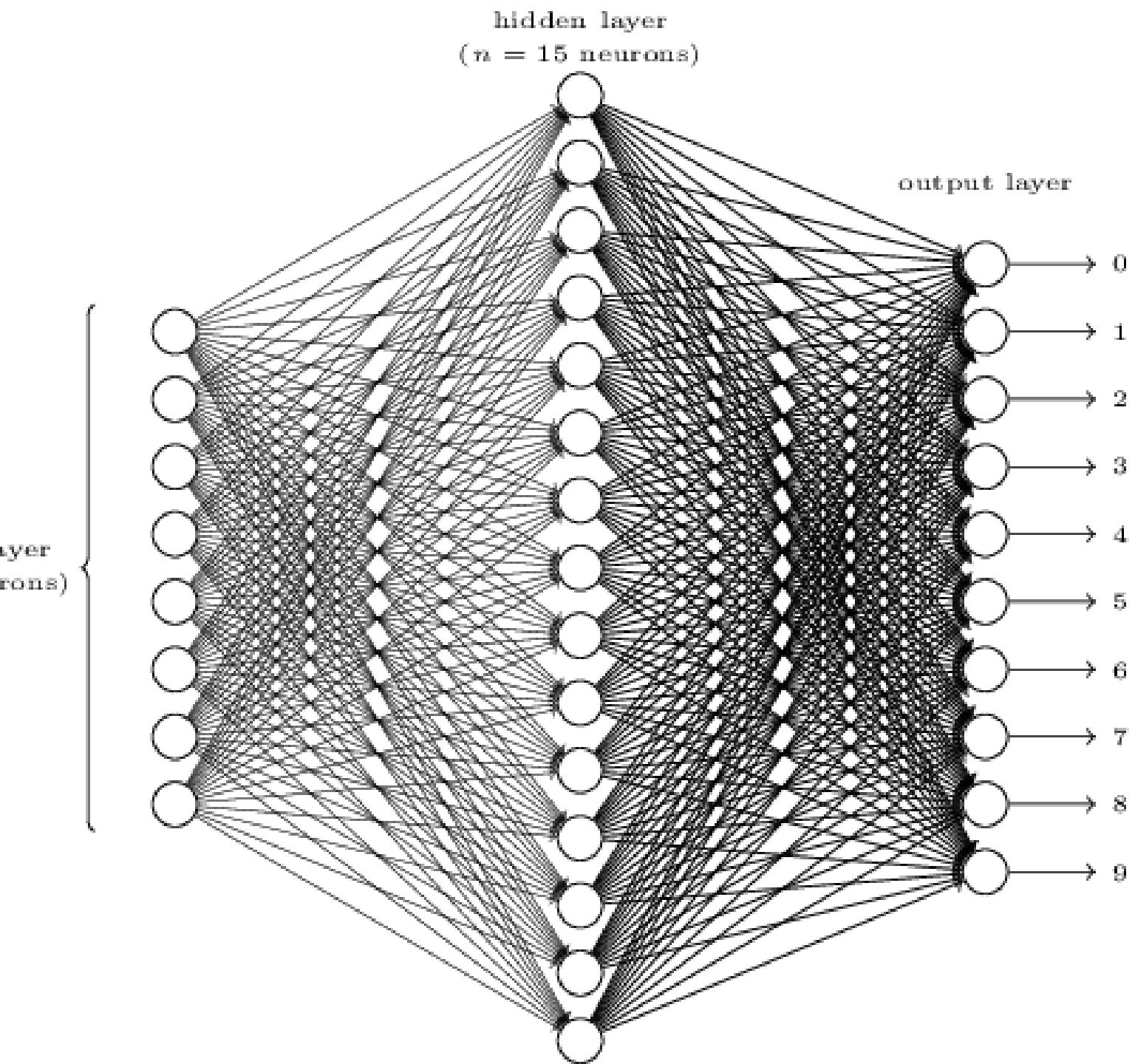
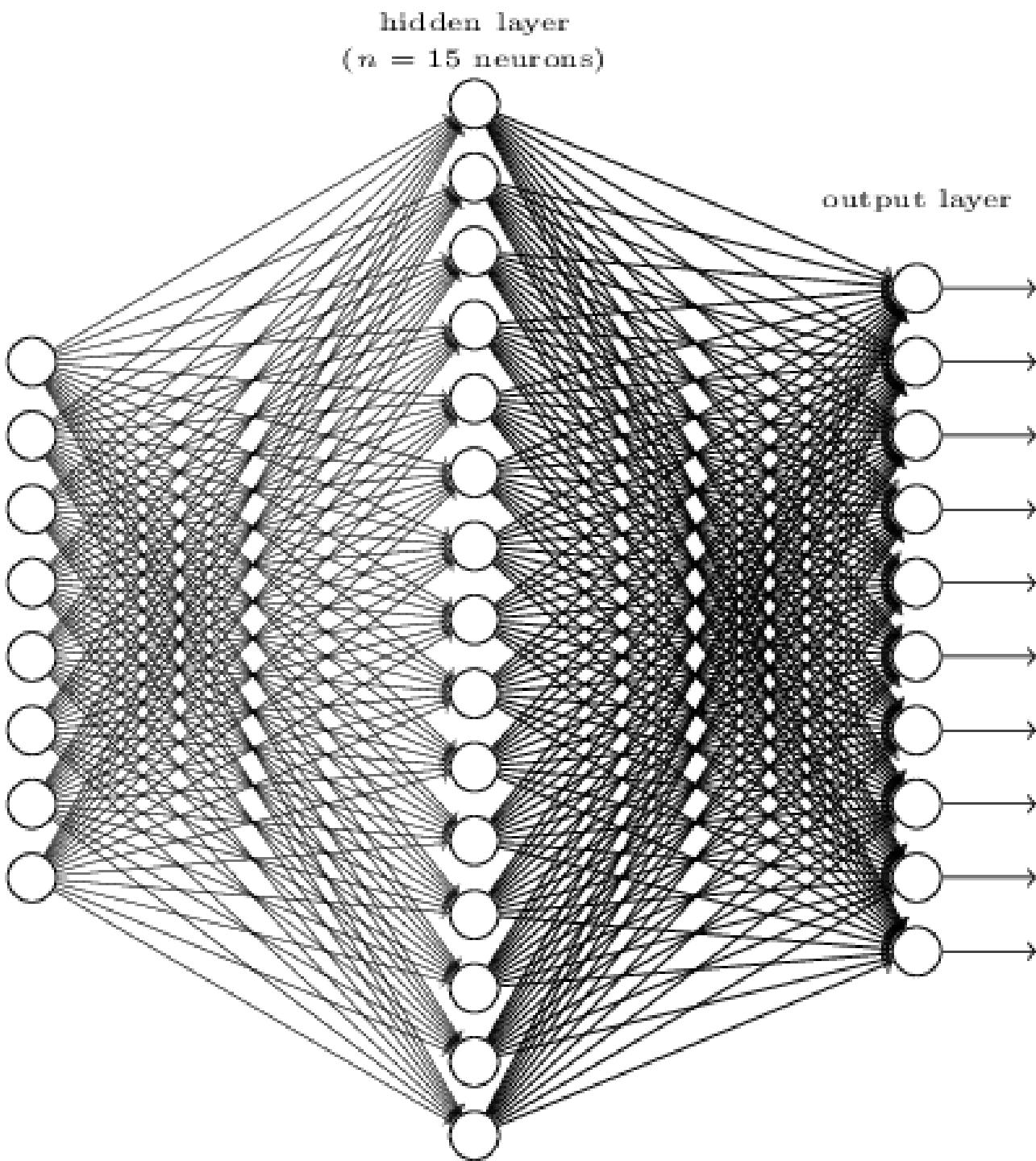


Convolutional neural networks

Nail Ibrahimli



Limitations of MLP network architecture



Limitations of MLP network architecture

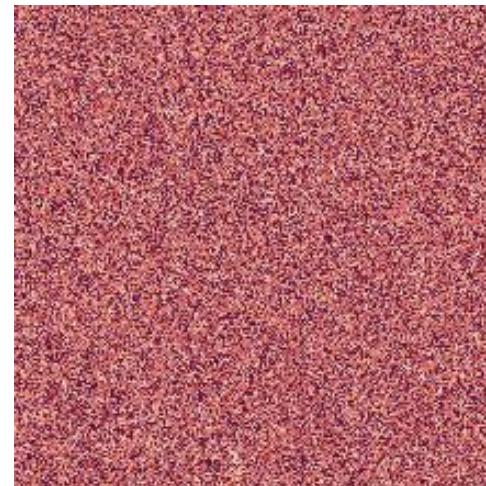
- **High Dimensionality & Loss of Spatial Information**
 - When using MNIST, each 28×28 image is flattened into a 784-element vector.
 - This flattening ignores the 2D structure of images, making it harder for the network to capture spatial relationships.
- **Large Number of Parameters**
 - Fully connected layers in an MLP lead to an explosion in parameters as input size increases.
 - More parameters increase computational cost and risk of overfitting.
- **Inefficient for Local Feature Extraction**
 - MLPs do not inherently learn localized features (e.g., edges, textures).
 - They struggle to capture patterns that are position invariant, unlike convolutional layers.
- **Scalability Issues**
 - As the complexity or resolution of images grows, MLPs become less practical compared to convolutional architectures.

Properties of Images: Image Locality

Properties of Images: Image Locality

- **Ordered Pixels:**

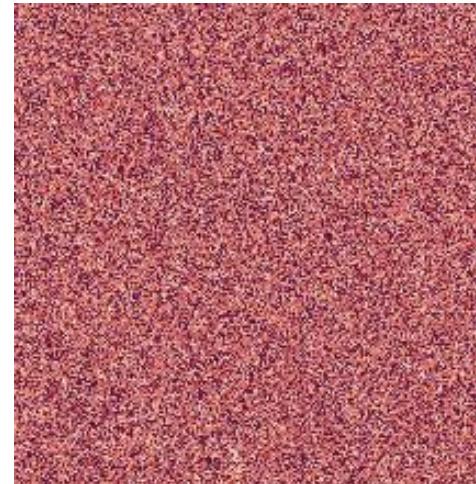
Pixels are arranged in a specific order, forming a grid.



Properties of Images: Image Locality

- **Ordered Pixels:**

Pixels are arranged in a specific order, forming a grid.

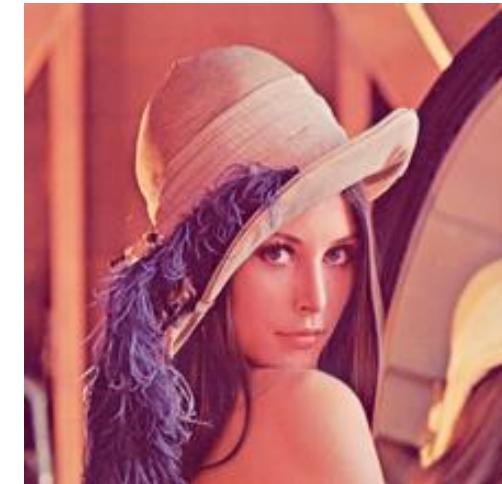


- **Spatial Correlation:**

Neighboring pixels tend to be related, capturing local features.

- **Exploitable Structure:**

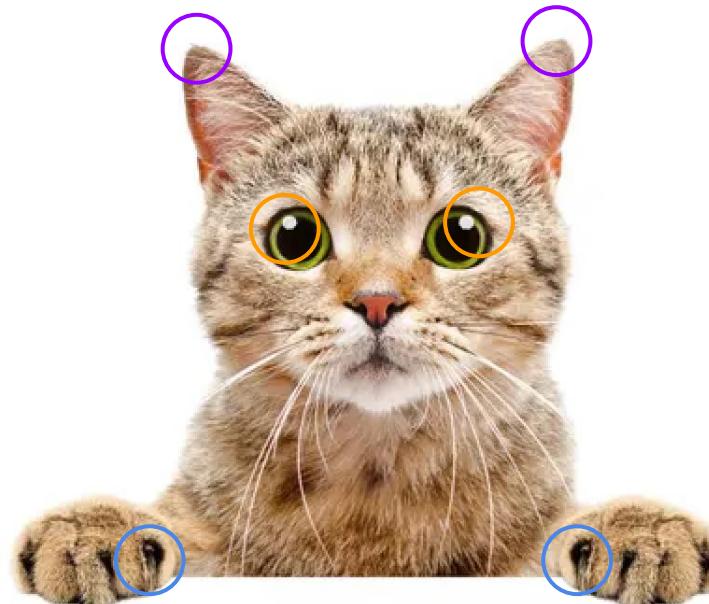
This order allows models like CNNs to leverage local patterns effectively.



