

3D geoinformation

Department of Urbanism
Faculty of Architecture and the Built Environment
Delft University of Technology

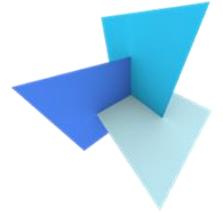
GEO5017

Machine Learning for the Built Environment

Lecture Classification

Shenglan Du

Today's Agenda



- Previous Lecture: Supervised Learning
- Bayes Classification
 - Probability Basics
 - Bayes Classifier
- Linear Classification
 - Standard Linear Classifier
 - Logistic Classifier

Learning Objective

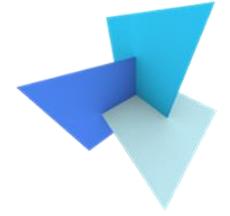
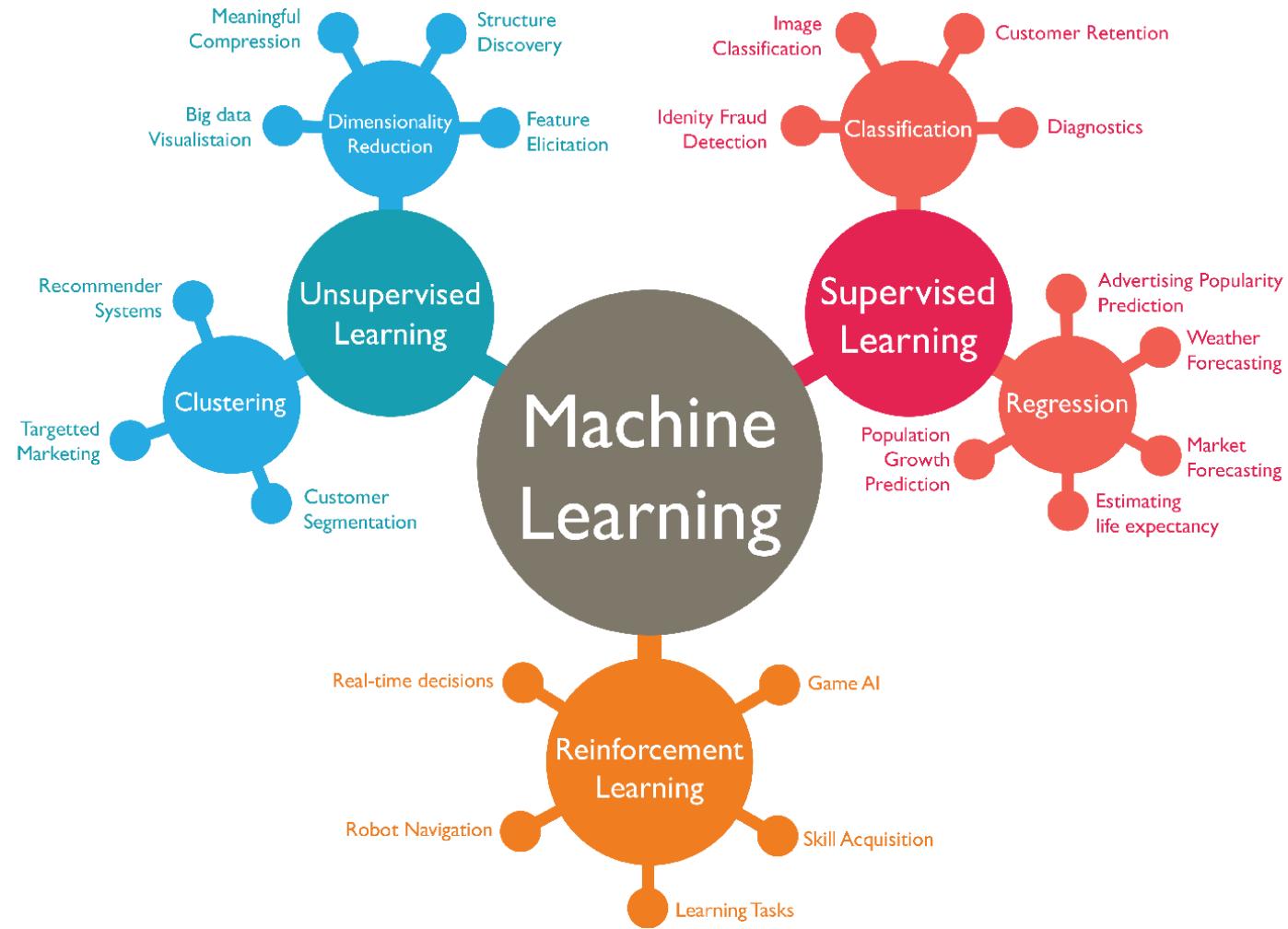


- Bayes Classification
 - Reproduce the Bayes rule
 - Apply Bayes classifier to solve a binary classification problem
 - Understand the concept of Bayes error
- Linear Classifiers
 - Explain the principles of standard linear classifier and logistic regression
 - Reproduce the objective function of logistic regression
 - Analyze the pros and cons of the two linear classifiers

Today's Agenda

- Previous Lecture: Supervised Learning
- Bayes Classification
 - Probability Basics
 - Bayes Classifier
- Linear Classification
 - Standard Linear Classifier
 - Logistic Classifier

