
Introduction to
Neural Networks
Nail Ibrahimli

Perceptron - a.k.a. single neuron

A perceptron takes multiple inputs (e.g., 𝑥₁, 𝑥₂, 𝑥₃),

computes a weighted sum, and produces a binary output:

2

𝑤1

𝑤2

𝑤3

Perceptron - a.k.a. single neuron

A perceptron takes multiple inputs (e.g., x₁, x₂, x₃),

computes a weighted sum, and produces a binary output:

• Output = 1 if the sum exceeds a threshold

• Output = 0 otherwise

3

𝑜𝑢𝑡𝑝𝑢𝑡 =

0 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

1 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑤1

𝑤2

𝑤3

Summary:
The perceptron combines inputs using weights, compares the result to a threshold,
and outputs either 0 or 1, a minimal building block of the neural networks.

Perceptron - a.k.a. single neuron

Output: Go to Gouda for the cheese festival on Saturday

• Inputs:

• 𝒙₁: Is the weather good?

• 𝒙₂: Am I going with a friend?

• 𝒙₃: Is the venue easy to commute?

4

𝑤1

𝑤2

𝑤3

Perceptron - a.k.a. single neuron

Output: Go to Gouda for the cheese festival on Saturday

• Inputs:

• 𝒙₁: Is the weather good?

• 𝒙₂: Am I going with a friend?

• 𝒙₃: Is the venue easy to commute?

• Assumptions & Weights:

• You dislike bad weather (𝑥₁)

• You would consider going alone (𝑥₂)

• You don’t mind a longer commute on weekends (𝑥₃)

5

𝑤1

𝑤2

𝑤3

Perceptron - a.k.a. single neuron

Output: Go to Gouda for the cheese festival on Saturday

• Inputs:

• 𝒙₁: Is the weather good?

• 𝒙₂: Am I going with a friend?

• 𝒙₃: Is the venue easy to commute?

• Assumptions & Weights:

• You dislike bad weather (𝑥₁), so 𝒘₁ = 𝟔

• You would consider going alone (𝑥₂), so 𝒘₂ = 𝟐

• You don’t mind a longer commute on weekends (𝑥₃), so 𝒘𝟑 = 𝟐

6

𝑤1

𝑤2

𝑤3

Perceptron - a.k.a. single neuron

Output: Go to Gouda for the cheese festival on Saturday

• Inputs:

• 𝒙₁: Is the weather good?

• 𝒙₂: Am I going with a friend?

• 𝒙₃: Is the venue easy to commute?

• Assumptions & Weights:

• You dislike bad weather (𝑥₁), so 𝒘₁ = 𝟔

• You would consider going alone (𝑥₂), so 𝒘₂ = 𝟐

• You don’t mind a longer commute on weekends (𝑥₃), so 𝒘𝟑 = 𝟐

7

𝑤1

𝑤2

𝑤3

• Questions:

• What would happen if threshold is 5? 𝑜𝑢𝑡𝑝𝑢𝑡 =

0 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

1 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Perceptron - a.k.a. single neuron

Output: Go to Gouda for the cheese festival on Saturday

• Inputs:

• 𝒙₁: Is the weather good?

• 𝒙₂: Am I going with a friend?

• 𝒙₃: Is the venue easy to commute?

• Assumptions & Weights:

• You dislike bad weather (𝑥₁), so 𝒘₁ = 𝟔

• You would consider going alone (𝑥₂), so 𝒘₂ = 𝟐

• You don’t mind a longer commute on weekends (𝑥₃), so 𝒘𝟑 = 𝟐

8

𝑤1

𝑤2

𝑤3

• Questions:

• What would happen if threshold is 5?
• What would happen if threshold is 3?

𝑜𝑢𝑡𝑝𝑢𝑡 =

0 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

1 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Perceptron - a.k.a. single neuron

• The weighted sum can be expressed as an

inner product of two vectors:

෍
𝑗
𝑤𝑗𝑥𝑗 = 𝑤 ⋅ 𝑥

• By setting b = -threshold, the formula becomes:

This reformulation simplifies the computation in neural networks.