Properties of Images: Image Stationarity

Properties of Images: Image Stationarity

- **Consistent Statistical Properties:**
The distribution of pixel values remains relatively consistent across the image.
- **Repeated Patterns:**
Similar features (e.g., edges, textures) can occur anywhere in the image.
- **Enables Weight Sharing:**
Supports convolution operations where the same filters can detect patterns regardless of their location.



Properties of Images: Image Compositionality

Properties of Images: Image Compositionality

- **Hierarchical Structure:**

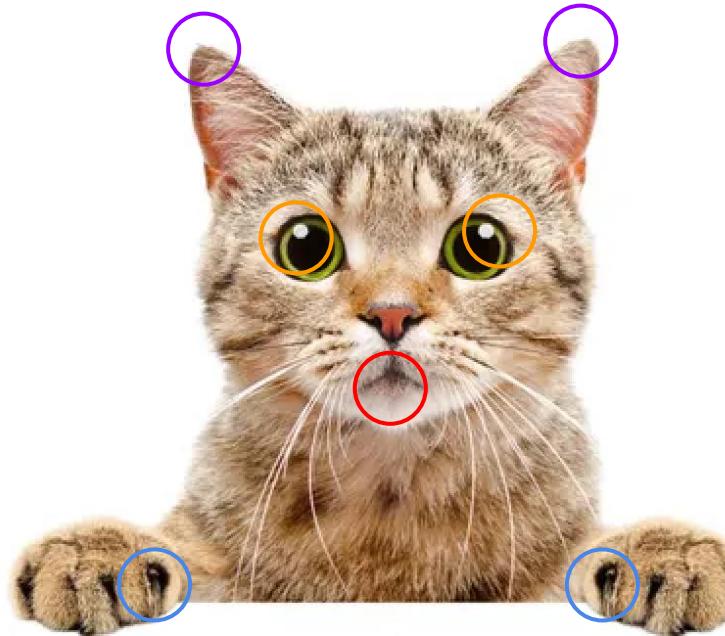
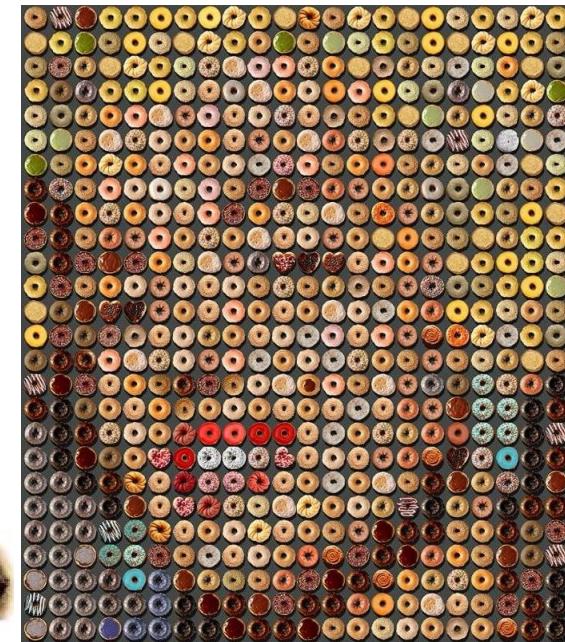
Images are built from simple elements (e.g., edges, corners) that combine to form more complex structures.

- **Layered Feature Composition:**

Basic patterns merge into higher-level features, enabling robust recognition of complex objects.

- **Efficient Representation:**

Leveraging compositionality helps models learn and generalize from simpler, reusable components.



Properties of Images

Locality:

Pixels are arranged in a structured grid; local groups contain correlated information.

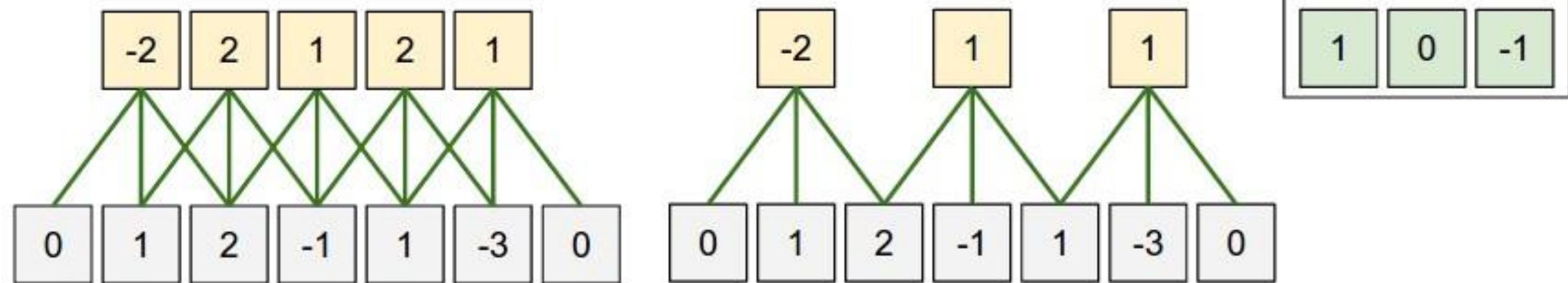
Stationarity:

Statistical properties are consistent across the image; similar patterns (e.g., edges) appear everywhere, allowing effective weight sharing.

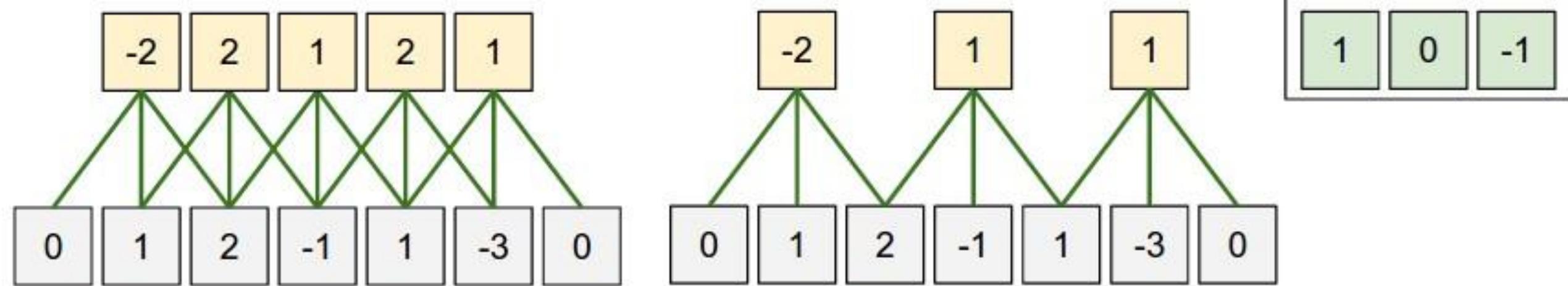
Compositionality:

Simple elements combine hierarchically to form complex features, enabling efficient and robust representations.

Introduction to 1-D Convolution



Introduction to 1-D Convolution



Sliding Window Operation:

A filter (kernel) slides along the input sequence, computing a weighted sum at each position.

Local Feature Extraction:

Captures local patterns from adjacent elements in the sequence.

Translation Equivariance:

The same filter is applied across the entire input, ensuring features are detected regardless of their position.

Efficiency:

Reduces parameters by sharing weights, making it computationally efficient.

Image Convolution (2D Convolution)

- Sliding Window Operation:**

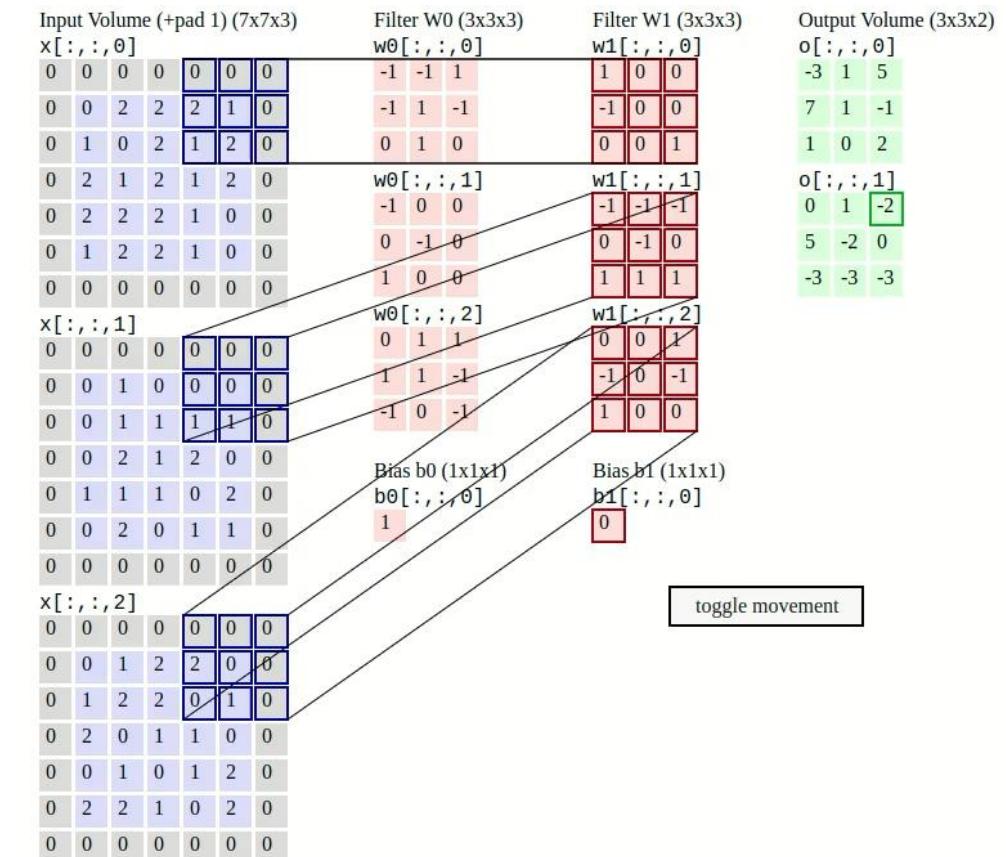
A small filter (kernel) moves across the image, computing weighted sums of pixel values.

- Local Feature Detection:**

Captures edges, textures, and patterns by emphasizing spatial relationships.

- Weight Sharing & Efficiency:**

The same filter is applied across the image, reducing parameters and improving generalization.



2D Convolution: Edge Detection & Smoothing

- **Edge Detection (Laplacian Kernel):**
 - Enhances edges by highlighting regions with rapid intensity changes.
 - Captures important structural details in the image.
- **Smoothing (Gaussian Kernel):**
 - Blurs the image by averaging neighboring pixels.
 - Reduces noise while preserving general structure.

