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Perceptron - a.k.a. single neuron

A perceptron takes multiple inputs (e.g., 𝑥₁, 𝑥₂, 𝑥₃), 

computes a weighted sum, and produces a binary output:
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Perceptron - a.k.a. single neuron

A perceptron takes multiple inputs (e.g., x₁, x₂, x₃), 

computes a weighted sum, and produces a binary output:

• Output = 1 if the sum exceeds a threshold

• Output = 0 otherwise

3

𝑜𝑢𝑡𝑝𝑢𝑡 =

0 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

1 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑤1

𝑤2

𝑤3

Summary:
The perceptron combines inputs using weights, compares the result to a threshold, 
and outputs either 0 or 1, a minimal building block of the neural networks.



Perceptron - a.k.a. single neuron

Output: Go to Gouda for the cheese festival on Saturday

• Inputs:

• 𝒙₁: Is the weather good?

• 𝒙₂: Am I going with a friend?

• 𝒙₃: Is the venue easy to commute?

4

𝑤1

𝑤2

𝑤3



Perceptron - a.k.a. single neuron

Output: Go to Gouda for the cheese festival on Saturday

• Inputs:

• 𝒙₁: Is the weather good?

• 𝒙₂: Am I going with a friend?

• 𝒙₃: Is the venue easy to commute?

• Assumptions & Weights:

• You dislike bad weather (𝑥₁)

• You would consider going alone (𝑥₂)

• You don’t mind a longer commute on weekends (𝑥₃)
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Perceptron - a.k.a. single neuron

Output: Go to Gouda for the cheese festival on Saturday

• Inputs:

• 𝒙₁: Is the weather good?

• 𝒙₂: Am I going with a friend?

• 𝒙₃: Is the venue easy to commute?

• Assumptions & Weights:

• You dislike bad weather (𝑥₁), so 𝒘₁ =  𝟔

• You would consider going alone (𝑥₂), so 𝒘₂ =  𝟐

• You don’t mind a longer commute on weekends (𝑥₃), so 𝒘𝟑 =  𝟐
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Perceptron - a.k.a. single neuron

Output: Go to Gouda for the cheese festival on Saturday

• Inputs:

• 𝒙₁: Is the weather good?

• 𝒙₂: Am I going with a friend?

• 𝒙₃: Is the venue easy to commute?

• Assumptions & Weights:

• You dislike bad weather (𝑥₁), so 𝒘₁ =  𝟔

• You would consider going alone (𝑥₂), so 𝒘₂ =  𝟐

• You don’t mind a longer commute on weekends (𝑥₃), so 𝒘𝟑 =  𝟐
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•       Questions:

• What would happen if threshold is 5? 𝑜𝑢𝑡𝑝𝑢𝑡 =

0 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

1 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑



Perceptron - a.k.a. single neuron

Output: Go to Gouda for the cheese festival on Saturday

• Inputs:

• 𝒙₁: Is the weather good?

• 𝒙₂: Am I going with a friend?

• 𝒙₃: Is the venue easy to commute?

• Assumptions & Weights:

• You dislike bad weather (𝑥₁), so 𝒘₁ =  𝟔

• You would consider going alone (𝑥₂), so 𝒘₂ =  𝟐

• You don’t mind a longer commute on weekends (𝑥₃), so 𝒘𝟑 =  𝟐

8

𝑤1

𝑤2

𝑤3

•       Questions:

• What would happen if threshold is 5?
• What would happen if threshold is 3?

𝑜𝑢𝑡𝑝𝑢𝑡 =

0 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

1 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑



Perceptron - a.k.a. single neuron

• The weighted sum can be expressed as an 

inner product of two vectors:  

෍
𝑗
𝑤𝑗𝑥𝑗 = 𝑤 ⋅ 𝑥

• By setting b = -threshold, the formula becomes: 

This reformulation simplifies the computation in neural networks.
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𝑜𝑢𝑡𝑝𝑢𝑡 =

0 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

1 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

⟹ 𝑜𝑢𝑡𝑝𝑢𝑡 =

0 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 + 𝑏 ≤ 0

1 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 + 𝑏 > 0



Layers of Perceptrons

• First Layer: 

• Processes raw inputs by making simple decisions (e.g., three basic decisions)

• Each perceptron weighs specific features differently from the input data

• Second Layer: 

• Takes the outputs from the first layer as its inputs 

• Combines these basic decisions to form four more complex decisions 

• Integrates multiple first-layer insights to capture higher-level features

• Overall Impact: 

• Stacking layers creates a hierarchical structure 

• Early layers focus on simple, local features, while deeper layers synthesize these into 

sophisticated, global patterns
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Layers of Perceptrons

• First Layer: 

• Processes raw inputs by making simple decisions (e.g., three basic decisions)

• Each perceptron weighs specific features differently from the input data

• Second Layer: 

• Takes the outputs from the first layer as its inputs 

• Combines these basic decisions to form four more complex decisions 

• Integrates multiple first-layer insights to capture higher-level features

• Overall Impact: 

• Stacking layers creates a hierarchical structure 

• Early layers focus on simple, local features, while deeper layers synthesize these into 

sophisticated, global patterns

But how we set the weights (and biases)?
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Neural Networks

Learning Process:

• We observe how small changes in weights affect the network's output.