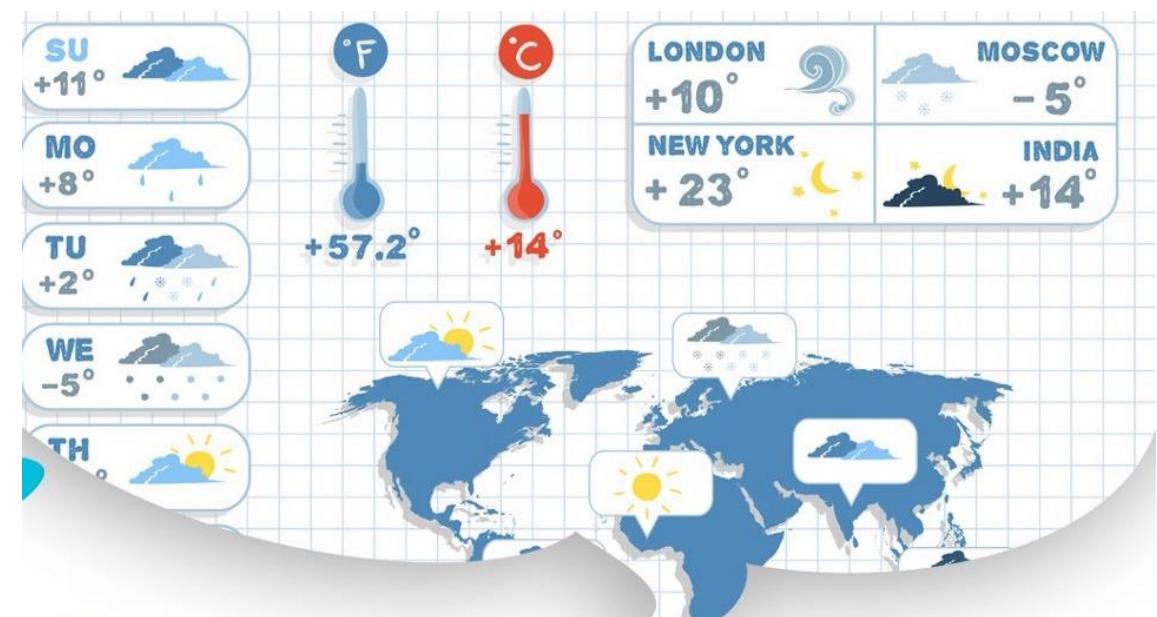
Supervised Learning

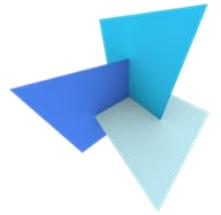


Supervised Learning



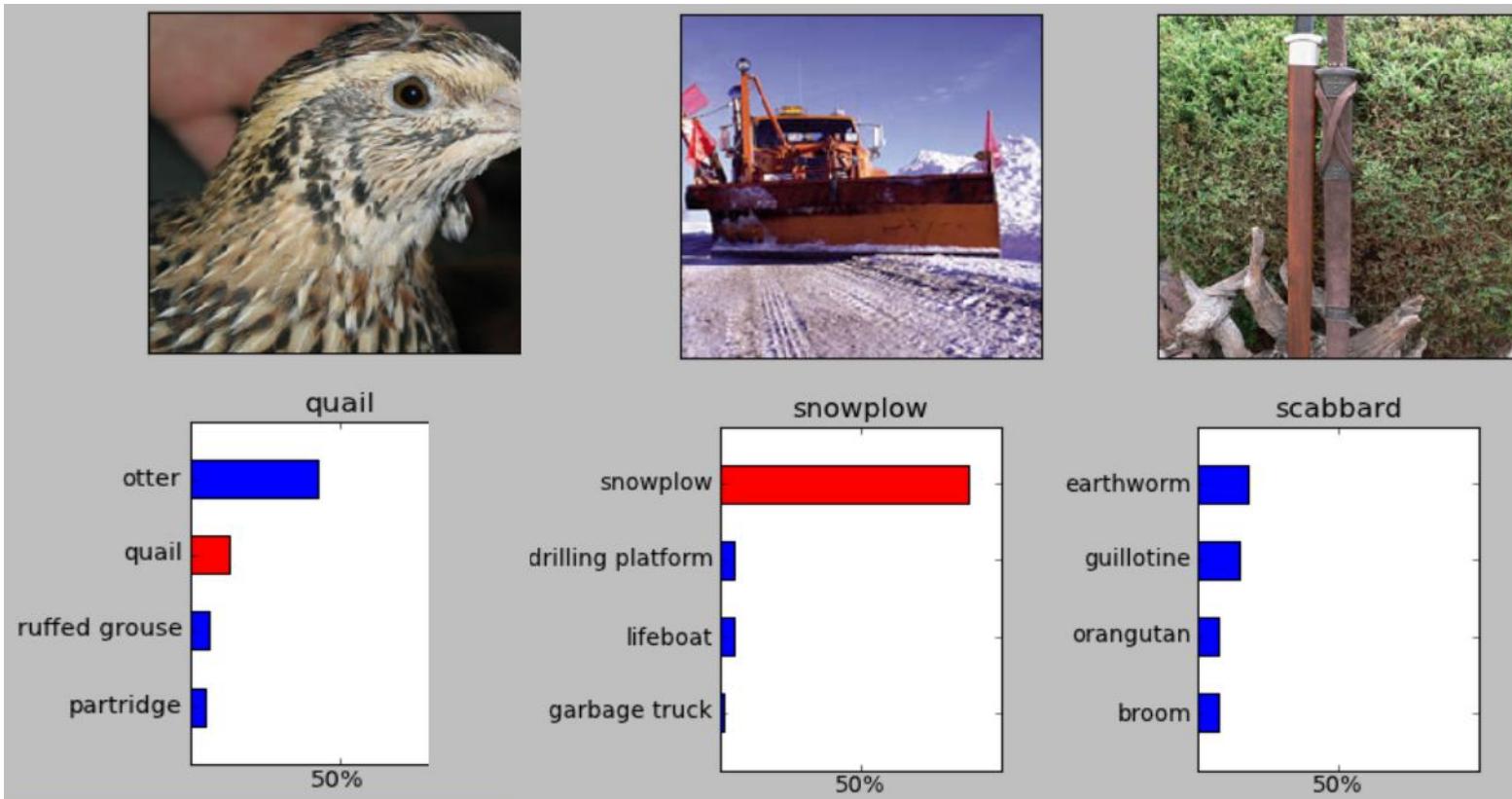
- An example: weather forecasting



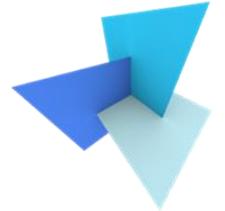


Supervised Learning

- An example: image analysis



Supervised Learning: Classification

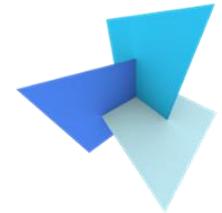


- Given a set of input data represented as feature vectors:

$$\mathbf{x} = (x_1, x_2, x_3 \dots x_p)^T$$

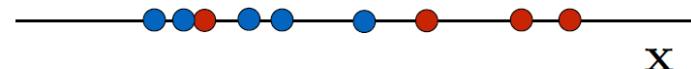
- Classification aims to specify which category/class \mathbf{y} some input data \mathbf{x} belong to

