/|

N \
Vil
. ’ { ": \

-, ——AZ
. ~/ " ’- l.' “‘“‘

¢ ‘. ‘ » ., !
T l\.’ ‘ 1‘\

- 9 ' /'
4 a “ =, ‘. ,‘m . /
. ; ® f e,
~‘§" ’ / S ——— i
/ / <))« "
.\-_-//— _ ‘:5/_,}’ f

Introductlon
Neural Networks

Nailyahimli Y | o
/ ’ /‘

Perceptron - a.k.a. single neuron

A perceptron takes multiple inputs (e.g., x4, x2, x3), T
computes a weighted sum, and produces a binary output:

output

Perceptron - a.k.a. single neuron

A perceptron takes multiple inputs (e.g., X4, X2, X3),]
computes a weighted sum, and produces a binary output: W1
: . W2 output
« OQOutput =1if the sum exceeds a threshold
« Output = 0 otherwise Wy

f
0 if) wx; < threshold
output = A« !

1if Z_ijj > threshold
\]

Summary:

The perceptron combines inputs using weights, compares the result to a threshold,
and outputs either O or 1, a minimal building block of the neural networks.

Perceptron - a.k.a. single neuron

Output: Go to Gouda for the cheese festival on Saturday Wy
- Inputs: w, -
x: Is the weather good? L2 output

x,: Am | going with a friend?
x3: Is the venue easy to commute? T

Perceptron - a.k.a. single neuron

Output: Go to Gouda for the cheese festival on Saturday Wy

- Inputs: w, -
x: Is the weather good? L2 output
x,: Am | going with a friend?
x3: Is the venue easy to commute? Ta W3

- Assumptions & Weights:
You dislike bad weather (x,)
You would consider going alone (x;)
You don’t mind a longer commute on weekends (xs)

Perceptron - a.k.a. single neuron

Output: Go to Gouda for the cheese festival on Saturday Wy

- Inputs: w, -
x: Is the weather good? L2 output
x,: Am | going with a friend?
x3: Is the venue easy to commute? Ta W3

- Assumptions & Weights:
You dislike bad weather (x,),sow; = 6
You would consider going alone (x;), sow, = 2
You don’t mind a longer commute on weekends (x3), sO w; = 2

Perceptron - a.k.a. single neuron

Output: Go to Gouda for the cheese festival on Saturday Wy

- Inputs: w, -
x: Is the weather good? L2 output
x,: Am | going with a friend?
x3: Is the venue easy to commute? Ta W3

- Assumptions & Weights:
You dislike bad weather (x,),sow; = 6
You would consider going alone (x;), sow, = 2
You don’t mind a longer commute on weekends (x3), sO w; = 2

* Questions: (
0if z w;x; < threshold
j

17 =
« What would happen if threshold is 5? output = 1

1 if Z w;x; > threshold
L J

Perceptron - a.k.a. single neuron

Output: Go to Gouda for the cheese festival on Saturday Wy

- Inputs: w, -
x: Is the weather good? L2 output
x,: Am | going with a friend?
x3: Is the venue easy to commute? Ta W3

- Assumptions & Weights:
You dislike bad weather (x,),sow; = 6
You would consider going alone (x;), sow, = 2
You don’t mind a longer commute on weekends (x3), sO w; = 2

* Questions: (
0if zle x; < threshold
« What would happen if threshold is 5? output = 1 !
« What would happen if threshold is 3? 1if Z w;x; > threshold
L Jj

Perceptron - a.k.a. single neuron

- The weighted sum can be expressed as an W,
inner product of two vectors:
2 ij] =W X
J W,

- By setting b = -threshold, the formula becomes:

output

f
0 if) wyx, < threshold
j

output = < = output = <
1 if Z_ijj > threshold
J

.

0 ifZijj+bSO
J

1 ifz_wjxj+b>0
L J

\

This reformulation simplifies the computation in neural networks.

Layers of Perceptrons

mputs output

 First Layer:
Processes raw inputs by making simple decisions (e.g., three basic decisions)
Each perceptron weighs specific features differently from the input data

« Second Layer:
Takes the outputs from the first layer as its inputs
Combines these basic decisions to form four more complex decisions
Integrates multiple first-layer insights to capture higher-level features

« Overall Impact:
Stacking layers creates a hierarchical structure
Early layers focus on simple, local features, while deeper layers synthesize these into
sophisticated, global patterns

10

Layers of Perceptrons

mputs output

 First Layer:
Processes raw inputs by making simple decisions (e.g., three basic decisions)
Each perceptron weighs specific features differently from the input data

« Second Layer:
Takes the outputs from the first layer as its inputs
Combines these basic decisions to form four more complex decisions
Integrates multiple first-layer insights to capture higher-level features

« Overall Impact:
Stacking layers creates a hierarchical structure
Early layers focus on simple, local features, while deeper layers synthesize these into
sophisticated, global patterns
But how we set the weights (and biases)?

