(shape segmentation).

Our input format is easy to apply rigid or affine transfor-
mations to, as each point transforms independently. Thus
we can add a data-dependent spatial transformer network
that attempts to canonicalize the data before the PointNet
processes them, so as to further improve the results.

e e —

PointNet

it

Part Segmentation

Classification Semantic Segmentation

Figure 1. Applications of PointNet. We propose a novel deep net
architecture that consumes raw point cloud (set of points) without
voxelization or rendering. It is a unified architecture that learns
both global and local point features, providing a simple, efficient
and effective approach for a number of 3D recognition tasks.

|

We provide both a theoretical analysis and an ex-
perimental evaluation of our approach. We show that
our network can approximate any set function that is
continuous. More interestingly, it turns out that our network
learns to summarize an input point cloud by a sparse set of
key points, which roughly corresponds to the skeleton of
objects according to visualization. The theoretical analysis
provides an understanding why our PointNet is highly
robust to small perturbation of input points as well as
to corruption through point insertion (outliers) or deletion
(missing data).

On a number of benchmark datasets ranging from shape
classification, part segmentation to scene segmentation,
we experimentally compare our PointNet with state-of-
the-art approaches based upon multi-view and volumetric
representations. Under a unified architecture, not only is
our PointNet much faster in speed, but it also exhibits strong
pegta Qnpac L ;

The key contributions of our work are as follows:

e We design a novel deep net architecture suitable for
consuming unordered point sets in 3D;

e We show how such a net can be trained to perform
3D shape classification, shape part segmentation and
scene semantic parsing tasks;

e We provide thorough empirical and theoretical analy-
sis on the stability and efficiency of our method;

e We illustrate the 3D features computed by the selected

The problem of processing unordered sets by neural nets
is a very general and fundamental problem — we expect that
our ideas can be transferred to other domains as well.

2. Related Work

Point Cloud Features Most existing features for point
cloud are handcrafted towards specific tasks. Point features
often encode certain statistical properties of points and are
designed to be invariant to certain transformations, which
are typically classified as intrinsic [2, 24, 3] or extrinsic
[20, 19, 14, 10, 5]. They can also be categorized as local
features and global features. For a specific task, it is not
trivial to find the optimal feature combination.

Deep Learning on 3D Data 3D data has multiple popular
representations, leading to various approaches for learning.
Volumetric CNNs: [28, 17, 18] are the pioneers applying
3D convolutional neural networks on voxelized shapes.
However, volumetric representation is constrained by its
resolution due to data sparsity and computation cost of
3D convolution. FPNN [13] and Vote3D [26] proposed
special methods to deal with the sparsity problem; however,

neurons in the net and develop intuitive explanations
for its performance. A/

their operations are still on sparse volumes, it’s challenging
for them to process very large point clouds. Multiview
CNNs: [23, 18] have tried to render 3D point cloud or
shapes into 2D images and then apply 2D conv nets to
classify them. With well engineered image CNNs, this
line of methods have achieved dominating performance on
shape classification and retrieval tasks [21]. However, it’s
nontrivial to extend them to scene understanding or other
3D tasks such as point classification and shape completion.
Spectral CNNs: Some latest works [+, 16] use spectral
CNNs on meshes. However, these methods are currently
constrained on manifold meshes such as organic objects
and it’s not obvious how to extend them to non-isometric
shapes such as furniture. Feature-based DNNs: [0, ¥]
firstly convert the 3D data into a vector, by extracting
traditional shape features and then use a fully connected net
to classify the shape. We think they are constrained by the
representation power of the features extracted.

Deep Learning on Unordered Sets From a data structure
point of view, a point cloud is an unordered set of vectors.
While most works in deep learning focus on regular input
representations like sequences (in speech and language
processing), images and volumes (video or 3D data), not
much work has been done in deep learning on point sets.

One recent work from Oriol Vinyals et al [25] looks
into this problem. They use a read-process-write network
with attention mechanism to consume unordered input sets
and show that their network has the ability to sort numbers.
However, since their work focuses on generic sets and NLP
applications, there lacks the role of geometry in the sets.

3. Problem Statement

We design a deep learning framework that directly
consumes unordered point sets as inputs. A point cloud is
represented as a set of 3D points {P;| i = 1,...,n}, where
each point P, is a vector of its (z, y,) coordinate plus extra
feature channels such as color, normal etc. For simplicity
and clarity, unless otherwise noted, we only use the (z,y,2)
coordinate as our point’s channels.

For the object classification task, the input point cloud is
either directly sampled from a shape or pre-segmented from
a scene point cloud. Our proposed deep network outputs
k scores for all the k candidate classes. For semantic
segmentation, the input can be a single object for part region
segmentation, or a sub-volume from a 3D scene for object
region segmentation. Our model will output n x m scores
for each of the n points and each of the m semantic sub-
categories.

—

The key contributions of our work are as follows:

\ o

e We design a novel deep net architecture suitable for

consuming unordered point sets in 3D;

We show how such a net can be trained to perform
3D shape classification, shape part segmentation and
scene semantic parsing tasks;

We provide thorough empirical and theoretical analy-
sis on the stability and efficiency of our method;

We illustrate the 3D features computed by the selected
neurons in the net and develop intuitive explanations
for its performance.

We provide both a theoretical analysis and an ex-
perimental evaluation of our approach. We show that
our network can approximate any set function that is
continuous. More interestingly, it turns out that our network
learns to summarize an input point cloud by a sparse set of
key points, which roughly corresponds to the skeleton of
objects according to visualization. The theoretical analysis
provides an understanding why our PointNet is highly
robust to small perturbation of input points as well as
to corruption through point insertion (outliers) or deletion
(missing data).

On a number of benchmark datasets ranging from shape
classification, part segmentation to scene segmentation,
we experimentally compare our PointNet with state-of-
the-art approaches based upon multi-view and volumetric
representations. Under a unified architecture, not only is
our PointNet much faster in speed, but it also exhibits strong
pegta Qnpac L ;

The key contributions of our work are as follows:

e We design a novel deep net architecture suitable for
consuming unordered point sets in 3D;

e We show how such a net can be trained to perform
3D shape classification, shape part segmentation and
scene semantic parsing tasks;

e We provide thorough empirical and theoretical analy-
sis on the stability and efficiency of our method;

e We illustrate the 3D features computed by the selected

The problem of processing unordered sets by neural nets
is a very general and fundamental problem — we expect that
our ideas can be transferred to other domains as well.

2. Related Work

Point Cloud Features Most existing features for point
cloud are handcrafted towards specific tasks. Point features
often encode certain statistical properties of points and are
designed to be invariant to certain transformations, which
are typically classified as intrinsic [2, 24, 3] or extrinsic
[20, 19, 14, 10, 5]. They can also be categorized as local
features and global features. For a specific task, it is not
trivial to find the optimal feature combination.

Deep Learning on 3D Data 3D data has multiple popular
representations, leading to various approaches for learning.
Volumetric CNNs: [28, 17, 18] are the pioneers applying
3D convolutional neural networks on voxelized shapes.
However, volumetric representation is constrained by its
resolution due to data sparsity and computation cost of
3D convolution. FPNN [13] and Vote3D [26] proposed
special methods to deal with the sparsity problem; however,

neurons in the net and develop intuitive explanations
for its performance. A/

their operations are still on sparse volumes, it’s challenging
for them to process very large point clouds. Multiview
CNNs: [23, 18] have tried to render 3D point cloud or
shapes into 2D images and then apply 2D conv nets to
classify them. With well engineered image CNNs, this
line of methods have achieved dominating performance on
shape classification and retrieval tasks [21]. However, it’s
nontrivial to extend them to scene understanding or other
3D tasks such as point classification and shape completion.
Spectral CNNs: Some latest works [+, 16] use spectral
CNNs on meshes. However, these methods are currently
constrained on manifold meshes such as organic objects
and it’s not obvious how to extend them to non-isometric
shapes such as furniture. Feature-based DNNs: [0, ¥]
firstly convert the 3D data into a vector, by extracting
traditional shape features and then use a fully connected net
to classify the shape. We think they are constrained by the
representation power of the features extracted.

Deep Learning on Unordered Sets From a data structure
point of view, a point cloud is an unordered set of vectors.
While most works in deep learning focus on regular input
representations like sequences (in speech and language
processing), images and volumes (video or 3D data), not
much work has been done in deep learning on point sets.