9

𝑤1

𝑤2

𝑤3

𝑜𝑢𝑡𝑝𝑢𝑡 =

0 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

1 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

⟹ 𝑜𝑢𝑡𝑝𝑢𝑡 =

0 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 + 𝑏 ≤ 0

1 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 + 𝑏 > 0

Layers of Perceptrons

• First Layer:

• Processes raw inputs by making simple decisions (e.g., three basic decisions)

• Each perceptron weighs specific features differently from the input data

• Second Layer:

• Takes the outputs from the first layer as its inputs

• Combines these basic decisions to form four more complex decisions

• Integrates multiple first-layer insights to capture higher-level features

• Overall Impact:

• Stacking layers creates a hierarchical structure

• Early layers focus on simple, local features, while deeper layers synthesize these into

sophisticated, global patterns

10

Layers of Perceptrons

• First Layer:

• Processes raw inputs by making simple decisions (e.g., three basic decisions)

• Each perceptron weighs specific features differently from the input data

• Second Layer:

• Takes the outputs from the first layer as its inputs

• Combines these basic decisions to form four more complex decisions

• Integrates multiple first-layer insights to capture higher-level features

• Overall Impact:

• Stacking layers creates a hierarchical structure

• Early layers focus on simple, local features, while deeper layers synthesize these into

sophisticated, global patterns

But how we set the weights (and biases)?

11

Neural Networks

Learning Process:

• We observe how small changes in weights affect the network's output.

• Starting from random weights, we iteratively adjust them to move the output closer to the expected value.

Supervised Updates:

• The weight adjustments are supervised, ensuring the network learns the desired patterns.

Validation:

• The learning process is monitored using separate data not involved in the weight optimization.

• This validation step helps control overfitting and ensures robust generalization.

12

Problem with Perceptron:

13

𝑜𝑢𝑡𝑝𝑢𝑡 =

0 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 + 𝑏 ≤ 0

1 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 + 𝑏 > 0

Problem with Perceptron:

14

𝑜𝑢𝑡𝑝𝑢𝑡 =

0 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 + 𝑏 ≤ 0

1 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 + 𝑏 > 0

Problem with Perceptron:

15

𝑜𝑢𝑡𝑝𝑢𝑡 =

0 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 + 𝑏 ≤ 0

1 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 + 𝑏 > 0

Sigmoid Neuron

A perceptron sigmoid neuron takes multiple inputs
(e.g., 𝑥₁, 𝑥₂, 𝑥₃),

computes a weighted sum, and produces a binary single output.

Input & Operation:
• Takes multiple inputs (e.g., 𝑥₁, 𝑥₂, 𝑥₃)
• Computes a weighted sum of the inputs plus a bias

Activation Function:
• Uses the sigmoid function:

 𝜎 𝑧 = 1/(1 + 𝑒−(𝑤⋅𝑥+𝑏))
• Produces a continuous output between 0 and 1

Key Benefits:
• Allows for smooth transitions in output
• Enables gradient-based learning for fine-tuned weight

adjustments

16

First Order Taylor Approximation (Quick Lookup)

Given: A function f and a known value f(c) at point c

Approximation in the Neighborhood: For x near c, f(x) can be approximated by:

𝑓 𝑥 ≈ 𝑓 𝑐 + ∇𝑓 𝑐 · 𝑥 − 𝑐

Reparametrizing it:

 𝑓 𝑥 − 𝑓 𝑐 ≈ ∇𝑓(𝑐) · (𝑥 − 𝑐)

 Δ𝑓 ≈ ∇𝑓(𝑐) · Δ𝑥

17

Neural Networks:

18

Small changes in weights (∆𝑤) and biases (∆𝑏) lead to
corresponding changes in the neuron's output (∆𝑓).

In neural networks, you want to understand how to optimize
model parameters (weights (∆𝑤) and biases (∆𝑏)) such that
∆𝑜𝑢𝑡𝑝𝑢𝑡 goes towards the desired groundtruth output.

Feedforward Network architecture

A feedforward network processes data in one

direction—from input to output—with no loops.