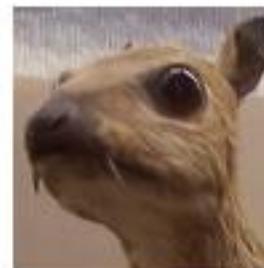
Input image

Convolution Kernel

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Feature map

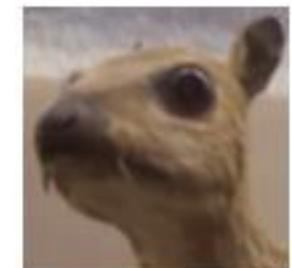
Input image



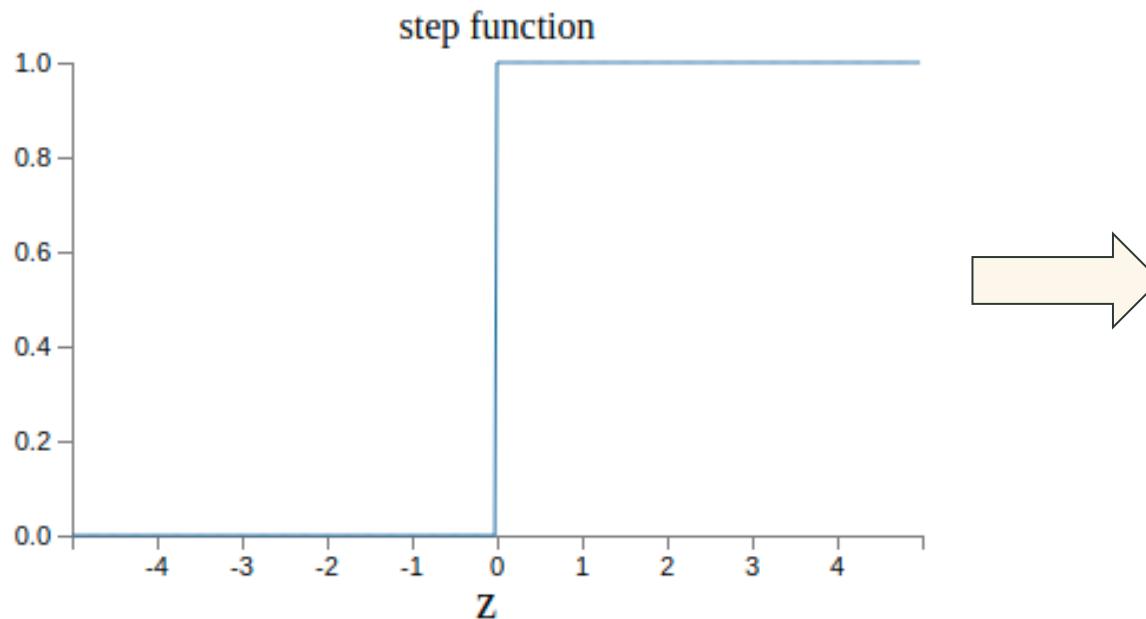
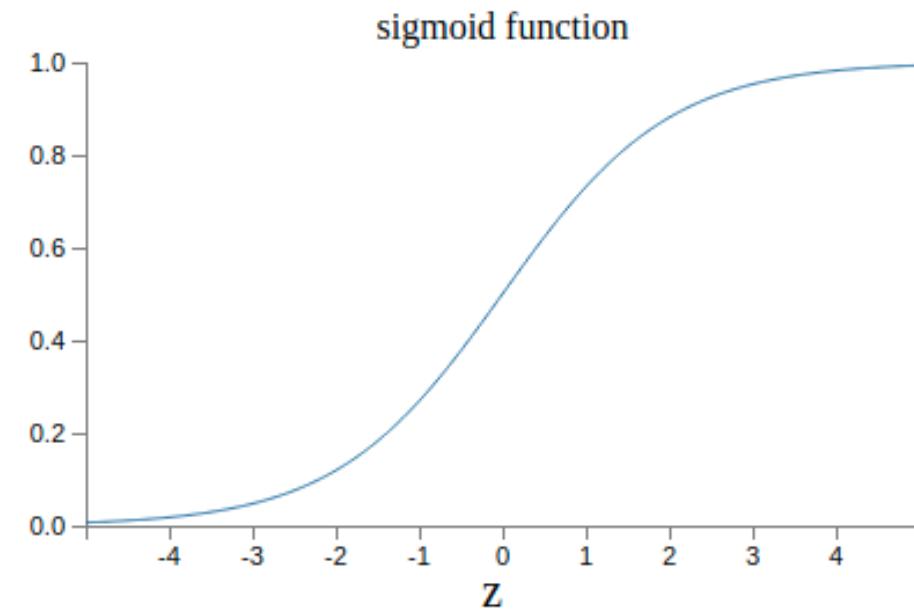
Kernel

$$\begin{pmatrix} \frac{1}{16} & \frac{1}{8} & \frac{1}{16} \\ \frac{1}{8} & \frac{1}{4} & \frac{1}{8} \\ \frac{1}{16} & \frac{1}{8} & \frac{1}{16} \end{pmatrix}$$

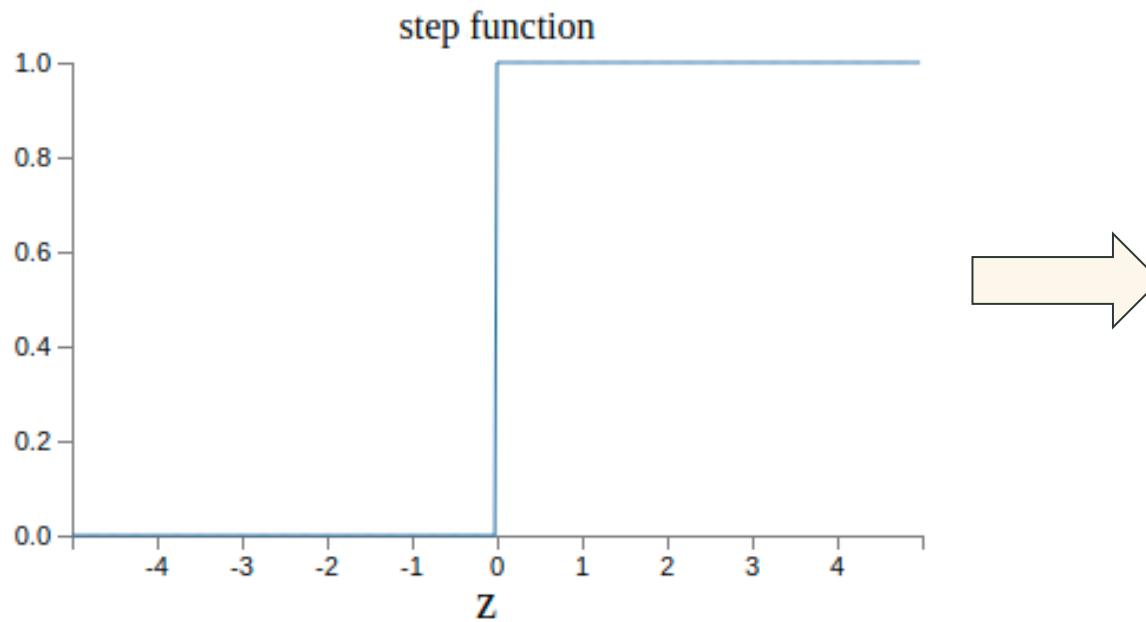
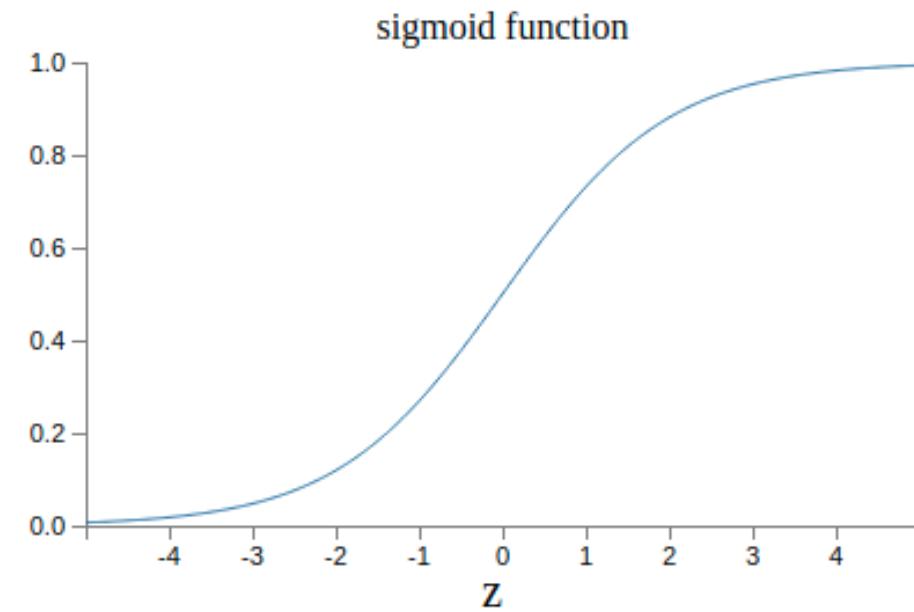
Feature map



Sigmoid activation



Sigmoid activation



Vanishing Gradient Problem:

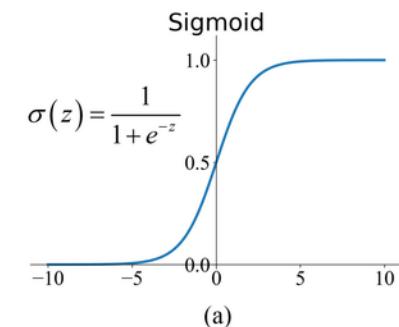
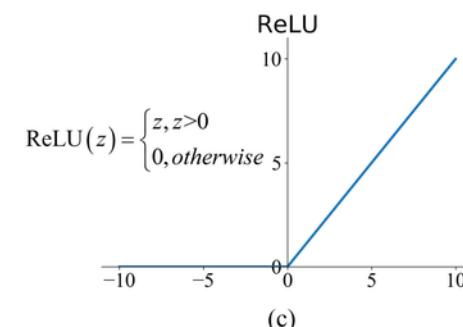
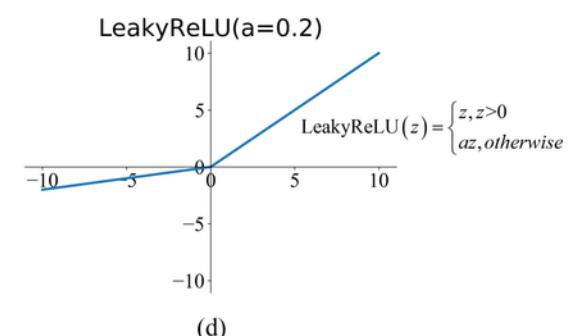
- Gradients become very small for extreme values, slowing down learning in deep networks.

Non-Zero Mean Output:

- Outputs range from (0,1), causing imbalanced weight updates and inefficient learning.

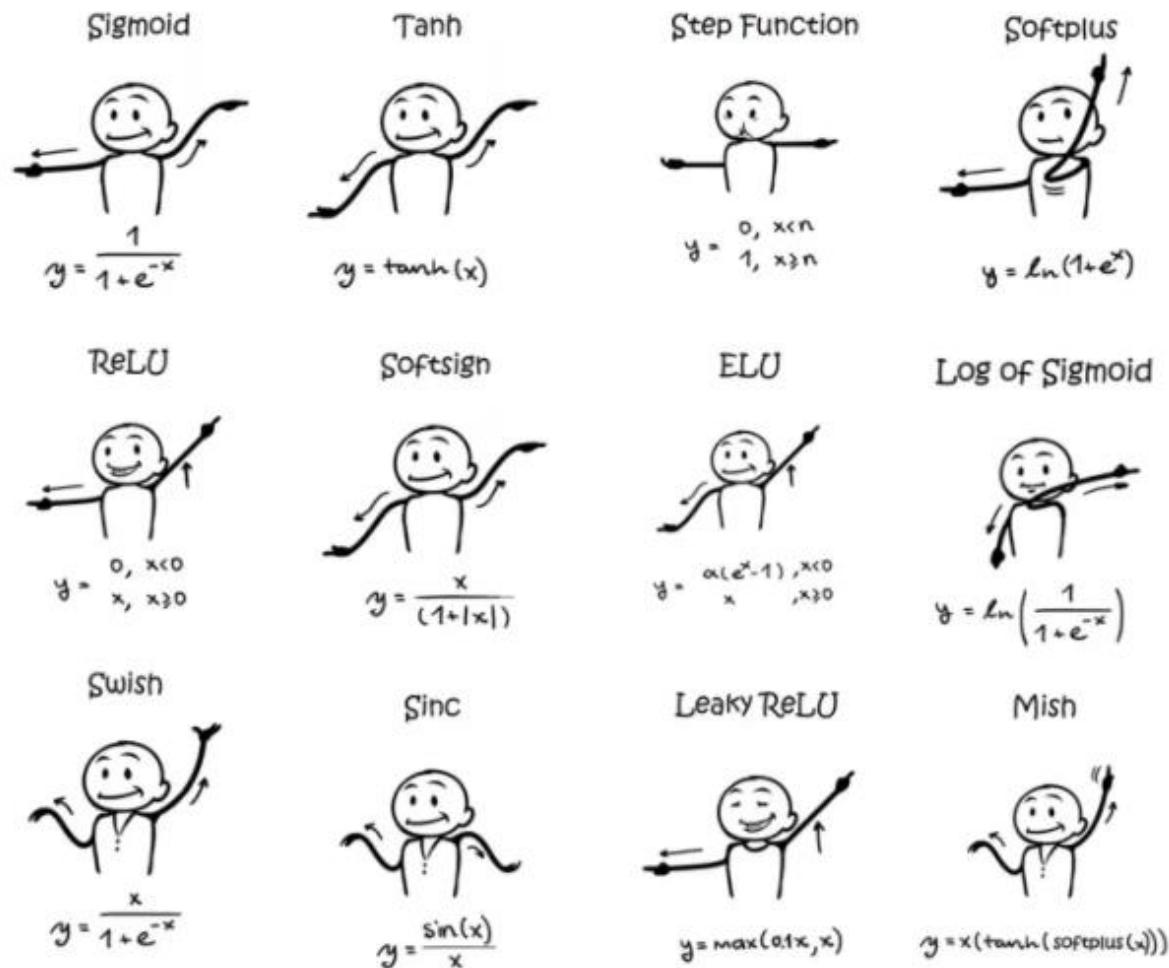
Activation Functions in Neural Networks

- **Sigmoid:**
 - Outputs in (0,1), prone to vanishing gradients and slow learning.
- **Tanh:**
 - Outputs in (-1,1), zero-centered but still suffers from vanishing gradients.
- **ReLU (Rectified Linear Unit):**
 - Outputs $\max(0, x)$, mitigates vanishing gradients but can have dead neurons (dying ReLU problem).
- **Leaky ReLU & Variants:**
 - Allows small negative values to prevent dead neurons.
- **Softmax (for Classification):**
 - Converts logits into probabilities, used in the final layer for multi-class classification.