One recent work from Oriol Vinyals et al [25] looks
into this problem. They use a read-process-write network
with attention mechanism to consume unordered input sets
and show that their network has the ability to sort numbers.
However, since their work focuses on generic sets and NLP
applications, there lacks the role of geometry in the sets.

3. Problem Statement

We design a deep learning framework that directly
consumes unordered point sets as inputs. A point cloud is
represented as a set of 3D points {P;| i = 1,...,n}, where
each point P, is a vector of its (z, y,) coordinate plus extra
feature channels such as color, normal etc. For simplicity
and clarity, unless otherwise noted, we only use the (z,y,2)
coordinate as our point’s channels.

For the object classification task, the input point cloud is
either directly sampled from a shape or pre-segmented from
a scene point cloud. Our proposed deep network outputs
k scores for all the k candidate classes. For semantic
segmentation, the input can be a single object for part region
segmentation, or a sub-volume from a 3D scene for object
region segmentation. Our model will output n x m scores
for each of the n points and each of the m semantic sub-
categories.

—

The key contributions of our work are as follows:

\ o

e We design a novel deep net architecture suitable for

consuming unordered point sets in 3D;

e

We show how such a net can be trained to perform
3D shape classification, shape part segmentation and
scene semantic parsing tasks;

We provide thorough empirical and theoretical analy-
sis on the stability and efficiency of our method;

We illustrate the 3D features computed by the selected
neurons in the net and develop intuitive explanations
for its performance.

We provide both a theoretical analysis and an ex-
perimental evaluation of our approach. We show that
our network can approximate any set function that is
continuous. More interestingly, it turns out that our network
learns to summarize an input point cloud by a sparse set of
key points, which roughly corresponds to the skeleton of
objects according to visualization. The theoretical analysis
provides an understanding why our PointNet is highly
robust to small perturbation of input points as well as
to corruption through point insertion (outliers) or deletion
(missing data).

On a number of benchmark datasets ranging from shape
classification, part segmentation to scene segmentation,
we experimentally compare our PointNet with state-of-
the-art approaches based upon multi-view and volumetric
representations. Under a unified architecture, not only is
our PointNet much faster in speed, but it also exhibits strong
PS ; d

The key contributions of our work are as follows:

e We design a novel deep net architecture suitable for
consuming unordered point sets in 3D;

e We show how such a net can be trained to perform
3D shape classification, shape part segmentation and
scene semantic parsing tasks;

e We provide thorough empirical and theoretical analy-
sis on the stability and efficiency of our method;

e We illustrate the 3D features computed by the selected

The problem of processing unordered sets by neural nets
is a very general and fundamental problem — we expect that
our ideas can be transferred to other domains as well.

2. Related Work

Point Cloud Features Most existing features for point
cloud are handcrafted towards specific tasks. Point features
often encode certain statistical properties of points and are
designed to be invariant to certain transformations, which
are typically classified as intrinsic [2, 24, 3] or extrinsic
[20, 19, 14, 10, 5]. They can also be categorized as local
features and global features. For a specific task, it is not
trivial to find the optimal feature combination.

Deep Learning on 3D Data 3D data has multiple popular
representations, leading to various approaches for learning.
Volumetric CNNs: [28, 17, 18] are the pioneers applying
3D convolutional neural networks on voxelized shapes.
However, volumetric representation is constrained by its
resolution due to data sparsity and computation cost of
3D convolution. FPNN [13] and Vote3D [26] proposed
special methods to deal with the sparsity problem; however,

neurons in the net and develop intuitive explanations
for its performance. /\/

their operations are still on sparse volumes, it’s challenging
for them to process very large point clouds. Multiview
CNNs: [23, 18] have tried to render 3D point cloud or
shapes into 2D images and then apply 2D conv nets to
classify them. With well engineered image CNNs, this
line of methods have achieved dominating performance on
shape classification and retrieval tasks [2!]. However, it’s
nontrivial to extend them to scene understanding or other
3D tasks such as point classification and shape completion.
Spectral CNNs: Some latest works [+, 16] use spectral
CNNs on meshes. However, these methods are currently
constrained on manifold meshes such as organic objects
and it’s not obvious how to extend them to non-isometric
shapes such as furniture. Feature-based DNNs: [0, ¥]
firstly convert the 3D data into a vector, by extracting
traditional shape features and then use a fully connected net
to classify the shape. We think they are constrained by the
representation power of the features extracted.

Deep Learning on Unordered Sets From a data structure
point of view, a point cloud is an unordered set of vectors.
While most works in deep learning focus on regular input
representations like sequences (in speech and language
processing), images and volumes (video or 3D data), not
much work has been done in deep learning on point sets.

One recent work from Oriol Vinyals et al [25] looks
into this problem. They use a read-process-write network
with attention mechanism to consume unordered input sets
and show that their network has the ability to sort numbers.
However, since their work focuses on generic sets and NLP
applications, there lacks the role of geometry in the sets.

3. Problem Statement

We design a deep learning framework that directly
consumes unordered point sets as inputs. A point cloud is
represented as a set of 3D points {F;| i = 1,..., n}, where
each point P; is a vector of its («, y, 2) coordinate plus extra
feature channels such as color, normal etc. For simplicity
and clarity, unless otherwise noted, we only use the (z,y,2)
coordinate as our point’s channels.

For the object classification task, the input point cloud is
either directly sampled from a shape or pre-segmented from
a scene point cloud. Our proposed deep network outputs
k scores for all the k candidate classes. For semantic
segmentation, the input can be a single object for part region
segmentation, or a sub-volume from a 3D scene for object
region segmentation. Our model will output n x m scores
for each of the n points and each of the m semantic sub-
categories.

—

The key contributions of our work are as follows:

e We design a novel deep net architecture suitable for
consuming unordered point sets in 3D;

e

\ ° We show how such a net can be trained to perform
3D shape classification, shape part segmentation and
scene semantic parsing tasks;

e We provide thorough empirical and theoretical analy-
sis on the stability and efficiency of our method;

e We illustrate the 3D features computed by the selected
neurons in the net and develop intuitive explanations
for its performance.

Permutation Invariance:
fQx, %2, %3, 000, X)) =y
f(xnlrxn2» X3y e xnn) =Yy

Permutation Equivariance:

f(xler'xSI ---»xn) = (y1'y2'y3' ---:yn)

f(xﬂ,'l’xR'Z’ x77.'3' '"’xTL'Tl) = (yﬂllyﬂ2'y7l'3' ---»Ynn)
5

We provide both a theoretical analysis and an ex-
perimental evaluation of our approach. We show that
our network can approximate any set function that is
continuous. More interestingly, it turns out that our network
learns to summarize an input point cloud by a sparse set of
key points, which roughly corresponds to the skeleton of
objects according to visualization. The theoretical analysis
provides an understanding why our PointNet is highly
robust to small perturbation of input points as well as
to corruption through point insertion (outliers) or deletion
(missing data).

On a number of benchmark datasets ranging from shape
classification, part segmentation to scene segmentation,
we experimentally compare our PointNet with state-of-
the-art approaches based upon multi-view and volumetric
representations. Under a unified architecture, not only is
our PointNet much faster in speed, but it also exhibits strong
pegta Qnpac N ;

The key contributions of our work are as follows:

e We design a novel deep net architecture suitable for
consuming unordered point sets in 3D;

e We show how such a net can be trained to perform
3D shape classification, shape part segmentation and
scene semantic parsing tasks;

e We provide thorough empirical and theoretical analy-
sis on the stability and efficiency of our method;

e We illustrate the 3D features computed by the selected

The problem of processing unordered sets by neural nets
is a very general and fundamental problem — we expect that
our ideas can be transferred to other domains as well.

2. Related Work

Point Cloud Features Most existing features for point
cloud are handcrafted towards specific tasks. Point features
often encode certain statistical properties of points and are
designed to be invariant to certain transformations, which
are typically classified as intrinsic [2, 24, 3] or extrinsic
[20, 19, 14, 10, 5]. They can also be categorized as local
features and global features. For a specific task, it is not
trivial to find the optimal feature combination.

