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Limitations of MLP 
network 
architecture
• High Dimensionality & Loss of Spatial Information

• When using MNIST, each 28×28 image is flattened into a 784-

element vector.

• This flattening ignores the 2D structure of images, making it harder 

for the network to capture spatial relationships.

• Large Number of Parameters

• Fully connected layers in an MLP lead to an explosion in 

parameters as input size increases.

• More parameters increase computational cost and risk of 

overfitting.

• Inefficient for Local Feature Extraction

• MLPs do not inherently learn localized features (e.g., edges, 

textures).

• They struggle to capture patterns that are position invariant, unlike 

convolutional layers.

• Scalability Issues

• As the complexity or resolution of images grows, MLPs become 

less practical compared to convolutional architectures.
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Properties of Images: 
Image Locality
• Ordered Pixels:

Pixels are arranged in a specific order, forming a 

grid.
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Properties of Images: 
Image Locality
• Ordered Pixels:

Pixels are arranged in a specific order, forming a 

grid.

• Spatial Correlation:

Neighboring pixels tend to be related, capturing 

local features.

• Exploitable Structure:

This order allows models like CNNs to leverage 

local patterns effectively.
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Properties of Images: 
Image Stationarity

• Consistent Statistical Properties:

The distribution of pixel values remains 

relatively consistent across the image.

• Repeated Patterns:

Similar features (e.g., edges, textures) 

can occur anywhere in the image.

• Enables Weight Sharing:

Supports convolution operations where 

the same filters can detect patterns 

regardless of their location.
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Properties of Images: 
Image  Compositionality

• Hierarchical Structure:

Images are built from simple elements (e.g., 

edges, corners) that combine to form more 

complex structures.

• Layered Feature Composition:

Basic patterns merge into higher-level features, 

enabling robust recognition of complex objects.

• Efficient Representation:

Leveraging compositionality helps models learn 

and generalize from simpler, reusable 

components.
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Properties of 
Images
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Locality:
Pixels are arranged in a structured grid; local 
groups contain correlated information.

Stationarity:
Statistical properties are consistent across the 
image; similar patterns (e.g., edges) appear 
everywhere, allowing effective weight sharing.

Compositionality:
Simple elements combine hierarchically to form 
complex features, enabling efficient and robust 
representations.
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Introduction to 1-D Convolution
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Sliding Window Operation:
A filter (kernel) slides along the input sequence, computing a weighted sum at each position.

Local Feature Extraction:
Captures local patterns from adjacent elements in the sequence.

Translation Equivariance:
The same filter is applied across the entire input, ensuring features are detected regardless of their position.

Efficiency:
Reduces parameters by sharing weights, making it computationally efficient.



Image Convolution 
(2D Convolution)
• Sliding Window Operation:

A small filter (kernel) moves across the image, 

computing weighted sums of pixel values.

• Local Feature Detection:

Captures edges, textures, and patterns by 

emphasizing spatial relationships.

• Weight Sharing & Efficiency:

The same filter is applied across the image, reducing 

parameters and improving generalization.
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2D Convolution: Edge 
Detection & Smoothing

• Edge Detection (Laplacian Kernel):

• Enhances edges by highlighting regions 

with rapid intensity changes.

• Captures important structural details in 

the image.

• Smoothing (Gaussian Kernel):

• Blurs the image by averaging 

neighboring pixels.

• Reduces noise while preserving general 

structure.
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Sigmoid activation



Sigmoid activation

Vanishing Gradient Problem:
•Gradients become very small for extreme values, slowing down learning in deep networks.
Non-Zero Mean Output:
•Outputs range from (0,1), causing imbalanced weight updates and inefficient learning.



Activation Functions in 
Neural Networks
• Sigmoid:

• Outputs in (0,1), prone to vanishing gradients and slow learning.

• Tanh:

• Outputs in (-1,1), zero-centered but still suffers from vanishing 

gradients.

• ReLU (Rectified Linear Unit):

• Outputs max(0, x), mitigates vanishing gradients but can have 

dead neurons (dying ReLU problem).

• Leaky ReLU & Variants:

• Allows small negative values to prevent dead neurons.

