Convolutional neural
networks

Nail Ibrahimli

Ll

LS)

hidden laver

(nn = 15 neurons)

output layver

{1

=]

Limitations
of MLP
network
architecture

{ T

hidden laver

15 neurons)

out put layer

Limitations of MLP
network
architecture

* High Dimensionality & Loss of Spatial Information

* When using MNIST, each 28x28 image is flattened into a 784-
element vector.

« This flattening ignores the 2D structure of images, making it harder
for the network to capture spatial relationships.

* Large Number of Parameters

* Fully connected layers in an MLP lead to an explosion in
parameters as input size increases.

* More parameters increase computational cost and risk of
overfitting.

« Inefficient for Local Feature Extraction

« MLPs do not inherently learn localized features (e.g., edges,
textures).

» They struggle to capture patterns that are position invariant, unlike
convolutional layers.

« Scalability Issues

* As the complexity or resolution of images grows, MLPs become
less practical compared to convolutional architectures.

Properties of Images
Image Locality

Properties of Images:
Image Locality

« Ordered Pixels
Pixels are arranged in a specific order, forming a

grid.

Properties of Images:
Image Locality

* Ordered Pixels:
Pixels are arranged in a specific order, forming a

grid.

« Spatial Correlation:

Neighboring pixels tend to be related, capturing
local features.

- Exploitable Structure:
This order allows models like CNNs to leverage
local patterns effectively.

Properties of Images:
Image Stationarity

Properties of Images:
Image Stationarity

« Consistent Statistical Properties:
The distribution of pixel values remains
relatively consistent across the image.

 Repeated Patterns:
Similar features (e.g., edges, textures)
can occur anywhere in the image.

* Enables Weight Sharing:
Supports convolution operations where
the same filters can detect patterns
regardless of their location.

Properties of Images: Image Compositionality

000000000800 00000000QOE%

0000800000000 0000000 0 FE 9 wwo..,. 5&, ,,w, ,‘,

0008000000000 0000N0BO0LENTER. " ° o= ,.-. ,, =2

69000000000000000800e9 ?’ao % “"::;u P

(0000000 (00000000006 \Ev T UL >

(1 000000 000806000000 8|<k
0000000@0000000C00000).

Q«ﬁ% 00000 0000000005]_%~ s 39"

O @QO@OQO@@@@O@G“Q@OOO o ~ A58 &
0*(’f0@90@9@@00@0000®@ S p)& wgﬁ
0 0C000000000000°0CQO00| e S e > . z;g
“«‘OQ@O@OO@OO@Q@@&G@O@ i), 5 = - Sc3
WO 0QC O Q@O OCAO O @@G» f‘wu & “;¢¢m§§
(4 --f<Q)QQ¥§;Q>OQ>QQ*9°QO)Q“/ VO L I EIERSG) L 2 Comg, =t Ses v
()1 -{_~@°Q”"~* 0000080008 C \\Q\ — (‘,\v‘ > & /s ;,,-':‘\\ 2 :¥q<:7.
OCO00% @00 S000000 /GO0 O [T s soprpal S Of o e Sory:
00 00 0OD000080 OO OZdses e SHELIC Lo
(ﬁﬁ»({a-f_u; R COBQ000= OO0 ((- SR ~ e

Properties of Images:
Image Compositionality

00000000000000800C
.0009300@0 Q@(J/QQGQ ."’

» Hierarchical Structure: 000906 aémoao@
Images are built from simple elements (e.g.,
edges, corners) that combine to form more

complex structures.

,'ﬁgm»e%oo@og
QC000000 €O

O

(o]
1000
¢
QO
o
_.,&
-S:,,O
M o
Q0
QO

« Layered Feature Composition:
Basic patterns merge into higher-level features,
enabling robust recognition of complex objects.

- Efficient Representation:

Leveraging compositionality helps models learn
and generalize from simpler, reusable
components.

10

Properties of
Images

Locality:
Pixels are arranged in a structured grid; local
groups contain correlated information.

Stationarity:

Statistical properties are consistent across the
image; similar patterns (e.g., edges) appear
everywhere, allowing effective weight sharing.

Compositionality:

Simple elements combine hierarchically to form
complex features, enabling efficient and robust
representations.

1

Introduction to 1-D Convolution

12

Introduction to 1-D Convolution

2 || 2 1 2 1 -2 1 1 1 0

0 1 2 || -1 1 3l 0 0 1 2 || -1 1 3 || O

Sliding Window Operation:
A filter (kernel) slides along the input sequence, computing a weighted sum at each position.