Supervised Learning: Classification

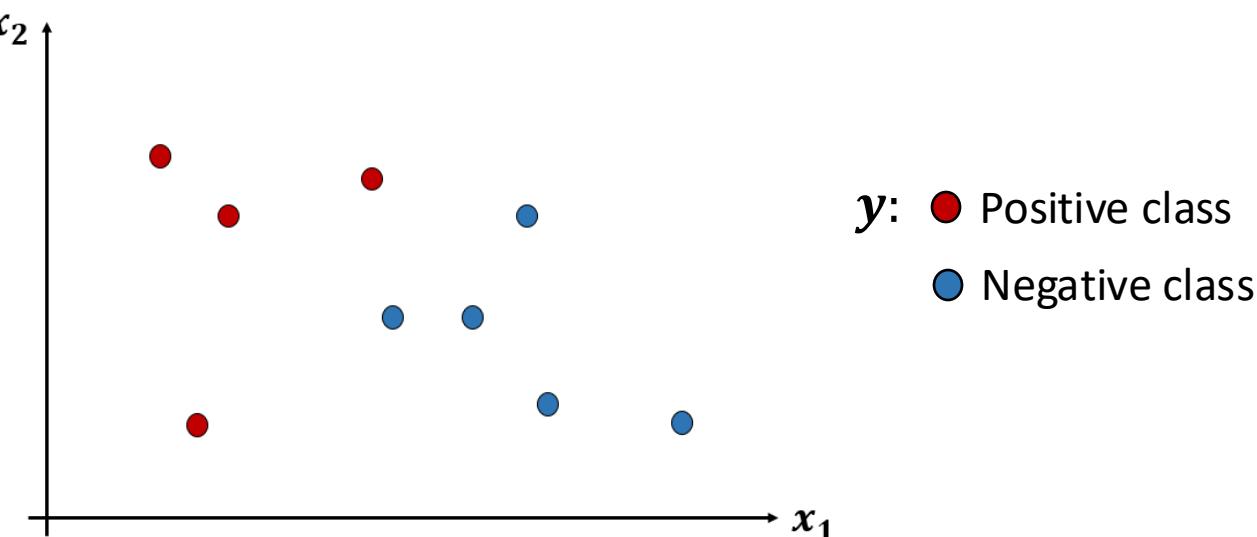


$$\mathbf{x} = (x_1, x_2, x_3 \dots x_p)^T$$

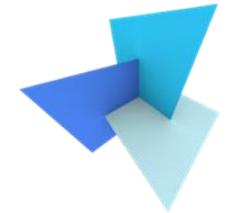
- P indicates the feature space dimension:
 - 1D feature space:



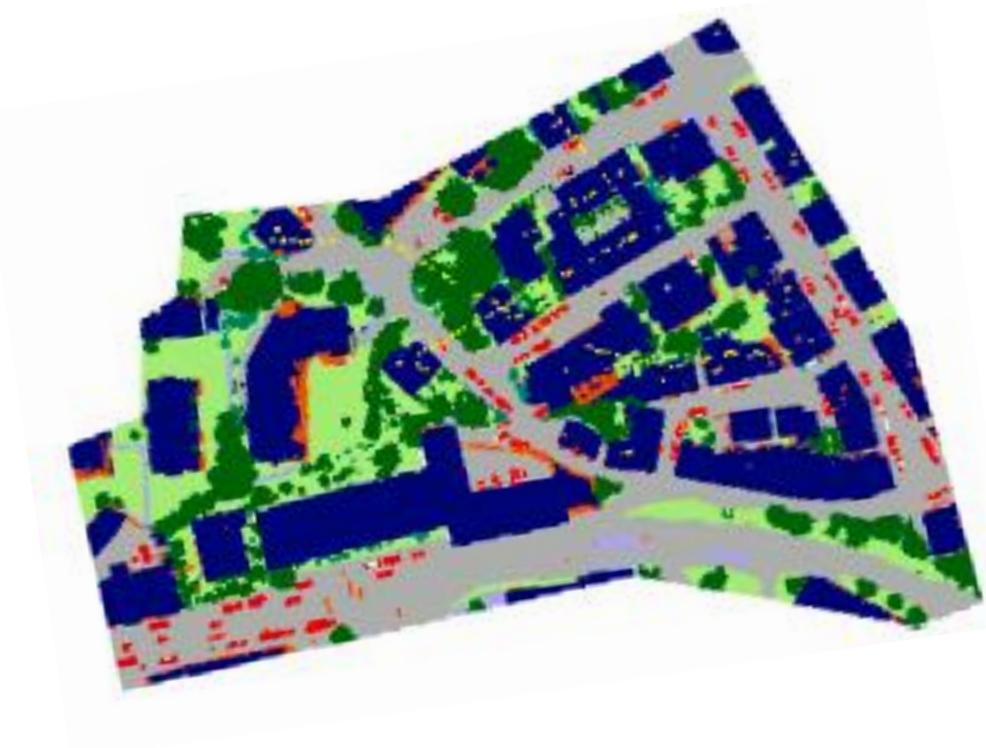
- 2D feature space:



Supervised Learning: Classification



- An example of point cloud semantic classification

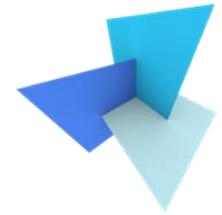


$$\boldsymbol{x} = (x, y, z, r, g, b, \text{intensity} \dots)^T$$

\boldsymbol{y} :

- High vegetation
- Low vegetation
- Building
- Road
- Grass land

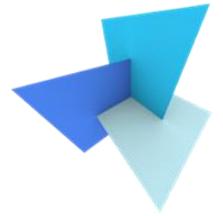
Supervised Learning: Classification



- Two classification approaches:
 - ***Generative approach***: model the probability distribution of feature x and label y
 - Bayes classifier
 - Gaussian mixture model
 - ***Discriminant functions***: model a function that directly map from feature x to label y
 - Linear classifier (Logistic regression, SVM)
 - Non-linear classifier (Decision tree, Neural networks)

Today's Agenda

- Previous Lecture: Supervised Learning
- Bayes Classification
 - Probability Basics
 - Bayes Classifier
- Linear Classification
 - Standard Linear Classifier
 - Logistic Classifier



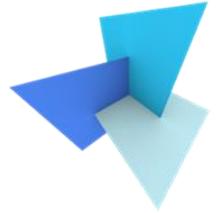
Bayes Classification

- A simple scenario: A tree or a building?