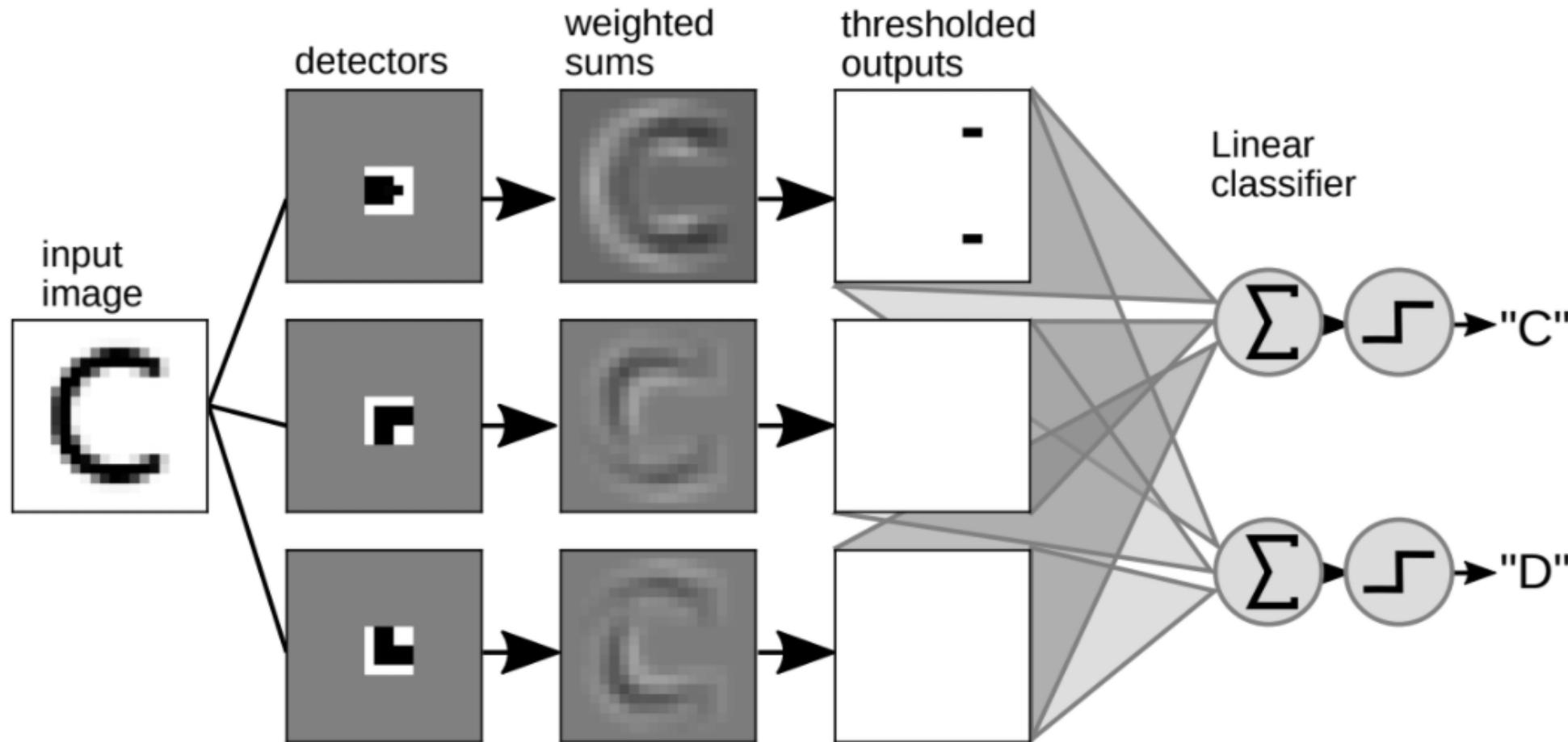


Activations

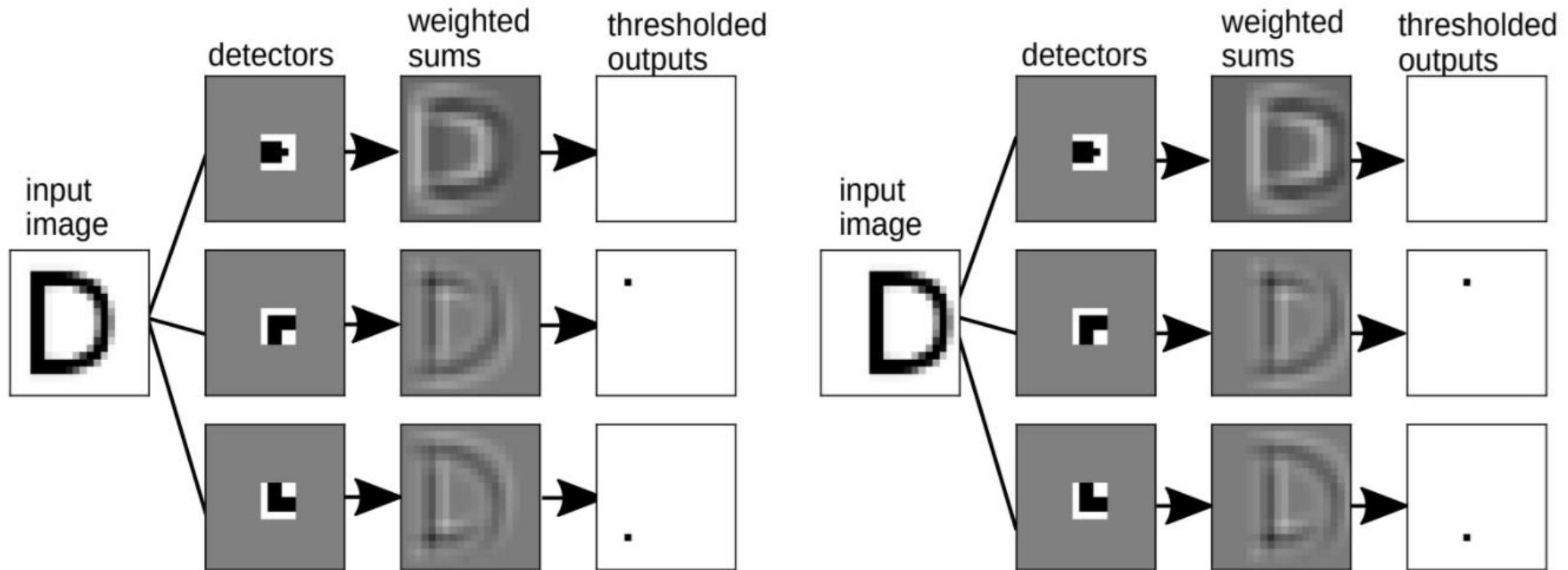
PyTorch activation functions



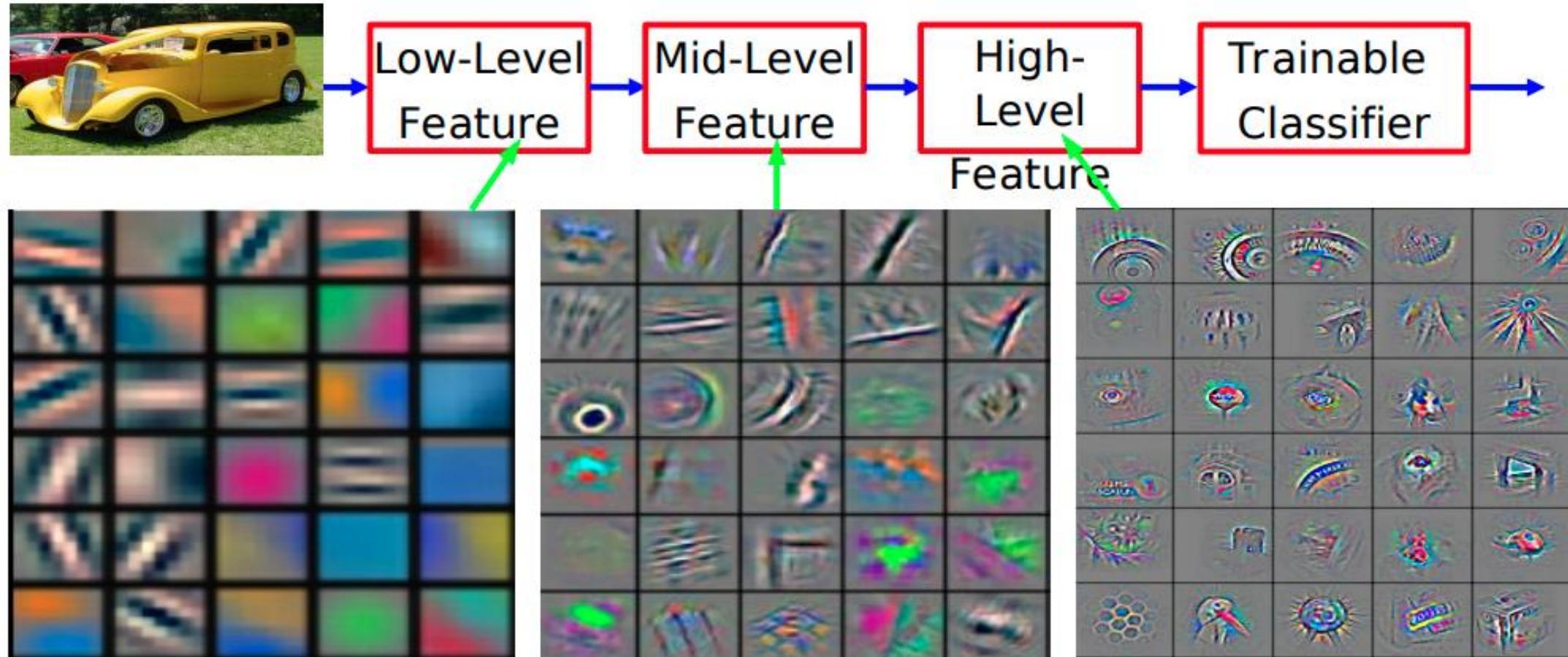
Convolution motivation



Convolution motivation



Convolutional features



Top image credit: Yann Lecun

Bottom image credit: Visualizing and Understanding Convolutional Networks (Zeiler & Fergus, 2013)

Common CNN Architecture

Convolutional Layers (Conv + ReLU):

- Extracts local patterns like edges and textures.
- Uses ReLU activation to introduce non-linearity.

Pooling Layers (Max/Average Pooling):

- Reduces spatial dimensions while retaining important features.
- Increases translation invariance and reduces computation.

Stacking Conv & Pooling Layers:

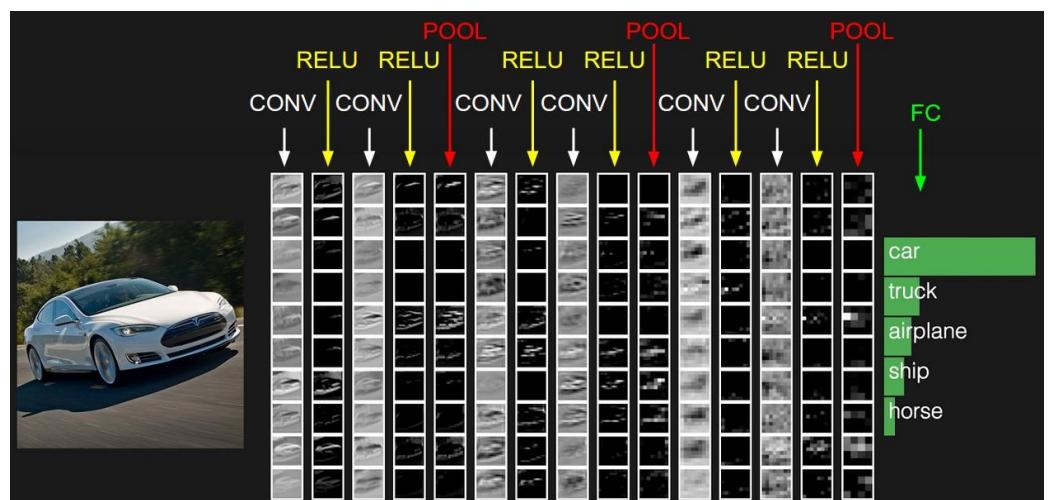
- Multiple layers capture hierarchical features (simple to complex).