Deep Learning on 3D Data 3D data has multiple popular
representations, leading to various approaches for learning.
Volumetric CNNs: [28, 17, 18] are the pioneers applying
3D convolutional neural networks on voxelized shapes.
However, volumetric representation is constrained by its
resolution due to data sparsity and computation cost of
3D convolution. FPNN [13] and Vote3D [26] proposed
special methods to deal with the sparsity problem; however,

neurons in the net and develop intuitive explanations
for its performance. /\/

their operations are still on sparse volumes, it’s challenging
for them to process very large point clouds. Multiview
CNNs: [23, 18] have tried to render 3D point cloud or
shapes into 2D images and then apply 2D conv nets to
classify them. With well engineered image CNNs, this
line of methods have achieved dominating performance on
shape classification and retrieval tasks [2!]. However, it’s
nontrivial to extend them to scene understanding or other
3D tasks such as point classification and shape completion.
Spectral CNNs: Some latest works [+, 16] use spectral
CNNs on meshes. However, these methods are currently
constrained on manifold meshes such as organic objects
and it’s not obvious how to extend them to non-isometric
shapes such as furniture. Feature-based DNNs: [0, ¥]
firstly convert the 3D data into a vector, by extracting
traditional shape features and then use a fully connected net
to classify the shape. We think they are constrained by the
representation power of the features extracted.

Deep Learning on Unordered Sets From a data structure
point of view, a point cloud is an unordered set of vectors.
While most works in deep learning focus on regular input
representations like sequences (in speech and language
processing), images and volumes (video or 3D data), not
much work has been done in deep learning on point sets.

One recent work from Oriol Vinyals et al [25] looks
into this problem. They use a read-process-write network
with attention mechanism to consume unordered input sets
and show that their network has the ability to sort numbers.
However, since their work focuses on generic sets and NLP
applications, there lacks the role of geometry in the sets.

3. Problem Statement

We design a deep learning framework that directly
consumes unordered point sets as inputs. A point cloud is
represented as a set of 3D points {P;| i = 1,...,n}, where
each point P is a vector of its (z, y,) coordinate plus extra
feature channels such as color, normal etc. For simplicity
and clarity, unless otherwise noted, we only use the (z, y,)
coordinate as our point’s channels.

For the object classification task, the input point cloud is
either directly sampled from a shape or pre-segmented from
a scene point cloud. Our proposed deep network outputs
k scores for all the k candidate classes. For semantic
segmentation, the input can be a single object for part region
segmentation, or a sub-volume from a 3D scene for object
region segmentation. Our model will output n x m scores
for each of the n points and each of the m semantic sub-
categories.

—

—

The key contributions of our work are as follows:

e We design a novel deep net architecture suitable for
consuming unordered point sets in 3D;

\ ° We show how such a net can be trained to perform
3D shape classification, shape part segmentation and
scene semantic parsing tasks;

e We provide thorough empirical and theoretical analy-
sis on the stability and efficiency of our method;

e We illustrate the 3D features computed by the selected
neurons in the net and develop intuitive explanations
for its performance.

‘ 3. Problem Statement

We design a deep learning framework that directly
consumes unordered point sets as inputs. A point cloud is
represented as a set of 3D points { ;| i = 1,...,n}, where
each point P, is a vector of its (z, y, z) coordinate plus extra
feature channels such as color, normal etc. For simplicity
and clarity, unless otherwise noted, we only use the (z, v, 2)
coordinate as our point’s channels.

For the object classification task, the input point cloud is
either directly sampled from a shape or pre-segmented from
a scene point cloud. Our proposed deep network outputs
k scores for all the k£ candidate classes. For semantic
segmentation, the input can be a single object for part region \
segmentation, or a sub-volume from a 3D scene for object
region segmentation. Our model will output n X m scores
for each of the n points and each of the m semantic sub-

categories.

Classification Network

input mlp (64,64) feature mlp (64,128,1024) max mlp
:E transform :E: transform pool 1054 (512,256 k)
Iae) o <t s
é- 2 . Bl amdea | % % shared | §x1024 —
E' -] glnha‘l‘feature k
i ! _’,—"’ output scores
:) S point features "
2 3x3 64x64 @
5 = 5 e
x 1088 s <
ey prorm: a shared % shared 1 s
‘multiply multiply | 2'
°
mlp (512,256,128) mlp (128,m)

Segmentation Network

Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for & classes. The segmentation network is an extension to the
classification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, numbers
in bracket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

4. Deep Learning on Point Sets

The architecture of our network (Sec 4.2) is inspired by
the properties of point sets in R (Sec 4.1).

4.1. Properties of Point Sets in R"

Our input is a subset of points from an Euclidean space.
It has three main properties:

Unordered. Unlike pixel arrays in images or voxel
arrays in volumetric grids, point cloud is a set of points
without specific order. In other words, a network that
consumes /N 3D point sets needs to be invariant to /N'!
permutations of the input set in data feeding order.

Interaction among points. The points are from a space
with a distance metric. It means that points are not
isolated, and neighboring points form a meaningful
subset. Therefore, the model needs to be able to
capture local structures from nearby points, and the
combinatorial interactions among local structures.

e Invariance under transformations. As a geometric
object, the learned representation of the point set
should be invariant to certain transformations. For

example, rotating and translating points all together
should not modify the global point cloud catei)y

e segmentation of the points.

4.2. PointNet Architecture

Our full network architecture is visualized in Fig 2,
where the classification network and the segmentation
network share a great portion of structures. Please read the
caption of Fig 2 for the pipeline.

Our network has three key modules: the max pooling
layer as a symmetric function to aggregate information from

all the points, a local and global information combination
structure, and two joint alignment networks that align both
input points and point features.

We will discuss our reason behind these design choices
in separate paragraphs below.

Symmetry Function for Unordered Input In order
to make a model invariant to input permutation, three
strategies exist: 1) sort input into a canonical order; 2) treat
the input as a sequence to train an RNN, but augment the
training data by all kinds of permutations; 3) use a simple
symmetric function to aggregate the information from each
point. Here, a symmetric function takes n vectors as input
and outputs a new vector that is invariant to the input
order. For example, + and * operators are symmetric binary
functions.

While sorting sounds like a simple solution, in high
dimensional space there in fact does not exist an ordering
that is stable w.rt. point perturbations in the general
sense. This can be easily shown by contradiction. If
such an ordering strategy exists, it defines a bijection map
between a high-dimensional space and a 1d real line. It
is not hard to see, to require an ordering to be stable w.r.t
point perturbations is equivalent to requiring that this map
preserves spatial proximity as the dimension reduces, a task
that cannot be achieved in the general case. Therefore,
sorting does not fully resolve the ordering issue, and it’s
hard for a network to learn a consistent mapping from
input to output as the ordering issue persists. As shown in
experiments (Fig 5), we find that applying a MLP directly
on the sorted point set performs poorly, though slightly
better than directly processing an unsorted input.

The idea to use RNN considers the point set as a
sequential signal and hopes that by training the RNN

—

Unordered. Unlike pixel arrays in images or voxe
arrays in volumetric grids, point cloud is a set of points
without specific order. In other words, a network that
consumes N 3D point sets needs to be invariant to N'!
permutations of the input set in data feeding order.

Interaction among points. The points are from a space
with a distance metric. It means that points are not
isolated, and neighboring points form a meaningful
subset. Therefore, the model needs to be able to
capture local structures from nearby points, and the
combinatorial interactions among local structures.

Invariance under transformations. As a geometric
object, the learned representation of the point set
should be invariant to certain transformations. For
example, rotating and translating points all together
should not modify the global point cloud category nor
the segmentation of the points.

Classification Network
input mlp (64,64) feature mlp (64,128,1024) max mlp
ﬁ transform {——} transform pool 1024 (512,256.k)
s_) o Y 3
&7 7 shared g % el nx1024 C—— 1
= global feature
E' H > i k
! 4 ! __,—"’ output scores
4 e point features ' 'm
5
x 1088 & g 2
shared = shared 1 =
8 E
— H
mlp (512,256,128) mlp (128,m)

Segmentation Network

Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for & classes. The segmentation network is an extension to the
classification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, numbers
in bracket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

4. Deep Learning on Point Sets

The architecture of our network (Sec 4.2) is inspired by
the properties of point sets in R (Sec 4.1).

4.1. Properties of Point Sets in R"

Our input is a subset of points from an Euclidean space.
It has three main properties:

Unordered. Unlike pixel arrays in images or \k\
arrays in volumetric grids, point cloud is a set of points
without specific order. In other words, a network that
consumes /N 3D point sets needs to be invariant to N'!
permutations of the input set in data feeding order.

