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Perceptron - a.k.a. single neuron

A perceptron takes multiple inputs (e.g., x4, x2, x3), T
computes a weighted sum, and produces a binary output:

output



Perceptron - a.k.a. single neuron

A perceptron takes multiple inputs (e.g., X4, X2, X3), ]
computes a weighted sum, and produces a binary output: W1
: . W2 output
« OQOutput =1if the sum exceeds a threshold
«  Output = 0 otherwise Wy

f
0 if ) wx; < threshold
output = A« !

1if Z_ijj > threshold
\ ]

Summary:

The perceptron combines inputs using weights, compares the result to a threshold,
and outputs either O or 1, a minimal building block of the neural networks.
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Perceptron - a.k.a. single neuron

Output: Go to Gouda for the cheese festival on Saturday Wy

- Inputs: w, -
x: Is the weather good? L2 output
x,: Am | going with a friend?
x3: Is the venue easy to commute? Ta W3

- Assumptions & Weights:
You dislike bad weather (x,),sow; = 6
You would consider going alone (x;), sow, = 2
You don’t mind a longer commute on weekends (x3), sO w; = 2

*  Questions: (
0if zle x; < threshold
« What would happen if threshold is 5? output = 1 !
«  What would happen if threshold is 3? 1if Z w;x; > threshold
L Jj



Perceptron - a.k.a. single neuron

-  The weighted sum can be expressed as an W,
inner product of two vectors:
2 ij] =W X
J W,

- By setting b = -threshold, the formula becomes:

output

f
0 if ) wyx, < threshold
j

output = < = output = <
1 if Z_ijj > threshold
J

.

0 ifZijj+bSO
J

1 ifz_wjxj+b>0
L J

\

This reformulation simplifies the computation in neural networks.



Layers of Perceptrons

mputs output

 First Layer:
Processes raw inputs by making simple decisions (e.g., three basic decisions)
Each perceptron weighs specific features differently from the input data

« Second Layer:
Takes the outputs from the first layer as its inputs
Combines these basic decisions to form four more complex decisions
Integrates multiple first-layer insights to capture higher-level features

« Overall Impact:
Stacking layers creates a hierarchical structure
Early layers focus on simple, local features, while deeper layers synthesize these into
sophisticated, global patterns
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Layers of Perceptrons

mputs output

 First Layer:
Processes raw inputs by making simple decisions (e.g., three basic decisions)
Each perceptron weighs specific features differently from the input data

« Second Layer:
Takes the outputs from the first layer as its inputs
Combines these basic decisions to form four more complex decisions
Integrates multiple first-layer insights to capture higher-level features

« Overall Impact:
Stacking layers creates a hierarchical structure
Early layers focus on simple, local features, while deeper layers synthesize these into
sophisticated, global patterns
But how we set the weights (and biases)?
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small change in any weight (or bias)

causes a small change in the output

w =+ A

Neural Networks

mltput—}—&mlf:put

Learning Process:

. We observe how small changes in weights affect the network's output.
. Starting from random weights, we iteratively adjust them to move the output closer to the expected value.

Supervised Updates:
. The weight adjustments are supervised, ensuring the network learns the desired patterns.
Validation:

. The learning process is monitored using separate data not involved in the weight optimization.
. This validation step helps control overfitting and ensures robust generalization.
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Problem with Perceptron:

output = <

(
0 if ) wx;+b<0
j

1if Y wx+b>0
L J

w =+ A

small change in any weight (or bias)

causes a small change in the output

mltput—}—&mlf:put
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Problem with Perceptron:

,

0if wix;+b<0
output = < !
1if Y wx+b>0
L J
step function
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small change in any weight (or bias)

causes a small change in the output

mltput—}—&mlf:put
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Problem with Perceptron

output = <

1.0 -
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step function
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small change in any weight (or bias)

causes a small change in the output

w =+ A

sigmoid function

mltput—}—&mlf:put
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Sigmoid Neuron

A pereeptron sigmoid neuron takes multiple inputs
(eg1 X1, X2, x3)1

computes a weighted sum, and produces a binary single output.