11

small change in any weight (or bias)

causes a small change in the output

w =+ A

Neural Networks

mltput—}—&mlf:put

Learning Process:

. We observe how small changes in weights affect the network's output.
. Starting from random weights, we iteratively adjust them to move the output closer to the expected value.

Supervised Updates:
. The weight adjustments are supervised, ensuring the network learns the desired patterns.
Validation:

. The learning process is monitored using separate data not involved in the weight optimization.
. This validation step helps control overfitting and ensures robust generalization.

12

Problem with Perceptron:

output = <

(
0 if) wx;+b<0
j

1if Y wx+b>0
L J

w =+ A

small change in any weight (or bias)

causes a small change in the output

mltput—}—&mlf:put

13

Problem with Perceptron:

,

0if wix;+b<0
output = < !
1if Y wx+b>0
L J
step function

1.0 .

0.8

0.6

0.4

0.2

0.0 T T T T T T T T

4 3 2 a1 0 1 2 3

w =+ A

small change in any weight (or bias)

causes a small change in the output

mltput—}—&mlf:put

14

Problem with Perceptron

output = <

1.0 -
0.8 -
0.6 -
0.4 -

0.2 -

step function

0.0 T T

1.0+

0.8

0.6 —

0.4 —

0.2

0.0

small change in any weight (or bias)

causes a small change in the output

w =+ A

sigmoid function

mltput—}—&mlf:put

15

Sigmoid Neuron

A pereeptron sigmoid neuron takes multiple inputs
(eg1 X1, X2, x3)1

computes a weighted sum, and produces a binary single output.

Input & Operation:
« Takes multiple inputs (e.g., x1, x2, x3)
« Computes a weighted sum of the inputs plus a bias

Activation Function:
 Uses the sigmoid function:
o(z) = 1/(1 + e~ Wx+b))
Produces a continuous output between O and 1

Key Benefits:

Allows for smooth transitions in output

 Enables gradient-based learning for fine-tuned weight
adjustments

1.0+

0.8 -

0.6 -

0.4

0.2

output

sigmoid function

0.0

16

First Order Taylor Approximation (Quick Lookup)

Given: A function f and a known value f(c) at point ¢

Approximation in the Neighborhood: For x near c, f(x) can be approximated by:

f) = flco)+ Vf(c)- (x — ¢)

Reparametrizing it:

f) = fle) =Vf(e) - (x — ©)
Af = Vf(c) - Ax

17

small change in any weight (or bias)

causes a small change in the output

w =+ A

Neural Networks:

Small changes in weights (Aw) and biases (Ab) lead to output+Aoutput
corresponding changes in the neuron's output (Af).

In neural networks, you want to understand how to optimize
model parameters (weights (Aw) and biases (Ab)) such that
Aoutput goes towards the desired groundtruth output.

0 output
ob

tput
0 outpu Ab

Aoutput ~ Z Aw; +
J

8wj

18

Feedforward Network architecture

A feedforward network processes data in one
direction — from input to output — with no loops.
Layer Types:
Input Layer:
Receives raw data (e.g., pixel values)
Hidden Layers:
One or more layers that extract features
Utilize activation functions like sigmoid
Output Layer:
Produces final predictions (e.g., classification

probabilities)

output laver
e,

input layer

19

Recognizing Digits with Neural Nets.

MNIST Dataset:

Overview: A benchmark dataset for handwritten digit O Hl /][] &3] 1] [4] (3
recognition. <13 (6] [1] 7] [H [£] 6] (2] M
Dataset Details: Images: 70,000 grayscale images /@] [¢] [/]] 2] [¥] 3] 2] [7] &
(60,000 for training, 10,000 for testing) PG| [2] 10 51160 HI[e]
Dimensions: Each image is 28x28 pixels, flattened 8 11171 3] 19] [B] 151 (3] 3] [3]
into a 784-dimensional vector Q 242019 4 LG

| . £ 6l 84 &[] Ol [
Labels: Each image corresponds to a digit (0-9) 2 11 [& 3 &8 R[] 17 [Z] 8
Significance: Widely used to train and validate neural J 8l & 71 18] ™ (2] O ¢ [é
network models 21 4] [&] (7] O] 7] & 3] /][5

Serves as a standard testbed for classification
algorithms and deep learning research