Fully Connected (FC) Layers:

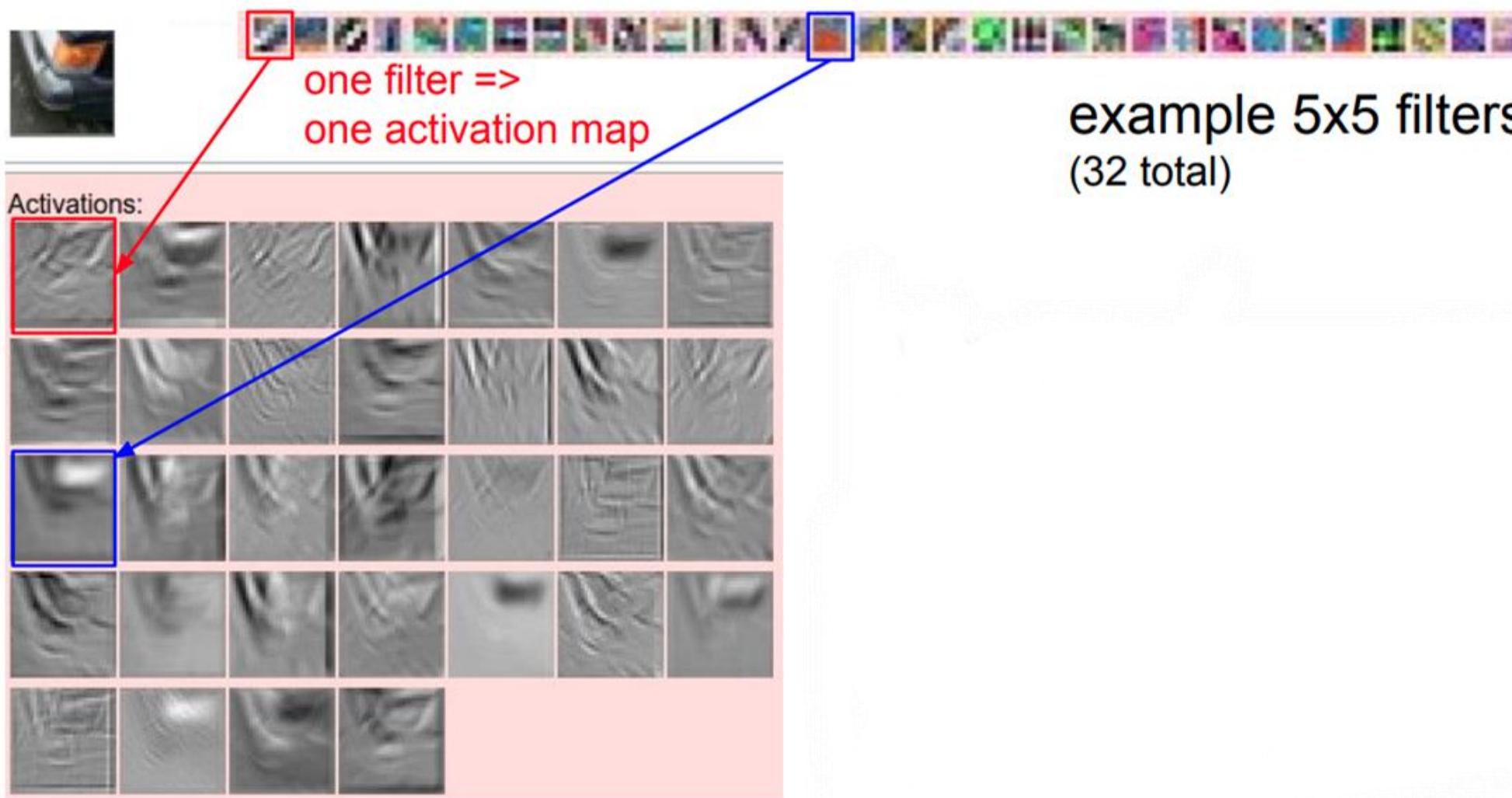
- Flattened feature maps are passed through dense layers for classification.

Output Layer:

- Softmax (multi-class) or Sigmoid (binary) activation for final predictions.



Convolutional kernels



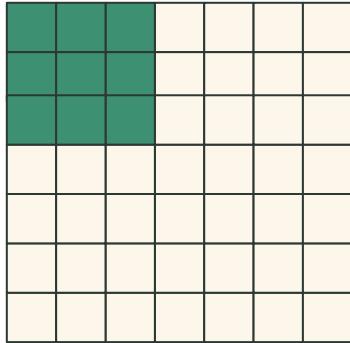
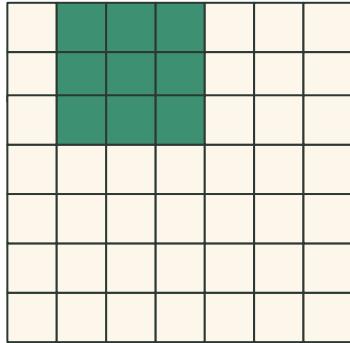
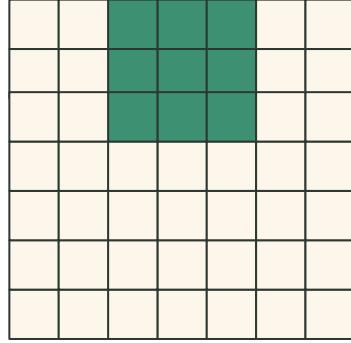
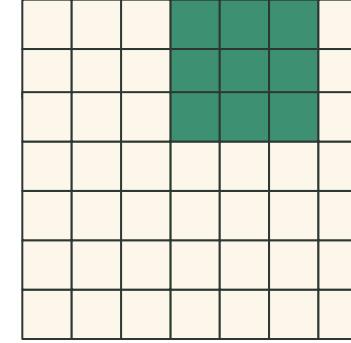
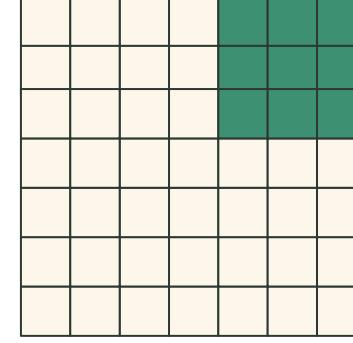
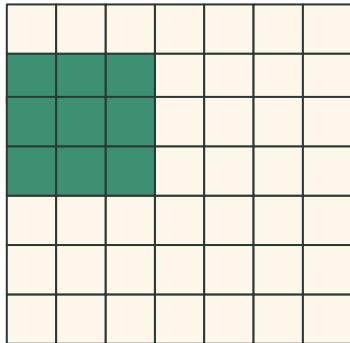
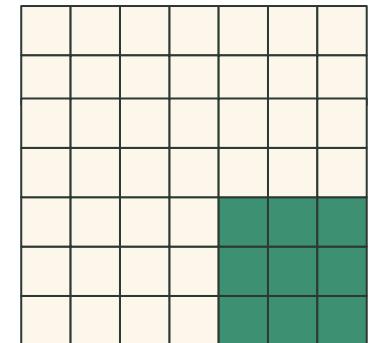
Convolutional low-level features



Image credit: Stanford CS231n

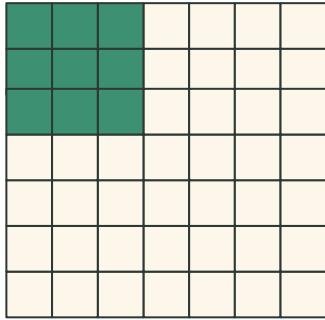
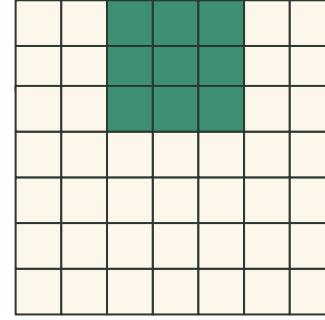
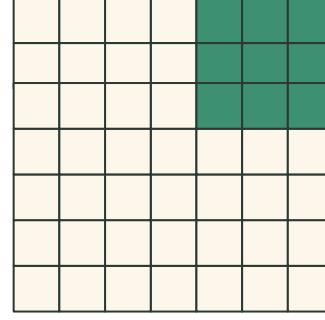
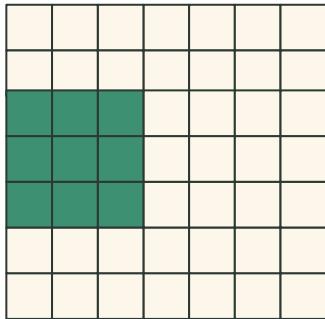
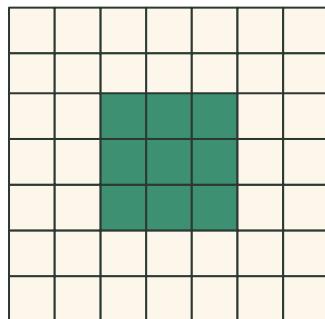
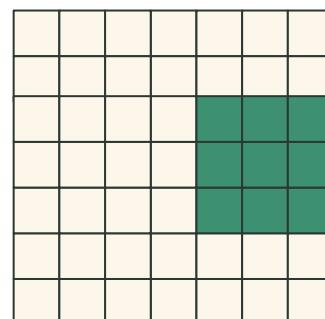
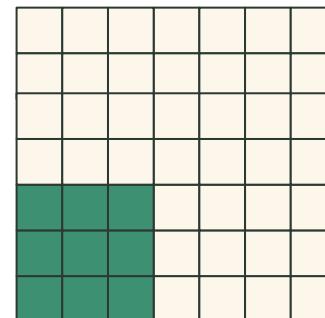
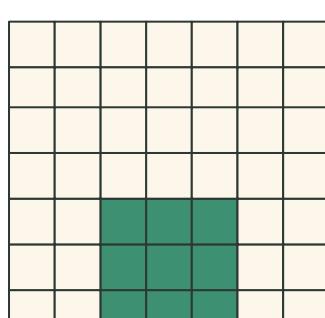
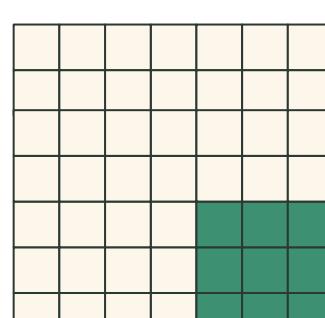
Convolution operation

$N=7, F=3, S=1$



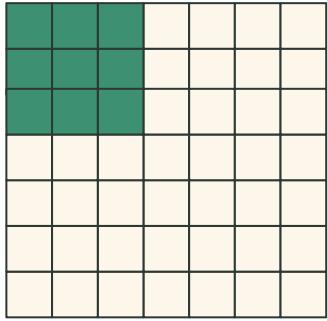
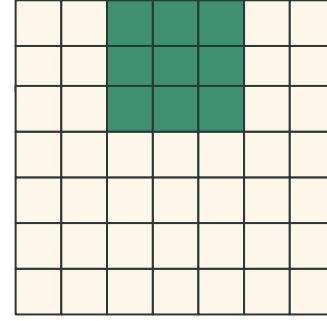
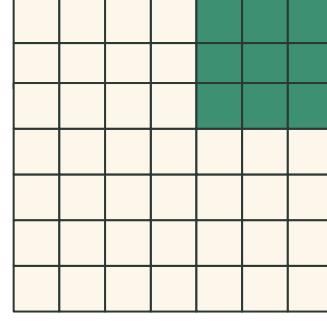
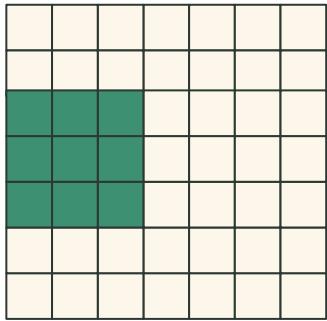
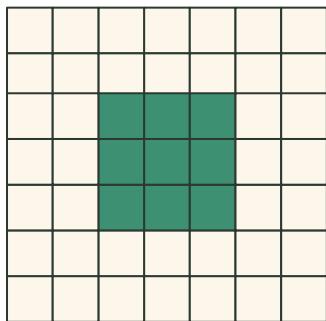
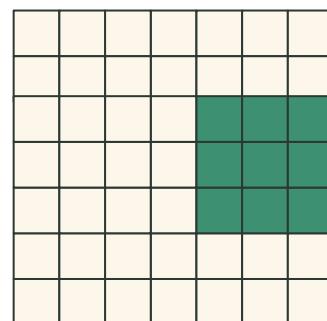
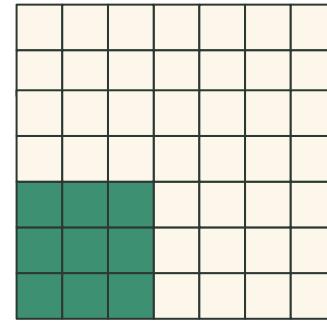
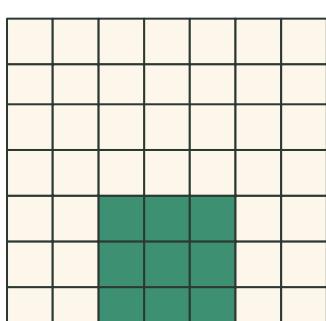
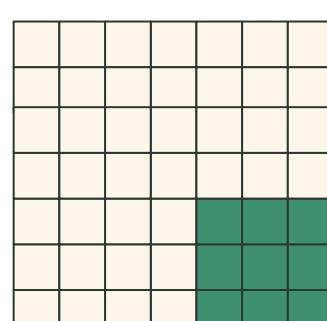
Convolution operation