Local Feature Extraction:
Captures local patterns from adjacent elements in the sequence.

Translation Equivariance:
The same filter is applied across the entire input, ensuring features are detected regardless of their position.

Efficiency:
Reduces parameters by sharing weights, making it computationally efficient.

13

Image Convolution
(2D Convolution)

 Sliding Window Operation:
A small filter (kernel) moves across the image,
computing weighted sums of pixel values.

* Local Feature Detection:
Captures edges, textures, and patterns by
emphasizing spatial relationships.

« Weight Sharing & Efficiency:
The same filter is applied across the image, reducing
parameters and improving generalization.

i

0

gl iz e s> @k lE s s e X @l B s B S

[oaee]

—

,0
0
1
2
2
1
0

& e | | (e | B~
O N = O N = oN o N = N = == okF oNN~ON

& Iha] i] s] B~ |

0

et

(-

0

2
2
2
2
2
0

O | Y AT |t ek (ST EHCD

S = O = N N O

Input Volume (+pad 1) (7x7x3)
t,1,0]

Filter WO (3x3x3)

Filter W1 (3x3x3)

Output Volume (3x3x2)
o[:,:,0]

| toggle movement

wo[:,:,0] Wiz 107
0 [fo o SN 1 [fo o
2 1 o 1| 7 1 1]fo Jfo
12]o o3l il [0 0 [[o |1
B 20 5O WAL, i3] wil:,. i, 2]
iif (o7 i@ LT
1 0 0 0 fJ-1)0
0 0 0 v bl B

wi[:—72]

5 o 1o 0 1 0 |fo
W 1 U -1
I’I/IF 0 1 |0 J|O
S fas b0 (1x1x Bias b1 (1x1x1)
ol 2N [D bo[:, /0] [:,:,0]
19 [O 1
0 0
0 [fo |fo
2 ffo fte”
01 [0
T (Ol D
1l 23 D
ol 23 i
0 0 0

14

2D Convolution: Edge
Detection & Smoothing

Input image Convolution Feature map
Kemel
. - -1 -1 -1
« Edge Detection (Laplacian Kernel): 1 8 —1
« Enhances edges by highlighting regions o T P |
with rapid intensity changes.
« Captures important structural details in _
the image. Inputimage Kemel Feature map
1 1 1
« Smoothing (Gaussian Kernel): 16 8 16
» Blurs the image by averaging % % é
neighboring pixels. X, d. .
16 8 16

* Reduces noise while preserving general
structure.

15

Sigmoid activation

1.0

0.8

0.6

0.4

0.2 -

step function

0.0

1.0+

0.8+

0.6 —

0.4 —

0.2

0.0

sigmoid function

Sigmoid activation

step function sigmoid function
1.0 - 1.0 -
0.8 0.8 -
0.6 :ll: 0.6
0.4 - 0.4 -
0.2 - 0.7 -
0.0 T T T T T I i i I) 0.0 ——F— T T T T T T
4 3 2 1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3
Z L

Vanishing Gradient Problem:

*Gradients become very small for extreme values, slowing down learning in deep networks.
Non-Zero Mean Output:

«Outputs range from (0,1), causing imbalanced weight updates and inefficient learning.

Activation Functions in
Neural Networks

Sigmoid:

« Outputs in (0,1), prone to vanishing gradients and slow learning.

Tanh:

« Outputs in (-1,1), zero-centered but still suffers from vanishing
gradients.

ReLU (Rectified Linear Unit):

« Outputs max(0, x), mitigates vanishing gradients but can have
dead neurons (dying ReLU problem).

Leaky RelLU & Variants:
» Allows small negative values to prevent dead neurons.

Softmax (for Classification):

« Converts logits into probabilities, used in the final layer for multi-

class classification.

Sigmoid
1.01

RelLU
101

I:, z>0

ReLU(z)=
¢ () l(),oﬁmm-‘i\'e 5!

z,z20
LeakyReLU(z)=

az,otherwise

18

Activations

PyTorch activation functions

Sigmoid Tanh Step Function

W/Pff??“

¥ e Y=t () 8 % on
Softsign
o
N 0, %<0 X ald-1) M0
A 9 Tk
ol ginc Leaky ReLU

%4/

Y 1" s“(‘) 9= = max(01x x)

Coftplus
/
A
PR ’
% = ln (1"‘")

Log of Sigmoid

%gt“(‘l:‘d‘)

Mish

79 = % (+oanin (sOPEDILS ())

