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* High Dimensionality & Loss of Spatial Information

*  When using MNIST, each 28x28 image is flattened into a 784-
element vector.

« This flattening ignores the 2D structure of images, making it harder
for the network to capture spatial relationships.

* Large Number of Parameters

* Fully connected layers in an MLP lead to an explosion in
parameters as input size increases.

* More parameters increase computational cost and risk of
overfitting.

« Inefficient for Local Feature Extraction

« MLPs do not inherently learn localized features (e.g., edges,
textures).

» They struggle to capture patterns that are position invariant, unlike
convolutional layers.

« Scalability Issues

* As the complexity or resolution of images grows, MLPs become
less practical compared to convolutional architectures.



Properties of Images
Image Locality




Properties of Images:
Image Locality

« Ordered Pixels
Pixels are arranged in a specific order, forming a

grid.




Properties of Images:
Image Locality

* Ordered Pixels:
Pixels are arranged in a specific order, forming a

grid.

« Spatial Correlation:

Neighboring pixels tend to be related, capturing
local features.

- Exploitable Structure:
This order allows models like CNNs to leverage
local patterns effectively.
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Properties of Images:
Image Stationarity

« Consistent Statistical Properties:
The distribution of pixel values remains
relatively consistent across the image.

 Repeated Patterns:
Similar features (e.g., edges, textures)
can occur anywhere in the image.

* Enables Weight Sharing:
Supports convolution operations where
the same filters can detect patterns
regardless of their location.




Properties of Images: Image Compositionality
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Properties of Images:
Image Compositionality
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» Hierarchical Structure: 000906 aémoao@
Images are built from simple elements (e.g.,
edges, corners) that combine to form more

complex structures.
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« Layered Feature Composition:
Basic patterns merge into higher-level features,
enabling robust recognition of complex objects.

- Efficient Representation:

Leveraging compositionality helps models learn
and generalize from simpler, reusable
components.
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Properties of
Images

Locality:
Pixels are arranged in a structured grid; local
groups contain correlated information.

Stationarity:

Statistical properties are consistent across the
image; similar patterns (e.g., edges) appear
everywhere, allowing effective weight sharing.

Compositionality:

Simple elements combine hierarchically to form
complex features, enabling efficient and robust
representations.
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Introduction to 1-D Convolution

12




Introduction to 1-D Convolution
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Sliding Window Operation:
A filter (kernel) slides along the input sequence, computing a weighted sum at each position.

Local Feature Extraction:
Captures local patterns from adjacent elements in the sequence.

Translation Equivariance:
The same filter is applied across the entire input, ensuring features are detected regardless of their position.

Efficiency:
Reduces parameters by sharing weights, making it computationally efficient.

13




Image Convolution
(2D Convolution)

 Sliding Window Operation:
A small filter (kernel) moves across the image,
computing weighted sums of pixel values.

* Local Feature Detection:
Captures edges, textures, and patterns by
emphasizing spatial relationships.

« Weight Sharing & Efficiency:
The same filter is applied across the image, reducing
parameters and improving generalization.
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2D Convolution: Edge
Detection & Smoothing

Input image Convolution Feature map
Kemel
. - -1 -1 -1
« Edge Detection (Laplacian Kernel): 1 8 —1
« Enhances edges by highlighting regions o T P |
with rapid intensity changes.
« Captures important structural details in _
the image. Inputimage Kemel Feature map
1 1 1
« Smoothing (Gaussian Kernel): 16 8 16
» Blurs the image by averaging % % é
neighboring pixels. X, d. .
16 8 16

* Reduces noise while preserving general
structure.
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Sigmoid activation
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Sigmoid activation

step function sigmoid function
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Vanishing Gradient Problem:

*Gradients become very small for extreme values, slowing down learning in deep networks.
Non-Zero Mean Output:

«Outputs range from (0,1), causing imbalanced weight updates and inefficient learning.



Activation Functions in
Neural Networks

Sigmoid:

« Outputs in (0,1), prone to vanishing gradients and slow learning.

Tanh:

« Outputs in (-1,1), zero-centered but still suffers from vanishing
gradients.

ReLU (Rectified Linear Unit):

« Outputs max(0, x), mitigates vanishing gradients but can have
dead neurons (dying ReLU problem).

Leaky RelLU & Variants:
» Allows small negative values to prevent dead neurons.

Softmax (for Classification):

« Converts logits into probabilities, used in the final layer for multi-

class classification.

Sigmoid
1.01

RelLU
101

I:, z>0

ReLU(z)=
¢ ( ) l(),oﬁmm-‘i\'e 5!

z,z20
LeakyReLU(z)=

az,otherwise
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Activations

PyTorch activation functions

Sigmoid Tanh Step Function
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https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

Convolution motivation
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Slide credit: Yann Lecun
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Convolutional features

Low-Levell |Mid-Level Trainable

Feature Feature Classifier

Top image credit: Yann Lecun

Bottom image credit: Visualizing and Understanding Convolutional Networks (Zeiler & Fergus, 2013) 22



Common CNN
Architecture

Low-LeveII__ Mid-Level High- Trainable
— —_—
Feature Feature Level Classifier

Convolutional Layers (Conv + RelLU):

» Extracts local patterns like edges and textures.
» Uses RelU activation to introduce non-linearity.

Pooling Layers (Max/Average Pooling):

* Reduces spatial dimensions while retaining important features.

. . . . RELU RELU RELU RELU RELU RELU
* Increases translation invariance and reduces computation.