Interaction among points. The points are from a space
with a distance metric. It means that points are not
isolated, and neighboring points form a meaningful
subset. Therefore, the model needs to be able to
capture local structures from nearby points, and the
combinatorial interactions among local structures.

e Invariance under transformations. As a geometric
object, the learned representation of the point set
should be invariant to certain transformations. For

example, rotating and translating points all together
should not modify the global point cloud categ:)y

e segmentation of the points.

4.2. PointNet Architecture

Our full network architecture is visualized in Fig 2,
where the classification network and the segmentation
network share a great portion of structures. Please read the
caption of Fig 2 for the pipeline.

Our network has three key modules: the max pooling
layer as a symmetric function to aggregate information from

all the points, a local and global information combination
structure, and two joint alignment networks that align both
input points and point features.

‘We will discuss our reason behind these design choices
in separate paragraphs below.

Symmetry Function for Unordered Input In order
to make a model invariant to input permutation, three
strategies exist: 1) sort input into a canonical order; 2) treat
the input as a sequence to train an RNN, but augment the
training data by all kinds of permutations; 3) use a simple
symmetric function to aggregate the information from each
point. Here, a symmetric function takes n vectors as input
and outputs a new vector that is invariant to the input
order. For example, + and operators are symmetric binary
functions.

While sorting sounds like a simple solution, in high
dimensional space there in fact does not exist an ordering
that is stable w.r.t. point perturbations in the general
sense. This can be easily shown by contradiction. If
such an ordering strategy exists, it defines a bijection map
between a high-dimensional space and a 1d real line. It
is not hard to see, to require an ordering to be stable w.r.t
point perturbations is equivalent to requiring that this map
preserves spatial proximity as the dimension reduces, a task
that cannot be achieved in the general case. Therefore,
sorting does not fully resolve the ordering issue, and it’s
hard for a network to learn a consistent mapping from
input to output as the ordering issue persists. As shown in
experiments (Fig 5), we find that applying a MLP directly
on the sorted point set performs poorly, though slightly
better than directly processing an unsorted input.

The idea to use RNN considers the point set as a
sequential signal and hopes that by training the RNN

Unordered. Unlike pixel arrays in images or voxe
arrays in volumetric grids, point cloud is a set of points
without specific order. In other words, a network that
consumes N 3D point sets needs to be invariant to N!
permutations of the input set in data feeding order.

Interaction among points. The points are from a space
with a distance metric. It means that points are not
isolated, and neighboring points form a meaningful
subset. Therefore, the model needs to be able to
capture local structures from nearby points, and the
combinatorial interactions among local structures.

Invariance under transformations. As a geometric
object, the learned representation of the point set
should be invariant to certain transformations. For
example, rotating and translating points all together
should not modify the global point cloud category nor
the segmentation of the points.

— —

Classification Network

64x64

mlp (64,128,1024) max

input mlp (64,64) feature mlp
@ 5 1 .
-E transform transform pool 1024 (512,256 k)
& % nx1024 | E—
E global feature r

— e output scores

x 1088

nxm

3x3 5
N
B o
n
‘matrix ‘matrix
multiply multiply

aggr
classification net. It concatenates global and local features and outputs
in bracket are layer sizes. Batchnorm is used for all layers with ReLU.

output scores

mlp (512,256,128)

mlp (128,m)

Segmentation Network

Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
tes point features by max pooling. The output is classification scores for k

c cl The segmentation network is an extension to the
per point scores. “mlp” stands for multi-layer perceptron, numbers
Dropout layers are used for the last mlp in classification net.

4. Deep Learning on Point Sets

The architecture of our network (Sec 4.2) is inspired by
the properties of point sets in R (Sec 4.1).

4.1. Properties of Point Sets in R"

Our input is a subset of points from an Euclidean space.
It has three main properties:

Unordered. Unlike pixel arrays in images or voxel
arrays in volumetric grids, point cloud is a set of points
without specific order. In other words, a network that
consumes /N 3D point sets needs to be invariant to N'!
permutations of the input set in data feeding order.

Interaction among points. The points are from a space
with a distance metric. It means that points are not
isolated, and neighboring points form a meaningful
subset. Therefore, the model needs to be able to
capture local structures from nearby points, and the
combinatorial interactions among local structures.

e Invariance under transformations. As a geometric
object, the learned representation of the point set
should be invariant to certain transformations. For
example, rotating and translating points all together
should not modify the global point cloud category nor

e segmentation of the points.

4.2. PointNet Architecture

Our full network architecture is visualized in Fig 2,
where the classification network and the segmentation
network share a great portion of structures. Please read the
caption of Fig 2 for the pipeline.

Our network has three key modules: the max pooling
layer as a symmetric function to aggregate information from

all the points, a local and global information combination
structure, and two joint alignment networks that align both
input points and point features.

We will discuss our reason behind these design choices
in separate paragraphs below.

Symmetry Function for Unordered Input In order
to make a model invariant to input permutation, three
strategies exist: 1) sort input into a canonical order; 2) treat
the input as a sequence to train an RNN, but augment the
training data by all kinds of permutations; 3) use a simple
symmetric function to aggregate the information from each
point. Here, a symmetric function takes n vectors as input
and outputs a new vector that is invariant to the input
order. For example, + and * operators are symmetric binary
functions.

While sorting sounds like a simple solution, in high
dimensional space there in fact does not exist an ordering
that is stable w.rt. point perturbations in the general
sense. This can be easily shown by contradiction. If
such an ordering strategy exists, it defines a bijection map
between a high-dimensional space and a 1d real line. It
is not hard to see, to require an ordering to be stable w.r.t
point perturbations is equivalent to requiring that this map
preserves spatial proximity as the dimension reduces, a task
that cannot be achieved in the general case. Therefore,
sorting does not fully resolve the ordering issue, and it’s
hard for a network to learn a consistent mapping from
input to output as the ordering issue persists. As shown in
experiments (Fig 5), we find that applying a MLP directly
on the sorted point set performs poorly, though slightly
better than directly processing an unsorted input.

The idea to use RNN considers the point set as a
sequential signal and hopes that by training the RNN

— ——
Classification Network
input mlp (64,64) feature mlp (64,128,1024) max mlp
£ transform transform pool 1024 (512,256,k)
18 |en] 3 ¥
E = B —* = shared B % shared nx1024]
= : = = global feature K
E i B e
:. o E ’,,-'/ output scores
’ g E " point features)
o | G4x6a g
. Ua;slonn oo - E
: n|x 1088 he &l hs 2|2
: shared = shared z g
: multiply =
k, : o B
mlp (512,256,128) mlp (128,m)
Segmentation Network
Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the

lassification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, number:
iMNQracket are layer sizes. Batchnorm is used for all layers with ReLLU. Dropout layers are used for the last mlp in classification net.

with randomly permuted sequences, the RNN will become
invariant to input order. However in “OrderMatters™ [25]
the authors have shown that order does matter and cannot be
totally omitted. While RNN has relatively good robustness
to input ordering for sequences with small length (dozens),
it’s hard to scale to thousands of input elements, which is
the common size for point sets. Empirically, we have also
shown that model based on RNN does not perform as well

as sed method (Eig 5)
Our idea is to approximate a general function defined
a point set by applying a symmetric function on transformed

elements in the set:

Flz1

5B b) B2)50y B(ER)); (€))]

where f ®Y 4 R, A RY — RK and ¢
R x ... x RX — R is a symmetric function.
—————

n

Empirically, our basic module is very simple: we
approximate ~ by a multi-layer perceptron network and
g by a composition of a single variable function and a
max pooling function. This is found to work well by
experiments. Through a collection of h, we can learn a,
number of f’s to capture different properties of the set.

properties (see Sec 5.3) and can achieve strong performace
(see Sec 5.1) in a few different applications. Due to the
simplicity of our module, we are also able to provide
theoretical analysis as in Sec 4.3.

Local and Global Information Aggregation The output
from the above section forms a vector [f1,. .., fx], which
is a global signature of the input set. We can easily
train a SVM or multi-layer perceptron classifier on the
shape global features for classification. However, point
segmentation requires a combination of local and global
knowledge. We can achieve this by a simple yet highly
effective manner.

Our solution can be seen in Fig 2 (Segmentation Net-
work). After computing the global point cloud feature vec-
tor, we feed it back to per point features by concatenating
the global feature with each of the point features. Then we
extract new per point features based on the combined point
features - this time the per point feature is aware of both the
local and global information.

With this modification our network is able to predict
per point quantities that rely on both local geometry and
global semantics. For example we can accurately predict
per-point normals (fig in supplementary), validating that the
network is able to summarize information from the point’s
local neighborhood. In experiment session, we also show
that our model can achieve state-of-the-art performance on
shape part segmentation and scene segmentation.

