

3D geoinformation

Department of Urbanism
Faculty of Architecture and the Built Environment
Delft University of Technology

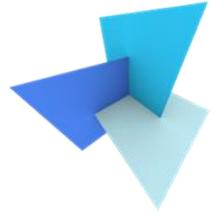
GEO5017

Machine Learning for the Built Environment

Lecture Support Vector Machine

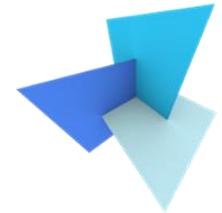
Shenglan Du

Today's Agenda



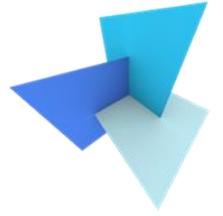
- Previous Lecture: Classification
- Support Vector Machine
 - Standard SVM
 - Soft Margin SVM
 - Multi-Class SVM
- SVM Applications

Learning Objective



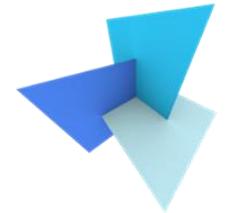
- Explain the principles of SVM
- Explain the concept of generalizability and overfitting
- Derive the objective function and the constraints of a binary SVM classifier
- Identify support vectors in a well-trained SVM classifier
- Be familiar with the refined constraints of SVM with soft margins
- Be able to apply SVM to a geospatial data processing task

Today's Agenda



- Previous Lecture: Classification
- Support Vector Machine
 - Standard SVM
 - Soft Margin SVM
 - Multi-Class SVM
- SVM Applications

Classification



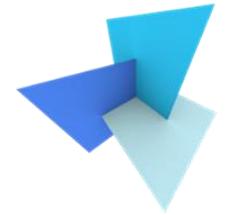
- An application of point cloud semantic classification

$$\boldsymbol{x} = (x, y, z, r, g, b, \text{intensity} \dots)^T$$

\boldsymbol{y} :

- High vegetation
- Low vegetation
- Building
- Road
- Grass land

Classification

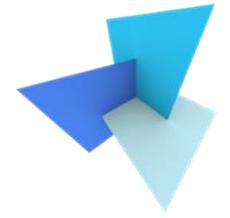


- Given a set of input data represented as feature vectors:

$$\mathbf{x} = (x_1, x_2, x_3 \dots x_p)^T$$

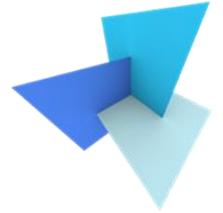
- Classification aims to specify which category/class \mathbf{y} some input data \mathbf{x} belong to

Classification



- 3 steps

Classification (3 Steps)

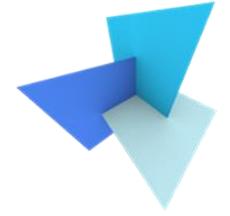


- Find a suitable model / hypothesis (assumption)
- Define a loss function (goal)
- Feed the data samples into the model and search for the model parameters that cause the least loss (try to fit the goal)

Classification



- Standard linear classifier:
 - *hypothesis*:
 - *loss*:
- Logistic regression:
 - *hypothesis*:
 - *loss*:



Classification

- Standard linear classifier:
 - ***hypothesis***: the decision boundary is a linear model of the input vector x :

$$\mathbf{w}^T \mathbf{x} + b = 0$$

- ***loss***: least squares
- Logistic regression:
 - ***hypothesis*** : the posterior probability is a logistic sigmoid of a linear function of x

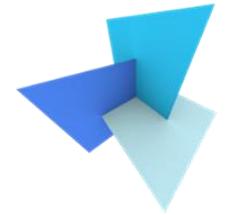
$$P(y|x) = \sigma(\mathbf{w}^T \mathbf{x} + b)$$

- ***loss***: maximum likelihood

Today's Agenda

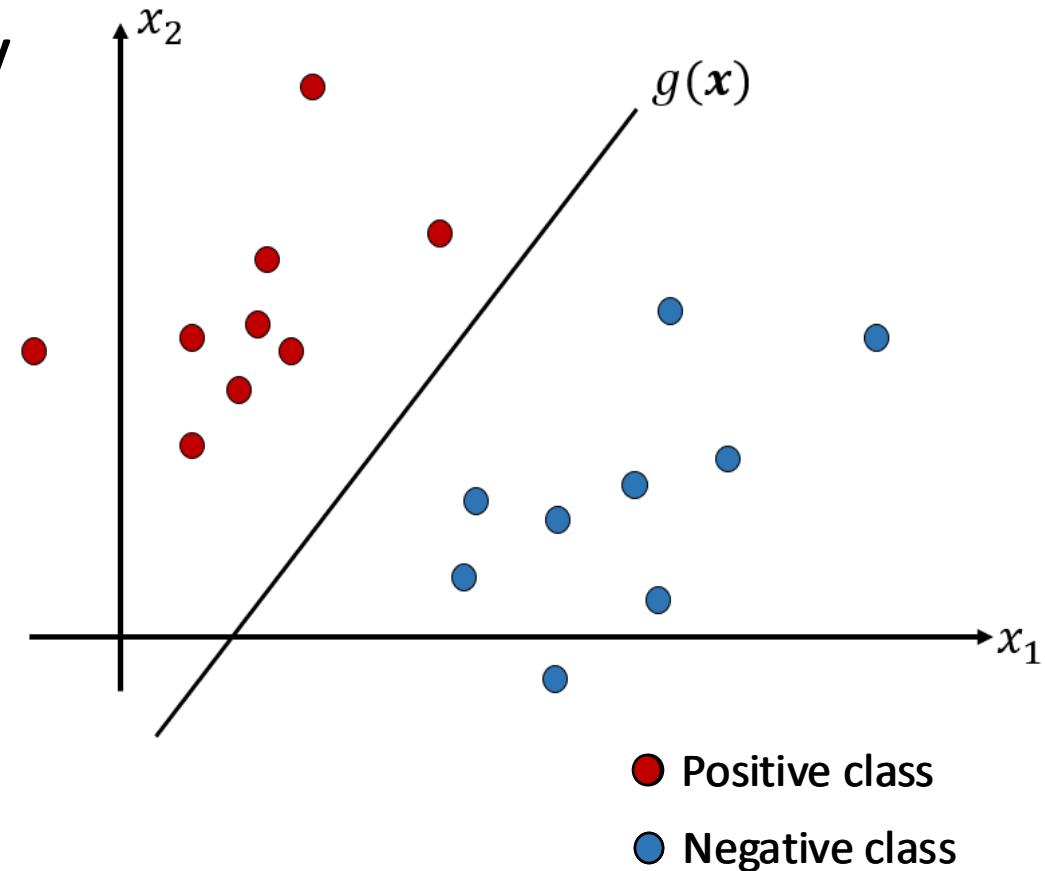
- Previous Lecture: Classification
- Support Vector Machine
 - Standard SVM
 - Soft Margin SVM
 - Multi-Class SVM
- SVM Applications

Support Vector Machine

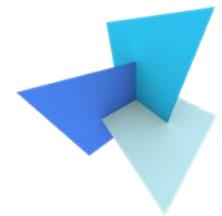


- Consider a two-class (+1, -1) linearly separable task
- We aim to find a decision boundary for the input vector space:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0$$



Support Vector Machine

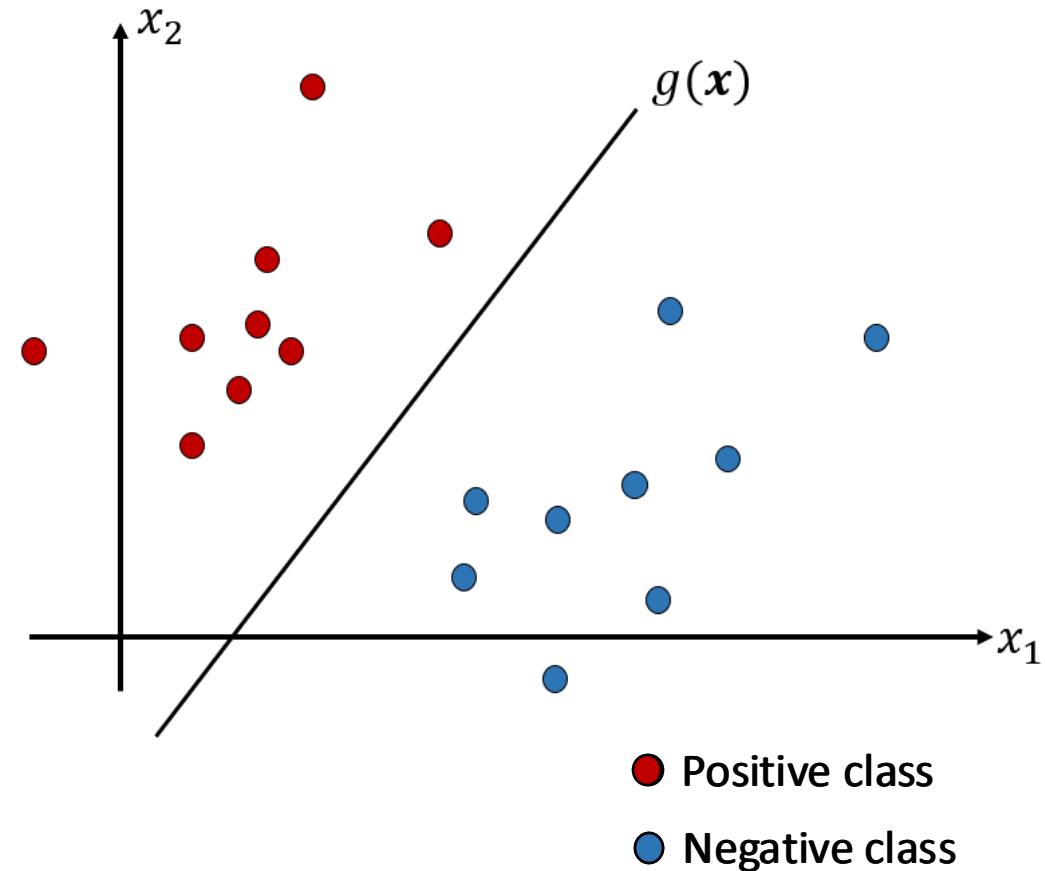


- Decision boundary:

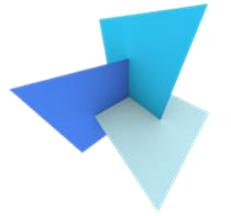
$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0$$

- My prediction tool:

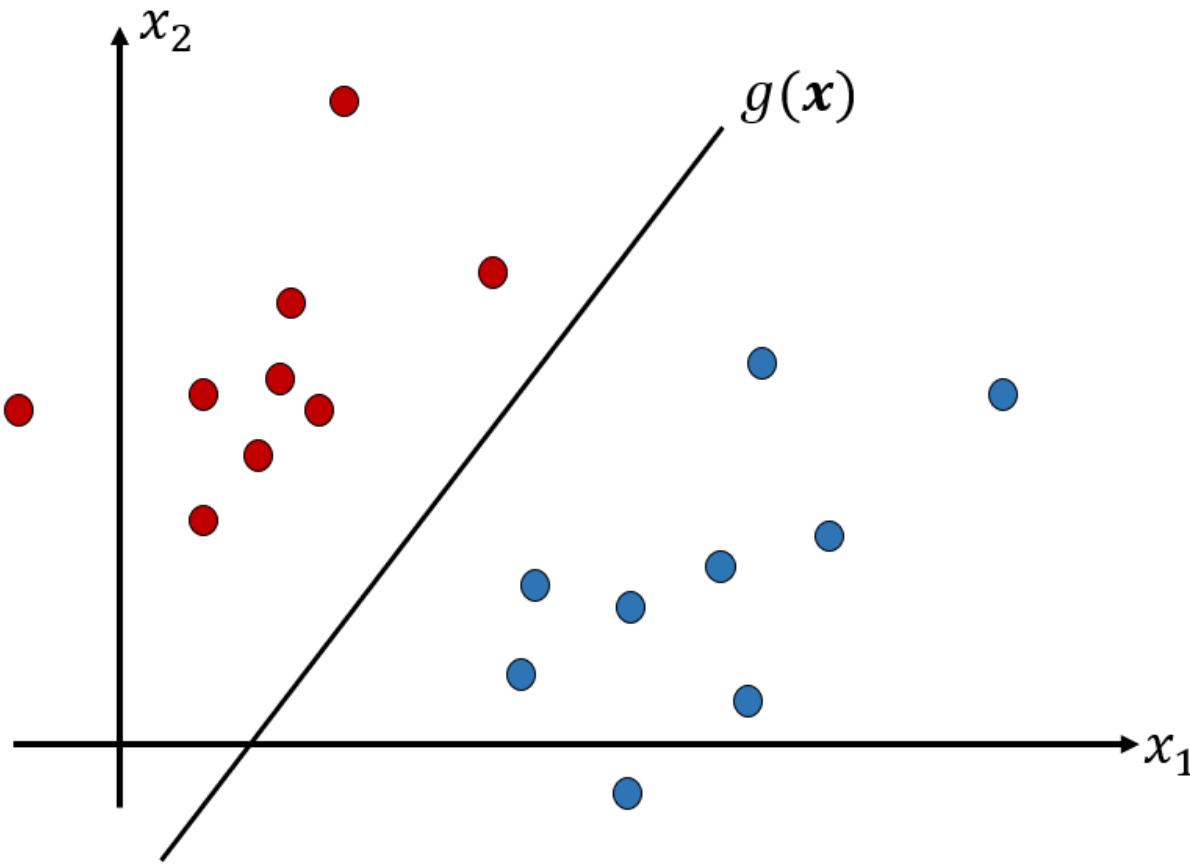
$$\bar{y} = \text{sign}(\mathbf{w}^T \mathbf{x} + b)$$