Image source 1: https://en.wikipedia.org/wiki/Tree#/media/File:Ash_Tree_-_geograph.org.uk_-_590710.jpg

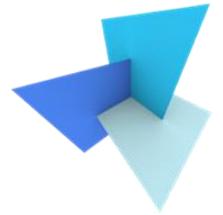
Image source 2: https://en.wikipedia.org/wiki/Wilder_Building#/media/File:WilderBuildingSummerSolstice.jpg

Bayes Classification



- A simple scenario:
 - Buildings have planar surfaces
 - Trees have noisy, near round surfaces
- The machine detected that the input object has planar surfaces. What the object do you guess to be?

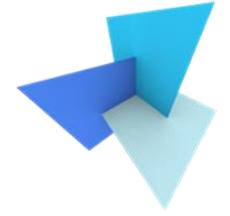
Bayes Classification



- It's very likely to be a building
- But how do machines interpretate the word “likely”?

Today's Agenda

- Previous Lecture: Supervised Learning
- Bayes Classification
 - Probability Basics
 - Bayes Classifier
- Linear Classification
 - Standard Linear Classifier
 - Logistic Classifier



Probability Basics

- Product rule:

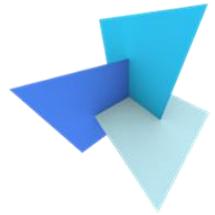
$$P(X, Y) = P(X) P(Y|X)$$

- Bayes rule:

$$P(Y) P(X|Y) = P(X) P(Y|X)$$

$$P(Y|X) = \frac{P(Y) P(X|Y)}{P(X)}$$

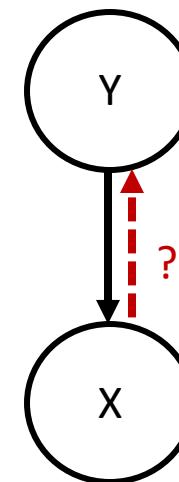
Probability Basics



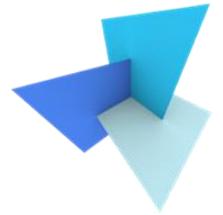
- Given feature x and label y

$$P(y|x) = \frac{P(y) P(x|y)}{P(x)}$$

- $P(x|y)$: class conditional probability
- $P(y)$: class prior probability
- $P(y|x)$: class posterior probability



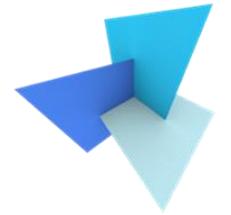
Probability Basics



- Assume equal priors for both buildings and trees

$$P(y = b) = P(y = t) = 0.5$$

Probability Basics



- Assume we have the class conditional probabilities as follows

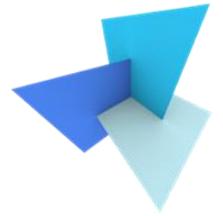
$$P(x = \text{planar} | y = b) = 0.8$$

$$P(x = \text{round} | y = b) = 0.2$$

$$P(x = \text{planar} | y = t) = 0.25$$

$$P(x = \text{round} | y = t) = 0.75$$

Probability Basics

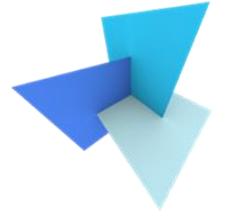


- building:

$$P(y = b|x = \text{planar}) =$$

- tree:

$$P(y = t|x = \text{planar}) =$$



Probability Basics

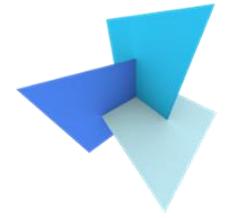
- building:

$$\begin{aligned} P(y = b|x = \text{planar}) &= \frac{P(y = b) P(x = \text{planar}|y = b)}{P(x = \text{planar})} \\ &= \frac{0.5 * 0.8}{P(x = \text{planar})} \end{aligned}$$

- tree:

$$\begin{aligned} P(y = t|x = \text{planar}) &= \frac{P(y = t) P(x = \text{planar}|y = t)}{P(x = \text{planar})} \\ &= \frac{0.5 * 0.25}{P(x = \text{planar})} \end{aligned}$$

Probability Basics



- Prior:

$$P(y = b) = P(y = t)$$

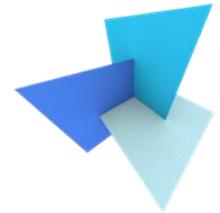
- Posterior:

$$P(y = t|x = \text{planar}) \ll P(y = b|x = \text{planar})$$

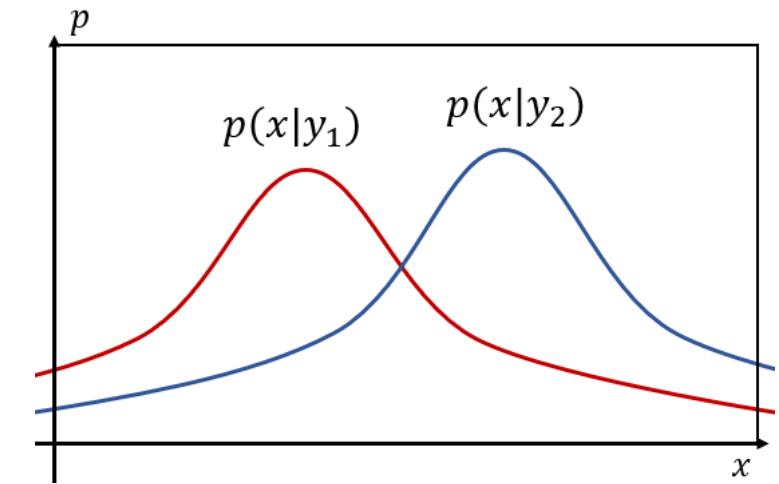
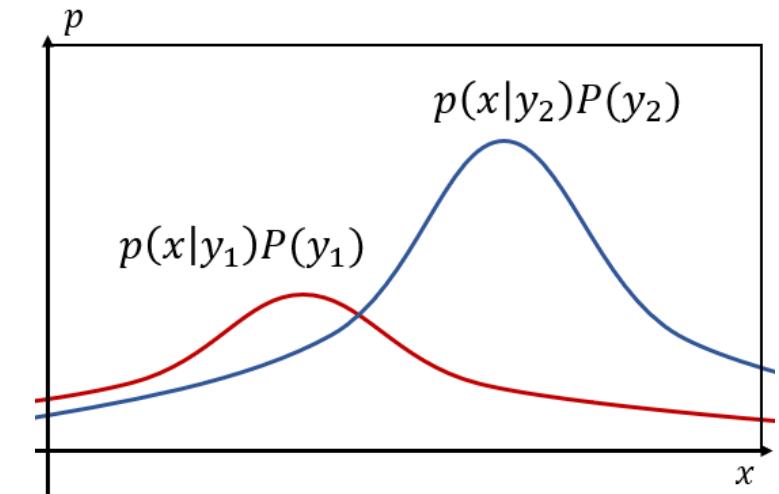
Today's Agenda

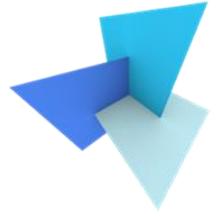
- Previous Lecture: Supervised Learning
- Bayes Classification
 - Probability Basics
 - Bayes Classifier
- Linear Classification
 - Standard Linear Classifier
 - Logistic Classifier

Bayes Classifier



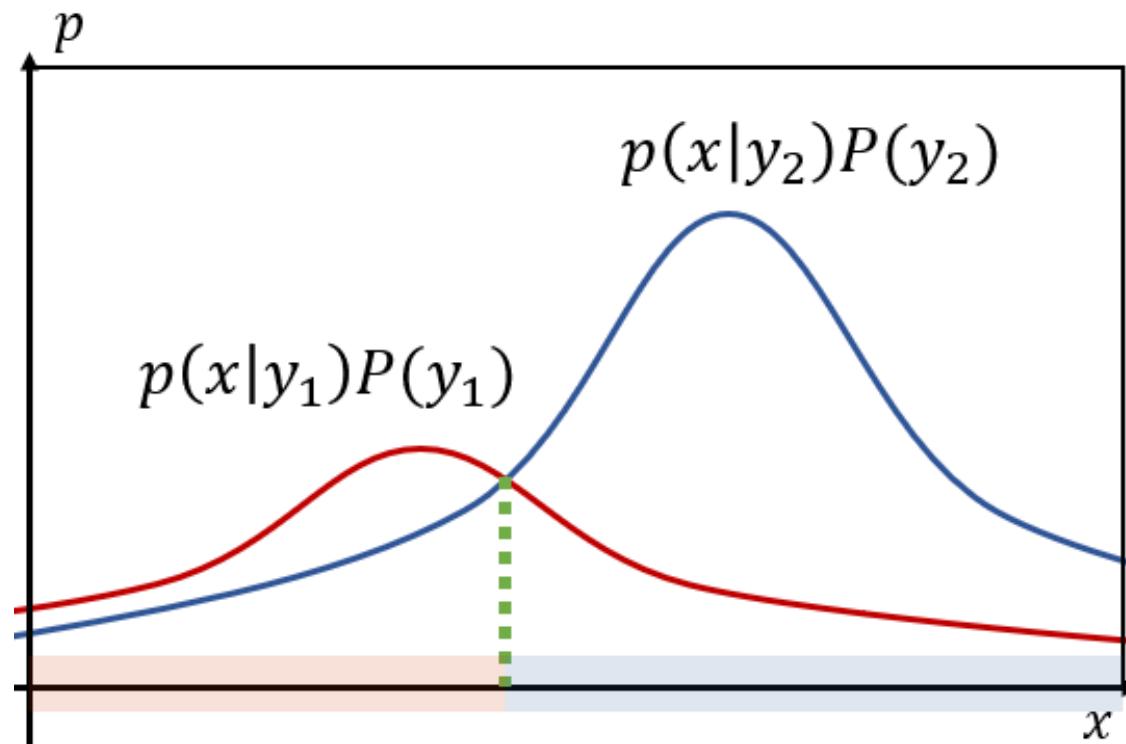
- Step 1: estimate the class conditional probabilities
- Step 2: multiply with class priors
- Step 3: compute the class posterior probabilities



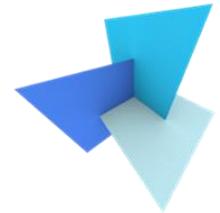


Bayes Classifier

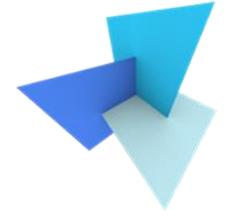
- Step 4: find the classification boundary