20

Recognizing Digits with Neural Nets.

input layver

{TE4 neuwrons)

hidden layer

{1 =15 neurons)

{

=1

NN R Qs By Q& O

100 [~ oy N = e ra L

&6 B] e Na | N [R~

Ry | T o] [RO] e] —

R N] o oy o K e Sy

SIoNCE NN =

AN NS TR

A [N o e | T 109~ (] X

21

Recognizing Digits with Neural Nets.

input layver

{TE4 neuwrons)

hidden layer

{'r.l = 15 neurons)

One-Hot Encoding:

*Represent the digit 6 as a 10-dimensional vector

«Example: (0,0,0,0,0,0,1,0, O, 0)
«Only the 7th position is 1; all others are O
Mean Squared Error (MSE) Cost Function:

‘Formula: C(w,b) = — ¥, lly(x) — all?

« y(x): Expected output (one-hot encoded
label)
« a: Activation/output from the network
*Measures the squared difference between the
predicted and true outputs

22

Learning with gradient descent in single slide

Key ldea:
*A small change in weights (Aw) leads to a change in cost (AC)

Approximation: AC =~ VC - Aw
*To minimize cost, choose Aw to move in the opposite direction of

the gradient: VY
s Aw =-nVC Qw
\\ \\““...' ¥
Gradient Descent Update Rule: N\ T0e0e s

T

M0 5 5T
‘Weights:w - w — nadC/ow &‘S"“ ")’W 'l
‘Biases:b - b — naC/db §§ :

*n: learning rate (controls step size) 2

Stochastic Approach: vy L
sInstead of full dataset, use mini-batches to estimate gradients
*Faster and scalable for large datasets

Epoch:
*One full pass over the training set
*Multiple epochs gradually refine weights and biases

23

Learning with gradient descent

1. Start with Random Initialization:
« Randomly set initial weights w and biases b
« Calculate the initial cost C(w, b)

24

Learning with gradient descent

1. Start with Random Initialization:
Randomly set initial weights w and biases b

Calculate the initial cost C(w, b)

2. Relate Weight Changes to Cost Change:
Small changes in weights affect the cost:
« AC = (0C/ow1)Aw, + (OC/0w,)Aw, + (0C/0w;3)Aws;

3. Express as Gradient Dot Product:
The partial derivatives form the gradient of C:

+ VC = (3C/dw1,dC/dws, OC /dw3)T
« Then:AC = VC - Aw

Q Y
" ’y F1(
gq':' y 1 4
8682, |

25

Learning with gradient descent

1. Start with Random Initialization:
« Randomly set initial weights w and biases b
« Calculate the initial cost C(w, b)

2. Relate Weight Changes to Cost Change:

« Small changes in weights affect the cost: “ [

« AC = (0C/ow1)Aw, + (OC/0w,)Aw, + (0C/0w;3)Aws;
3. Express as Gradient Dot Product:

» The partial derivatives form the gradient of C: i “., 4 , %, |'
* VC = (0C/0w4,0C/0w,, OC/Ow3)" |
+ Then:AC ~ VC - Aw 3 E
4. Choose Aw to Minimize Cost: o L
« Set Aw =-1VC (move in direction of steepest descent) 0 T :

« Update rule for weights: 1
e w =w—nVC
5. Update Bias Similarly:
 Biasupdate: b’ = b — nVC
Summary:
By computing the gradient of the cost, we iteratively update w and b in small steps (scaled by learning
rate n) to reduce the cost and improve the network’s performance.

26

Stochastic Gradient Descent

Gradient Over Full Dataset:
*Exact gradient:

¢ VC=-%,VC(x)
« Where n = total number of training examples

27

Stochastic Gradient Descent

Gradient Over Full Dataset:
*Exact gradient:

¢ VC=-%,VC(x)
« Where n = total number of training examples

« Computing this for large datasets is slow and expensive $0 'l ‘
\] 4 |
i i ion: \ b [
Stochastic Approximation \ \i\\‘“.::", ,” ”’Z// ‘l (
AR %
*Use a mini-batch of m random samples (m « n): k‘ 7 |

« VC = %Zx VC (x) over mini-batch

*Average gradient over mini-batch = average gradient over entire dataset & 0‘\\ /
*This approximation is faster and computationally efficient U Py

Weight Update Rule Using Mini-Batch:
‘w = w — (1/m) Xy 0C(x) /0w
*b = b — (n/m) %, 9C(x)/0b

28

Backpropagation

YOU KNOW, T
DONT THINK
MATH S A
SQENCE. |
THINK TS
A RELIGION.