Layer Types:

• Input Layer:

• Receives raw data (e.g., pixel values)

• Hidden Layers:

• One or more layers that extract features

• Utilize activation functions like sigmoid

• Output Layer:

• Produces final predictions (e.g., classification

probabilities)

19

Recognizing Digits with Neural Nets.

MNIST Dataset:

• Overview: A benchmark dataset for handwritten digit

recognition.

• Dataset Details: Images: 70,000 grayscale images

(60,000 for training, 10,000 for testing)

• Dimensions: Each image is 28×28 pixels, flattened

into a 784-dimensional vector

• Labels: Each image corresponds to a digit (0–9)

• Significance: Widely used to train and validate neural

network models

• Serves as a standard testbed for classification

algorithms and deep learning research

20

Recognizing Digits with Neural Nets.

21

Recognizing Digits with Neural Nets.

22

One-Hot Encoding:
•Represent the digit 6 as a 10-dimensional vector
•Example: (0, 0, 0, 0, 0, 0, 1, 0, 0, 0)
•Only the 7th position is 1; all others are 0
Mean Squared Error (MSE) Cost Function:

•Formula: C w, b =
1

2𝑛
σ𝑥 𝑦 𝑥 − 𝑎 2

• y(x): Expected output (one-hot encoded
label)

• a: Activation/output from the network
•Measures the squared difference between the
predicted and true outputs

Learning with gradient descent in single slide

23

Key Idea:
•A small change in weights (Δ𝑤) leads to a change in cost (Δ𝐶)

Approximation: Δ𝐶 ≈ ∇𝐶 · Δ𝑤
•To minimize cost, choose Δ𝑤 to move in the opposite direction of
the gradient:

• 𝚫𝒘 = – 𝜼 𝛁𝑪

Gradient Descent Update Rule:
•Weights: 𝑤 → 𝑤 − 𝜂 𝜕𝐶/𝜕𝑤
•Biases: 𝑏 → 𝑏 − 𝜂 𝜕𝐶/𝜕𝑏
•η: learning rate (controls step size)

Stochastic Approach:
•Instead of full dataset, use mini-batches to estimate gradients
•Faster and scalable for large datasets

Epoch:
•One full pass over the training set
•Multiple epochs gradually refine weights and biases

Learning with gradient descent

24

1. Start with Random Initialization:
• Randomly set initial weights 𝒘 and biases 𝒃
• Calculate the initial cost 𝑪(𝒘, 𝒃)

Learning with gradient descent

25

1. Start with Random Initialization:
• Randomly set initial weights 𝒘 and biases 𝒃
• Calculate the initial cost 𝑪(𝒘, 𝒃)

2. Relate Weight Changes to Cost Change:
• Small changes in weights affect the cost:

• Δ𝐶 ≈ (𝜕𝐶/𝜕𝑤₁)Δ𝑤₁ + (𝜕𝐶/𝜕𝑤₂)Δ𝑤₂ + (𝜕𝐶/𝜕𝑤₃)Δ𝑤₃
3. Express as Gradient Dot Product:

• The partial derivatives form the gradient of C:
• ∇𝐶 = (𝜕𝐶/𝜕𝑤₁, 𝜕𝐶/𝜕𝑤₂, 𝜕𝐶/𝜕𝑤₃)ᵀ

• Then: Δ𝐶 ≈ ∇𝐶 · Δ𝑤

Learning with gradient descent

26

1. Start with Random Initialization:
• Randomly set initial weights 𝒘 and biases 𝒃
• Calculate the initial cost 𝑪 𝒘, 𝒃

2. Relate Weight Changes to Cost Change:
• Small changes in weights affect the cost:

• Δ𝐶 ≈ (𝜕𝐶/𝜕𝑤₁)Δ𝑤₁ + (𝜕𝐶/𝜕𝑤₂)Δ𝑤₂ + (𝜕𝐶/𝜕𝑤₃)Δ𝑤₃
3. Express as Gradient Dot Product:

• The partial derivatives form the gradient of C:
• ∇𝐶 = (𝜕𝐶/𝜕𝑤₁, 𝜕𝐶/𝜕𝑤₂, 𝜕𝐶/𝜕𝑤₃)ᵀ