$N=7, F=3, S=2$



Convolution operation

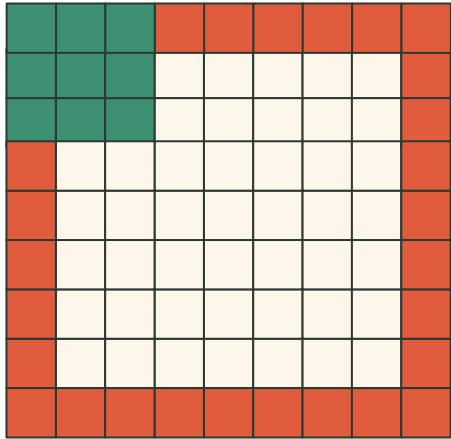
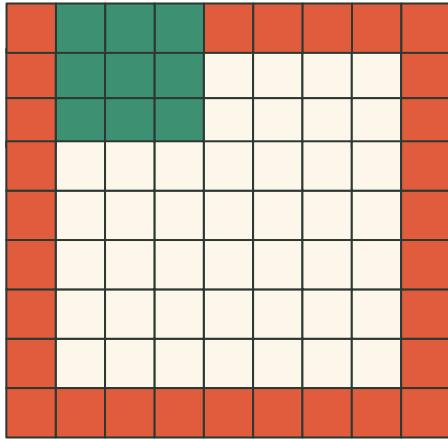
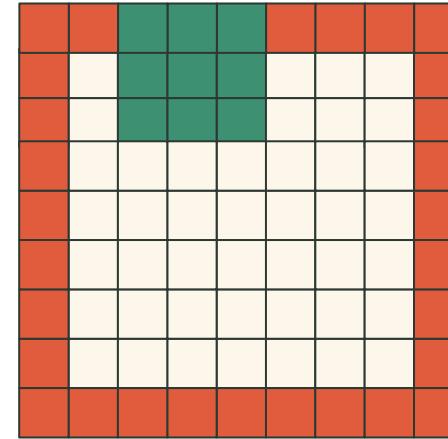
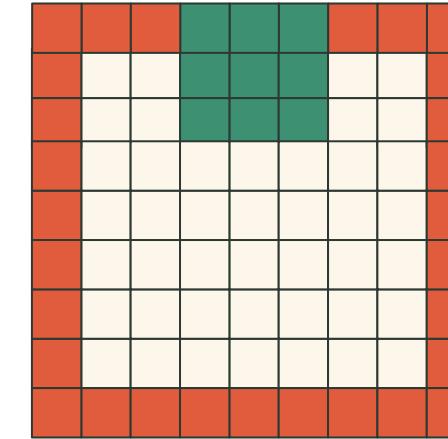
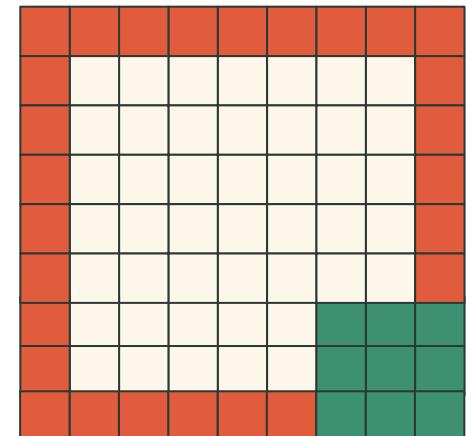
$N=7, F=3, S=2$



Output = $(N-F)/S+1$

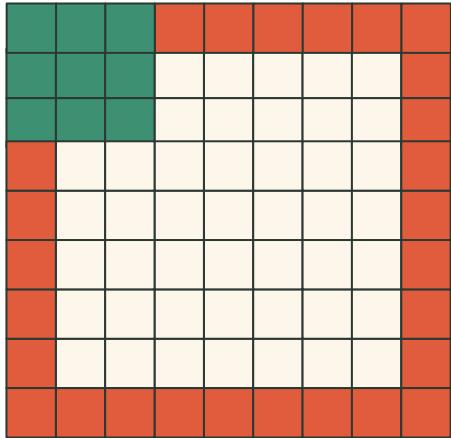
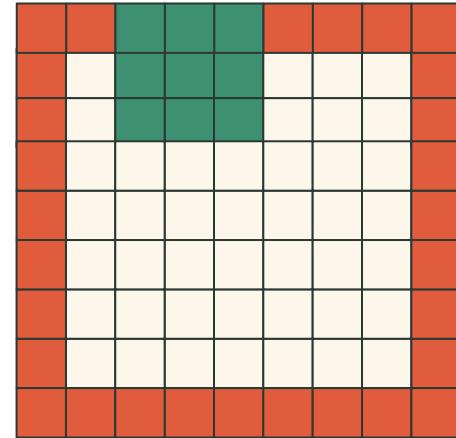
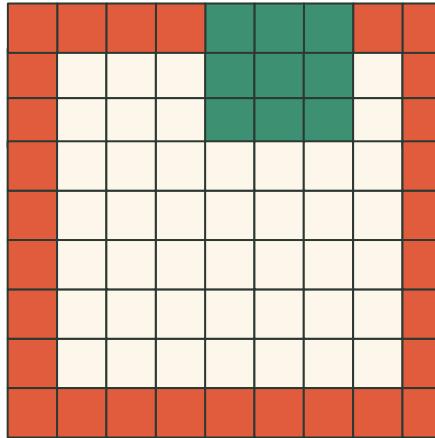
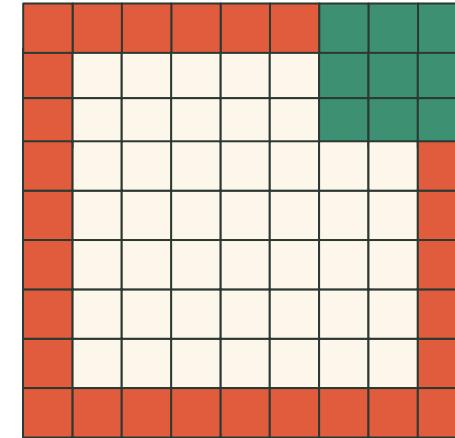
Convolution operation

$N=7, F=3, S=1, P=1$

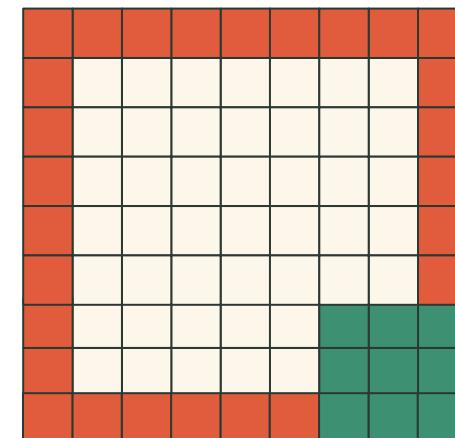


Convolution operation

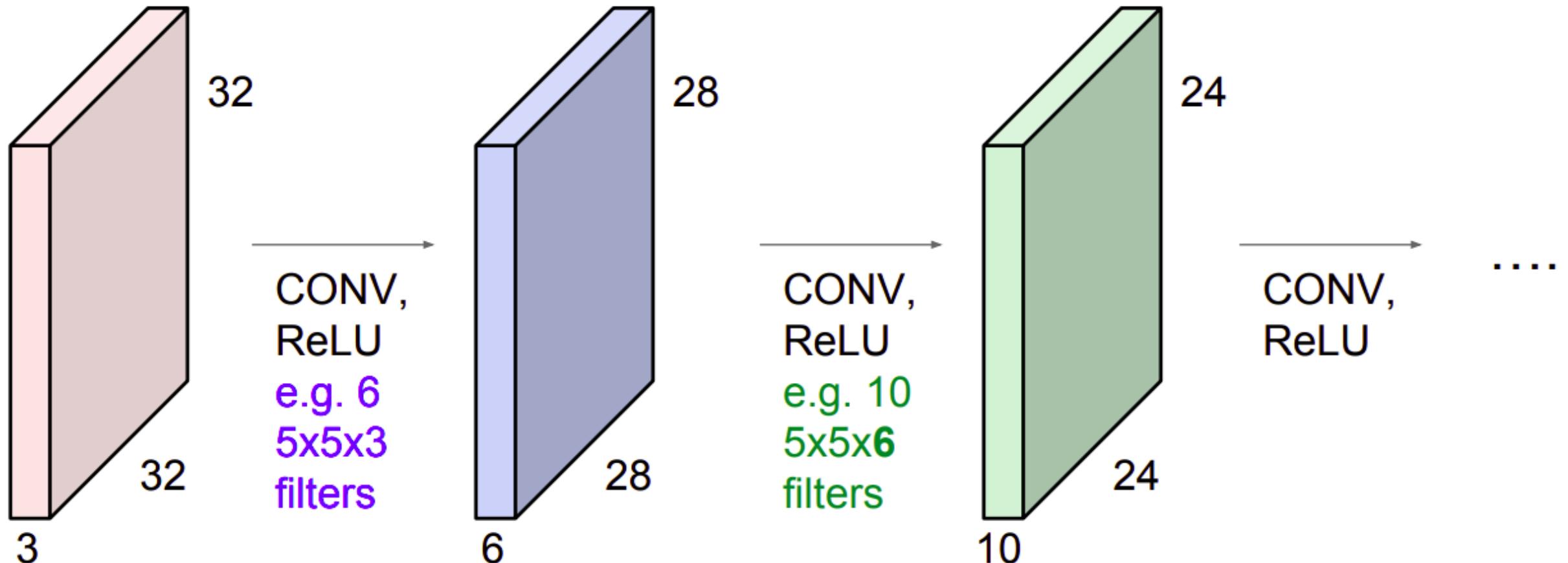
$N=7, F=3, S=2, P=1$



$$\text{Output} = (N-F+2P)/S+1$$



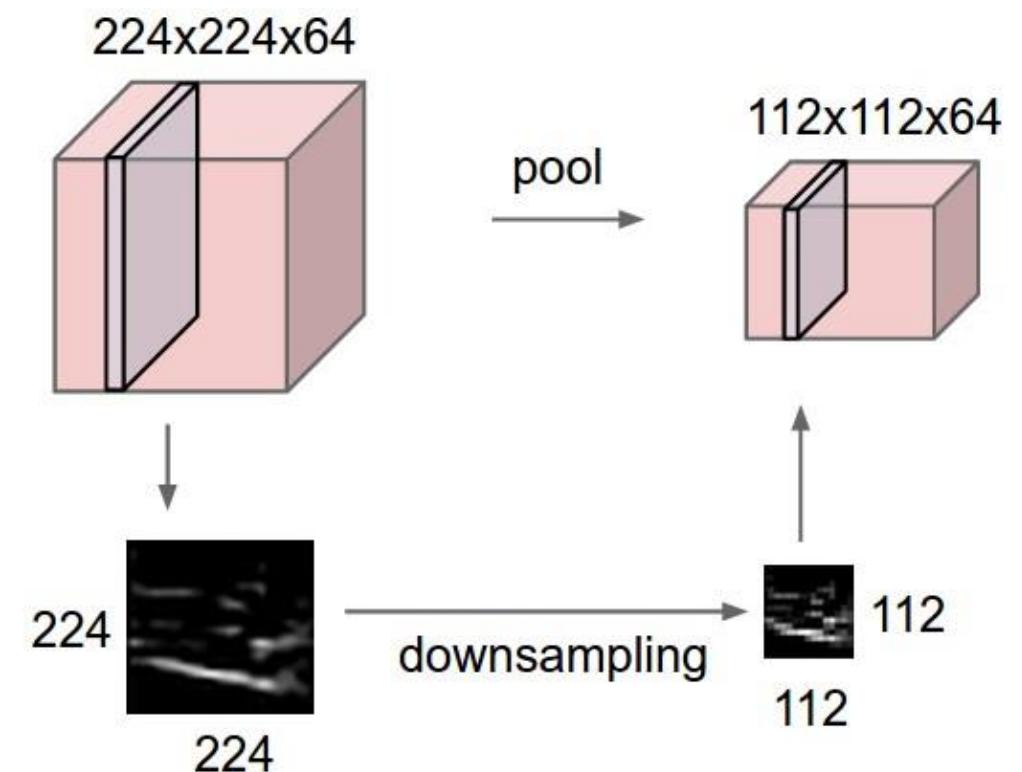
Number of parameters



Pooling layer in CNN

Types of Pooling:

- **Max Pooling:**
 - Selects the maximum value from a window (e.g., 2x2), preserving the most important features.
- **Average Pooling:**
 - Computes the average value in the window, emphasizing smoother features.



