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2https://scikit-learn.org/stable/ 



Scikit-Learn

• A free machine learning library in Python, featuring:
• Classification
• Regression
• Clustering

• Supports algorithms such as SVM, Random forest, K-means, 
etc.

• Online documentation: https://scikit-learn.org/stable/ 
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Scikit-Learn: Getting Started

• Install using either pip or conda

• In case you would like to check your installation
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Scikit-Learn: SVM

• 3 versions of SVM classifiers are provided
• SVC: commonly used in practice

• NuSVC: similar to SVC, has slightly different yet equivalent 
mathematical formulations and parameter set

• LinearSVC: faster implementation of SVM, but can only adopt 
linear kernels
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A Complete SVC Classifier

• Documentation: 
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC

• User guide:
https://scikit-learn.org/stable/modules/svm.html#svm-classification
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Hyperparameters and Arguments

• C: the regularization hyperparameter

• kernel: a trick you can use to transform input features

• class_weight: specify the weight per class

•max_iter: hard limit on iterations within solver, or -1 for no 
limit.

• decision_function_shape: 
• ‘ovr’: one to rest, default

• ‘ovo’: one to one
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Support Vector Machine 
using Kernels
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Why Kernel SVM?

• Classification on a 1D feature space
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Why Kernel SVM?

• Transforming features to higher dimensions to fit g(x)
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Why Kernel SVM?

• Classification on a high-dimensional feature space

11Adapted from WI4635, TUDelft



Kernel SVM: How?

• Recall the SVM solution:

𝒘 = ෍

𝑖=1

𝑛

𝜆𝑖𝑦𝑖𝒙𝒊

• Bring this solution back to the model:

𝑓(𝒙) = 𝒘𝑻𝒙 + 𝑏 = ෍

𝑖=1

𝑛

𝜆𝑖𝑦𝑖𝒙𝒊
𝑻 𝒙 + 𝑏
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Kernel SVM: How?

• After applying a feature transformation function Φ 𝒙

𝑓 Φ(𝒙) = ෍

𝑖=1

𝑛

𝜆𝑖𝑦𝑖Φ(𝒙𝒊)𝑻 Φ 𝒙 + 𝑏
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Feature Transformation

• Apply a function, i.e., Φ 𝒙 , that transforms the raw feature 
vectors to a set new feature vectors

• Main goal: to enhance the representation capability

• Widely used in classical machine learning models

• Deep learning has strong power to automatically transform 
features into very high dimensions
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SVM Kernels

• Scikit Learn provides various options for choosing kernels
• Polynomial kernel, i.e., ‘poly’

• Gaussian kernel, i.e., ‘rbf’

15Image source: https://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html



SVM Kernels

• We don’t conduct feature transformation, i.e., x to Φ(𝒙)

• Instead, we apply kernel trick to obtain the dot product of 
the transformed features in high dimensional space

16

𝑓 Φ(𝒙) = ෍

𝑖=1

𝑛

𝜆𝑖𝑦𝑖Φ(𝒙𝒊)𝑻 Φ 𝒙 + 𝑏



Polynomial Kernel (Optional)

A polynomial kernel in 1D dimension:
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Polynomial Kernel (Optional)
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Polynomial Kernel (Optional)

• A general polynomial kernel in abstract high dimension:

𝐾 𝒙𝒂, 𝒙𝒃 = (𝒙𝒂
𝑻𝒙𝒃 + 𝑟)𝑑

19

dosage

𝑥𝑎 𝑥𝑏



RBF Kernel (Optional)

• An RBF kernel in 1D dimension:
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RBF Kernel (Optional)

• RBF naturally contains a polynomial kernel in infinite space

𝐾 𝑥𝑎 , 𝑥𝑏 = 𝑒−
1
2

(𝑥𝑎−𝑥𝑏)2
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1
2
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RBF Kernel (Optional)

• RBF naturally contains a polynomial kernel in infinite space

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+ ⋯ +

𝑥∞

∞!
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RBF Kernel (Optional)

• RBF naturally contains a polynomial kernel in infinite space
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RBF Kernel (Optional)

• A general RBF kernel in multi-feature dimension:

𝐾 𝒙𝒂, 𝒙𝒃 = 𝑒
−

1
𝜎2( 𝒙𝒂−𝒙𝒃 )2

• It measures the influence one sample has over another 
sample
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Using SVC to perform Multi-
Class Prediction
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SVC for Iris Classification

• 3 types of irises in total: Setosa, Versicolour, Virginica

• 4 features: Sepal Length, Sepal Width, Petal Length and Petal Width
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SVC for Iris Classification

• Import libraries

• Load dataset
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SVC for Iris Classification

• Construct SVC classifiers on the training set

• Perform predictions on the test set

• Accuracy evaluation. Many metrics can be used
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Questions?
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