Input & Operation:
« Takes multiple inputs (e.g., x1, x2, x3)
«  Computes a weighted sum of the inputs plus a bias

Activation Function:
 Uses the sigmoid function:
o(z) = 1/(1 + e~ Wx+b))
Produces a continuous output between O and 1

Key Benefits:

Allows for smooth transitions in output

 Enables gradient-based learning for fine-tuned weight
adjustments

1.0+

0.8 -

0.6 -

0.4

0.2

output

sigmoid function

0.0
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First Order Taylor Approximation (Quick Lookup)

Given: A function f and a known value f(c) at point ¢

Approximation in the Neighborhood: For x near c, f(x) can be approximated by:

f) = flco)+ Vf(c)- (x — ¢)

Reparametrizing it:

f) = fle) =Vf(e) - (x — ©)
Af = Vf(c) - Ax

17



small change in any weight (or bias)

causes a small change in the output

w =+ A

Neural Networks:

Small changes in weights (Aw) and biases (Ab) lead to output+Aoutput
corresponding changes in the neuron's output (Af).

In neural networks, you want to understand how to optimize
model parameters (weights (Aw) and biases (Ab)) such that
Aoutput goes towards the desired groundtruth output.

0 output
ob

tput
0 outpu Ab

Aoutput ~ Z Aw; +
J

8wj
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Feedforward Network architecture

A feedforward network processes data in one
direction — from input to output — with no loops.
Layer Types:
Input Layer:
Receives raw data (e.g., pixel values)
Hidden Layers:
One or more layers that extract features
Utilize activation functions like sigmoid
Output Layer:
Produces final predictions (e.g., classification

probabilities)

output laver
e,

input layer
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Recognizing Digits with Neural Nets.

MNIST Dataset:

Overview: A benchmark dataset for handwritten digit O Hl /][] &3] 1] [4] (3
recognition. <13 (6] [1] 7] [H [£] 6] (2] M
Dataset Details: Images: 70,000 grayscale images /@] [¢] [/] ] 2] [¥] 3] 2] [7] &
(60,000 for training, 10,000 for testing) PG| [2] 10 51160 HI[e ]
Dimensions: Each image is 28x28 pixels, flattened 8 11171 3] 19] [B] 151 (3] 3] [3]
into a 784-dimensional vector Q 242019 4 LG

| . £ 6l 84 &[] Ol [
Labels: Each image corresponds to a digit (0-9) 2 11 [& 3 &8 R[] 17 [Z] 8
Significance: Widely used to train and validate neural J 8l & 71 18] ™ (2] O ¢ [é
network models 21 4] [&] (7] O] 7] & 3] /][5

Serves as a standard testbed for classification
algorithms and deep learning research

20



Recognizing Digits with Neural Nets.

input layver

{TE4 neuwrons)

hidden layer

{1 =15 neurons)

{

=1
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Recognizing Digits with Neural Nets.

input layver

{TE4 neuwrons)

hidden layer

{'r.l = 15 neurons)

One-Hot Encoding:

*Represent the digit 6 as a 10-dimensional vector

«Example: (0,0,0,0,0,0,1,0, O, 0)
«Only the 7th position is 1; all others are O
Mean Squared Error (MSE) Cost Function:

‘Formula: C(w,b) = — ¥, lly(x) — all?

« y(x): Expected output (one-hot encoded
label)
« a: Activation/output from the network
*Measures the squared difference between the
predicted and true outputs

22



Learning with gradient descent in single slide

Key ldea:
*A small change in weights (Aw) leads to a change in cost (AC)

Approximation: AC =~ VC - Aw
*To minimize cost, choose Aw to move in the opposite direction of

the gradient: VY
s Aw =-nVC Qw
\\ \\““...' ¥
Gradient Descent Update Rule: N\ T0e0e s

T

M0 5 5T
‘Weights:w - w — nadC/ow &‘S"“ ")’W 'l
‘Biases:b - b — naC/db §§ :

*n: learning rate (controls step size) 2

Stochastic Approach: vy L
sInstead of full dataset, use mini-batches to estimate gradients
*Faster and scalable for large datasets

Epoch:
*One full pass over the training set
*Multiple epochs gradually refine weights and biases

23



Learning with gradient descent

1. Start with Random Initialization:
« Randomly set initial weights w and biases b
« Calculate the initial cost C(w, b)

24



Learning with gradient descent

1. Start with Random Initialization:
Randomly set initial weights w and biases b

Calculate the initial cost C(w, b)

2. Relate Weight Changes to Cost Change:
Small changes in weights affect the cost:
« AC = (0C/ow1)Aw, + (OC/0w,)Aw, + (0C/0w;3)Aws;

3. Express as Gradient Dot Product:
The partial derivatives form the gradient of C:

+ VC = (3C/dw1,dC/dws, OC /dw3)T
« Then:AC = VC - Aw

Q Y
" ’y F1(
gq':' y 1 4
8682, |
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Learning with gradient descent