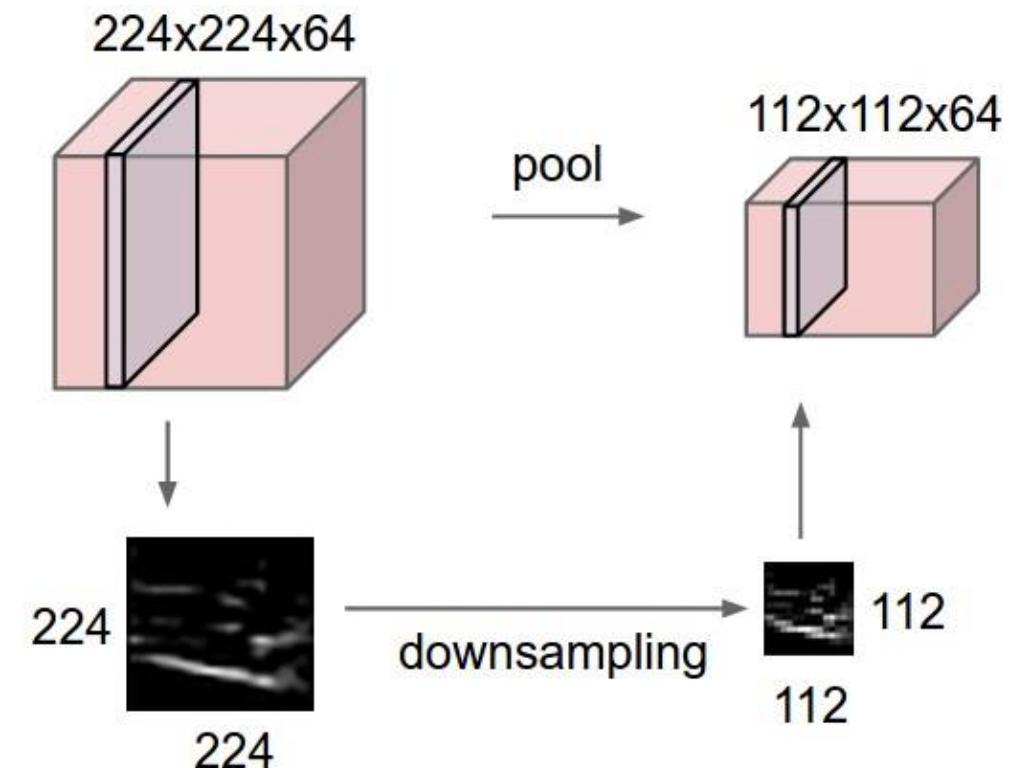
Pooling layer in CNN

Types of Pooling:

- **Max Pooling:**
 - Selects the maximum value from a window (e.g., 2x2), preserving the most important features.
- **Average Pooling:**
 - Computes the average value in the window, emphasizing smoother features.

Benefits:

- **Dimensionality Reduction:**
 - Reduces the number of parameters and computation.
- **Translation Invariance:**
 - Helps the model become less sensitive to slight translations of features.
- **Control overfitting**



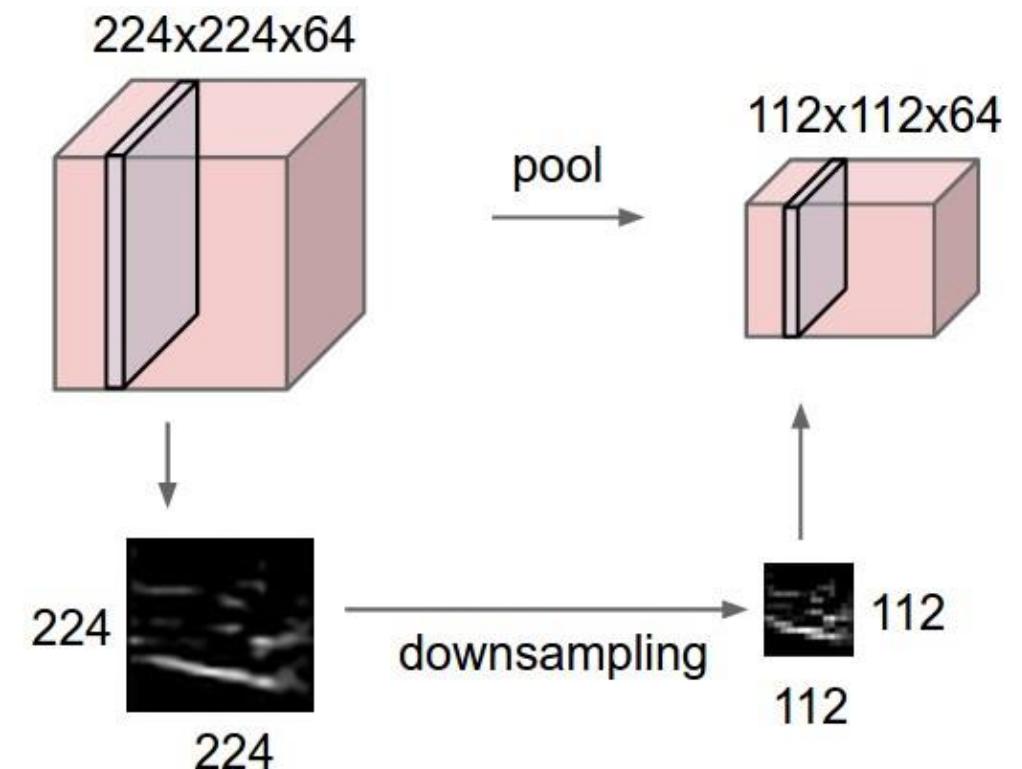
Pooling layer in CNN

Types of Pooling:

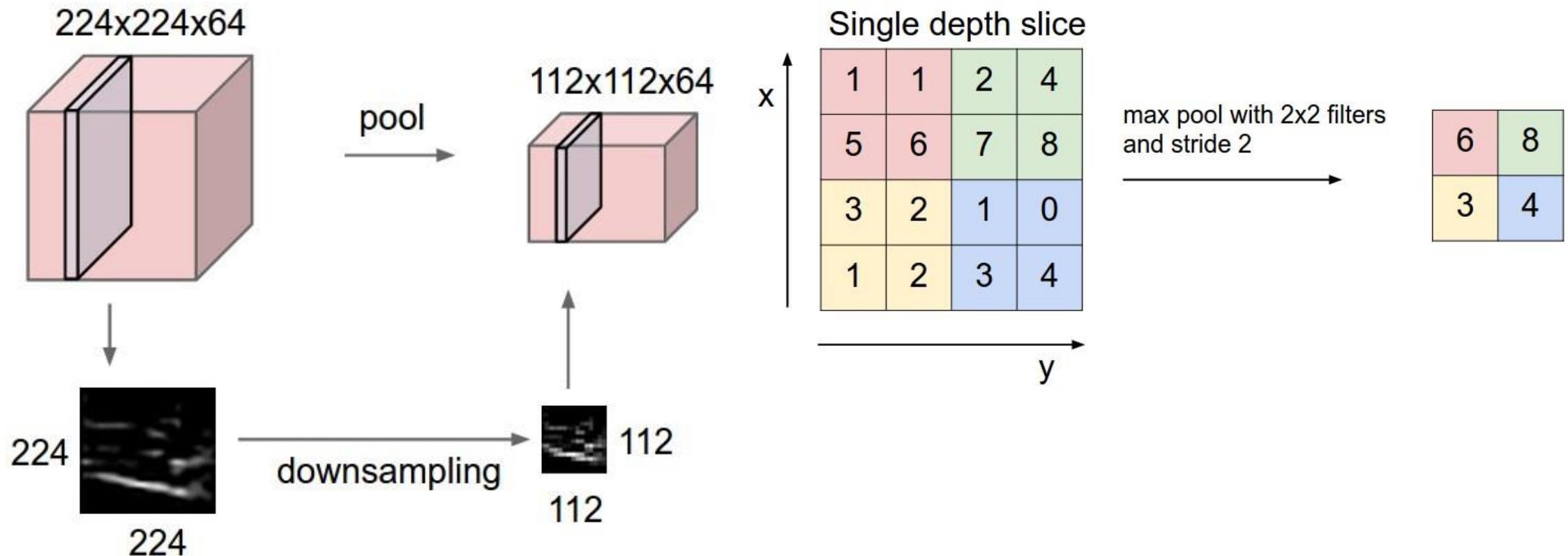
- **Max Pooling:**
 - Selects the maximum value from a window (e.g., 2x2), preserving the most important features.
- **Average Pooling:**
 - Computes the average value in the window, emphasizing smoother features.

Benefits:

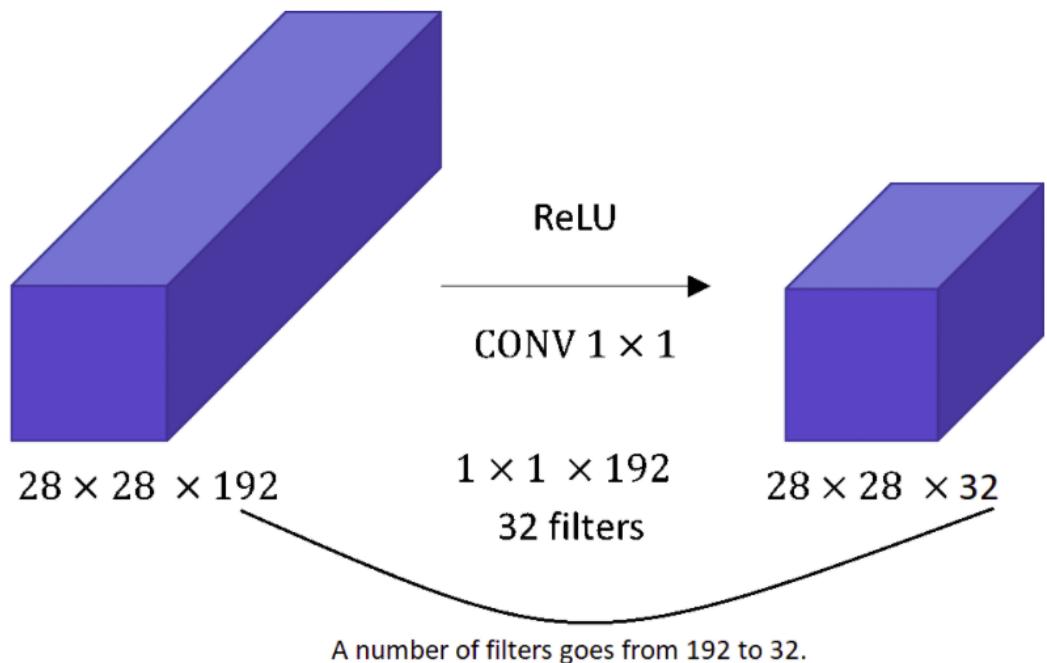
- **Dimensionality Reduction:**
 - Reduces the number of parameters and computation.
- **Translation Invariance:**
 - Helps the model become less sensitive to slight translations of features.
- **Control overfitting**



Pooling layer (Maxpool)



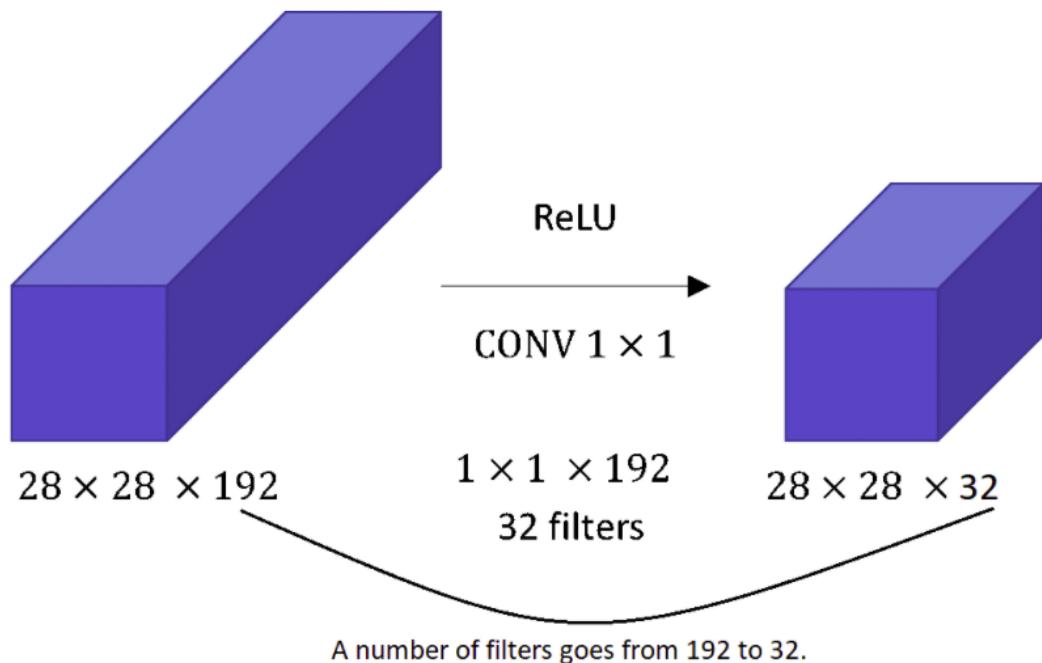
1x1 Convolutions in CNN



Purpose:

- Applies a convolution with a filter size of 1x1, processing individual pixels while leveraging depth channel information.

