
Convolutional neural
networks

Nail Ibrahimli

Limitations
of MLP
network
architecture

2

Limitations of MLP
network
architecture
• High Dimensionality & Loss of Spatial Information

• When using MNIST, each 28×28 image is flattened into a 784-

element vector.

• This flattening ignores the 2D structure of images, making it harder

for the network to capture spatial relationships.

• Large Number of Parameters

• Fully connected layers in an MLP lead to an explosion in

parameters as input size increases.

• More parameters increase computational cost and risk of

overfitting.

• Inefficient for Local Feature Extraction

• MLPs do not inherently learn localized features (e.g., edges,

textures).

• They struggle to capture patterns that are position invariant, unlike

convolutional layers.

• Scalability Issues

• As the complexity or resolution of images grows, MLPs become

less practical compared to convolutional architectures.

3

Properties of Images:
Image Locality

4

Properties of Images:
Image Locality
• Ordered Pixels:

Pixels are arranged in a specific order, forming a

grid.

5

Properties of Images:
Image Locality
• Ordered Pixels:

Pixels are arranged in a specific order, forming a

grid.

• Spatial Correlation:

Neighboring pixels tend to be related, capturing

local features.

• Exploitable Structure:

This order allows models like CNNs to leverage

local patterns effectively.

6

Properties of Images:
Image Stationarity

Properties of Images:
Image Stationarity

• Consistent Statistical Properties:

The distribution of pixel values remains

relatively consistent across the image.

• Repeated Patterns:

Similar features (e.g., edges, textures)

can occur anywhere in the image.

• Enables Weight Sharing:

Supports convolution operations where

the same filters can detect patterns

regardless of their location.

Properties of Images: Image Compositionality

9

Properties of Images:
Image Compositionality

• Hierarchical Structure:

Images are built from simple elements (e.g.,

edges, corners) that combine to form more

complex structures.

• Layered Feature Composition:

Basic patterns merge into higher-level features,

enabling robust recognition of complex objects.

• Efficient Representation:

Leveraging compositionality helps models learn

and generalize from simpler, reusable

components.

10

Properties of
Images

11

Locality:
Pixels are arranged in a structured grid; local
groups contain correlated information.

Stationarity:
Statistical properties are consistent across the
image; similar patterns (e.g., edges) appear
everywhere, allowing effective weight sharing.

Compositionality:
Simple elements combine hierarchically to form
complex features, enabling efficient and robust
representations.

Introduction to 1-D Convolution

12

Introduction to 1-D Convolution

13

Sliding Window Operation:
A filter (kernel) slides along the input sequence, computing a weighted sum at each position.

Local Feature Extraction:
Captures local patterns from adjacent elements in the sequence.

Translation Equivariance:
The same filter is applied across the entire input, ensuring features are detected regardless of their position.

Efficiency:
Reduces parameters by sharing weights, making it computationally efficient.

Image Convolution
(2D Convolution)
• Sliding Window Operation:

A small filter (kernel) moves across the image,

computing weighted sums of pixel values.

• Local Feature Detection:

Captures edges, textures, and patterns by

emphasizing spatial relationships.

• Weight Sharing & Efficiency:

The same filter is applied across the image, reducing

parameters and improving generalization.

14

2D Convolution: Edge
Detection & Smoothing

• Edge Detection (Laplacian Kernel):

• Enhances edges by highlighting regions

with rapid intensity changes.

• Captures important structural details in

the image.

• Smoothing (Gaussian Kernel):

• Blurs the image by averaging

neighboring pixels.

• Reduces noise while preserving general

structure.

15

Sigmoid activation

Sigmoid activation

Vanishing Gradient Problem:
•Gradients become very small for extreme values, slowing down learning in deep networks.
Non-Zero Mean Output:
•Outputs range from (0,1), causing imbalanced weight updates and inefficient learning.

Activation Functions in
Neural Networks
• Sigmoid:

• Outputs in (0,1), prone to vanishing gradients and slow learning.

• Tanh:

• Outputs in (-1,1), zero-centered but still suffers from vanishing

gradients.

• ReLU (Rectified Linear Unit):

• Outputs max(0, x), mitigates vanishing gradients but can have

dead neurons (dying ReLU problem).

• Leaky ReLU & Variants:

• Allows small negative values to prevent dead neurons.

• Softmax (for Classification):

• Converts logits into probabilities, used in the final layer for multi-

class classification.

18

Activations

PyTorch activation functions

19

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

Convolution motivation

20Slide credit: Yann Lecun

Convolution motivation

21Slide credit: Yann Lecun

Convolutional features

22

Top image credit: Yann Lecun
Bottom image credit: Visualizing and Understanding Convolutional Networks (Zeiler & Fergus, 2013)

Common CNN
Architecture

23

Convolutional Layers (Conv + ReLU):

• Extracts local patterns like edges and textures.

• Uses ReLU activation to introduce non-linearity.

Pooling Layers (Max/Average Pooling):

• Reduces spatial dimensions while retaining important features.

• Increases translation invariance and reduces computation.

Stacking Conv & Pooling Layers:

• Multiple layers capture hierarchical features (simple to complex).

Fully Connected (FC) Layers:

• Flattened feature maps are passed through dense layers for
classification.

Output Layer:

• Softmax (multi-class) or Sigmoid (binary) activation for final
predictions.