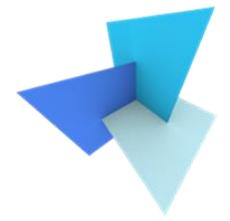
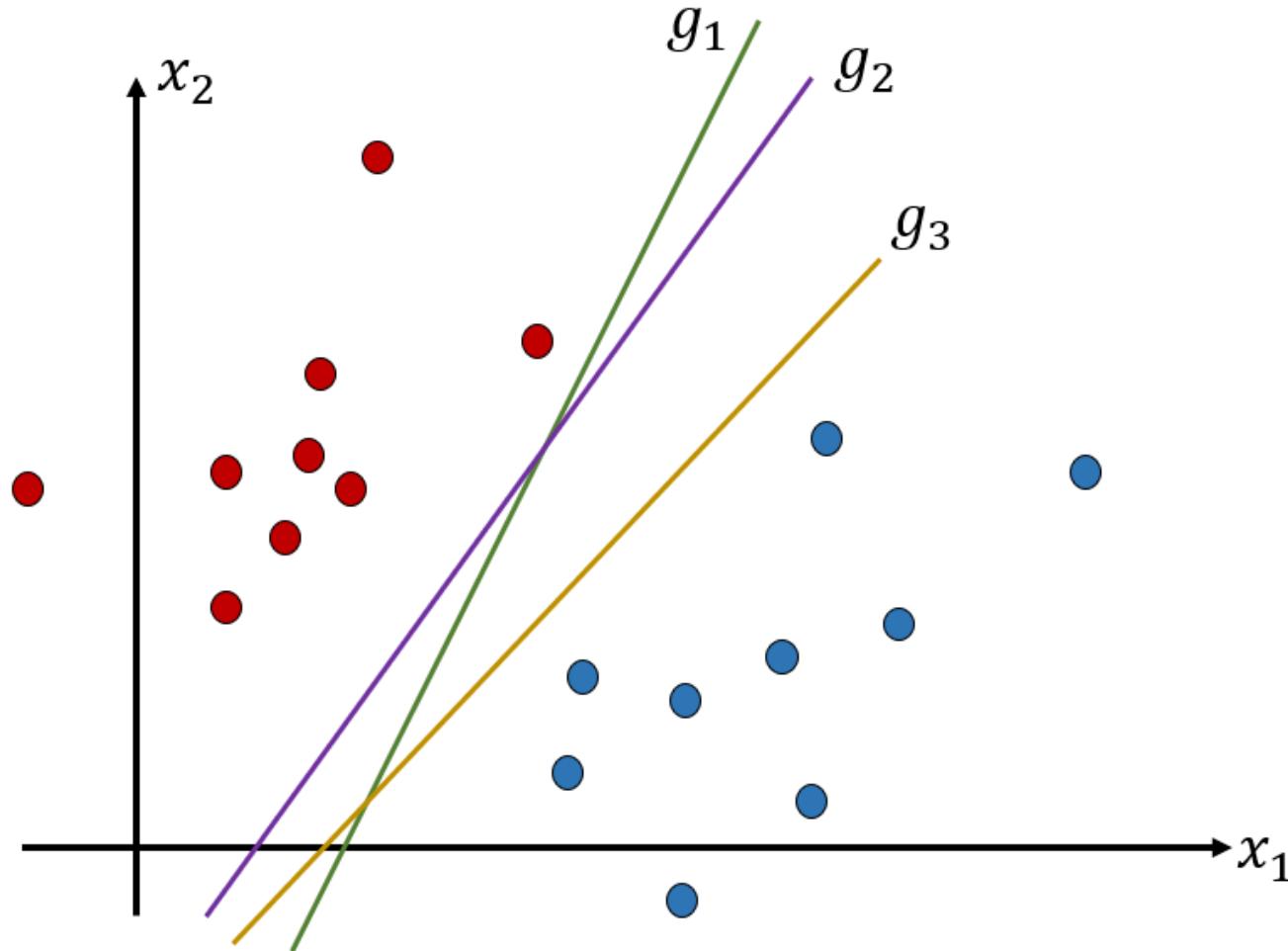
Support Vector Machine



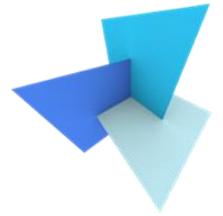
- Is g unique?



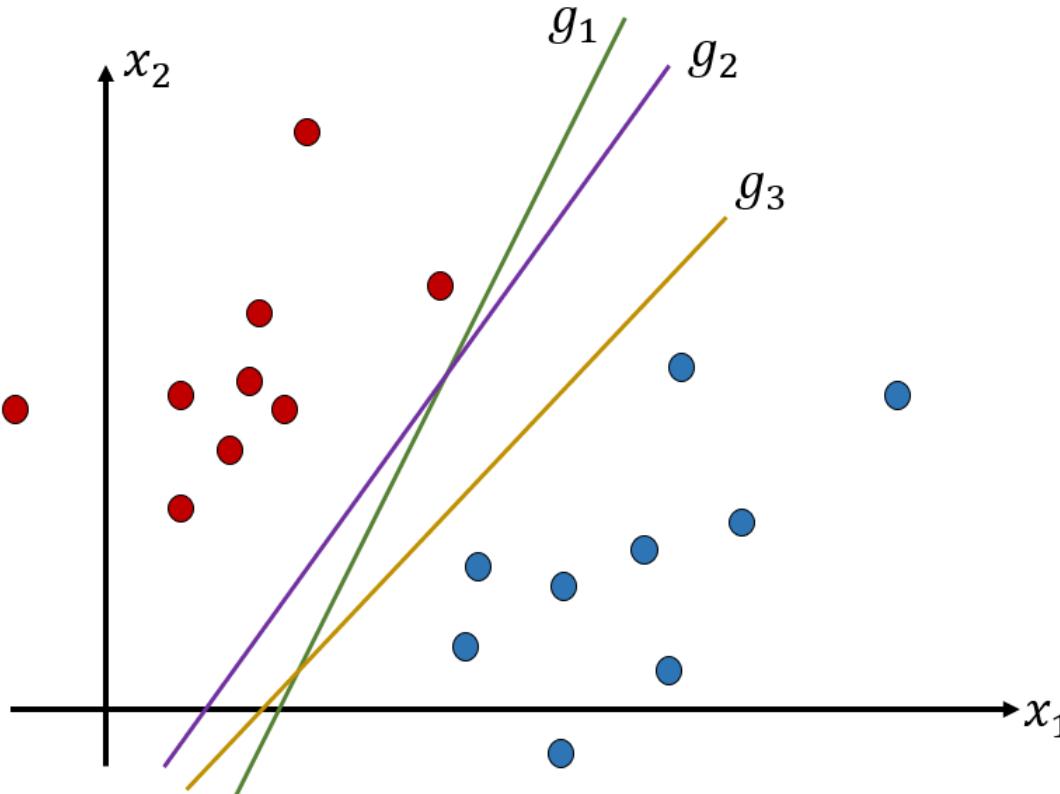
Support Vector Machine



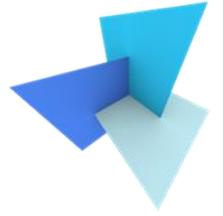
Support Vector Machine



- Which g is the best decision boundary?

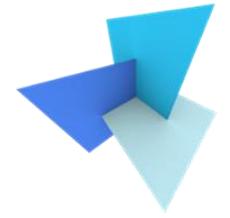


Support Vector Machine: Generalizability

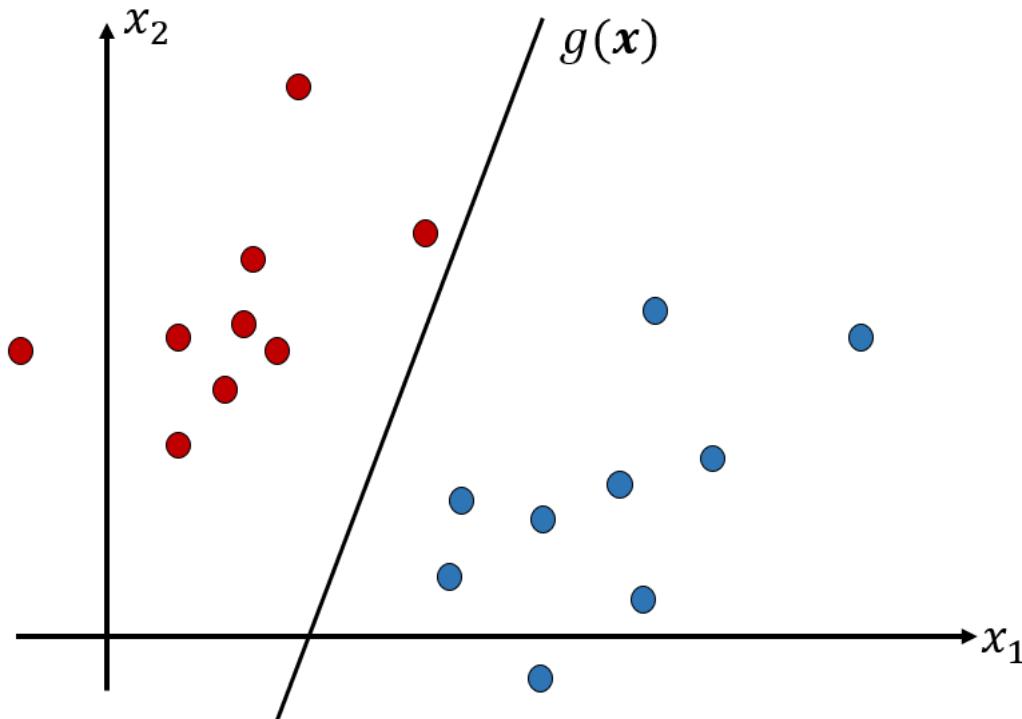
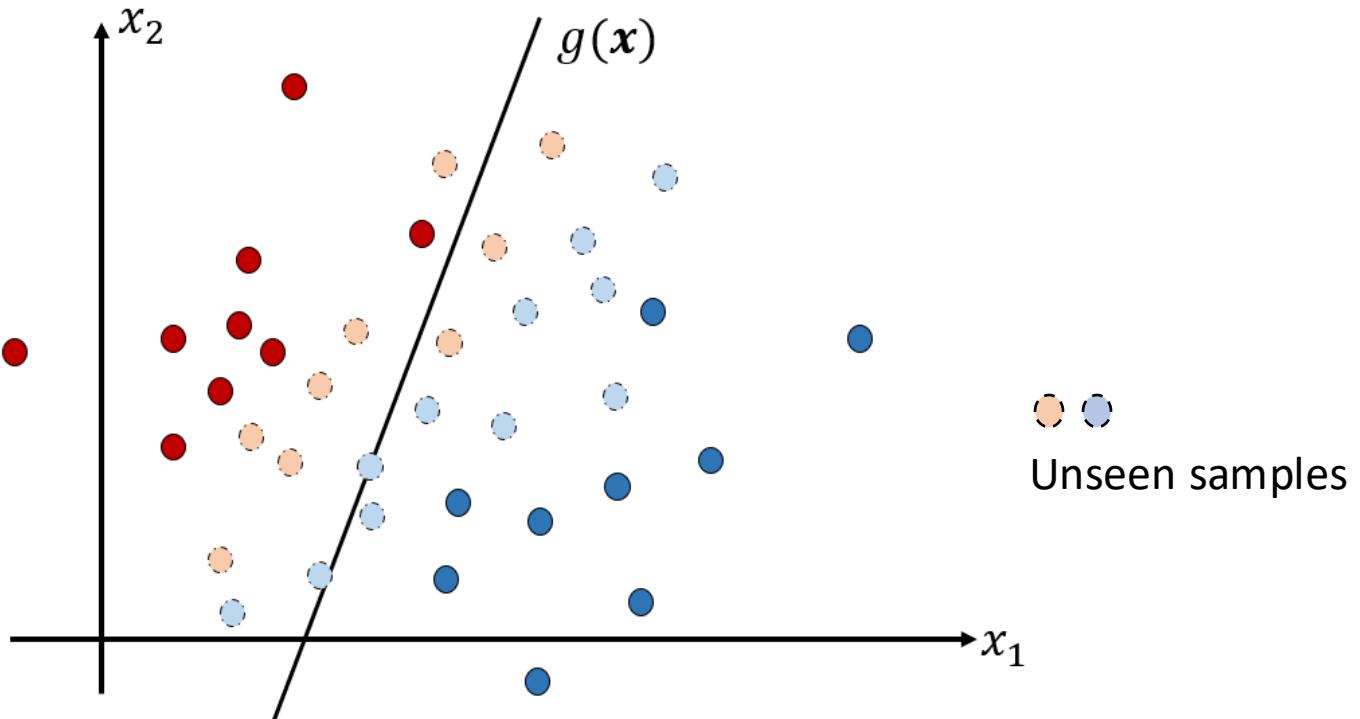