CONV CONVl CONVlCONVl CONVlCONVl

'

Stacking Conv & Pooling Layers:

« Multiple layers capture hierarchical features (simple to complex). ' 7 =

Fully Connected (FC) Layers: =

« Flattened feature maps are passed through dense layers for
classification.
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« Softmax (multi-class) or Sigmoid (binary) activation for final
predictions.



Convolutional kernels

GINEESDONIITN
one filter =>
one activation map

example 5x5 filters
(32 total)
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Convolutional low-level features

Image credit: Stanford CS231n
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Convolution operation

N=7,F=3,S=1




Convolution operation

N=7,F=3,5=2




Convolution operation

N=7,F=3,5=2

Output = (N-F)/S+1
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Convolution operation "

7, F=3, S=1, P=1




Convolution operation N=7 F=3, S=2, P

1

Output = (N-F+2P)/S+1




Number of parameters

32

32

CONYV,
RelLU
e.g.6
5x5x3
filters

28

28

CONV,

RelLU
e.g. 10
5x5x6
filters

10
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24

CONV,
RelLU
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Pooling layer in CNN

Types of Pooling: 224x224x64
 Max Pooling:
« Selects the maximum value from a window (e.g., 2x2), p00|
preserving the most important features.
* Average Pooling:

Computes the average value in the window, emphasizing
smoother features.

112x112x64

224

224

|

i 112
downsampling

112
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Pooling layer in CNN

Types of Pooling: 224x224x64
 Max Pooling:

« Selects the maximum value from a window (e.g., 2x2),
preserving the most important features.

112x112x64

pool

—

» Average Pooling:

« Computes the average value in the window, emphasizing
smoother features.

Benefits:
« Dimensionality Reduction:
* Reduces the number of parameters and computation.

|

> o 112
224 ’ downsampling

* Helps the model become less sensitive to slight translations —-R
of features. 112

- Control overfitting 224

 Translation Invariance:
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Pooling layer in CNN

Types of Pooling: 224x224x64
 Max Pooling:

« Selects the maximum value from a window (e.g., 2x2),
preserving the most important features.

112x112x64

pool

—

» Average Pooling:

« Computes the average value in the window, emphasizing
smoother features.

Benefits:
« Dimensionality Reduction:
* Reduces the number of parameters and computation.

|

> o 112
224 ’ downsampling

* Helps the model become less sensitive to slight translations —-R
of features. 112

- Control overfitting 224

 Translation Invariance:
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Pooling layer (Maxpool)

224x224x64 Single depth slice
12x112x64 | |11 |2 |4
pool max pool with 2x2 filters
—_— 2 NeN 7 | 8 and stride 2
3 | 2 IEND ]
1| 2 S

| |

> o 112
224 downsampling
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1x1 Convolutions in CNN

RelU

>
CONV1Xx1

28 X 28 X 192 1x1 X192 78428 x32

32 filters

A number of filters goes from 192 to 32.

Purpose:

» Applies a convolution with a filter size of 1x1, processing
individual pixels while leveraging depth channel information.

36



1x1 Convolutions in CNN

Purpose:

» Applies a convolution with a filter size of 1x1, processing
individual pixels while leveraging depth channel information.

RelU Key Benefits:
> « Dimensionality Reduction:
CONV1x1 * Reduces the number of channels (depth) without

affecting spatial dimensions.

1x1 %192 Channel-wise Interactions:
X X
28 X 28 x 192 28 X 28 x 32 » Allows the model to learn complex relationships between

32 filters channels, improving feature representation.
Computational Efficiency:

i from 192 to 32. : , . .
A number of filters goes from © » Lightweight operation, reducing the number of
computations in deeper networks.
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LeNet5 Architecture i ' =

Input Feature Map Feature Map  Feature Map Feature Map

32X32X1 28X28X6  14X14X6 10X10Xx16 S5X5x16 20 8 10

Overview:

« Early CNN for digit classification (MNIST), proposed by Yann LeCun in the 1990s.
Architecture:

« Input: 32x32 grayscale image.

« Conv Layer 1: 6 filters (5x5), output 28x28x6.

 Pool Layer 1: 2x2 max pooling, output 14x14x6.

« Conv Layer 2: 16 filters (5x5), output 10x10x16.

 Pool Layer 2: 2x2 max pooling, output 5x5x16.

« FC Layers: 120, 84 units.

« Output Layer: 10 units for classification.
Key Features:

« Introduced CNNs with convolution and pooling layers for feature extraction.
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LeNet5

class LeNet5(nn.Module):
s 8

- _mTE ATt = def _iﬂit_(SElf):
= 'I::"'E"‘. f‘"r . RESEARCH Super() _1nlt_()

QISWer: ';i self.convl = nn.Conv2d(1, 20, 5, 1)

self.conv2 = nn.Conv2d(20, 20, 5, 1)
self.fcl nn.Linear(4*4*20, 500)

agrat A self.fc2 nn.Linear(500, 10)
BER R

- 1 0
forward(self, x):

.relu(self.convl(x
.max_pool2d(x, 2
.relu(self.conv2(Xx
.max_pool2d(x, 2
view(=-1, 4*4*%20
.relu(self.fcl)

self.fc2(x)

return F.logsoftmax(x, dim=1)
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AlexNet
architecture

Overview:

« Deep CNN designed by Alex Krizhevsky, won
the 2012 ImageNet competition.

Key Features:
* RelLU Activation for faster training.

« 5 Convolutional Layers and 3 Max Pooling
Layers for feature extraction.

« 3 Fully Connected Layers for classification.

« Dropout for regularization and GPU
acceleration for efficient training.

ImageNet 2012

18.2% error in Imagenet

4,096

4,096

$507
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https://paperswithcode.com/sota/image-classification-on-imagenet
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