1. Start with Random Initialization:
« Randomly set initial weights w and biases b
« Calculate the initial cost C(w, b)

2. Relate Weight Changes to Cost Change:

« Small changes in weights affect the cost: “ [

« AC = (0C/ow1)Aw, + (OC/0w,)Aw, + (0C/0w;3)Aws;
3. Express as Gradient Dot Product:

» The partial derivatives form the gradient of C: i “., 4 , %, |'
* VC = (0C/0w4,0C/0w,, OC/Ow3)" |
+ Then:AC ~ VC - Aw 3 E
4. Choose Aw to Minimize Cost: o L
« Set Aw =-1VC (move in direction of steepest descent) 0 T :

« Update rule for weights: 1
e w =w—nVC
5. Update Bias Similarly:
 Biasupdate: b’ = b — nVC
Summary:
By computing the gradient of the cost, we iteratively update w and b in small steps (scaled by learning
rate n) to reduce the cost and improve the network’s performance.

26



Stochastic Gradient Descent

Gradient Over Full Dataset:
*Exact gradient:

¢ VC=-%,VC(x)
« Where n = total number of training examples

27



Stochastic Gradient Descent

Gradient Over Full Dataset:
*Exact gradient:

¢ VC=-%,VC(x)
« Where n = total number of training examples

« Computing this for large datasets is slow and expensive $0 'l ‘
\ ] 4 |
i i ion: \ b [
Stochastic Approximation \ \i\\‘“.::", ,” ”’Z// ‘l (
AR %
*Use a mini-batch of m random samples (m « n): k‘ 7 |

« VC = %Zx VC (x) over mini-batch

*Average gradient over mini-batch = average gradient over entire dataset & 0‘\\ /
*This approximation is faster and computationally efficient U Py

Weight Update Rule Using Mini-Batch:
‘w = w — (1/m) Xy 0C(x) /0w
*b = b — (n/m) %, 9C(x)/0b

28



Backpropagation

YOU KNOW, T
DONT THINK
MATH S A
SQENCE. |
THINK TS
A RELIGION.

YEAH. ALL THESE EQUATIONS
ARE LIXE MIRACLES. YO
TAXE TWO NUMBERS AND WHEN
YOU ADD THEM, THEY MAGICALLY
BECOME ONE NEW NUMEER. /
NO ONE CAN SAY HOW (T
HAPPENS. YOU EATHER BELIEVE
T OR You DONT.

My

gl S

THIS WHOLE Book 1S FulL
OF THINGS THAT HAVE TO
BE ACEPTED ON FAITH!
TS A
RELIGION !
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Backpropagation: Notation

layer 1 layer 2 layer 3

wi—k is the weight from the k** neuron

in the (I — 1)*" layer to the 7' neuron
in the I'" layer

30



Backpropagation: Notation

layer 1 layer 2 layer 3

wi—k is the weight from the k** neuron

in the (I — 1)*" layer to the 7' neuron
in the I'" layer

layer 1

layer 2

layer 3
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Backpropagation: Cost function
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Backpropagation

a1 b w” A — wl gkl C= Zy a”

a® _G'[}L"L) 3{;5 _ (

- y)
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Backpropagation

— L2

W Wb n g g C=2 e
L _ (L oC I

e A

aL—l aL
oC
v —— = 2(a" —
aC  dal aC L .
0zL 0zt dal o (%) -2(a” ~v)
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Backpropagation

al-1 bE 't S W Gi= Z —a’
= o(z* -
( ) aaL )
ab1 al
ocC . |
@ 9ak 2(a Y)
oC dal oC

o el i L )
L L
00 02 00 00 500ty aa )
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Backpropagation

alt bk w’ JO R S Y/ C= Z —a"
acC
al = o(2t T 9(gk —
) Sal (a y)
- Q—Qﬂ D
y acC P
) @ gz = 20" =)
aCc  da* OC I
9zt 9zl fal o'(z) -2(a" ~y)
- aC 8z* da* aC L-1)
@ dwLl ~ OwL 9z~ dak o'(2") - 2(a" ~ )

aC 0z dak ac_l o () - 2(a" — 3)
6L — bl Bz dak Y
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Backpropagation




Backpropagation

aL—E bL_l wL_l
5
oc
&? = 2[3 y}
aC  dak aC . i
— — z +2 —_
OzL Ozt Oal o'(27) - 2(a y)
3{3' 32:‘[‘ =1 3H-L -1 aZ:L 30 L— IL— L
Pl T = Bul 1 AT aalT g = 0w o
aC 81 all 8l aC . L 0C
et el wa il el A A L
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