- Trained on known samples, how well does the classifier perform / extend to unseen data samples?
- If a classifier performs very well on the known samples, but poorly behaves on unknown samples, we refer this to “overfitting”

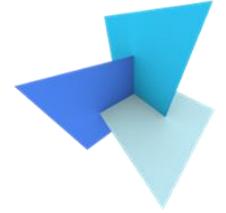
Support Vector Machine: Generalizability



- A bad $g(x)$ leads to severe overfitting



Support Vector Machine: Generalizability



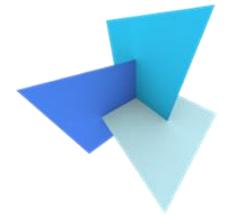
- Natural solution: feed as much data samples to the classifier as possible. However, we cannot retrieve all possible samples from the real world
- Another solution provided by SVM: given the limited data samples, find the most general $g(\mathbf{x})$

Today's Agenda



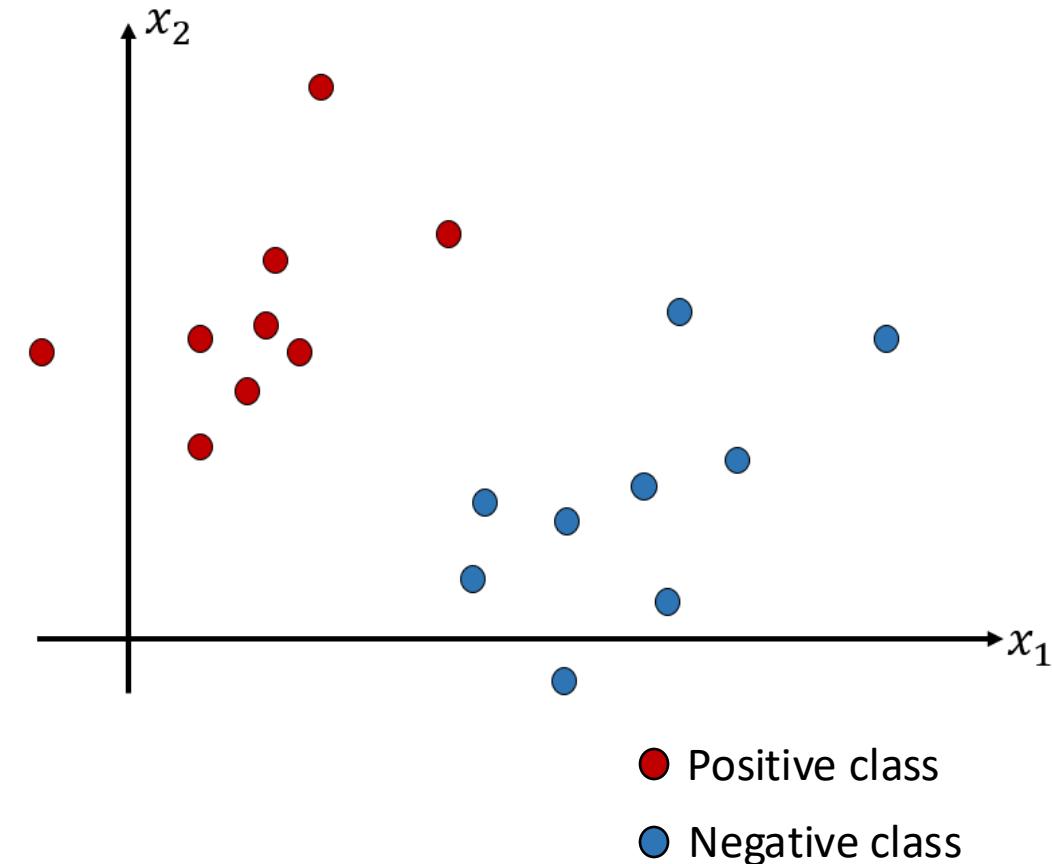
- Previous Lecture: Classification
- Support Vector Machine
 - Standard SVM
 - Soft Margin SVM
 - Multi-Class SVM
- SVM Applications

Support Vector Machine



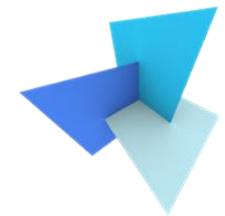
Trick: constrain the weights so that the output is always larger than ... or smaller than ...

$$\begin{cases} \mathbf{w}^T \mathbf{x}_i + b \geq \dots & \text{if } y_i = +1 \\ \mathbf{w}^T \mathbf{x}_i + b \leq \dots & \text{if } y_i = -1 \end{cases}$$



Positive class
Negative class

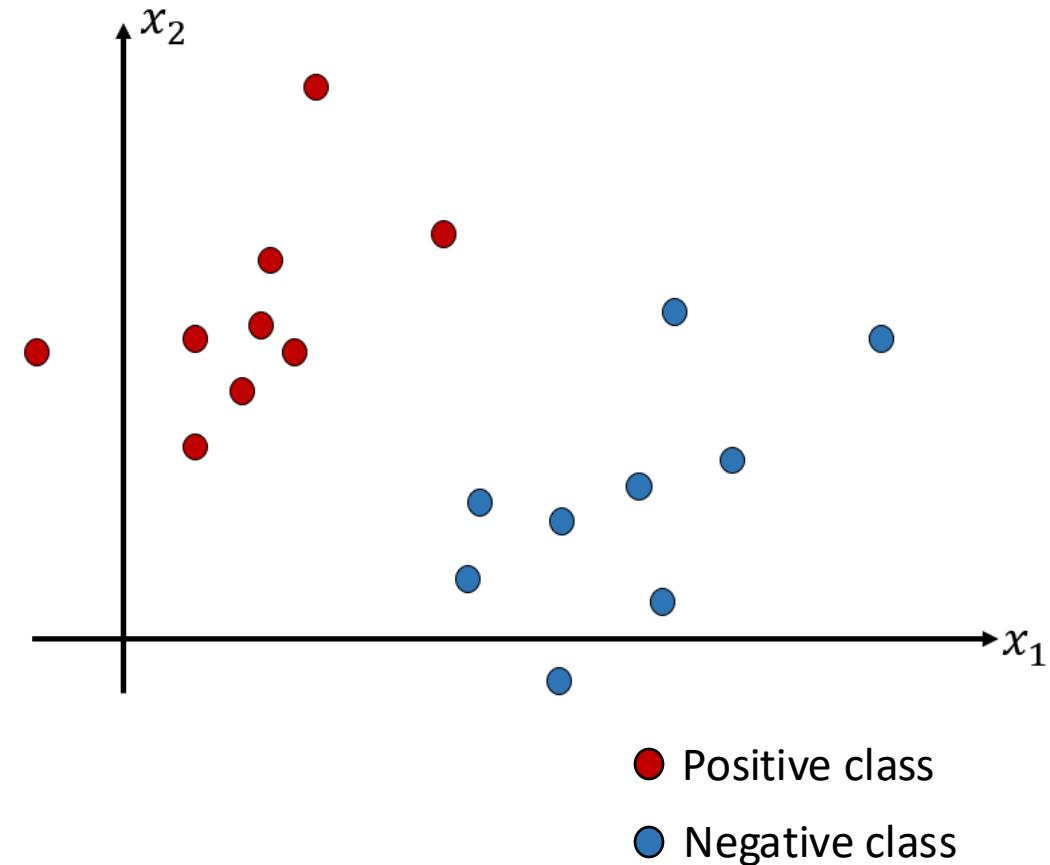
Support Vector Machine

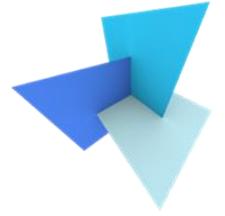


To ease the problem, I use 1.

$$\begin{cases} \mathbf{w}^T \mathbf{x}_i + b \geq +1 & \text{if } y_i = +1 \\ \mathbf{w}^T \mathbf{x}_i + b \leq -1 & \text{if } y_i = -1 \end{cases}$$

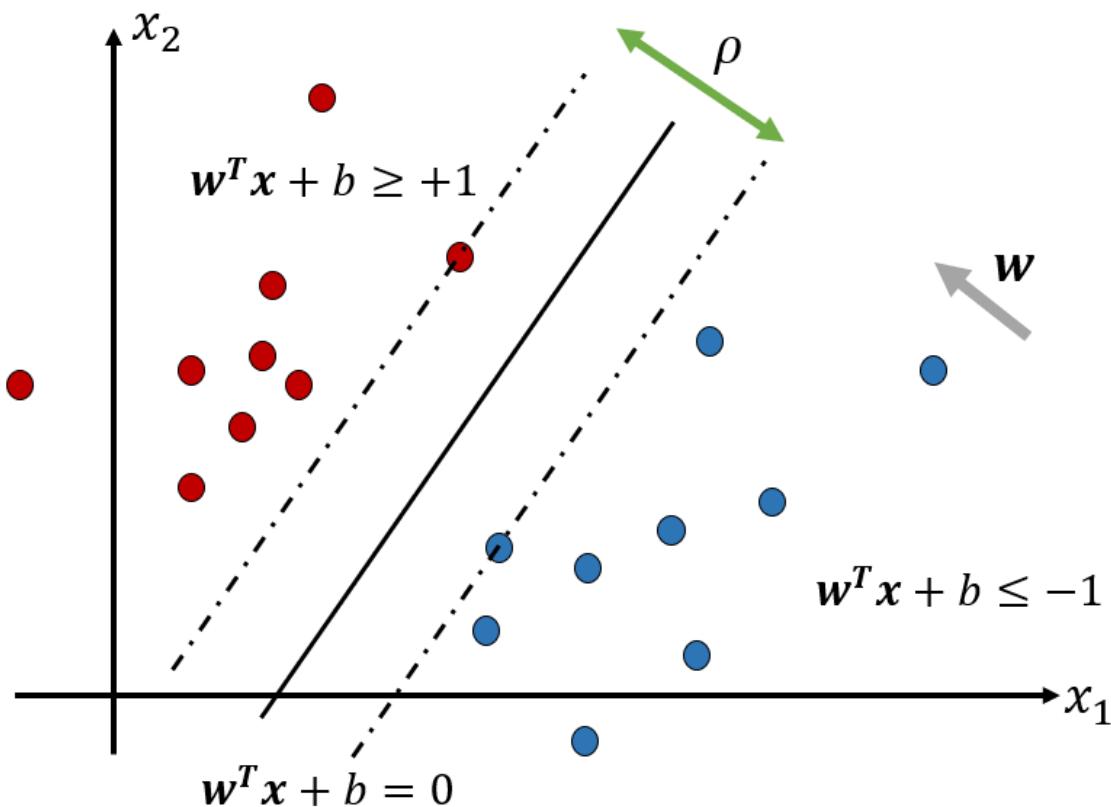
→ $y_i(\mathbf{w}^T \mathbf{x}_i + b) \geq 1$