Joint Alignment Network The semantic labeling of a
point cloud has to be invariant if the point cloud undergoes
certain geometric transformations, such as rigid transforma-
tion. We therefore expect that the learnt representation by
our point set is invariant to these transformations.

A natural solution is to align all input set to a canonical
space before feature extraction. Jaderberg et al. [9]
introduces the idea of spatial transformer to align 2D
images through sampling and interpolation, achieved by a
specifically tailored layer implemented on GPU.

Our input form of point clouds allows us to achieve this
goal in a much simpler way compared with [9]. We do not
need to invent any new layers and no alias is introduced as in
the image case. We predict an affine transformation matrix
by a mini-network (T-net in Fig 2) and directly apply this
transformation to the coordinates of input points. The mini-
network itself resembles the big network and is composed
by basic modules of point independent feature extraction,
max pooling and fully connected layers. More details about
the T-net are in the supplementary.

This idea can be further extended to the alignment of
feature space, as well. We can insert another alignment net-
work on point features and predict a feature transformation
matrix to align features from different input point clouds.
However, transformation matrix in the feature space has
much higher dimension than the spatial transform matrix,
which greatly increases the difficulty of optimization. We
therefore add a regularization term to our softmax training
loss. We constrain the feature transformation matrix to be
close to orthogonal matrix:

Lyeg = |II — AAT| %, @

where A is the feature alignment matrix predicted by a
mini-network. An orthogonal transformation will not lose
information in the input, thus is desired. We find that by
adding the regularization term, the optimization becomes
more stable and our model achieves better performance.

4.3. Theoretical Analysis

Universal approximation We first show the universal
approximation ability of our neural network to continuous
set functions. By the continuity of set functions, intuitively,
a small perturbation to the input point set should not
greatly change the function values, such as classification or
segmentation scores.

Formally, let ¥ = {S: S C [0,1]™ and |S| = n}, f :
X — RRis a continuous set function on A" w.r.t to Hausdorff
distance dg (-, -), i.e, Ve > 0,35 > 0, forany S,5" € X,
if dg(S,S’) < 4, then |f(S) — f(S’)| < e. Our theorem
says that f can be arbitrarily approximated by our network
given enough neurons at the max pooling layer, i.e., K in
(1) is sufficiently large.

elements in the set:

f{z1,...,z.}) = g(h(z1), ..., h(z,)),

where f @ 22" — R, h : R¥Y — RX and
R¥ x--. xR¥ 5 Risa symmetric function.
\-—u\f_-t‘

Empyi}ically, our basic module is very simple:
approximate h by a multi-layer perceptron network

max pooling function.

mber of f’s to capture different properties of the set.

ur idea is to approximate a general function defined O
a point set by applying a symmetric function on transformed

(1

g :

we
and

g by a composition of a single variable function and a
This is found to work well by
experiments. Through a collection of h, we can learn a

gl ——
Classification Network
input mlp (64,64) feature mlp (64,128,1024) max mlp
£ transform transform pool 1024 (512,256,k)
g | o N <
= B —* = shared B % shared nx1024]
= . = = global feature K
g : = S~ —=
:. - i _’,,-'/ output scores
' ’ E LT """ point features .
S 33 . :) sauea &
lr:ﬂsl'orm .] transform oo = %
: : 1088 = = i
: matrix 3 : matrix ok shared = shared é ‘5
: multiply | - : multiply = E'
J | — 2
mlp (512,256,128) mlp (128,m)
Segmentation Network
Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the

lassification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, number:
iMNQracket are layer sizes. Batchnorm is used for all layers with ReLLU. Dropout layers are used for the last mlp in classification net.

10

with randomly permuted sequences, the RNN will become
invariant to input order. However in “OrderMatters™ [25]
the authors have shown that order does matter and cannot be
totally omitted. While RNN has relatively good robustness
to input ordering for sequences with small length (dozens),
it’s hard to scale to thousands of input elements, which is
the common size for point sets. Empirically, we have also
shown that model based on RNN does not perform as well

as sed method (Eig 5)
Our idea is to approximate a general function defined
a point set by applying a symmetric function on transformed

elements in the set:

f({zh .

5B b) B2)50y B(ER)); (1)

where f ®Y 4 R, A RY — RK and ¢
R x ... x RX — R is a symmetric function.
—————

n

Empirically, our basic module is very simple: we
approximate h by a multi-layer perceptron network and
g by a composition of a single variable function and a
max pooling function. This is found to work well by
experiments. Through a collection of h, we can learn a,
number of f’s to capture different properties of the set.

properties (see Sec 5.3) and can achieve strong performace
(see Sec 5.1) in a few different applications. Due to the
simplicity of our module, we are also able to provide
theoretical analysis as in Sec 4.3.

Local and Global Information Aggregation The output
from the above section forms a vector [f1,. .., fx], which
is a global signature of the input set. We can easily
train a SVM or multi-layer perceptron classifier on the
shape global features for classification. However, point
segmentation requires a combination of local and global
knowledge. We can achieve this by a simple yet highly
effective manner.

Our solution can be seen in Fig 2 (Segmentation Net-
work). After computing the global point cloud feature vec-
tor, we feed it back to per point features by concatenating
the global feature with each of the point features. Then we
extract new per point features based on the combined point
features - this time the per point feature is aware of both the
local and global information.

With this modification our network is able to predict
per point quantities that rely on both local geometry and
global semantics. For example we can accurately predict
per-point normals (fig in supplementary), validating that the
network is able to summarize information from the point’s
local neighborhood. In experiment session, we also show
that our model can achieve state-of-the-art performance on
shape part segmentation and scene segmentation.

Joint Alignment Network The semantic labeling of a
point cloud has to be invariant if the point cloud undergoes
certain geometric transformations, such as rigid transforma-
tion. We therefore expect that the learnt representation by
our point set is invariant to these transformations.

A natural solution is to align all input set to a canonical
space before feature extraction. Jaderberg et al. [9]
introduces the idea of spatial transformer to align 2D
images through sampling and interpolation, achieved by a
specifically tailored layer implemented on GPU.

Our input form of point clouds allows us to achieve this
goal in a much simpler way compared with [9]. We do not
need to invent any new layers and no alias is introduced as in
the image case. We predict an affine transformation matrix
by a mini-network (T-net in Fig 2) and directly apply this
transformation to the coordinates of input points. The mini-
network itself resembles the big network and is composed
by basic modules of point independent feature extraction,
max pooling and fully connected layers. More details about
the T-net are in the supplementary.

This idea can be further extended to the alignment of
feature space, as well. We can insert another alignment net-
work on point features and predict a feature transformation
matrix to align features from different input point clouds.
However, transformation matrix in the feature space has
much higher dimension than the spatial transform matrix,
which greatly increases the difficulty of optimization. We
therefore add a regularization term to our softmax training
loss. We constrain the feature transformation matrix to be
close to orthogonal matrix:

Lyeg = |II — AAT| %, @

where A is the feature alignment matrix predicted by a
mini-network. An orthogonal transformation will not lose
information in the input, thus is desired. We find that by
adding the regularization term, the optimization becomes
more stable and our model achieves better performance.

4.3. Theoretical Analysis

Universal approximation We first show the universal
approximation ability of our neural network to continuous
set functions. By the continuity of set functions, intuitively,
a small perturbation to the input point set should not
greatly change the function values, such as classification or
segmentation scores.

Formally, let ¥ = {S: S C [0,1]™ and |S| = n}, f :
X — RRis a continuous set function on A" w.r.t to Hausdorff
distance dg (-, -), i.e, Ve > 0,35 > 0, forany S,5" € X,
if dg(S,S’) < 4, then |f(S) — f(S’)| < e. Our theorem
says that f can be arbitrarily approximated by our network
given enough neurons at the max pooling layer, i.e., K in
(1) is sufficiently large.

gl ——
Classification Network
input mlp (64,64 feature nflp (64,128,1p24) max mlp
£ transform transform pool 1024 (512,256,k)
12 e) <t S
E' z _,';"é il L S nx1024]
= : = = global feature K
E ' . L
:. o i _’,,-'/ output scores
’ - b T " point features)
:. - 3x3 - E
: transform : ﬁ £ ;
: -mam : niEE shared = shared z =
: multiply | : = E_
' mlp (512,256,128) mlp (128,m) -

Segmentation Network

elements in the set:

f({Il, 5 e

where f : R

max pooling function.