• Then: Δ𝐶 ≈ ∇𝐶 · Δ𝑤
4. Choose Δw to Minimize Cost:

• Set Δ𝑤 = – 𝜂 ∇𝐶 (move in direction of steepest descent)
• Update rule for weights:

• 𝑤′ = 𝑤 − 𝜂 ∇𝐶
5. Update Bias Similarly:

• Bias update: 𝑏′ = 𝑏 − 𝜂 ∇𝐶
Summary:
By computing the gradient of the cost, we iteratively update 𝒘 and 𝒃 in small steps (scaled by learning
rate η) to reduce the cost and improve the network’s performance.

Stochastic Gradient Descent

27

Gradient Over Full Dataset:
•Exact gradient:

• ∇𝐶 =
1

𝑛
σ𝑥 ∇𝐶(𝑥)

• Where n = total number of training examples

Stochastic Gradient Descent

28

Gradient Over Full Dataset:
•Exact gradient:

• ∇𝐶 =
1

𝑛
σ𝑥 ∇𝐶(𝑥)

• Where n = total number of training examples
• Computing this for large datasets is slow and expensive

Stochastic Approximation:

•Use a mini-batch of m random samples (𝑚 ≪ 𝑛):

• ∇𝐶 ≈
1

𝑚
σ𝑥 ∇𝐶(𝑥) over mini-batch

•Average gradient over mini-batch ≈ average gradient over entire dataset
•This approximation is faster and computationally efficient

Weight Update Rule Using Mini-Batch:
•𝑤 → 𝑤 − (𝜂/𝑚) σ𝑥 𝜕𝐶(𝑥)/𝜕𝑤
•𝑏 → 𝑏 − (𝜂/𝑚) σ𝑥 𝜕𝐶(𝑥)/𝜕𝑏

Backpropagation

29

Backpropagation: Notation

30

Backpropagation: Notation

31

Backpropagation: Cost function

32

Backpropagation

33

Backpropagation

34

Backpropagation

35

Backpropagation

36

Backpropagation

37

Backpropagation

38

Backpropagation

39

Backpropagation

40

	Slide 1: Introduction to Neural Networks
	Slide 2: Perceptron - a.k.a. single neuron
	Slide 3: Perceptron - a.k.a. single neuron
	Slide 4: Perceptron - a.k.a. single neuron
	Slide 5: Perceptron - a.k.a. single neuron
	Slide 6: Perceptron - a.k.a. single neuron
	Slide 7: Perceptron - a.k.a. single neuron
	Slide 8: Perceptron - a.k.a. single neuron
	Slide 9: Perceptron - a.k.a. single neuron
	Slide 10: Layers of Perceptrons
	Slide 11: Layers of Perceptrons
	Slide 12: Neural Networks
	Slide 13: Problem with Perceptron:
	Slide 14: Problem with Perceptron:
	Slide 15: Problem with Perceptron:
	Slide 16: Sigmoid Neuron
	Slide 17: First Order Taylor Approximation (Quick Lookup)
	Slide 18: Neural Networks:
	Slide 19: Feedforward Network architecture
	Slide 20: Recognizing Digits with Neural Nets.
	Slide 21: Recognizing Digits with Neural Nets.
	Slide 22: Recognizing Digits with Neural Nets.
	Slide 23: Learning with gradient descent in single slide
	Slide 24: Learning with gradient descent
	Slide 25: Learning with gradient descent
	Slide 26: Learning with gradient descent
	Slide 27: Stochastic Gradient Descent
	Slide 28: Stochastic Gradient Descent
	Slide 29: Backpropagation
	Slide 30: Backpropagation: Notation
	Slide 31: Backpropagation: Notation
	Slide 32: Backpropagation: Cost function
	Slide 33: Backpropagation
	Slide 34: Backpropagation
	Slide 35: Backpropagation
	Slide 36: Backpropagation
	Slide 37: Backpropagation
	Slide 38: Backpropagation
	Slide 39: Backpropagation
	Slide 40: Backpropagation