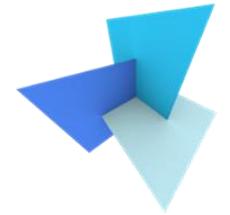


Standard SVM

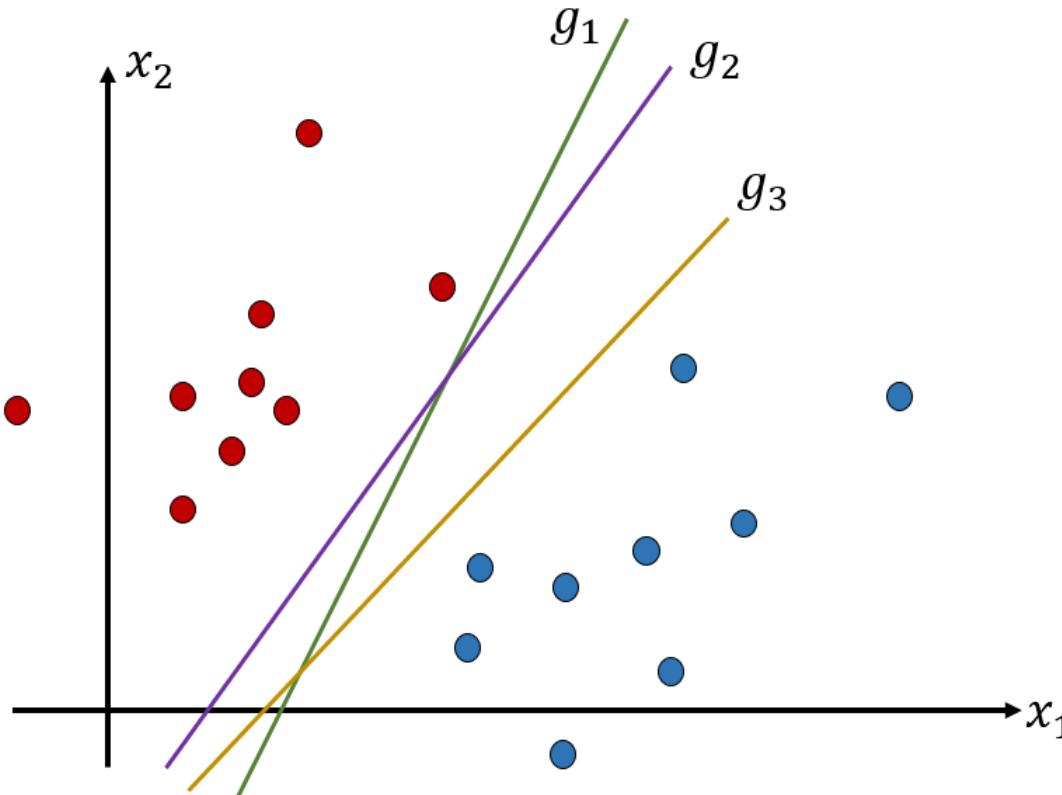
- Goal: to find a decision boundary that gives the maximum possible margin



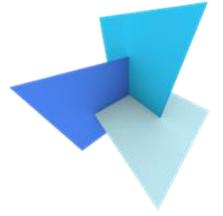
Support Vector Machine



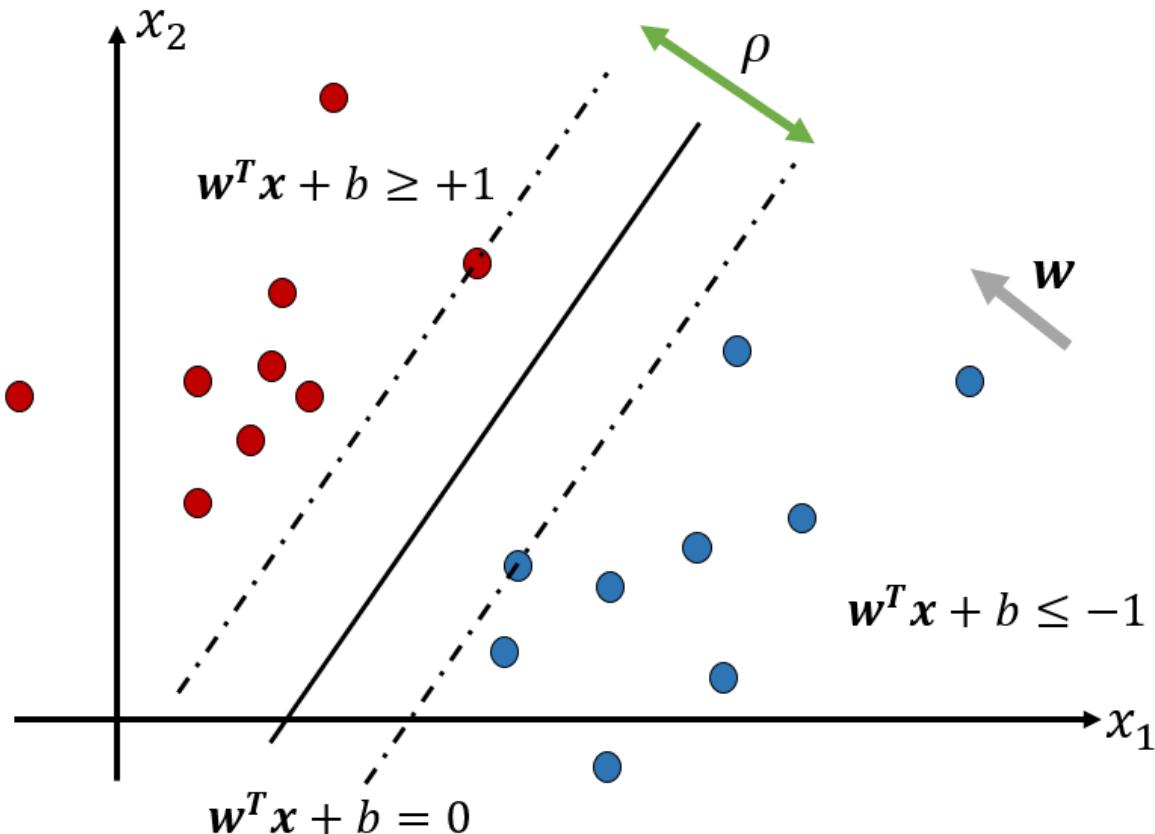
- Recap: which g is the best decision boundary?



Standard SVM: Margin



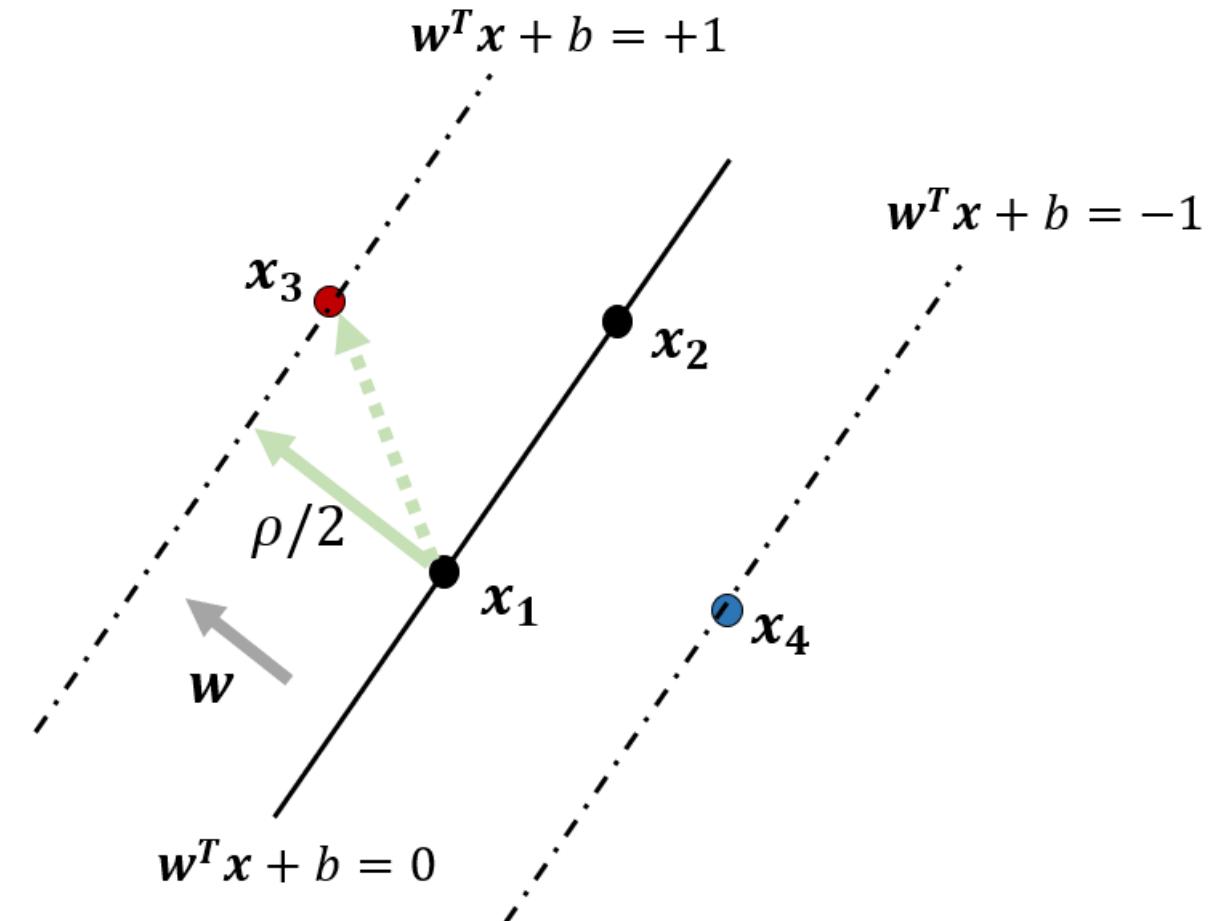
- What is the margin ρ ?



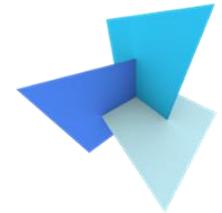
Standard SVM: Margin

Hint:

- w is orthogonal to the decision boundary
- make use of $x_1, x_2, x_3 / x_4$
- use projection on vectors



Standard SVM: Margin



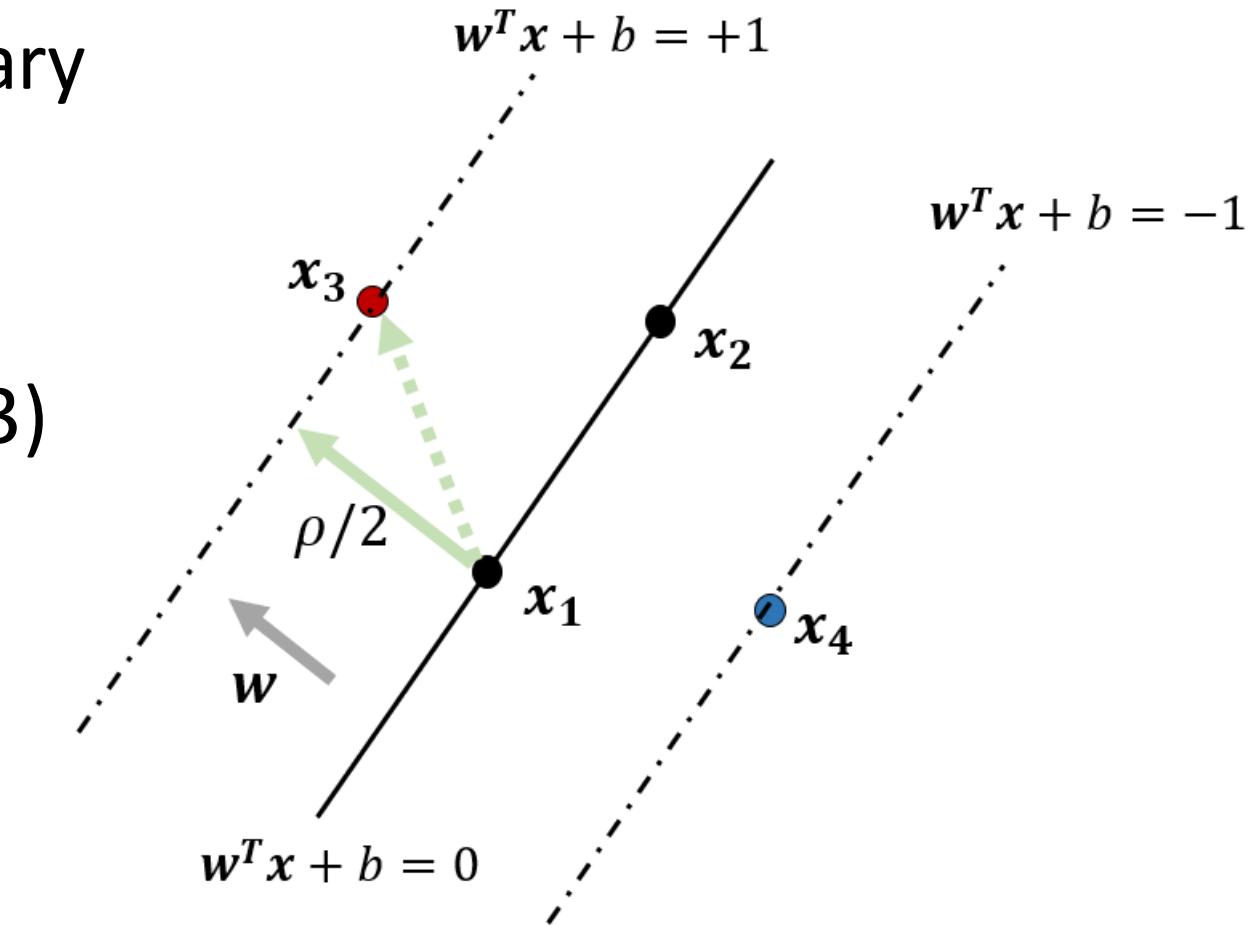
- w is orthogonal to the boundary

$$w^T(x_2 - x_1) = 0$$

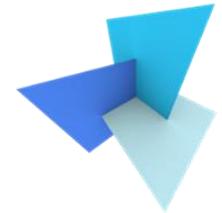
- $\rho/2$ is the projection of (x_1, x_3) over w