• Starting from random weights, we iteratively adjust them to move the output closer to the expected value.

Supervised Updates:

• The weight adjustments are supervised, ensuring the network learns the desired patterns.

Validation:

• The learning process is monitored using separate data not involved in the weight optimization.

• This validation step helps control overfitting and ensures robust generalization.
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Problem with Perceptron:

13
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Problem with Perceptron:
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Problem with Perceptron:
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𝑜𝑢𝑡𝑝𝑢𝑡 =

0 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 + 𝑏 ≤ 0

1 𝑖𝑓 ෍
𝑗
𝑤𝑗 𝑥𝑗 + 𝑏 > 0



Sigmoid Neuron

A perceptron sigmoid neuron takes multiple inputs  
(e.g., 𝑥₁, 𝑥₂, 𝑥₃),

computes a weighted sum, and produces a binary single output.

Input & Operation:
• Takes multiple inputs (e.g., 𝑥₁, 𝑥₂, 𝑥₃)
• Computes a weighted sum of the inputs plus a bias

Activation Function:
• Uses the sigmoid function: 

                              𝜎 𝑧 = 1/(1 + 𝑒−(𝑤⋅𝑥+𝑏)) 
• Produces a continuous output between 0 and 1

Key Benefits:
• Allows for smooth transitions in output
• Enables gradient-based learning for fine-tuned weight 

adjustments
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First Order Taylor Approximation (Quick Lookup)

Given: A function f and a known value f(c) at point c

Approximation in the Neighborhood: For x near c, f(x) can be approximated by: 

𝑓 𝑥 ≈  𝑓 𝑐 + ∇𝑓 𝑐 · 𝑥 −  𝑐

Reparametrizing it:

                                           𝑓 𝑥 − 𝑓 𝑐 ≈ ∇𝑓(𝑐)  ·  (𝑥 −  𝑐)

                                                         Δ𝑓 ≈ ∇𝑓(𝑐) · Δ𝑥
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Neural Networks:
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Small changes in weights (∆𝑤) and biases (∆𝑏) lead to 
corresponding changes in the neuron's output (∆𝑓).

In neural networks, you want to understand how to optimize 
model parameters (weights (∆𝑤) and biases (∆𝑏))  such that 
∆𝑜𝑢𝑡𝑝𝑢𝑡 goes towards the desired groundtruth output.



Feedforward Network architecture

A feedforward network processes data in one 

direction—from input to output—with no loops.

Layer Types:

• Input Layer: 

• Receives raw data (e.g., pixel values)

• Hidden Layers: 

• One or more layers that extract features

• Utilize activation functions like sigmoid 

• Output Layer: 

• Produces final predictions (e.g., classification 

probabilities)
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Recognizing Digits with Neural Nets.

MNIST Dataset:

• Overview: A benchmark dataset for handwritten digit 

recognition.

• Dataset Details: Images: 70,000 grayscale images 

(60,000 for training, 10,000 for testing)

• Dimensions: Each image is 28×28 pixels, flattened 

into a 784-dimensional vector

• Labels: Each image corresponds to a digit (0–9)

• Significance: Widely used to train and validate neural 

network models

• Serves as a standard testbed for classification 

algorithms and deep learning research
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Recognizing Digits with Neural Nets.
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Recognizing Digits with Neural Nets.
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One-Hot Encoding:
•Represent the digit 6 as a 10-dimensional vector
•Example: (0, 0, 0, 0, 0, 0, 1, 0, 0, 0)
•Only the 7th position is 1; all others are 0
Mean Squared Error (MSE) Cost Function:

•Formula: C w, b =
1

2𝑛
σ𝑥 𝑦 𝑥 − 𝑎 2 

• y(x): Expected output (one-hot encoded 
label)

• a: Activation/output from the network
•Measures the squared difference between the 
predicted and true outputs



Learning with gradient descent in single slide
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Key Idea:
•A small change in weights (Δ𝑤) leads to a change in cost (Δ𝐶)