1x1 Convolutions in CNN



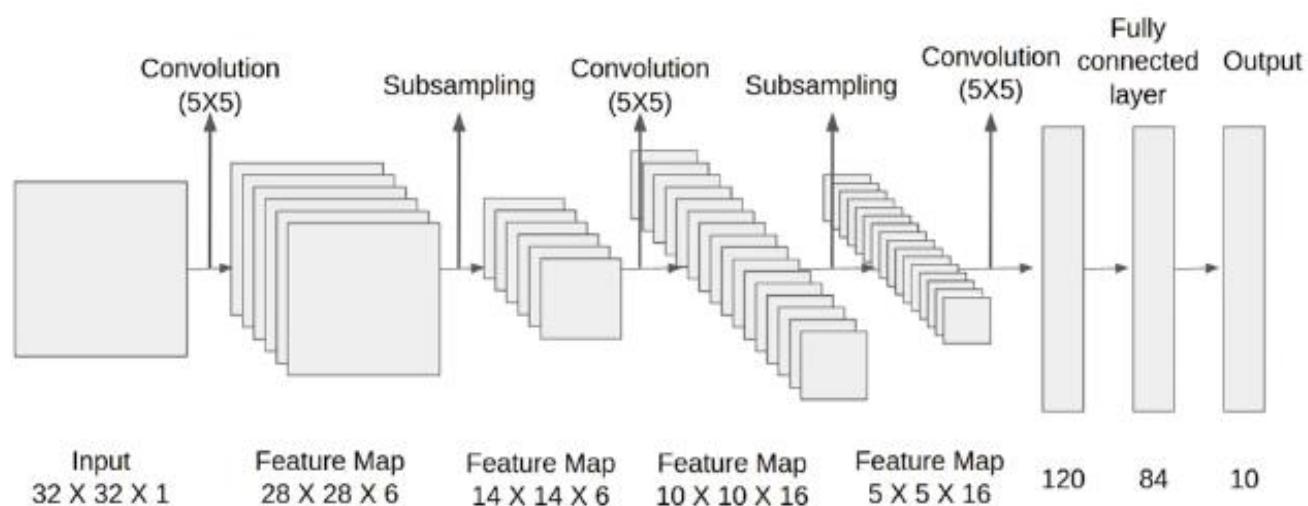
Purpose:

- Applies a convolution with a filter size of 1x1, processing individual pixels while leveraging depth channel information.

Key Benefits:

- **Dimensionality Reduction:**
 - Reduces the number of channels (depth) without affecting spatial dimensions.
- **Channel-wise Interactions:**
 - Allows the model to learn complex relationships between channels, improving feature representation.
- **Computational Efficiency:**
 - Lightweight operation, reducing the number of computations in deeper networks.

LeNet5 Architecture



Overview:

- Early CNN for digit classification (MNIST), proposed by Yann LeCun in the 1990s.

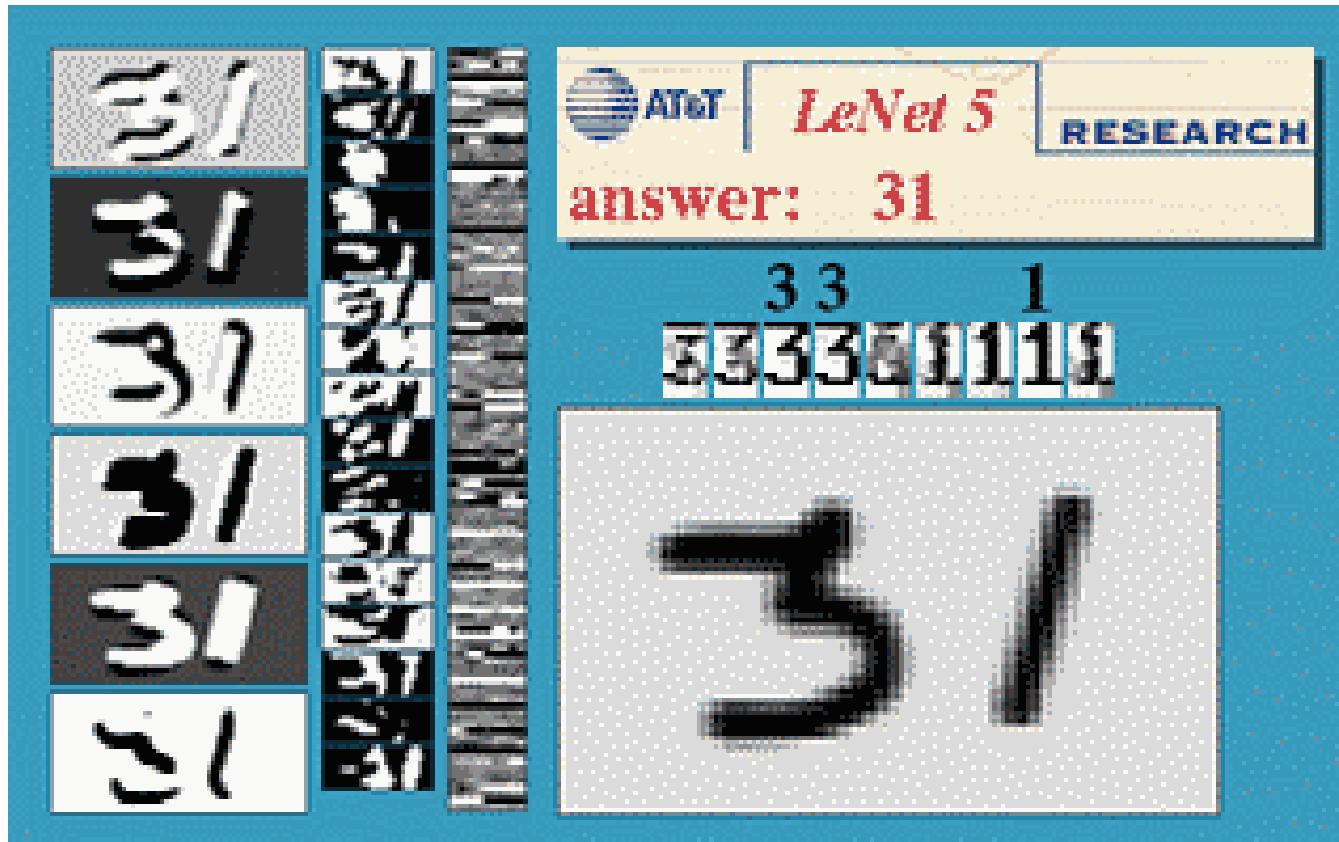
Architecture:

- **Input:** 32x32 grayscale image.
- **Conv Layer 1:** 6 filters (5x5), output 28x28x6.
- **Pool Layer 1:** 2x2 max pooling, output 14x14x6.
- **Conv Layer 2:** 16 filters (5x5), output 10x10x16.
- **Pool Layer 2:** 2x2 max pooling, output 5x5x16.
- **FC Layers:** 120, 84 units.
- **Output Layer:** 10 units for classification.

Key Features:

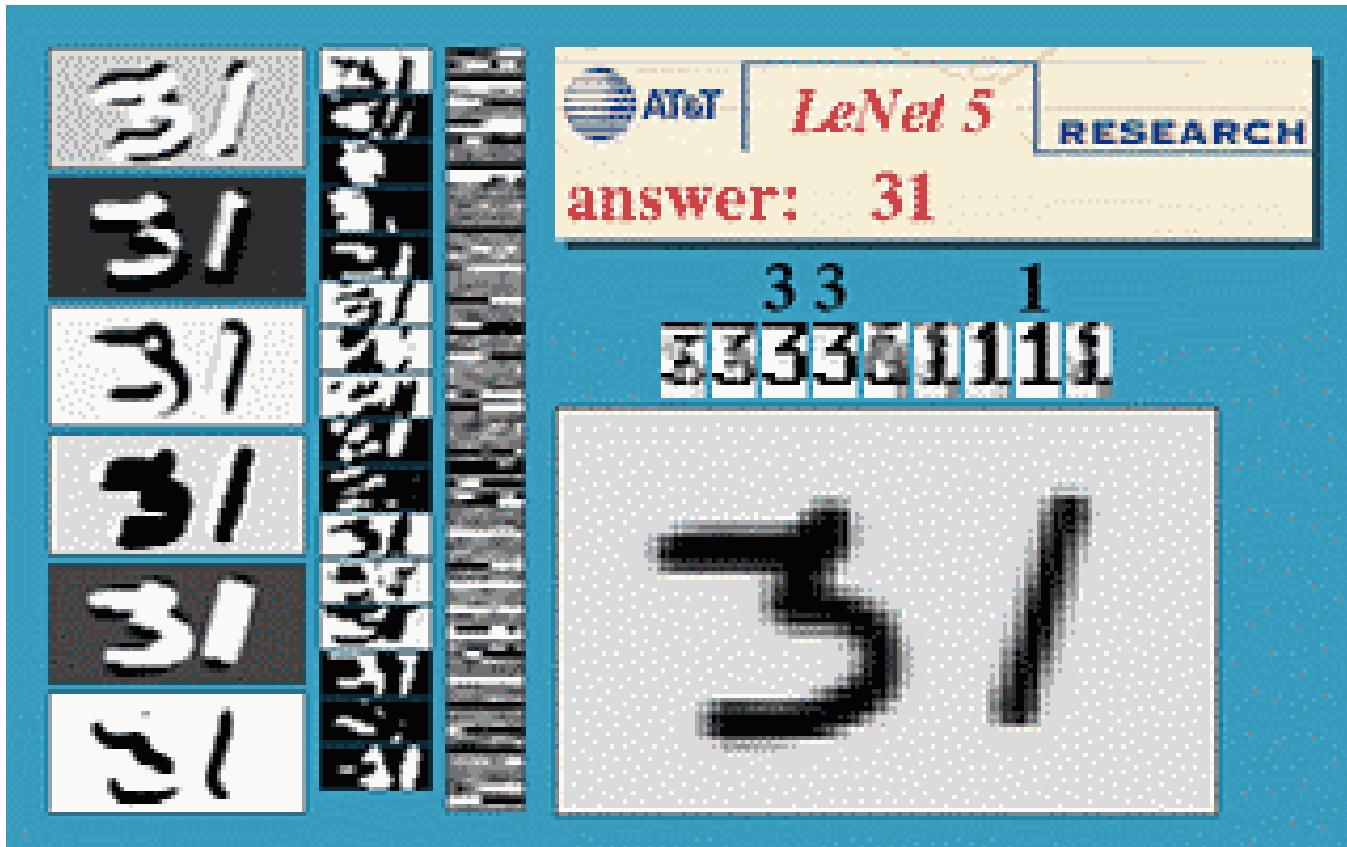
- Introduced CNNs with convolution and pooling layers for feature extraction.

LeNet5



Credit: Yann Lecun

LeNet5



```
class LeNet5(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 20, 5, 1)
        self.fc1 = nn.Linear(4*4*20, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4*4*20)
        x = F.relu(self.fc1)
        x = self.fc2(x)
        return F.logsoftmax(x, dim=1)
```

AlexNet architecture

Overview:

- Deep CNN designed by Alex Krizhevsky, won the 2012 ImageNet competition.

Key Features:

- **ReLU Activation** for faster training.
- **5 Convolutional Layers** and **3 Max Pooling Layers** for feature extraction.
- **3 Fully Connected Layers** for classification.
- **Dropout** for regularization and **GPU acceleration** for efficient training.