$$\rho/2 = \frac{w^T(x_3 - x_1)}{\|w\|} = \frac{1}{\|w\|}$$

$$\rho = \frac{2}{\|w\|}$$

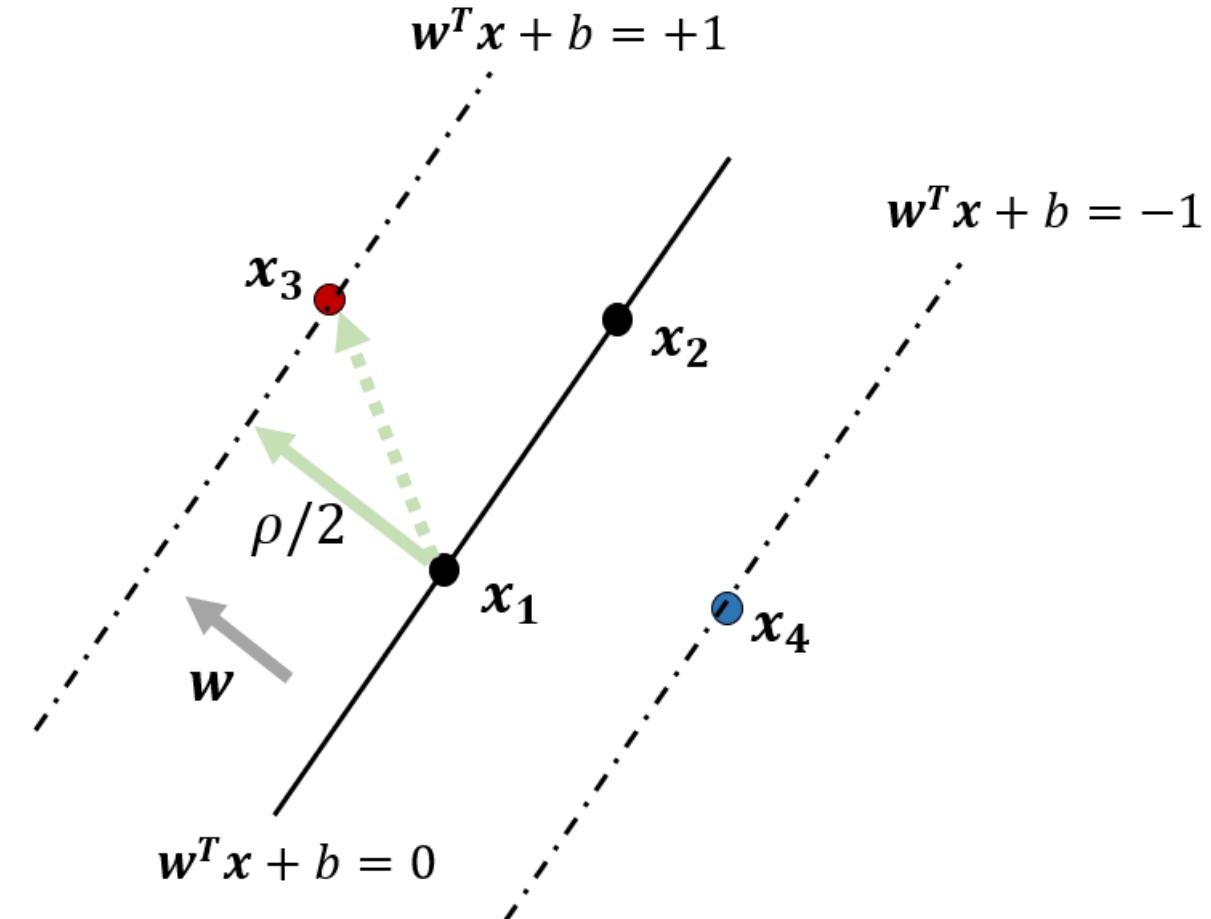


Standard SVM: Objective

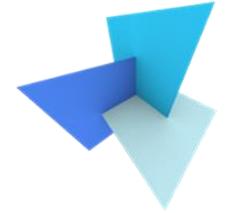


- $\rho = \frac{2}{\|w\|}$ is very challenging to maximize
- Instead, we minimize the L2 norm of w

$$\min \frac{1}{2} \|w\|^2$$



Standard SVM: Overall Formulation

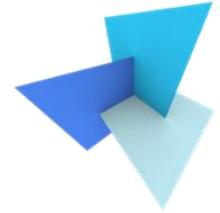


- The overall problem formulation:

$$\begin{aligned} & \min \frac{1}{2} \|\mathbf{w}\|^2 \\ \text{s.t. } & y_i(\mathbf{w}^T \mathbf{x}_i + b) \geq 1 \quad i = 1, 2, \dots, n \end{aligned}$$

- How to solve it? Can we use gradient descent?

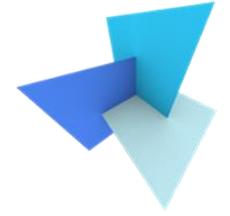
Standard SVM: Optimization (Optional)



- A constrained optimization problem can be solved by Lagrangian approach. By introducing Lagrangian multipliers λ_i and inserting the constraints with λ s back into the objective, we get:

$$L(\mathbf{w}, b, \lambda) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \lambda_i (y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1)$$

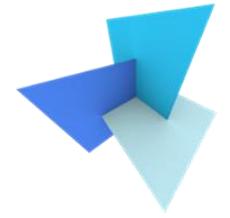
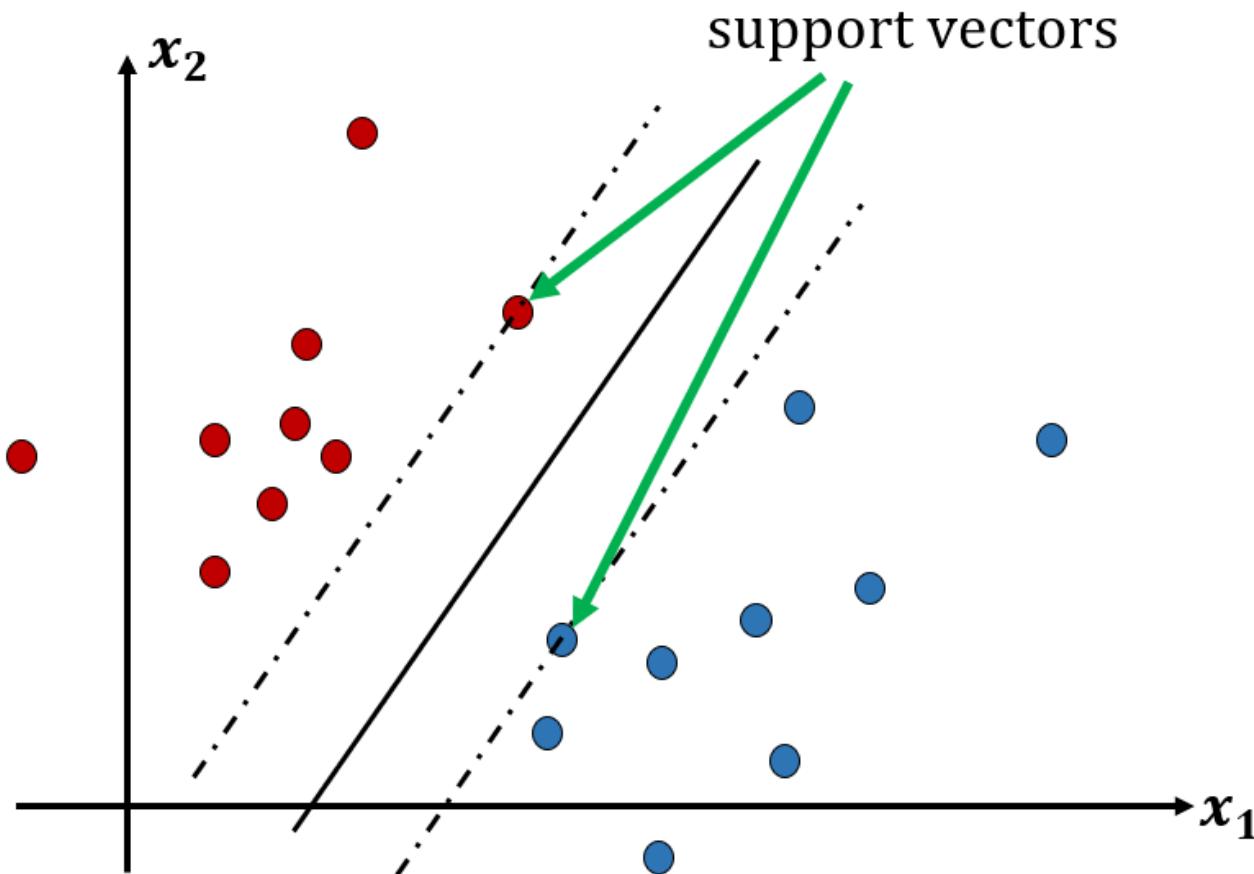
Standard SVM: Optimization



$$\mathbf{w} = \sum_{i=1}^n \lambda_i y_i \mathbf{x}_i$$

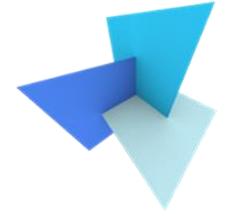
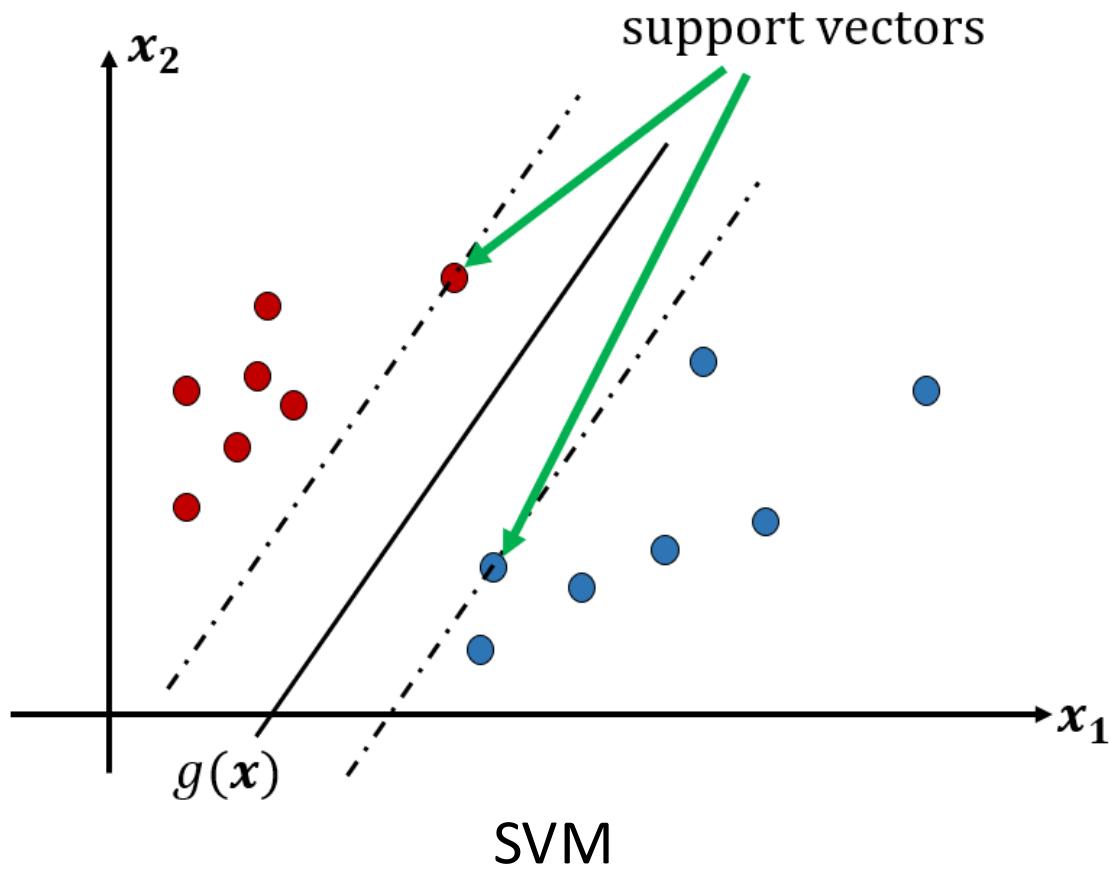
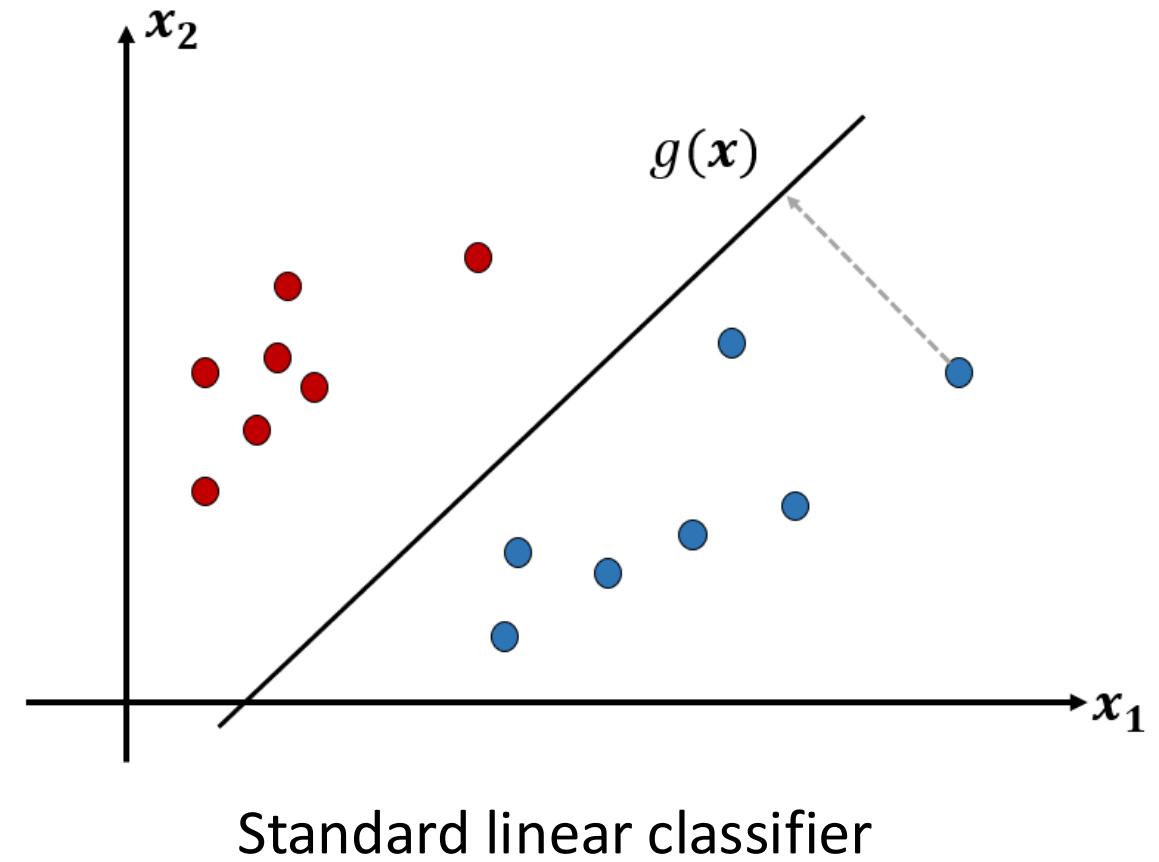
- After solving the problem, a lot of λ_i become 0
- Only those \mathbf{x}_i with non-zero λ_i contribute to \mathbf{w}
- These data samples are called the “*support vector*”