< Tn}) = g(h(z1), ..., h(zn)),

- R, h : RY — RK and
RX x ... xRX — R is a symmetric function.
\-—u\f_-t‘

Emp?fically, our basic module is very simple:
approximate b by a multi-layer perceptron network and
g by a composition of a single variable function and a

ur idea is to approximate a general function defined O
a point set by applying a symmetric function on transformed

(1

g :

we

This is found to work well by

experiments. Through a collection of h, we can learn a
mber of f’s to capture different properties of the set.

Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the

lassification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, number:
iMNQracket are layer sizes. Batchnorm is used for all layers with ReLLU. Dropout layers are used for the last mlp in classification net.

11

with randomly permuted sequences, the RNN will become
invariant to input order. However in “OrderMatters™ [25]
the authors have shown that order does matter and cannot be
totally omitted. While RNN has relatively good robustness
to input ordering for sequences with small length (dozens),
it’s hard to scale to thousands of input elements, which is
the common size for point sets. Empirically, we have also
shown that model based on RNN does not perform as well

as sed method (Eig 5)
Our idea is to approximate a general function defined
a point set by applying a symmetric function on transformed

elements in the set:

f({ﬂ”l, .

5B b) B2)50y B(ER)); (1)

where f ®Y 4 R, A RY — RK and ¢
R x ... x RX — R is a symmetric function.
—————

n

Empirically, our basic module is very simple: we
approximate h by a multi-layer perceptron network and
g by a composition of a single variable function and a
max pooling function.. This is found to work well by
experiments. Through a collection of h, we can learn a,
number of f’s to capture different properties of the set.

properties (see Sec 5.3) and can achieve strong performace
(see Sec 5.1) in a few different applications. Due to the
simplicity of our module, we are also able to provide
theoretical analysis as in Sec 4.3.

Local and Global Information Aggregation The output
from the above section forms a vector [f1,. .., fx], which
is a global signature of the input set. We can easily
train a SVM or multi-layer perceptron classifier on the
shape global features for classification. However, point
segmentation requires a combination of local and global
knowledge. We can achieve this by a simple yet highly
effective manner.

Our solution can be seen in Fig 2 (Segmentation Net-
work). After computing the global point cloud feature vec-
tor, we feed it back to per point features by concatenating
the global feature with each of the point features. Then we
extract new per point features based on the combined point
features - this time the per point feature is aware of both the
local and global information.

With this modification our network is able to predict
per point quantities that rely on both local geometry and
global semantics. For example we can accurately predict
per-point normals (fig in supplementary), validating that the
network is able to summarize information from the point’s
local neighborhood. In experiment session, we also show
that our model can achieve state-of-the-art performance on
shape part segmentation and scene segmentation.

Joint Alignment Network The semantic labeling of a
point cloud has to be invariant if the point cloud undergoes
certain geometric transformations, such as rigid transforma-
tion. We therefore expect that the learnt representation by
our point set is invariant to these transformations.

A natural solution is to align all input set to a canonical
space before feature extraction. Jaderberg et al. [9]
introduces the idea of spatial transformer to align 2D
images through sampling and interpolation, achieved by a
specifically tailored layer implemented on GPU.

Our input form of point clouds allows us to achieve this
goal in a much simpler way compared with [9]. We do not
need to invent any new layers and no alias is introduced as in
the image case. We predict an affine transformation matrix
by a mini-network (T-net in Fig 2) and directly apply this
transformation to the coordinates of input points. The mini-
network itself resembles the big network and is composed
by basic modules of point independent feature extraction,
max pooling and fully connected layers. More details about
the T-net are in the supplementary.

This idea can be further extended to the alignment of
feature space, as well. We can insert another alignment net-
work on point features and predict a feature transformation
matrix to align features from different input point clouds.
However, transformation matrix in the feature space has
much higher dimension than the spatial transform matrix,
which greatly increases the difficulty of optimization. We
therefore add a regularization term to our softmax training
loss. We constrain the feature transformation matrix to be
close to orthogonal matrix:

Lyeg = |II — AAT| %, @

where A is the feature alignment matrix predicted by a
mini-network. An orthogonal transformation will not lose
information in the input, thus is desired. We find that by
adding the regularization term, the optimization becomes
more stable and our model achieves better performance.

4.3. Theoretical Analysis

Universal approximation We first show the universal
approximation ability of our neural network to continuous
set functions. By the continuity of set functions, intuitively,
a small perturbation to the input point set should not
greatly change the function values, such as classification or
segmentation scores.

Formally, let ¥ = {S: S C [0,1]™ and |S| = n}, f :
X — RRis a continuous set function on A" w.r.t to Hausdorff
distance dg (-, -), i.e, Ve > 0,35 > 0, forany S,5" € X,
if dg(S,S’) < 4, then |f(S) — f(S’)| < e. Our theorem
says that f can be arbitrarily approximated by our network
given enough neurons at the max pooling layer, i.e., K in
(1) is sufficiently large.

3x3

: T-Net .
: transform :
: matrix

: multiply .

elements in the set:

f{z1,...,z.}) = g(h(z1), ..., h(z,)),

where f : R
R¥ x--. xR¥ 5 Risa symmetric function.
—_——

— ——
Classification Network
B input mlp (64,64 f(:atl:ll’e nf max mlp
g transform transform pool 1024 12,256,k)
S = =+
2 . = = global feature "
=] - e

- -

1=

=
=
=3
w
[}
=
-
o
w

Segmentation Network

ur idea is to approximate a general function defined O
a point set by applying a symmetric function on transformed

(1

- R, h : RYN - R¥ and g :

Emp?fically, our basic module is very simple: we
approximate b by a multi-layer perceptron network and
g by a composition of a single variable function and a
max pooling function. This is found to work well by

experiments. Through a collection of h, we can learn a
mber of f’s to capture different properties of the set.

Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the

lassification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, number:
iMNQracket are layer sizes. Batchnorm is used for all layers with ReLLU. Dropout layers are used for the last mlp in classification net.

e point features
5
=
1088 & E |2
n/x = .
shared = shared = =
2 =5
I=
I =

mlp (512,256,128) mlp (128,m)

12

— ——

Classification Network

input mlp (64,64) feature mlp (64,128,10247 —

. : 2 - : : = transform transform 1
with randomly permuted sequences, the RNN will become Joint Alignment Network The semantic labeling of a = poo! 1024
invariant to input order. However in “OrderMatters™ [25] point cloud has to be invariant if the point cloud undergoes i g. en o 2 ¥
the authors have shown that order does matter and cannot be certain geometric transformations, such as rigid transforma- s | B — = shared = [= shared nx1024]
totally omitted. While RNN has relatively good robustness tion. We therefore expect that the learnt representation by 1 g_ . = = global feature
to input ordering for sequences with small length (dozens), our point set is invariant to these transformations. g f -~ —* -7
it’s hard to scale to thousands of input elements, which is A natural solution is to align all input set to a canonical : i i
the common size for point sets. Empirically, we have also space before feature extraction. Jaderberg et al. [9] : :
shown that model based on RNN does not perform as well introduces the idea of spatial transformer to align 2D ! i ¥ -

point features

a% sed method(Fio 5) images through sampling and interpolation, achieved by a ‘ i a 6dxd
Our idea is to approximate a general function defined specifically tailored layer implemented on GPU. \ : :r':m.o““ : : I£a;‘;0rlll
a point set by applying a symmetric function on transformed Our input form of point clouds allows us to achieve this : ' :
: matrix]] matrix
g multiply g] multiply

n|x 1088

nxm

output scores

o0
N
elements in the set: goal in a much simpler way compared with [9]. We do not shared = shared
need to invent any new layers and no alias is introduced as in =
f({xl! ceey l‘n}) =g(h(z1);- -+, h(®n)); (1 the image case. We predict an affine transformation matrix — —"
” by a mini-network (T-net in Fig 2) and directly apply this mlp (512,256,128) mlp (128,m)
where f : 28 = R, h : RY — RK and ¢ transformation to the coordinates of input points. The mini-

RE x ... xRX 5 Risa symmetric function. network itself resembles the big network and is composed
e by basic modules of point independent feature extraction,
max pooling and fully connected layers. More details about
the T-net are in the supplementary.

This idea can be further extended to the alignment of
feature space, as well. We can insert another alignment net-
work on point features and predict a feature transformation
matrix to align features from different input point clouds.