• Softmax (for Classification):

• Converts logits into probabilities, used in the final layer for multi-

class classification.
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Activations

PyTorch activation functions
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https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity


Convolution motivation
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Convolution motivation
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Convolutional features
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Top image credit: Yann Lecun
Bottom image credit: Visualizing and Understanding Convolutional Networks (Zeiler & Fergus, 2013)



Common CNN 
Architecture
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Convolutional Layers (Conv + ReLU):

• Extracts local patterns like edges and textures.

• Uses ReLU activation to introduce non-linearity.

Pooling Layers (Max/Average Pooling):

• Reduces spatial dimensions while retaining important features.

• Increases translation invariance and reduces computation.

Stacking Conv & Pooling Layers:

• Multiple layers capture hierarchical features (simple to complex).

Fully Connected (FC) Layers:

• Flattened feature maps are passed through dense layers for 
classification.

Output Layer:

• Softmax (multi-class) or Sigmoid (binary) activation for final 
predictions.



Convolutional kernels
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Convolutional low-level features
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Image credit: Stanford CS231n



Convolution operation
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N=7,F=3,S=1



Convolution operation
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N=7,F=3,S=2



Convolution operation
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N=7,F=3,S=2

Output = (N-F)/S+1



Convolution operation
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N=7, F=3, S=1, P=1



Convolution operation
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N=7 F=3, S=2, P=1

Output = (N-F+2P)/S+1



Number of parameters
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Pooling layer in CNN
Types of Pooling:

• Max Pooling:

• Selects the maximum value from a window (e.g., 2x2), 

preserving the most important features.

• Average Pooling:

• Computes the average value in the window, emphasizing 

smoother features.
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Pooling layer in CNN
Types of Pooling:

• Max Pooling:

• Selects the maximum value from a window (e.g., 2x2), 
preserving the most important features.

• Average Pooling:

• Computes the average value in the window, emphasizing 
smoother features.

Benefits:

• Dimensionality Reduction:

• Reduces the number of parameters and computation.

• Translation Invariance:

• Helps the model become less sensitive to slight translations 
of features.

• Control overfitting
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Pooling layer in CNN
Types of Pooling:

• Max Pooling:

• Selects the maximum value from a window (e.g., 2x2), 
preserving the most important features.

• Average Pooling:

• Computes the average value in the window, emphasizing 
smoother features.

Benefits:

• Dimensionality Reduction:

• Reduces the number of parameters and computation.

• Translation Invariance:

• Helps the model become less sensitive to slight translations 
of features.

• Control overfitting
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Pooling layer (Maxpool)
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1x1 Convolutions in CNN

Purpose:

• Applies a convolution with a filter size of 1x1, processing 

individual pixels while leveraging depth channel information.
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1x1 Convolutions in CNN

Purpose:

• Applies a convolution with a filter size of 1x1, processing 

individual pixels while leveraging depth channel information.

Key Benefits:

• Dimensionality Reduction:

• Reduces the number of channels (depth) without 

affecting spatial dimensions.

• Channel-wise Interactions:

• Allows the model to learn complex relationships between 

channels, improving feature representation.

• Computational Efficiency:

• Lightweight operation, reducing the number of 

computations in deeper networks.
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LeNet5 Architecture
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Overview:
• Early CNN for digit classification (MNIST), proposed by Yann LeCun in the 1990s.

Architecture:
• Input: 32x32 grayscale image.
• Conv Layer 1: 6 filters (5x5), output 28x28x6.
• Pool Layer 1: 2x2 max pooling, output 14x14x6.
• Conv Layer 2: 16 filters (5x5), output 10x10x16.
• Pool Layer 2: 2x2 max pooling, output 5x5x16.
• FC Layers: 120, 84 units.
• Output Layer: 10 units for classification.

Key Features:
• Introduced CNNs with convolution and pooling layers for feature extraction.



LeNet5
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Credit: Yann Lecun



LeNet5

40



AlexNet 
architecture
Overview:

• Deep CNN designed by Alex Krizhevsky, won 

the 2012 ImageNet competition.

Key Features:

• ReLU Activation for faster training.

• 5 Convolutional Layers and 3 Max Pooling 

Layers for feature extraction.

• 3 Fully Connected Layers for classification.

• Dropout for regularization and GPU 

acceleration for efficient training.

41ImageNet 2012

https://paperswithcode.com/sota/image-classification-on-imagenet
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