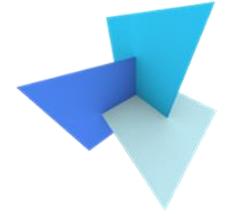
Standard SVM: Geometries



$$\mathbf{w} = \sum_{i=1}^n \lambda_i y_i \mathbf{x}_i$$

SVM vs. Standard Linear Classifier





Wrap-up

- ***hypothesis***: the decision boundary is a linear model of the input vector \mathbf{x} :

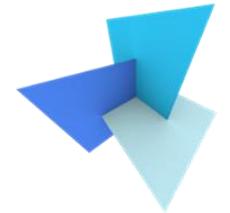
$$\mathbf{w}^T \mathbf{x} + b = 0$$

- ***loss***:

$$\min \frac{1}{2} \|\mathbf{w}\|^2$$

$$\text{s.t. } y_i(\mathbf{w}^T \mathbf{x}_i + b) \geq 1 \quad i = 1, 2, \dots, n$$

An alternative view (optional)



- *loss* can also be interpreted in another way

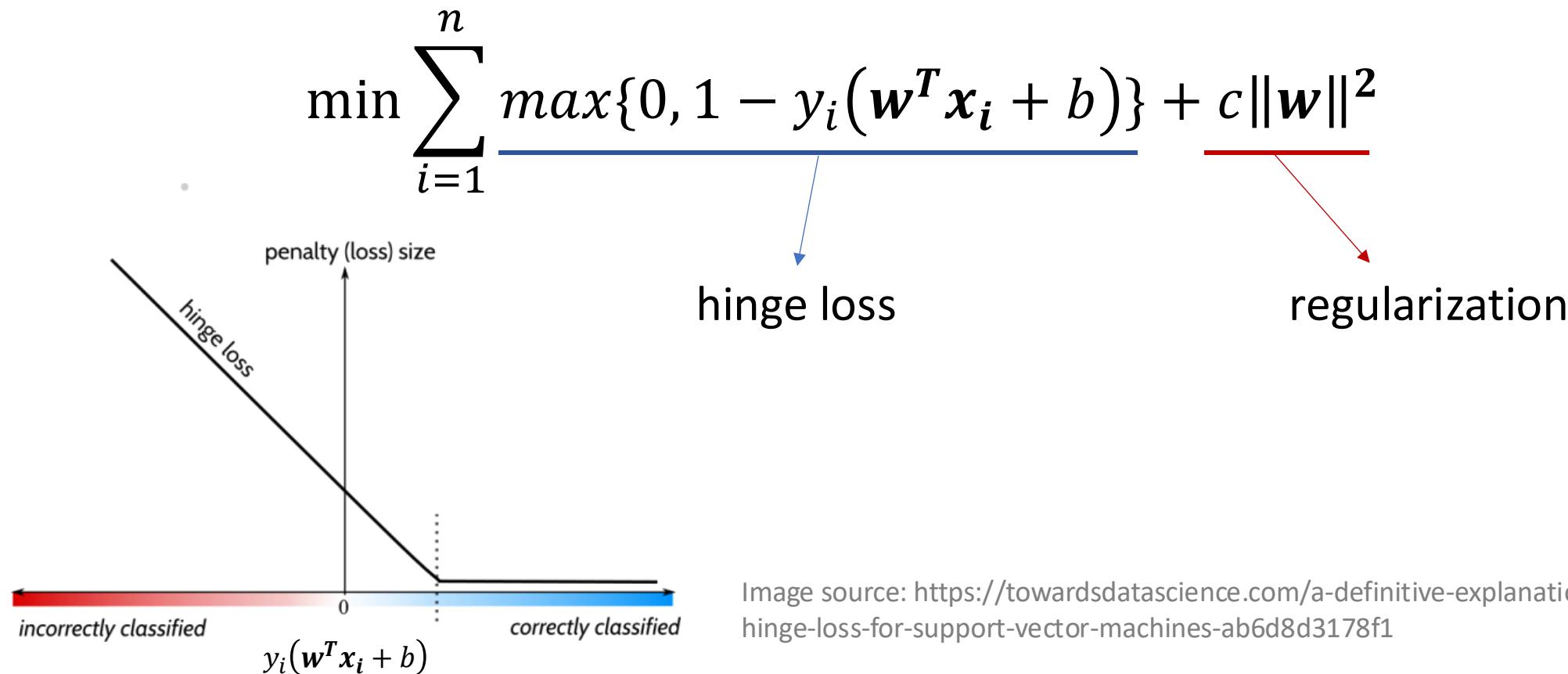


Image source: <https://towardsdatascience.com/a-definitive-explanation-to-hinge-loss-for-support-vector-machines-ab6d8d3178f1>

Optimization in ML



- General optimization problem

Example (1)

You have $6m^2$ land available that you want to use to grow potatoes and carrots.

- By growing potatoes, you can earn 3 euros per m^2 and 2 euros per m^2 for carrots.
- For potatoes, you need 2 liters insecticide per m^2 and 1 liter per m^2 for carrots.
- You have 8 liters insecticide available.

How much of the land do you use for potatoes and how much for carrots?

Decision variables:

$x_1 = m^2$ land for potatoes

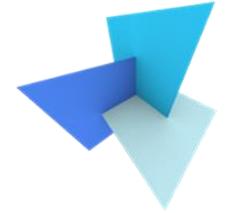
$x_2 = m^2$ land for carrots

LP formulation:

$$\begin{aligned} \max \quad & z = 3x_1 + 2x_2 \\ \text{s.t.} \quad & x_1 + x_2 \leq 6 \quad (1) \end{aligned}$$

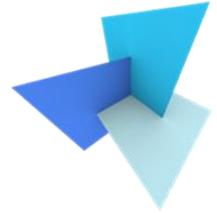
$$\begin{aligned} & 2x_1 + x_2 \leq 8 \quad (2) \\ & x_1, x_2 \geq 0 \end{aligned}$$

Optimization in ML



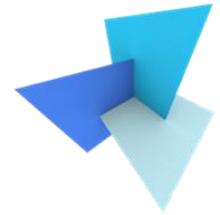
- Optimization vs. ML Optimization
 - In optimization, we trust data at hand
 - In ML, we involve data uncertainty. The ML method should work for another similar unseen dataset as well
- Therefore:
 - Stop early since finding an exact optimal is not necessary
 - Take into consideration that test data is different from training data, so as to avoid severe overfitting (e.g., regularization, training data augmentation.....)

Today's Agenda

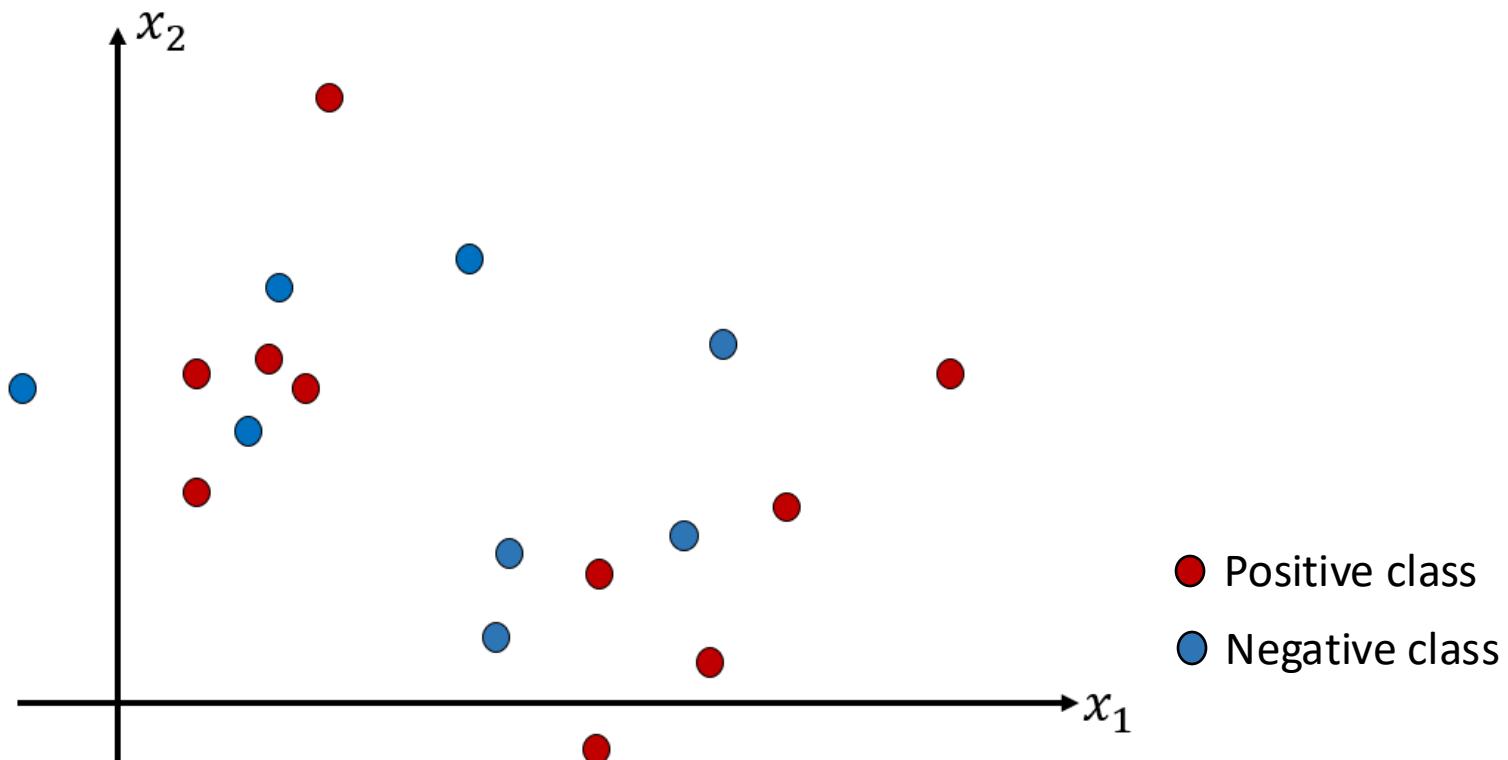


- Previous Lecture: Classification
- Support Vector Machine
 - Standard SVM
 - Soft Margin SVM
 - Multi-Class SVM
- SVM Applications