YEAH. ALL THESE EQUATIONS
ARE LIXE MIRACLES. YO
TAXE TWO NUMBERS AND WHEN
YOU ADD THEM, THEY MAGICALLY
BECOME ONE NEW NUMEER. /
NO ONE CAN SAY HOW (T
HAPPENS. YOU EATHER BELIEVE
T OR You DONT.

My

gl S

THIS WHOLE Book 1S FulL
OF THINGS THAT HAVE TO
BE ACEPTED ON FAITH!
TS A
RELIGION !

29

Backpropagation: Notation

layer 1 layer 2 layer 3

wi—k is the weight from the k** neuron

in the (I — 1)*" layer to the 7' neuron
in the I'" layer

30

Backpropagation: Notation

layer 1 layer 2 layer 3

wi—k is the weight from the k** neuron

in the (I — 1)*" layer to the 7' neuron
in the I'" layer

layer 1

layer 2

layer 3

31

Backpropagation: Cost function

Backpropagation

CZ—&

e O

Backpropagation

_ oL oC
J 3&L ﬂ' _y)

Backpropagation

a1 b w” A — wl gkl C= Zy a”

a® _G'[}L"L) 3{;5 _ (

- y)

35

Backpropagation

— L2

W Wb n g g C=2 e
L _ (L oC I

e A

aL—l aL
oC
v —— = 2(a" —
aC dal aC L .
0zL 0zt dal o (%) -2(a” ~v)

36

Backpropagation

al-1 bE 't S W Gi= Z —a’
= o(z* -
() aaL)
ab1 al
ocC . |
@ 9ak 2(a Y)
oC dal oC

o el i L)
L L
00 02 00 00 500ty aa)

@ owl Owl 02 Oar

37

Backpropagation

alt bk w’ JO R S Y/ C= Z —a"
acC
al = o(2t T 9(gk —
) Sal (a y)
- Q—Qﬂ D
y acC P
) @ gz = 20" =)
aCc da* OC I
9zt 9zl fal o'(z) -2(a" ~y)
- aC 8z* da* aC L-1)
@ dwLl ~ OwL 9z~ dak o'(2") - 2(a" ~)

aC 0z dak ac_l o () - 2(a" — 3)
6L — bl Bz dak Y

38

Backpropagation

Backpropagation

aL—E bL_l wL_l
5
oc
&? = 2[3 y}
aC dak aC . i
— — z +2 —_
OzL Ozt Oal o'(27) - 2(a y)
3{3' 32:‘[‘ =1 3H-L -1 aZ:L 30 L— IL— L
Pl T = Bul 1 AT aalT g = 0w o
aC 81 all 8l aC . L 0C
et el wa il el A A L

40

	Slide 1: Introduction to Neural Networks
	Slide 2: Perceptron - a.k.a. single neuron
	Slide 3: Perceptron - a.k.a. single neuron
	Slide 4: Perceptron - a.k.a. single neuron
	Slide 5: Perceptron - a.k.a. single neuron
	Slide 6: Perceptron - a.k.a. single neuron
	Slide 7: Perceptron - a.k.a. single neuron
	Slide 8: Perceptron - a.k.a. single neuron
	Slide 9: Perceptron - a.k.a. single neuron
	Slide 10: Layers of Perceptrons
	Slide 11: Layers of Perceptrons
	Slide 12: Neural Networks
	Slide 13: Problem with Perceptron:
	Slide 14: Problem with Perceptron:
	Slide 15: Problem with Perceptron:
	Slide 16: Sigmoid Neuron
	Slide 17: First Order Taylor Approximation (Quick Lookup)
	Slide 18: Neural Networks:
	Slide 19: Feedforward Network architecture
	Slide 20: Recognizing Digits with Neural Nets.
	Slide 21: Recognizing Digits with Neural Nets.
	Slide 22: Recognizing Digits with Neural Nets.
	Slide 23: Learning with gradient descent in single slide
	Slide 24: Learning with gradient descent
	Slide 25: Learning with gradient descent
	Slide 26: Learning with gradient descent
	Slide 27: Stochastic Gradient Descent
	Slide 28: Stochastic Gradient Descent
	Slide 29: Backpropagation
	Slide 30: Backpropagation: Notation
	Slide 31: Backpropagation: Notation
	Slide 32: Backpropagation: Cost function
	Slide 33: Backpropagation
	Slide 34: Backpropagation
	Slide 35: Backpropagation
	Slide 36: Backpropagation
	Slide 37: Backpropagation
	Slide 38: Backpropagation
	Slide 39: Backpropagation
	Slide 40: Backpropagation