Bayes Classifier

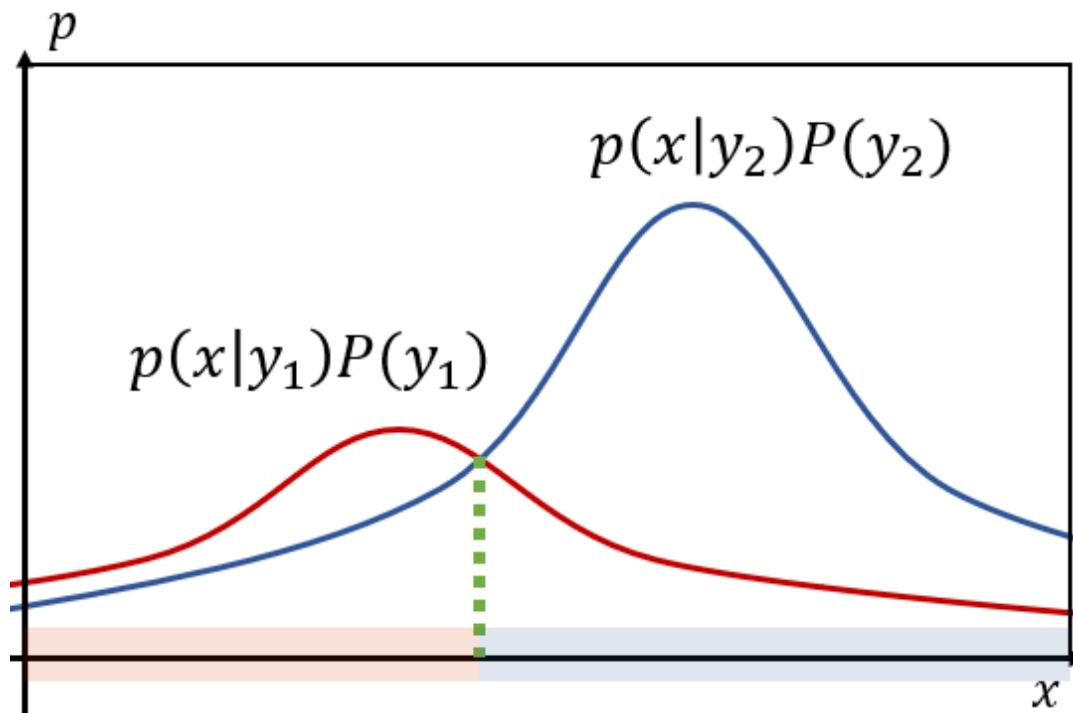


- The Bayes rule provides an approach of describing the uncertainty quantitatively, allowing for **the optimal prediction given the observations present**
- Bayes serves as the foundation for the modern machine learning

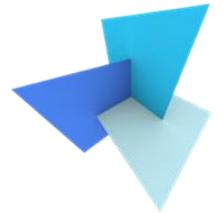


Bayes Error

- All models are wrong but some are useful...So where can the error happen?

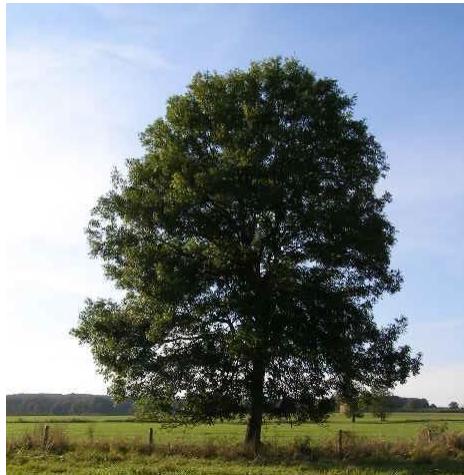


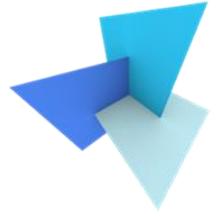
Bayes Error



- Where is the error?

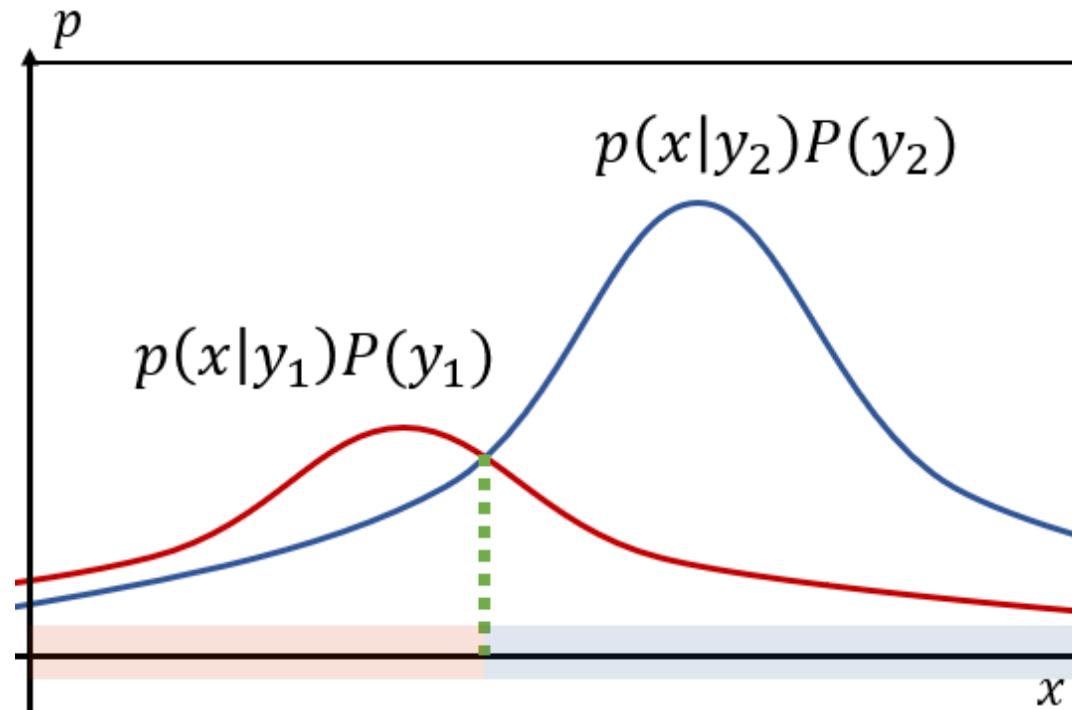
- All trees have spherical surfaces
- All buildings have cube-shapes
- All rabbits have long ears
- All sheep are black
-