Approximation: Δ𝐶 ≈  ∇𝐶 ·  Δ𝑤
•To minimize cost, choose Δ𝑤 to move in the opposite direction of 
the gradient: 

• 𝚫𝒘 = – 𝜼 𝛁𝑪

Gradient Descent Update Rule:
•Weights: 𝑤 →  𝑤 −  𝜂 𝜕𝐶/𝜕𝑤
•Biases: 𝑏 →  𝑏 −  𝜂 𝜕𝐶/𝜕𝑏
•η: learning rate (controls step size)

Stochastic Approach:
•Instead of full dataset, use mini-batches to estimate gradients
•Faster and scalable for large datasets

Epoch:
•One full pass over the training set
•Multiple epochs gradually refine weights and biases



Learning with gradient descent
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1. Start with Random Initialization:
• Randomly set initial weights 𝒘 and biases 𝒃
• Calculate the initial cost 𝑪(𝒘, 𝒃)



Learning with gradient descent

25

1. Start with Random Initialization:
• Randomly set initial weights 𝒘 and biases 𝒃
• Calculate the initial cost 𝑪(𝒘, 𝒃)

2. Relate Weight Changes to Cost Change:
• Small changes in weights affect the cost: 

• Δ𝐶 ≈  (𝜕𝐶/𝜕𝑤₁)Δ𝑤₁ +  (𝜕𝐶/𝜕𝑤₂)Δ𝑤₂ +  (𝜕𝐶/𝜕𝑤₃)Δ𝑤₃
3. Express as Gradient Dot Product:

• The partial derivatives form the gradient of C: 
• ∇𝐶 =  (𝜕𝐶/𝜕𝑤₁, 𝜕𝐶/𝜕𝑤₂, 𝜕𝐶/𝜕𝑤₃)ᵀ

• Then: Δ𝐶 ≈  ∇𝐶 ·  Δ𝑤



Learning with gradient descent
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1. Start with Random Initialization:
• Randomly set initial weights 𝒘 and biases 𝒃
• Calculate the initial cost 𝑪 𝒘, 𝒃

2. Relate Weight Changes to Cost Change:
• Small changes in weights affect the cost: 

• Δ𝐶 ≈  (𝜕𝐶/𝜕𝑤₁)Δ𝑤₁ +  (𝜕𝐶/𝜕𝑤₂)Δ𝑤₂ +  (𝜕𝐶/𝜕𝑤₃)Δ𝑤₃
3. Express as Gradient Dot Product:

• The partial derivatives form the gradient of C: 
• ∇𝐶 =  (𝜕𝐶/𝜕𝑤₁, 𝜕𝐶/𝜕𝑤₂, 𝜕𝐶/𝜕𝑤₃)ᵀ

• Then: Δ𝐶 ≈  ∇𝐶 ·  Δ𝑤
4. Choose Δw to Minimize Cost:

• Set Δ𝑤 = – 𝜂 ∇𝐶 (move in direction of steepest descent)
• Update rule for weights: 

• 𝑤′ =  𝑤 −  𝜂 ∇𝐶
5. Update Bias Similarly:

• Bias update:  𝑏′ =  𝑏 −  𝜂 ∇𝐶
Summary:
By computing the gradient of the cost, we iteratively update 𝒘 and 𝒃 in small steps (scaled by learning 
rate η) to reduce the cost and improve the network’s performance.



Stochastic Gradient Descent
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Gradient Over Full Dataset:
•Exact gradient: 

• ∇𝐶 =
1

𝑛
σ𝑥 ∇𝐶(𝑥)

• Where n = total number of training examples



Stochastic Gradient Descent
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Gradient Over Full Dataset:
•Exact gradient: 

• ∇𝐶 =
1

𝑛
σ𝑥 ∇𝐶(𝑥)

• Where n = total number of training examples
• Computing this for large datasets is slow and expensive

Stochastic Approximation:

•Use a mini-batch of m random samples (𝑚 ≪  𝑛): 

• ∇𝐶 ≈
1

𝑚
σ𝑥 ∇𝐶(𝑥) over mini-batch

•Average gradient over mini-batch ≈ average gradient over entire dataset
•This approximation is faster and computationally efficient

Weight Update Rule Using Mini-Batch:
•𝑤 → 𝑤 − (𝜂/𝑚) σ𝑥 𝜕𝐶(𝑥)/𝜕𝑤
•𝑏 → 𝑏 − (𝜂/𝑚) σ𝑥 𝜕𝐶(𝑥)/𝜕𝑏



Backpropagation 
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Backpropagation: Notation
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Backpropagation: Notation
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Backpropagation: Cost function
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation
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