Soft Margin SVM

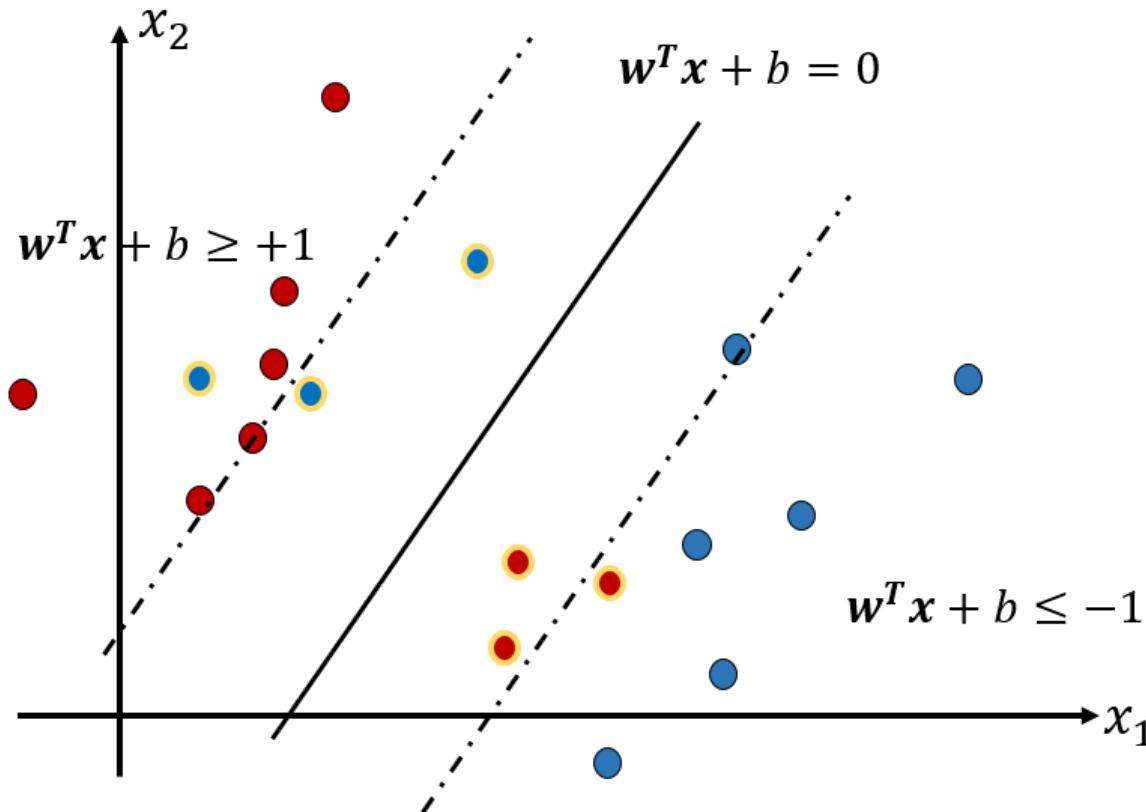


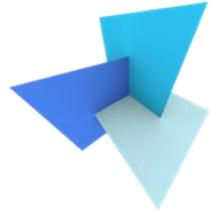
- If the two classes are not linearly separable.....



Soft Margin SVM

- Standard SVM leads to misclassification errors





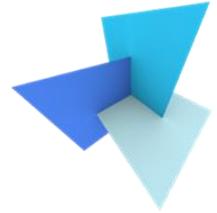
Soft Margin SVM

- We introduce slack variables ξ_i $i = 1, 2, \dots, n$.
- Soft margin SVM aims to solve:

$$\begin{aligned} \min \quad & \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i \\ \text{s.t.} \quad & y_i(\mathbf{w}^T \mathbf{x}_i + b) \geq 1 - \xi_i \quad i = 1, 2, \dots, n \\ & \xi_i \geq 0 \quad i = 1, 2, \dots, n \end{aligned}$$

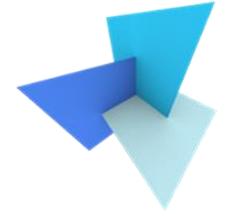
- C is a constant hyperparameter

Today's Agenda

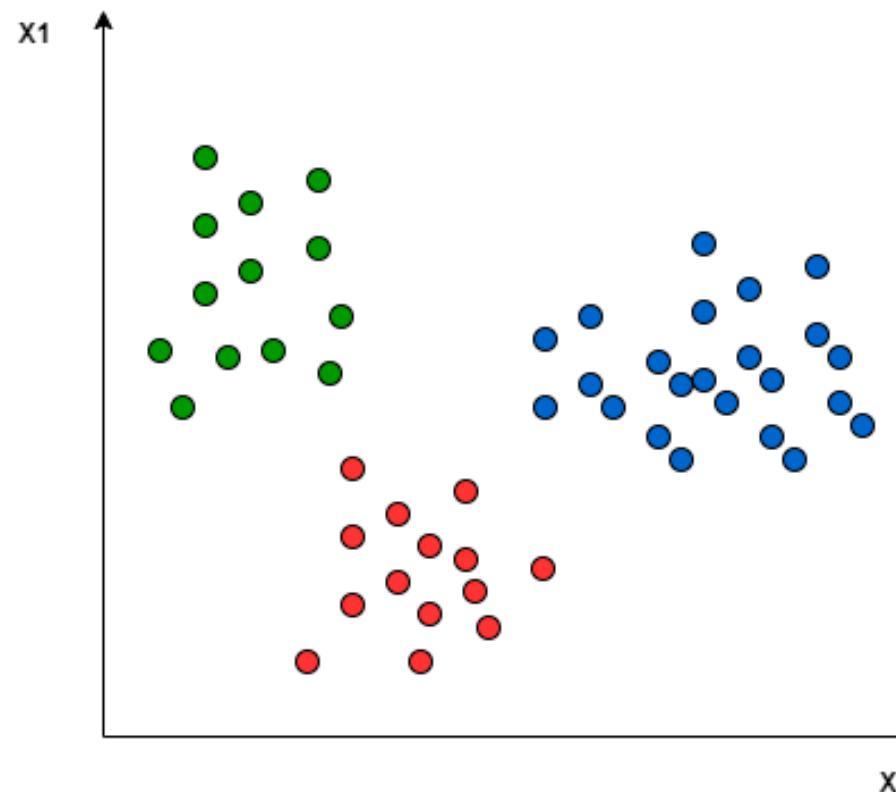


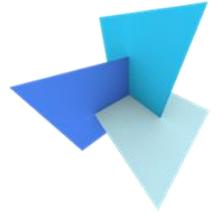
- Previous Lecture: Classification
- Support Vector Machine
 - Standard SVM
 - Soft Margin SVM
 - Multi-Class SVM
- SVM Applications

Multi-Class SVM (Optional)



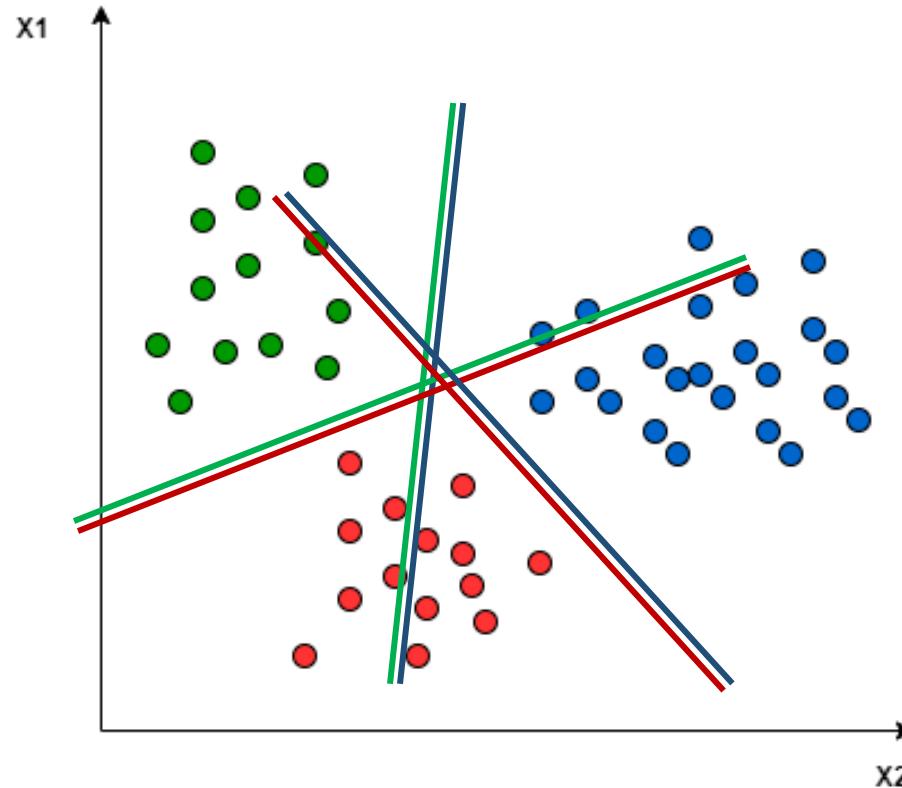
- Two-class problem can be easily extended to multi-class scenario by building multiple classifiers





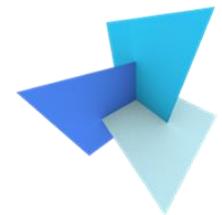
Multi-Class SVM (Optional)

- One-to-One: find the boundary between every two classes

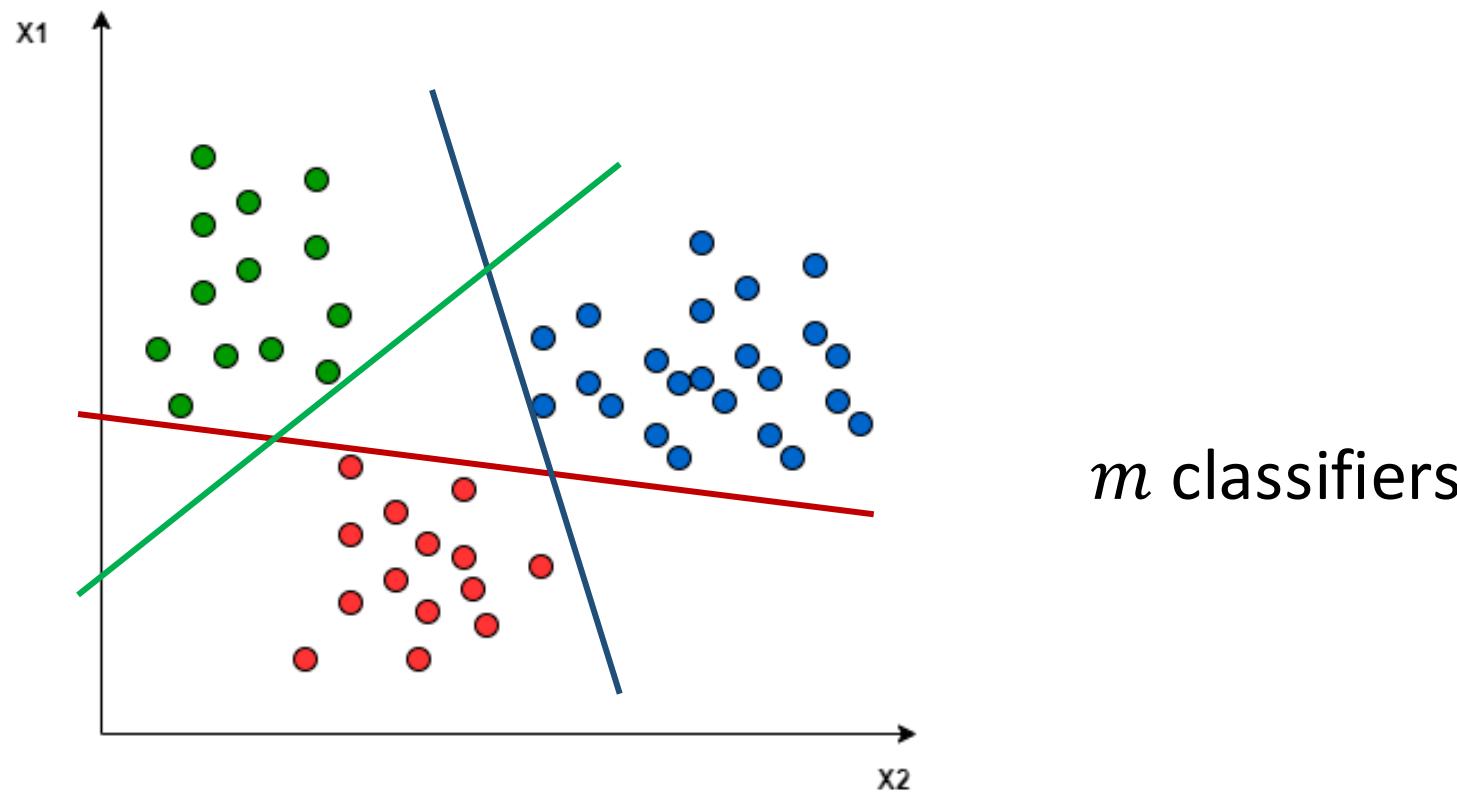


$\frac{m(m-1)}{2}$ classifiers

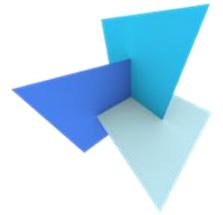
Multi-Class SVM (Optional)