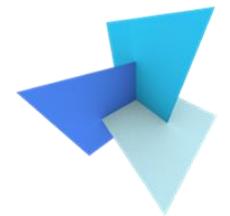
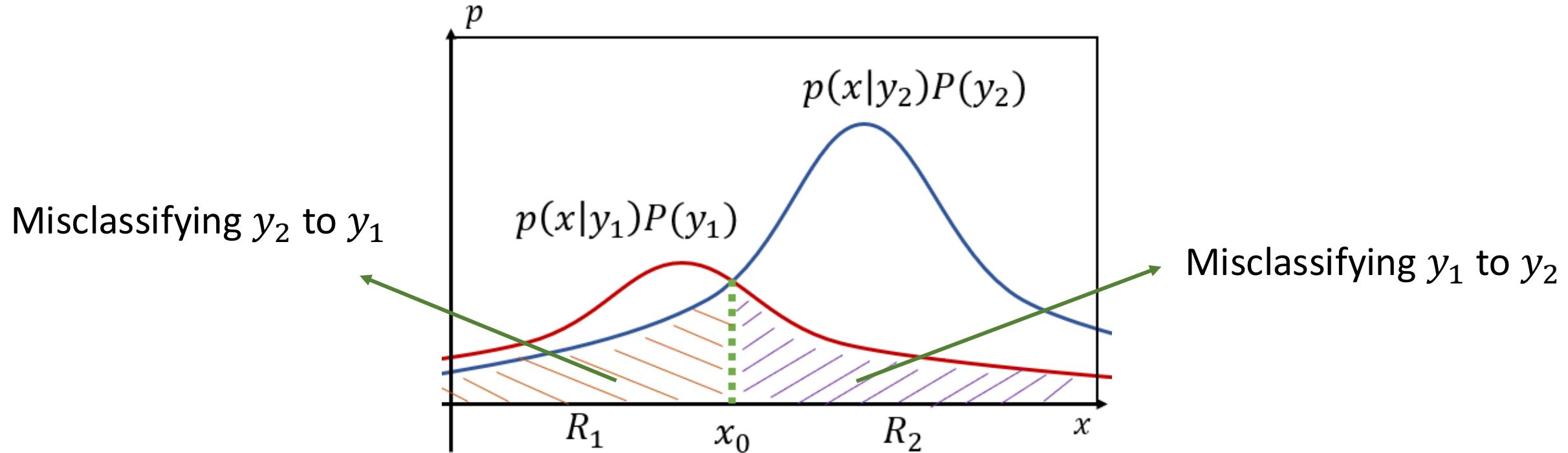


Bayes Error

- So where can the error happen?

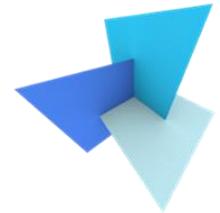


Bayes Error



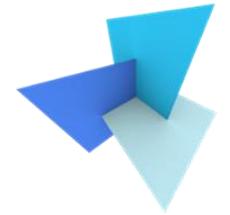
$$P(e) = \int_{-\infty}^{x_0} p(x|y_2)P(y_2) + \int_{x_0}^{\infty} p(x|y_1)P(y_1)$$

Bayes Error



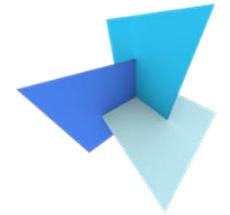
- It's the minimum attainable error using any kinds of existing models (SVM, RF, Neural networks)
- It doesn't depend on the ML model that you apply, but only on the data distribution
- We cannot obtain it as we don't have true distributions of real world

Minimizing the Risk



- Healthy or ill?
 - Assigning “ill” to a healthy person will cause panic to the patient
 - Assigning “healthy” to an ill person has more severe outcome

Minimizing the Risk



- Assume: $y_1 = \text{healthy}$, $y_2 = \text{ill}$, λ_{ij} is the cost of predicting i as j

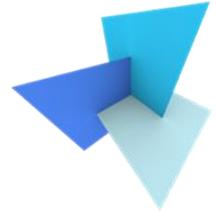
- Classifying with risk we have:

- Assign \mathbf{x} to y_1 if

$$\lambda_{21}p(\mathbf{x}|y_2)P(y_2) < \lambda_{12}p(\mathbf{x}|y_1)P(y_1)$$

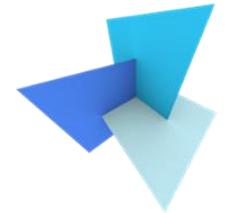
- Assign \mathbf{x} to y_2 otherwise

Today's Agenda

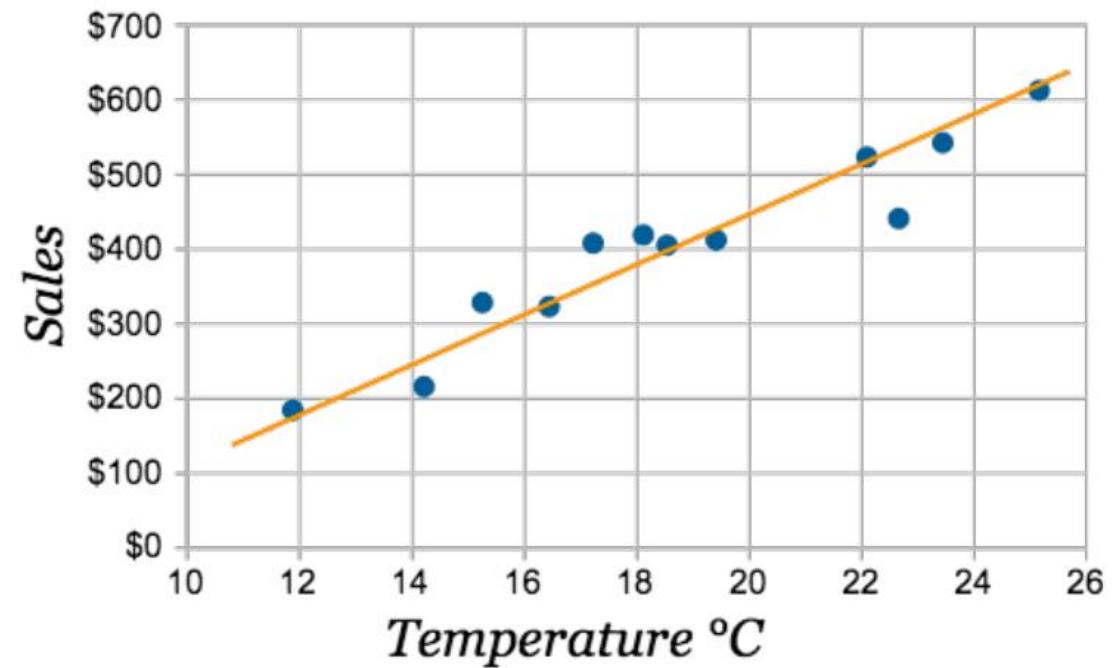


- Previous Lecture: Supervised Learning
- Bayes Classification
 - Probability Basics
 - Bayes Classifier
- Linear Classification
 - Standard Linear Classifier
 - Logistic Classifier

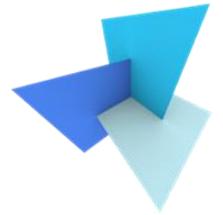
Linear Classification



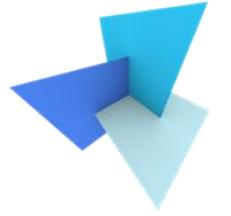
- Review Linear Regression:



Linear Classification



- Review Linear Regression:
 - Model?
 - Solution?
 - How do you find the solution?



