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Today’s Agenda

• Previous Lecture: Support Vector Machine

• Decision Trees 
• Random Forest

• Application: SUM

• Data and Features
• Feature Selection

• Classifier Evaluation
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Learning Objective

• Understand the concept of non-linear classifiers

• Understand the principles of tree classifiers

• Be familiar with the tree node impurity measurement

• Understand how to construct random forests from trees

• Be familiar with commonly used feature selection methods

• Apply Sw and Sb metrics to determine feature quality

• Apply train-test-split to evaluate the performance of a model
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Support Vector Machine

• What is the overall goal?
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Support Vector Machine
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Support Vector Machine

• hypothesis: the decision boundary is a linear model of the 
input vector 𝒙: 

𝒘𝑻𝒙 + 𝑏 = 0

• loss:

min
1

2
𝒘 𝟐

                                                                s.t. 𝑦𝑖 𝒘𝑻𝒙𝒊 + 𝑏 − 1 ≥ 0 𝑖 = 1,2 … 𝑛 
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SVM Dual Optimization (Optional)
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SVM Inference

• I have trained my SVM model 𝑔 𝒙  on red and blue points, 
what is the predicted label of the yellow point?

• Class +1

• Class -1

• Class 0.5

• We can’t decide
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SVM with Soft Margins

• Applied when classes are slightly overlapped
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SVM with Soft Margins

• What if the classes highly overlap?
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XOR Problem

• How to train a SVM (or any models) for such data?
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Solution 1

• Assign an arbitrarily complex decision boundary (with magic)
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Solution 2

• Apply feature transformation (e.g., kernelize an SVM)
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Solution 3

• Combine more than 1 linear models (a prototype of MLP)
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Solution 4

• Partition with rectangles
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Non-linear classifiers

• designed to cope with non-linearly separable classes

• Commonly used NLCs:
• Kernelized SVMs

• Decision trees and random forests

• Multi-layer perceptron

• (Deep) Neural network

• ……
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Decision Tree

• The feature space is split into unique regions, corresponding 
to classes, in a sequent manner
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Decision Tree

• Classifying of a data sample is done by a sequence of 
decisions along a path of the tree 
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Decision Tree

• Splitting rule: every split must generate subsets that are 
more class homogeneous
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Decision Tree

• Splitting rule: every split must generate subsets that are 
more class homogeneous
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Decision Tree

• Splitting rule: every split must generate subsets that are 
more class homogeneous
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Decision Tree

• Splitting rule: every split must generate subsets that are 
more class homogeneous
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Decision Tree: Node Splitting

• Impurity measurements of a node t:
• Gini impurity

𝐼 𝑡 = 1 − ෍

𝑘=1

𝐾

𝑝(𝑦𝑘|𝑡)2

• Entropy impurity

𝐼 𝑡 = − ෍

𝑘=1

𝐾

𝑝(𝑦𝑘|𝑡)𝑙𝑜𝑔2𝑝(𝑦𝑘|𝑡)

25



Decision Tree: Node Splitting
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Left: original Gini compared with Entropy; Right: Gini*2 compared with Entropy



Decision Tree: Pseudo Code

• Begin with the root node t of the original dataset 𝑋𝑡 = 𝑋

• For each feature 𝑥𝑖:
• For each candidate value 𝑎𝑖𝑛 (n=1,2,3,…,):

• Divide the data into left node 𝑋𝑡𝑌 and right node 𝑋𝑡𝑁 by answering:
𝑥𝑖 < 𝑎𝑖𝑛

• Compute the Impurity decrease

∆𝐼 = 𝐼 𝑡 −
𝑁𝑡𝑌

𝑁𝑡
𝐼 𝑡𝑌 −

𝑁𝑡𝑁

𝑁𝑡
𝐼 𝑡𝑁

• Find the feature 𝑥𝑖  and value 𝑎𝑖𝑛 that lead to the most 
impurity decrease

• Continue splitting……
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Decision Tree: Stopping Criterion

• Splitting stops until one of the following happens:
• Using all possible splitting ways, we have:

∆𝐼 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

• 𝑋𝑡 is too small

• 𝑋𝑡 is pure now (i.e., contains only one class)

28



Decision Tree: a Demo

29

Source code: 
https://gist.github.com/WillKoe
hrsen/ff77f5f308362819805a3d
efd9495ffd



Decision Tree: Overview

• Size of the tree must be large enough but too large. 
Otherwise, it overfits to particular data details

• Trees have high variance. A small change in data often leads 
to a very different tree
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Decision Tree vs. MLP
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Tree MLP



Decision Tree vs. MLP

• Simpler decision boundaries

• Single feature value involves each 
stage

• Higher interpretability
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Interpretability