Segmentation Network

Figure 2. PointNet Architecture. The classification network takes . points as input, applies input and featare transformations, and then
aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the

lassification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, number:
iMNQracket are layer sizes. Batchnorm is used for all layers with ReLLU. Dropout layers are used for the last mlp in classification net.

n

Empirically, our basic module is very simple: we
approximate h by a multi-layer perceptron network and
g by a composition of a single variable function and a
max pooling function.. This is found to work well by
experiments. Through a collection of h, we can learn a,
number of f’s to capture different properties of the set.

as interesting However, transformation matrix in the feature space has —
properties (see Sec 5.3) and can achieve strong performace much higher dimension than the spatial transform matrix,
(see Sec 5.1) in a few different applications. Due to the which greatly increases the difficulty of optimization. We
simplicity of our module, we are also able to provide therefore add a regularization term to our softmax training
theoretical analysis as in Sec 4.3. loss. We constrain the feature transformation matrix to be
close to orthogonal matrix:
Local and Global Information Aggregation The output T2
from the above section forms a vector [f1,. .., fx], which Lreg = [T = AA™|F, 2
:s _a glosbixllMs ignaturi_()]f Exnput ;Et. IWeﬁc an easti}lly where A is the feature alignment matrix predicted by a / ; .)) . —
rama or m 1ayer pe'rcep' on classiier on the mini-network. An orthogonal transformation will not lose SCngIlI.athl’l requires a combination of local and gIOb‘ﬂ
information in the input, thus is desired. We find that by k['lUWlCdgC. We can achicvc thiS by a simplc }’Cl hlghly
knowledge. We can achieve this by a simple yet highly addingjthe'regularization o, ithesoptmization"becoimes ffecti
e ﬂ'ectivecmanner. = more stable and our model achieves better performance. eifective manner.

Our solution can be seen in Fig 2 (Segmentation Net-| 4 3 Tpeoretical Analysis Our solution can be seen in Fig 2 (Segmentation Net-
work). After computing the global pointcloud feature vec- WO}‘k). After computing the g]obal p'DiIlt cloud feature vec-
tor, we feed it back to per point features by concatenating Universal approximation We first show the universal B .)
the global feature with each of the point features. Then we approximation ability of our neural network to continuous tor, we feed it back to per pOlIlt features by concatcnatmg
extract new per point features based on the combined point set functions. By the continuity of set functions, intuitively, the global feature with each of the point features. Then we
features - this time the per point feature is aware of both the a small perturbation to the input point set should not . i)
local and global information. greatly change the function values, such as classification or extract new per point features based on the combined point

Wit o orouT NCWO DIe—to-p segmeniation scores: features - this time the per point feature is aware of both the
per point quantities that rely on both local geometry and Formally, let X = {S: S C [0,1]™ and |S| = n}, f: . .
global semantics. For example we can accurately predict X — Ris a continuous set function on X’ w.r.t to Hausdorff cal and global information. /
per-point normals (fig in supplementary), validating that the distance dg (-, -), i.e, Ve > 0,35 > 0, forany S,5" € X,
network is able to summarize information from the point’s if dg(S,S’) < 4, then |f(S) — f(S’)| < e. Our theorem
local neighborhood. In experiment session, we also show says that f can be arbitrarily approximated by our network
that our model can achieve state-of-the-art performance on given enough neurons at the max pooling layer, i.e., K in
shape part segmentation and scene segmentation. (1) is sufficiently large.

13

with randomly permuted sequences, the RNN will become
invariant to input order. However in “OrderMatters™ [25]
the authors have shown that order does matter and cannot be
totally omitted. While RNN has relatively good robustness
to input ordering for sequences with small length (dozens),
it’s hard to scale to thousands of input elements, which is
the common size for point sets. Empirically, we have also
shown that model based on RNN does not perform as well
Tod (FIZ o

Proposee
(Our idea is to approximate a general function defined o

a point set by applying a symmetric function on transformed
elements in the set:

f{z1, ..., an}) = g(h(z1),. .., h(zn)), (1)

where f

he ®Y L R h : RY - RK and ¢
RE x ...

xRX 5 Risa symmetric function.

Emp?rically, our basic module is very simple: we
approximate ~ by a multi-layer perceptron network and
g by a composition of a single variable function and a
max pooling function. This is found to work well by
experiments. Through a collection of h, we can learn

5 g

While our key module seems simple, it has interesting
properties (see Sec 5.3) and can achieve strong performace
(see Sec 5.1) in a few different applications. Due to the
simplicity of our module, we are also able to provide
theoretical analysis as in Sec 4.3.

Local and Global Information Aggregation The output
from the above section forms a vector [fi, ..., fK], which
is a global signature of the input set. We can easily
train a SVM or multi-layer perceptron classifier on the
segmentation requires a combination of local and global
knowledge. We can achieve this by a simple yet highly
effective manner.

Our solution can be seen in Fig 2 (Segmentation Net-
work). After computing the global point cloud feature vec-
tor, we feed it back to per point features by concatenating
the global feature with each of the point features. Then we
extract new per point features based on the combined point
features - this time the per point feature is aware of both the

and elobal ipformation.

With this modification our network is able to predict
per point quantities that rely on both local geometry and
global semantics. For example we can accurately predict
per-point normals (fig in supplementary), validating that the
network is able to summarize information from the point’s
local neighborhood. In experiment session, we also show
that our model can achieve state-of-the-art performance on
shape part segmentation and scene segmentation.

Joint Alignment Network The semantic labeling of a
point cloud has to be invariant if the point cloud undergoes
certain geometric transformations, such as rigid transforma-
tion. We therefore expect that the learnt representation by
our point set is invariant to these transformations.

A natural solution is to align all input set to a canonical
space before feature extraction. Jaderberg et al. [9]
introduces the idea of spatial transformer to align 2D
images through sampling and interpolation, achieved by a
specifically tailored layer implemented on GPU.

Our input form of point clouds allows us to achieve this

goal in a much simpler way compared with [9]. We do not
AT 1 D

T T ar

the image case. We predict an affine transformation matrix
by a mini-network (T-net in Fig 2) and directly apply this
transformation to the coordinates of input points. The mini-
network itself resembles the big network and is composed
by basic modules of point independent feature extraction,
max 129 y €O
the T-net are in the supplementary.

This idea can be further extended to the alignment of
feature space, as well. We can insert another alignment net-
work on point features and predict a feature transformation

Lo olierter L TITTTC T T T e herttehn
owever, transformation matrix in the feature space has
uch higher dimension than the spatial transform matrix,
which greatly increases the difficulty of optimization. We
therefore add a regularization term to our softmax training
loss. We constrain the feature transformation matrix to be
close to orthogonal matrix:

Lyeg = |II — AAT|%, @)

where A is the feature alignment matrix predicted by a
- . 4 1

T-NEIWOrK. Al UTtiromenet —vrH
information in the input, thus is desired. We find that by
adding the regularization term, the optimization becomes
more stable and our model achieves better performance.

4.3. Theoretical Analysis

Universal approximation We first show the universal
approximation ability of our neural network to continuous
set functions. By the continuity of set functions, intuitively,
a small perturbation to the input point set should not
greatly change the function values, such as classification or
segmentation scores.

Formally, let X = {S: S C [0,1]™ and |S| = n}, f :
X — Ris a continuous set function on X" w.r.t to Hausdorff
distance dg (-,), i.e, Ve > 0,35 > 0, forany 5,5’ € X,
if dp(S,S") < 6, then | f(S) — f(S')| < e. Our theorem
says that f can be arbitrarily approximated by our network
given enough neurons at the max pooling layer, i.e., K in
(1) is sufficiently large.