Convolutional kernels

24

Convolutional low-level features

25

Image credit: Stanford CS231n

Convolution operation

26

N=7,F=3,S=1

Convolution operation

27

N=7,F=3,S=2

Convolution operation

28

N=7,F=3,S=2

Output = (N-F)/S+1

Convolution operation

29

N=7, F=3, S=1, P=1

Convolution operation

30

N=7 F=3, S=2, P=1

Output = (N-F+2P)/S+1

Number of parameters

31

Pooling layer in CNN
Types of Pooling:

• Max Pooling:

• Selects the maximum value from a window (e.g., 2x2),

preserving the most important features.

• Average Pooling:

• Computes the average value in the window, emphasizing

smoother features.

32

Pooling layer in CNN
Types of Pooling:

• Max Pooling:

• Selects the maximum value from a window (e.g., 2x2),
preserving the most important features.

• Average Pooling:

• Computes the average value in the window, emphasizing
smoother features.

Benefits:

• Dimensionality Reduction:

• Reduces the number of parameters and computation.

• Translation Invariance:

• Helps the model become less sensitive to slight translations
of features.

• Control overfitting

33

Pooling layer in CNN
Types of Pooling:

• Max Pooling:

• Selects the maximum value from a window (e.g., 2x2),
preserving the most important features.

• Average Pooling:

• Computes the average value in the window, emphasizing
smoother features.

Benefits:

• Dimensionality Reduction:

• Reduces the number of parameters and computation.

• Translation Invariance:

• Helps the model become less sensitive to slight translations
of features.

• Control overfitting

34

Pooling layer (Maxpool)

35

1x1 Convolutions in CNN

Purpose:

• Applies a convolution with a filter size of 1x1, processing

individual pixels while leveraging depth channel information.

36

1x1 Convolutions in CNN

Purpose:

• Applies a convolution with a filter size of 1x1, processing

individual pixels while leveraging depth channel information.

Key Benefits:

• Dimensionality Reduction:

• Reduces the number of channels (depth) without

affecting spatial dimensions.

• Channel-wise Interactions:

• Allows the model to learn complex relationships between

channels, improving feature representation.

• Computational Efficiency:

• Lightweight operation, reducing the number of

computations in deeper networks.

37

LeNet5 Architecture

38

Overview:
• Early CNN for digit classification (MNIST), proposed by Yann LeCun in the 1990s.

Architecture:
• Input: 32x32 grayscale image.
• Conv Layer 1: 6 filters (5x5), output 28x28x6.
• Pool Layer 1: 2x2 max pooling, output 14x14x6.
• Conv Layer 2: 16 filters (5x5), output 10x10x16.
• Pool Layer 2: 2x2 max pooling, output 5x5x16.
• FC Layers: 120, 84 units.
• Output Layer: 10 units for classification.

Key Features:
• Introduced CNNs with convolution and pooling layers for feature extraction.

LeNet5

39

Credit: Yann Lecun

LeNet5

40

AlexNet
architecture
Overview:

• Deep CNN designed by Alex Krizhevsky, won

the 2012 ImageNet competition.

Key Features:

• ReLU Activation for faster training.

• 5 Convolutional Layers and 3 Max Pooling

Layers for feature extraction.

• 3 Fully Connected Layers for classification.

• Dropout for regularization and GPU

acceleration for efficient training.

41ImageNet 2012

https://paperswithcode.com/sota/image-classification-on-imagenet

	Slide 1: Convolutional neural networks
	Slide 2: Limitations of MLP network architecture
	Slide 3: Limitations of MLP network architecture
	Slide 4: Properties of Images: Image Locality
	Slide 5: Properties of Images: Image Locality
	Slide 6: Properties of Images: Image Locality
	Slide 7: Properties of Images: Image Stationarity
	Slide 8: Properties of Images: Image Stationarity
	Slide 9: Properties of Images: Image Compositionality
	Slide 10: Properties of Images: Image Compositionality
	Slide 11: Properties of Images
	Slide 12: Introduction to 1-D Convolution
	Slide 13: Introduction to 1-D Convolution
	Slide 14: Image Convolution (2D Convolution)
	Slide 15: 2D Convolution: Edge Detection & Smoothing
	Slide 16: Sigmoid activation
	Slide 17: Sigmoid activation
	Slide 18: Activation Functions in Neural Networks
	Slide 19: Activations
	Slide 20: Convolution motivation
	Slide 21: Convolution motivation
	Slide 22: Convolutional features
	Slide 23: Common CNN Architecture
	Slide 24: Convolutional kernels
	Slide 25: Convolutional low-level features
	Slide 26: Convolution operation
	Slide 27: Convolution operation
	Slide 28: Convolution operation
	Slide 29: Convolution operation
	Slide 30: Convolution operation
	Slide 31: Number of parameters
	Slide 32: Pooling layer in CNN
	Slide 33: Pooling layer in CNN
	Slide 34: Pooling layer in CNN
	Slide 35: Pooling layer (Maxpool)
	Slide 36: 1x1 Convolutions in CNN
	Slide 37: 1x1 Convolutions in CNN
	Slide 38: LeNet5 Architecture
	Slide 39: LeNet5
	Slide 40: LeNet5
	Slide 41: AlexNet architecture