- One-to-Rest: find the boundary between a class and rest

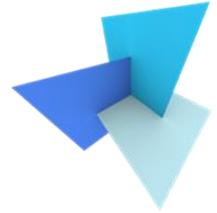


SVM Overview



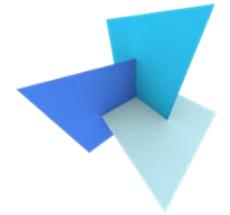
- Advantages:
 - Generalizes well in high-dimensional space with relatively low sample sizes
 - Little affected by data distribution and densities
- Limitations:
 - Computational expensive
 - Performs bad when classes are highly overlapped

Today's Agenda

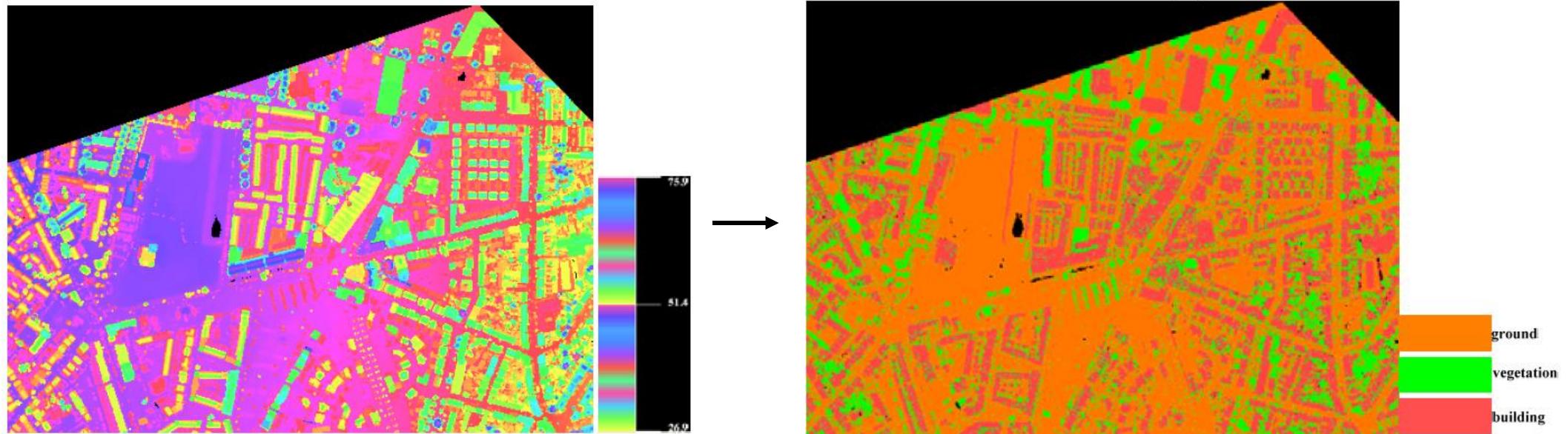


- Previous Lecture: Classification
- Support Vector Machine
 - Standard SVM
 - Soft Margin SVM
 - Multi-Class SVM
- SVM Applications

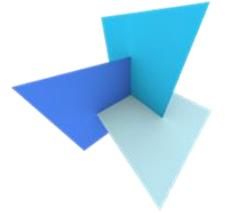
SVM for Point Cloud Analysis



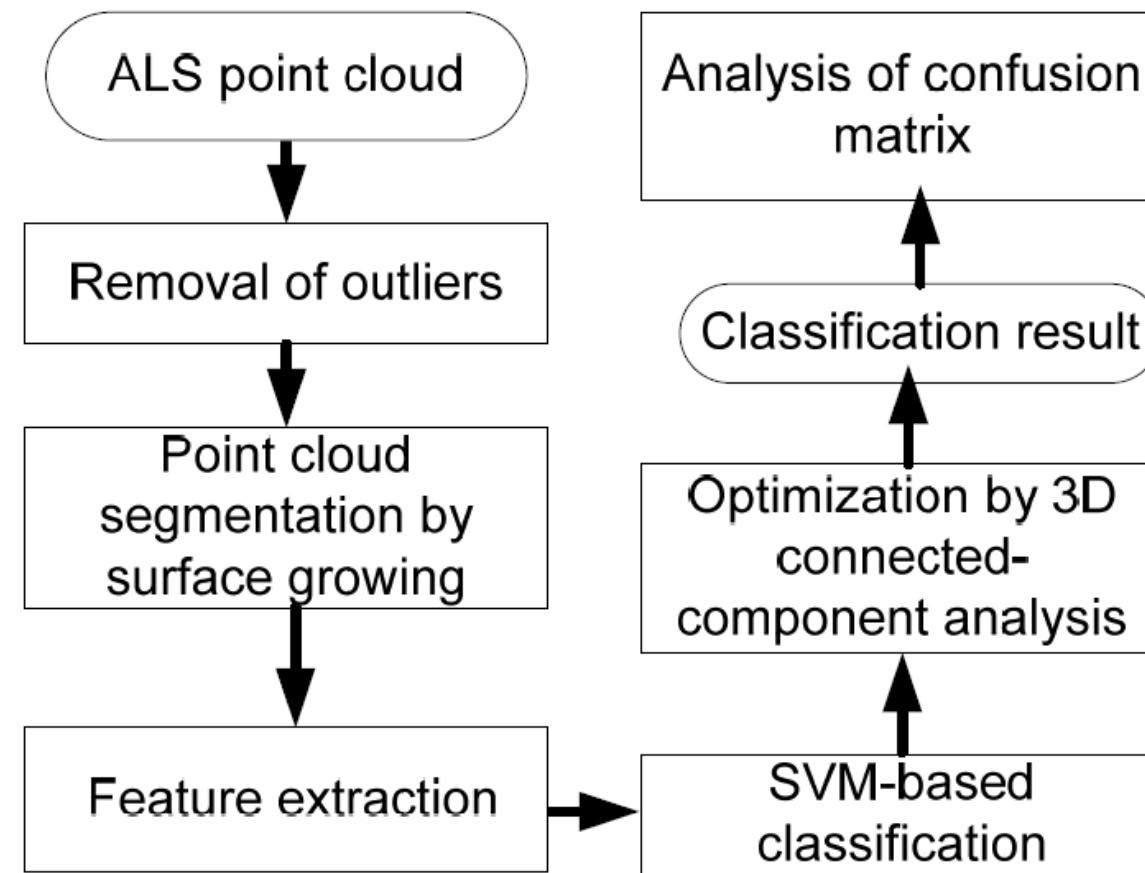
- Applying SVM to classify point clouds by assigning each point a semantic label



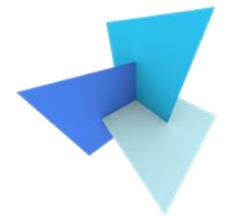
SVM for Point Cloud Analysis



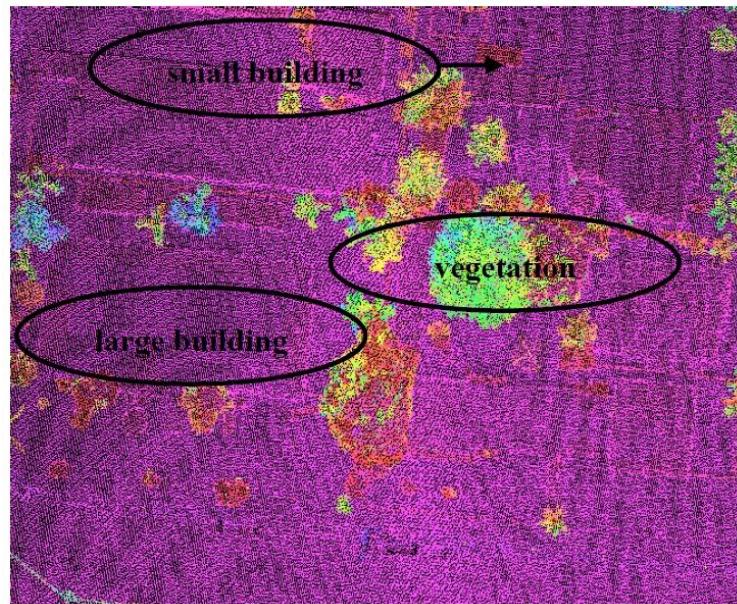
- Pipeline Overview



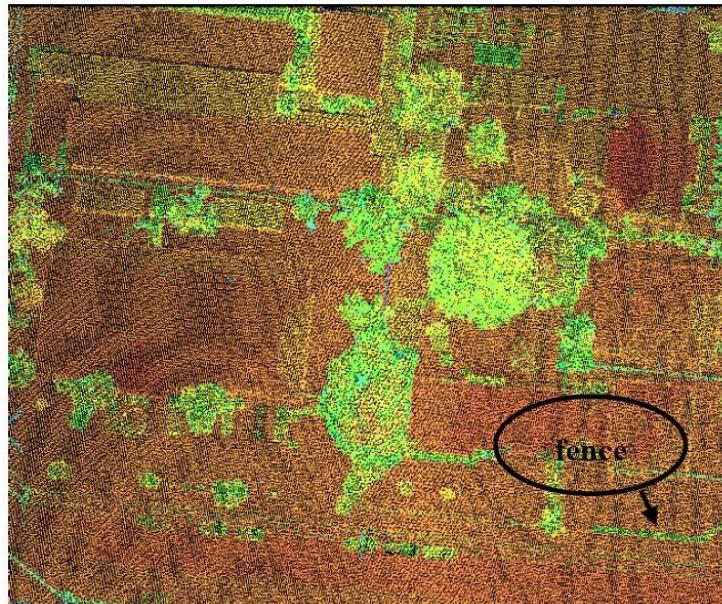
SVM for Point Cloud Analysis



- Feature engineering: geometry, echo, radiometry, topology



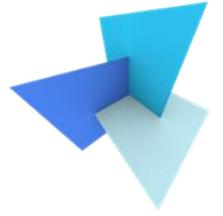
Average height difference
between first and last echoes



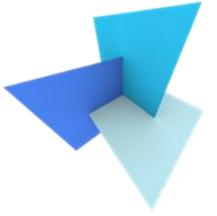
Average curve-ness

Average height difference
between boundary points
and lowest points

SVM for Point Cloud Analysis: Evaluation



	Class	Ground (Points)	Vegetation (Points)	Building (Points)	Vehicle (Points)	Powerline (Points)	Total (Points)	User Accuracy (%)
Ground (points)	Scene1	315,256	1,549	5,042	-	-	321,847	97.95
	Scene2	684,904	15,495	8,985	-	-	709,384	96.55
	Scene3	1,152,469	752	463	1	0	1,153,685	99.89
Vegetation (points)	Scene1	2,871	65,211	8,770	-	-	76,852	84.85
	Scene2	1,934	62,423	3,050	-	-	67,407	92.61
	Scene3	1,642	343,751	2,596	1,474	2057	351,520	97.79
Building (points)	Scene1	807	22,583	120,993	-	-	144,383	83.80
	Scene2	4,841	16,250	236,435	-	-	257,526	91.81
	Scene3	37	1,569	172,088	522	0	174,216	98.78
Vehicle (points)	Scene3	319	507	317	13,225	0	14,368	92.04
Powerline (points)	Scene3	0	1,268	0	0	6874	8,142	84.24
Total (points)	Scene1	318,934	89,343	134,805	-	-	543,082	-
	Scene2	691,679	94,168	248,470	-	-	1,034,317	-
	Scene3	1,154,467	347,865	175,464	15,222	8931	1,701,949	-
Producer accuracy (%)	Scene1	98.85	72.99	89.75	-	-	-	-
	Scene2	99.02	66.28	95.15	-	-	-	-
(%)	Scene3	99.83	98.82	98.08	86.88	76.97	-	-



Questions?