_ J— _—
Classification Network
input mlp (64,64) feature mlp (64,128,1024) max mlp
i8 transform transform pool 1024 (512,256,k)
8 |m . - =
E' B —* = shared B % shared nx1024]
= : = = global feature K
= ! - 5 — L
:. o i _’,,-'/ output scores
| ’ i L " point eatures i
T-Net 5 =
transform oo - =
= w
: . n|x 1088 shared r'—: shared z =
= = =-
= multiply =
J — B
mlp (512,256,128) mlp (128,m)
Segmentation Network
Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to th

lassification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, numbe
ilNgracket are layer sizes. Batchnorm is used for all layers with ReLLU. Dropout layers are used for the last mlp in classification net.

the image case. We predict an affine transformation matrix
by a mini-network (T-net in Fig 2) and directly apply this
transformation to the coordinates of input points. The mini-
network itself resembles the big network and is composed
by basic modules of point independent feature extraction
max pooling and fully connected layers. More details abouJ

However, transformation matrix in the feature space has
much higher dimension than the spatial transform matrix,
which greatly increases the difficulty of optimization. We
therefore add a regularization term to our softmax training
loss. We constrain the feature transformation matrix to be
close to orthogonal matrix:

Lreg = |1 - AAT|%, @)

where A is the feature alignment matrix predicted by a

with randomly permuted sequences, the RNN will become
invariant to input order. However in “OrderMatters™ [25]
the authors have shown that order does matter and cannot be
totally omitted. While RNN has relatively good robustness
to input ordering for sequences with small length (dozens),
it’s hard to scale to thousands of input elements, which is
the common size for point sets. Empirically, we have also
shown that model based on RNN does not perform as well

DU Proposeemettioq (LIg T
/S Our idea is to approximate a general function defined o

a point set by applying a symmetric function on transformed
elements in the set:

Fllaivs s Znb) B GREL)y h(zy)); (1),

where f Y 5 R h: RY - RE and ¢
R x ... x RX — R is a symmetric function.
e

n
Empirically, our basic module is very simple: we
approximate & by a multi-layer perceptron network and
g by a composition of a single variable function and a
max pooling function. This is found to work well by
experiments. Through a collection of h, we can learn
ff’sto Ll T :
While our key module seems simple, it has interesting
properties (see Sec 5.3) and can achieve strong performace
(see Sec 5.1) in a few different applications. Due to the
simplicity of our module, we are also able to provide
theoretical analysis as in Sec 4.3.

Local and Global Information Aggregation The output
from the above section forms a vector [fi, ..., fk], which
is a global signature of the input set. We can easily
train a SVM or multi-layer perceptron classifier on the

RN b e

> P
segmentation requires a combination of local and global
knowledge. We can achieve this by a simple yet highly
effective manner.

Our solution can be seen in Fig 2 (Segmentation Net-
work). After computing the global point cloud feature vec-
tor, we feed it back to per point features by concatenating
the global feature with each of the point features. Then we
extract new per point features based on the combined point
features - this time the per point feature is aware of both the
ocal and clobal igformation.

With this modification our network is able to predict
per point quantities that rely on both local geometry and
global semantics. For example we can accurately predict
per-point normals (fig in supplementary), validating that the
network is able to summarize information from the point’s
local neighborhood. In experiment session, we also show
that our model can achieve state-of-the-art performance on
shape part segmentation and scene segmentation.

Joint Alignment Network The semantic labeling of a
point cloud has to be invariant if the point cloud undergoes
certain geometric transformations, such as rigid transforma-
tion. We therefore expect that the learnt representation by
our point set is invariant to these transformations.

A natural solution is to align all input set to a canonical
space before feature extraction. Jaderberg et al. [9]
introduces the idea of spatial transformer to align 2D
images through sampling and interpolation, achieved by a
specifically tailored layer implemented on GPU.

Our input form of point clouds allows us to achieve this
goal in a much simpler way compared with [9]. We do not
e, > Loy cosemre T e iatroducad 25 D
the image case. We predict an affine transformation matrix
by a mini-network (T-net in Fig 2) and directly apply this
transformation to the coordinates of input points. The mini-
network itself resembles the big network and is composed

by basic modules of point independent feature extraction,
“Tax pOOTIZ T Tully CONTETTET T ers=oTe details abott
the T-net are in the supplementary.

This idea can be further extended to the alignment of
feature space, as well. We can insert another alignment net-
work on point features and predict a feature transformation

owever, transformation matrix in the feature space has
much higher dimension than the spatial transform matrix,
which greatly increases the difficulty of optimization. We
therefore add a regularization term to our softmax training
loss. We constrain the feature transformation matrix to be
close to orthogonal matrix:

Lyeg = |II — AA"|Z, @

Classification Network

input mlp (64,64) feature mlp (64,128,1024) max mlp
é transform transform pool 1024 (512,256,k)
= =t S
: ; shared \2 — —_ "Er: shared nx1024 . h4ll =
. = = I obal feature
] ? — = . L k

1
! o output scores
P ——
v o point features
;
1088 & g |3
n|x w1) 1 g @
matrix shared = shared 3 =
multiply = -
i ~ s

mlp (512,256,128) mlp (128,m)

Segmentation Network

where A is the feature alignment matrix predicted by a
5 " ; e

T-Network. AT ore b =i
information in the input, thus is desired. We find that by
adding the regularization term, the optimization becomes
more stable and our model achieves better performance.

4.3. Theoretical Analysis

Universal approximation We first show the universal
approximation ability of our neural network to continuous
set functions. By the continuity of set functions, intuitively,
a small perturbation to the input point set should not
greatly change the function values, such as classification or
segmentation scores.

Formally, let X = {S: S C [0,1]™ and |S| = n}, f :
X — Ris a continuous set function on A’ w.r.t to Hausdorff
distance dg (-,), i.e., Ve > 0,35 > 0, forany 5,5’ € X,
if dg(S,S") < 4, then | f(S) — f(S")| < e. Our theorem
says that f can be arbitrarily approximated by our network
given enough neurons at the max pooling layer, i.e., K in
(1) is sufficiently large.

the image case. We predict an affine transformation matrix
by a mini-network (T-net in Fig 2) and directly apply this
transformation to the coordinates of input points. The mini-
network itself resembles the big network and is composed
by basic modules of point independent feature extraction
max pooling and fully connected layers. More details abouJ

Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to th
lassification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, numbg;
racket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

However, transformation matrix in the feature space has

much higher dimension than the spatial transform matrix,
which greatly increases the difficulty of optimization. We
therefore add a regularization term to our softmax training
loss. We constrain the feature transformation matrix to be

close to orthogonal matrix:

Lreg = |l — AAT|7,

)

where A is the feature alignment matrix predicted by a

f pointnetloss(outputs, labels, m3x3, m64x64, alpha = 0.0001):
criterion = torch.nn.NLLLoss()
bs = outputs.size(@)
id3x3 = torch.eye(3, requires_grad=True).repeat(bs, 1, 1)

id64x64 = torch.eye(64, requires_grad=True).repeat(bs, 1, 1)

if outputs.is_cuda:
id3x3 = id3x3.cuda()

id64x64 = id64x64.cuda()
diff3x3 = id3x3 - torch.bmm{m3x3, m3x3.transpose(l, 2})
diff64x64 = id6ax64 - torch.bmm(m64x64, mE4x64.transpose(l,

return criterion(outputs, labels} + alpha # (torch.norm(diff3x3)

2)) 15

+ torch.norm(diff64x64)) / Tloat(bs)

" ”
é_ % T e EPEIEET
= :

g 3
o Q.
s 2
8 L
2y epP
8 28
n O
= S
© = O
5 E3
2
S .
v : g g 7 7
b4 m =
Figure 4. Qualitative results for semantic segmentation. Top = .
row is input point cloud with color. Bottom row is output semantic 8 g B 3 g
. . . . 3 -
segmentation result (on points) displayed in the same camera - . .
viewpoint as input. o 3 T 4

Figure 21. PointNet segmentation results on complete CAD models.

Original Shape

Upper-bound Shapes Critical Point Sets

Figure 18. The critical point sets and the upper-bound shapes
for unseen objects. We visualize the critical point sets and the
upper-bound shapes for teapot, bunny, hand and human body,
which are not in the ModelNet or ShapeNet shape repository to
test the generalizability of the learnt per-point functions of our
PointNet on other unseen objects. The images are color-coded
to reflect the depth information.

Accuracy (%)

=®-PointNet

“#=VoxNet

f f 1

0 0.2 0.4 0.6 0.8 1
Missing Data Ratio

Figure 8. PointNet v.s. VoxNet [17] on incomplete input data.
Metric is overall classification accurcacy on ModelNet40 test set.
Note that VoxNet is using 12 viewpoints averaging while PointNet
is using only one view of the point cloud. Evidently PointNet
presents much stronger robustness to missing points.

17

References:

1. PointNet paper: https://arxiv.org/pdf/1612.00593.pdf
2. Code snippet at slide 15: https://towardsdatascience.com/deep-learning-on-point-clouds-
implementing-pointnet-in-google-colab-1fd65cd3a263

18

https://arxiv.org/pdf/1612.00593.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