19

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

Convolution motivation

weighted thresholded
detectors sums outputs
Linear
classifier
input

clEm 7

Slide credit: Yann Lecun

Convolution motivation

weighted
detectors sums

input
image

D

Slide credit: Yann Lecun

thresholded
outputs

input
image

detectors

weighted
sums

thresholded
outputs

Convolutional features

Low-Levell |Mid-Level Trainable

Feature Feature Classifier

Top image credit: Yann Lecun

Bottom image credit: Visualizing and Understanding Convolutional Networks (Zeiler & Fergus, 2013) 22

Common CNN
Architecture

Low-LeveII__ Mid-Level High- Trainable
— —_—
Feature Feature Level Classifier

Convolutional Layers (Conv + RelLU):

» Extracts local patterns like edges and textures.
» Uses RelU activation to introduce non-linearity.

Pooling Layers (Max/Average Pooling):

* Reduces spatial dimensions while retaining important features.

. . . . RELU RELU RELU RELU RELU RELU
* Increases translation invariance and reduces computation.

CONV CONVl CONVlCONVl CONVlCONVl

'

Stacking Conv & Pooling Layers:

« Multiple layers capture hierarchical features (simple to complex). ' 7 =

Fully Connected (FC) Layers: =

« Flattened feature maps are passed through dense layers for
classification.

airplane

ship

=

3 horse
= |
=

Output Layer:

'

=

=

- truck
- ;

=
i
afl
=
=
=
=
=

« Softmax (multi-class) or Sigmoid (binary) activation for final
predictions.

Convolutional kernels

GINEESDONIITN
one filter =>
one activation map

example 5x5 filters
(32 total)

24

Convolutional low-level features

Image credit: Stanford CS231n

25

Convolution operation

N=7,F=3,S=1

Convolution operation

N=7,F=3,5=2

Convolution operation

N=7,F=3,5=2

Output = (N-F)/S+1

28

Convolution operation "

7, F=3, S=1, P=1

Convolution operation N=7 F=3, S=2, P

1

Output = (N-F+2P)/S+1

Number of parameters

32

32

CONYV,
RelLU
e.g.6
5x5x3
filters

28

28

CONV,

RelLU
e.g. 10
5x5x6
filters

10

24

24

CONV,
RelLU

31

Pooling layer in CNN

Types of Pooling: 224x224x64
 Max Pooling:
« Selects the maximum value from a window (e.g., 2x2), p00|
preserving the most important features.
* Average Pooling:

Computes the average value in the window, emphasizing
smoother features.

112x112x64

224

224

|

i 112
downsampling

112

32

Pooling layer in CNN

Types of Pooling: 224x224x64
 Max Pooling:

« Selects the maximum value from a window (e.g., 2x2),
preserving the most important features.

112x112x64

pool

—

» Average Pooling:

« Computes the average value in the window, emphasizing
smoother features.

Benefits:
« Dimensionality Reduction:
* Reduces the number of parameters and computation.

|

> o 112
224 ’ downsampling

* Helps the model become less sensitive to slight translations —-R
of features. 112

- Control overfitting 224

 Translation Invariance:

33

Pooling layer in CNN

Types of Pooling: 224x224x64
 Max Pooling:

« Selects the maximum value from a window (e.g., 2x2),
preserving the most important features.

112x112x64

pool

—

» Average Pooling:

« Computes the average value in the window, emphasizing
smoother features.

Benefits:
« Dimensionality Reduction:
* Reduces the number of parameters and computation.

|

> o 112
224 ’ downsampling

* Helps the model become less sensitive to slight translations —-R
of features. 112

- Control overfitting 224

 Translation Invariance:

34

Pooling layer (Maxpool)

224x224x64 Single depth slice
12x112x64 | |11 |2 |4
pool max pool with 2x2 filters
—_— 2 NeN 7 | 8 and stride 2
3 | 2 IEND]
1| 2 S

| |

> o 112
224 downsampling

112
224

1x1 Convolutions in CNN

RelU

>
CONV1Xx1

28 X 28 X 192 1x1 X192 78428 x32

32 filters

A number of filters goes from 192 to 32.

Purpose:

» Applies a convolution with a filter size of 1x1, processing
individual pixels while leveraging depth channel information.

36

1x1 Convolutions in CNN

Purpose:

» Applies a convolution with a filter size of 1x1, processing
individual pixels while leveraging depth channel information.

RelU Key Benefits:
> « Dimensionality Reduction:
CONV1x1 * Reduces the number of channels (depth) without

affecting spatial dimensions.