33Adapted from WI4635, TUDelft



Today’s Agenda

• Previous Lecture: Linear Classifiers

• Decision Trees
• Random Forest

• Application: SUM

• Data and Features
• Feature Selection

• Classifier Evaluation
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Random Forest
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Random Forest: Bagging

• Sample the original dataset 
with replacement 
• E.g., for the original set 

[1,2,3,4,5], we can sample 
[1,3,4,4,5]

• Create multiple tree classifiers, 
each with bagging. Summarize 
the results using majority vote.
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Random Forest: Random Features

• Each tree can pick only 
from a random subset 
of features

• This is to further ensure 
the independence
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Image source: towards data science



Random Forest

• Combining relatively uncorrelated classifiers together 
generally outperforms a single classifier

• Combining models also helps to reduce the variance

• With sufficient trees, RF can achieve comparable 
performance as neural networks

• However, interpretability is gone
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Semantic Urban Meshes

SUM: A benchmark dataset of Semantic Urban Meshes, ISPRS 2021
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SUM: Features

• Eigen features
Linearity: 

𝜆1−𝜆2

𝜆1

Sphericity: 
𝜆3

𝜆1

Curvature change: 
𝜆3

𝜆1+𝜆2+𝜆3

Verticality: 1 − |𝒏𝟑 ∙ 𝒏𝒛|

• Elevation features
Relative elevation: 𝑧 − 𝑧𝑚𝑖𝑛
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• Other features
Colors, local color variance

Mesh area, triangle densities

……



SUM: Performance
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SUM: Visual Results
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Data and Features

• Will more features lead to better performance?

45Image Source: https://www.mathworks.com/help/stats/visualize-high-dimensional-data-using-t-sne.html



Data and Features

• Curse of dimensionality
• Too few samples in too high dimensional space

• Computation complexity

• Feature correlations
• 1+1 is not always larger than 2
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Feature Selection

• How to measure if a feature subset is good or not?
• The best is to measure actual classification performance. However, 

it can be expensive

• How could we select the most important features?
• Limit the dimensionality (i.e., number of features)

• Retain the class discriminatory information

48



Feature Selection

• Scatter matrices for feature selection criterion:
• Within-scatter matrix:

𝑆𝑤 = ෍

𝑘=1

𝐾
𝑁𝑘

𝑁
Σ𝑘

• Between-scatter matrix:

𝑆𝐵 = ෍

𝑘=1

𝐾
𝑁𝑘

𝑁
(𝝁𝒌 − 𝝁)(𝝁𝒌 − 𝝁)𝑇

K: total number of classes
𝝁: mean of all samples
𝝁𝒌, Σ𝑘: mean and covariance matrix of per-class samples
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Feature Selection

• There’re several ways of combining them, e.g.,

𝐽 =
𝑡𝑟(𝑆𝐵)

𝑡𝑟(𝑆𝑤)
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Feature Selection

• We want to select d out from p features, and choose the 
subset with optimal criterion value

• How many possible subsets in total?
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Feature Selection

• Sub-optimal searching methods
• (1) Choose the best individual d features

• (2) Forward search:
• Starting with the empty set, each time add one feature that optimizes the 

entire chosen feature set

• (3) Backward search:
• Starting with the whole set, each time drop one feature that optimizes the 

rest of the feature set 
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Feature Selection

• Besides feature selection, you can also extract new features 
by dimension reduction methods (e.g., PCA)

• Feature engineering is the focus of most classical ML 
methods
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Classifier Evaluation

• Overall accuracy
• Out of 500 objects, how many are correctly classified?

• Mean per-class accuracy
• How is the accuracy of each class? Average them.

• Confusion matrix
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Classifier Evaluation

• Is it good to measure the performance of the classifier in the 
training dataset? Why?
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Classifier Evaluation

• Classification accuracy over training set can be biased

• We’re interested in true accuracy of the classifier
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Classifier Evaluation

• Train-test split

58

Training and testing 
on the same set will 
give a good 
classifier, but will 
yield a biased 
estimate of the 
model

A small independent 
test set yields an 
unbiased, but
unreliable
accuracy estimate 
for a well-trained 
classifier

A large, 
independent test set
yields an unbiased 
and reliable 
accuracy estimate
for a badly trained 
classifier

7:3, 6:4, 5:5 ratios 
are commonly used 
in practice



Classifier Evaluation

• Sometimes a validation set is introduced
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Classifier Evaluation

• Cross Validation: making full use of data
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Learning Curve

• Analysing errors w.r.t the size of the training set

61Learning curve (trained using one classifier)



Feature Curve

• Analysing errors w.r.t the model complexity

62Feature curve (trained using a fixed dataset)



Questions?

63
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