1x1 %192 Channel-wise Interactions:
X X
28 X 28 x 192 28 X 28 x 32 » Allows the model to learn complex relationships between

32 filters channels, improving feature representation.
Computational Efficiency:

i from 192 to 32. : , . .
A number of filters goes from © » Lightweight operation, reducing the number of
computations in deeper networks.

37

Fully

Convolution SbSAT Convolution e Convolution connected Output

[N N

LeNet5 Architecture i ' =

Input Feature Map Feature Map Feature Map Feature Map

32X32X1 28X28X6 14X14X6 10X10Xx16 S5X5x16 20 8 10

Overview:

« Early CNN for digit classification (MNIST), proposed by Yann LeCun in the 1990s.
Architecture:

« Input: 32x32 grayscale image.

« Conv Layer 1: 6 filters (5x5), output 28x28x6.

 Pool Layer 1: 2x2 max pooling, output 14x14x6.

« Conv Layer 2: 16 filters (5x5), output 10x10x16.

 Pool Layer 2: 2x2 max pooling, output 5x5x16.

« FC Layers: 120, 84 units.

« Output Layer: 10 units for classification.
Key Features:

« Introduced CNNs with convolution and pooling layers for feature extraction.

38

A

(R AT s

%M‘ LeNet 5 | peagancs

answer: 31

J gl'*‘s_l.

N
.

5535041118

g‘_::r

i
WA
-

14T
b |

Credit: Yann Lecun

39

LeNet5

class LeNet5(nn.Module):
s 8

- _mTE ATt = def _iﬂit_(SElf):
= 'I::"'E"‘. f‘"r . RESEARCH Super() _1nlt_()

QISWer: ';i self.convl = nn.Conv2d(1, 20, 5, 1)

self.conv2 = nn.Conv2d(20, 20, 5, 1)
self.fcl nn.Linear(4*4*20, 500)

agrat A self.fc2 nn.Linear(500, 10)
BER R

- 1 0
forward(self, x):

.relu(self.convl(x
.max_pool2d(x, 2
.relu(self.conv2(Xx
.max_pool2d(x, 2
view(=-1, 4*4*%20
.relu(self.fcl)

self.fc2(x)

return F.logsoftmax(x, dim=1)

40

AlexNet
architecture

Overview:

« Deep CNN designed by Alex Krizhevsky, won
the 2012 ImageNet competition.

Key Features:
* RelLU Activation for faster training.

« 5 Convolutional Layers and 3 Max Pooling
Layers for feature extraction.

« 3 Fully Connected Layers for classification.

« Dropout for regularization and GPU
acceleration for efficient training.

ImageNet 2012

18.2% error in Imagenet

4,096

4,096

$507

41

https://paperswithcode.com/sota/image-classification-on-imagenet

	Slide 1: Convolutional neural networks
	Slide 2: Limitations of MLP network architecture
	Slide 3: Limitations of MLP network architecture
	Slide 4: Properties of Images: Image Locality
	Slide 5: Properties of Images: Image Locality
	Slide 6: Properties of Images: Image Locality
	Slide 7: Properties of Images: Image Stationarity
	Slide 8: Properties of Images: Image Stationarity
	Slide 9: Properties of Images: Image Compositionality
	Slide 10: Properties of Images: Image Compositionality
	Slide 11: Properties of Images
	Slide 12: Introduction to 1-D Convolution
	Slide 13: Introduction to 1-D Convolution
	Slide 14: Image Convolution (2D Convolution)
	Slide 15: 2D Convolution: Edge Detection & Smoothing
	Slide 16: Sigmoid activation
	Slide 17: Sigmoid activation
	Slide 18: Activation Functions in Neural Networks
	Slide 19: Activations
	Slide 20: Convolution motivation
	Slide 21: Convolution motivation
	Slide 22: Convolutional features
	Slide 23: Common CNN Architecture
	Slide 24: Convolutional kernels
	Slide 25: Convolutional low-level features
	Slide 26: Convolution operation
	Slide 27: Convolution operation
	Slide 28: Convolution operation
	Slide 29: Convolution operation
	Slide 30: Convolution operation
	Slide 31: Number of parameters
	Slide 32: Pooling layer in CNN
	Slide 33: Pooling layer in CNN
	Slide 34: Pooling layer in CNN
	Slide 35: Pooling layer (Maxpool)
	Slide 36: 1x1 Convolutions in CNN
	Slide 37: 1x1 Convolutions in CNN
	Slide 38: LeNet5 Architecture
	Slide 39: LeNet5
	Slide 40: LeNet5
	Slide 41: AlexNet architecture