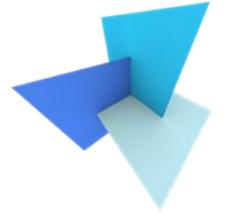
Linear Classification

- Review Linear Regression:

$$y_i = \mathbf{w}^T \mathbf{x}_i + b$$

- Solution can be found by gradient descent searching
- A close form solution:

$$(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$



Linear Classification

- Link the output y to some classification codes

$$y = \mathbf{w}^T \mathbf{x} + b$$

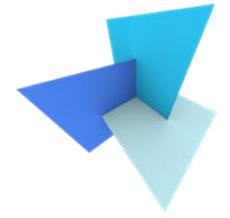
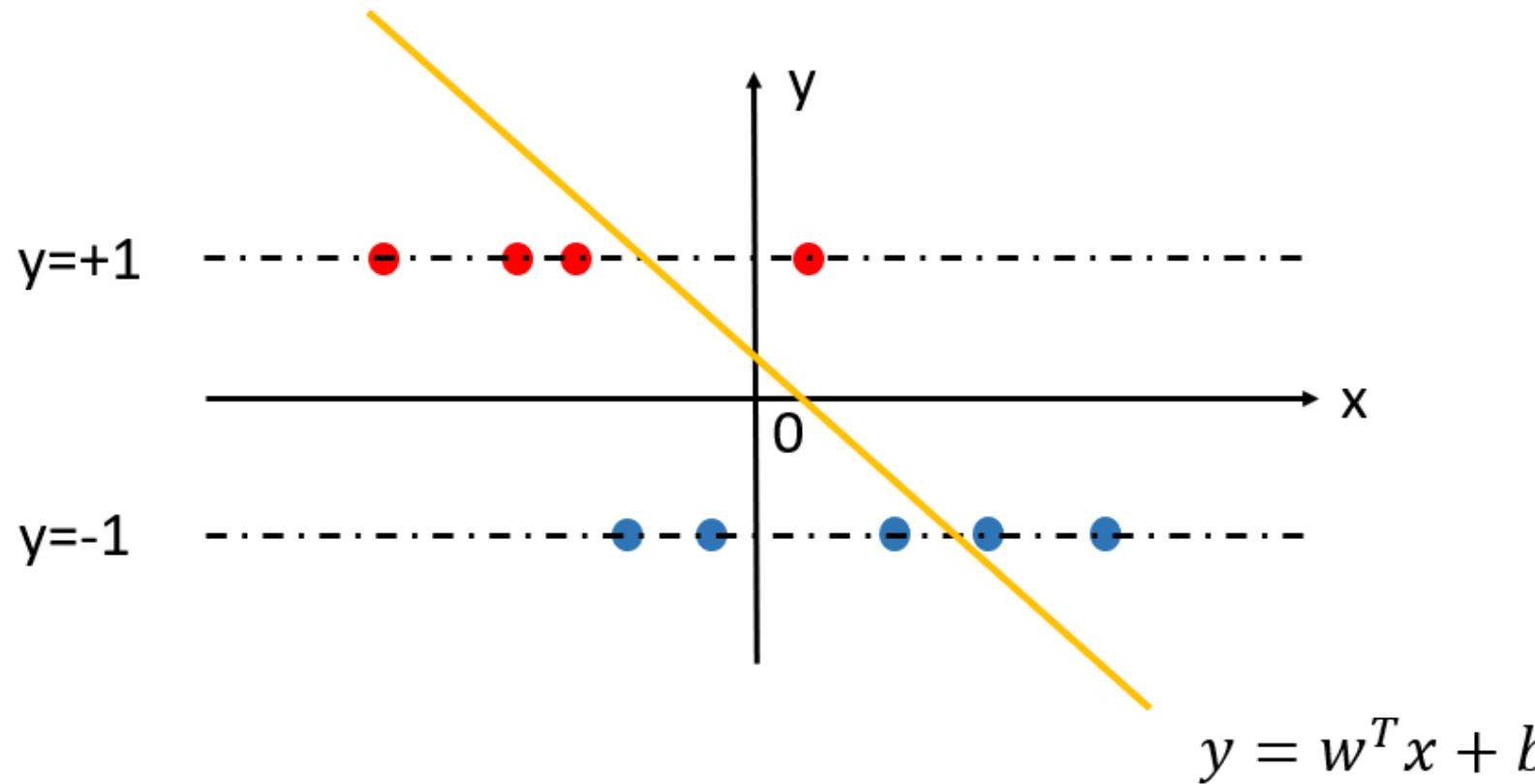
- $y = \text{const}$ determines a decision boundary
- A decision boundary is a $(D-1)$ dimension hyperplane of D dimension input feature space

Today's Agenda

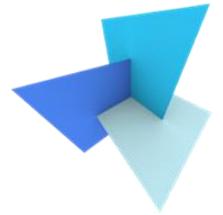


- Previous Lecture: Supervised Learning
- Bayes Classification
 - Probability Basics
 - Bayes Classifier
- Linear Classification
 - Standard Linear Classifier
 - Logistic Classifier

Standard Linear Classifier



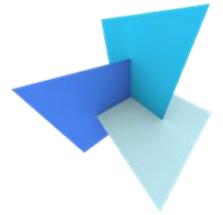
Standard Linear Classifier



- By fitting a linear line of $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ s.t.

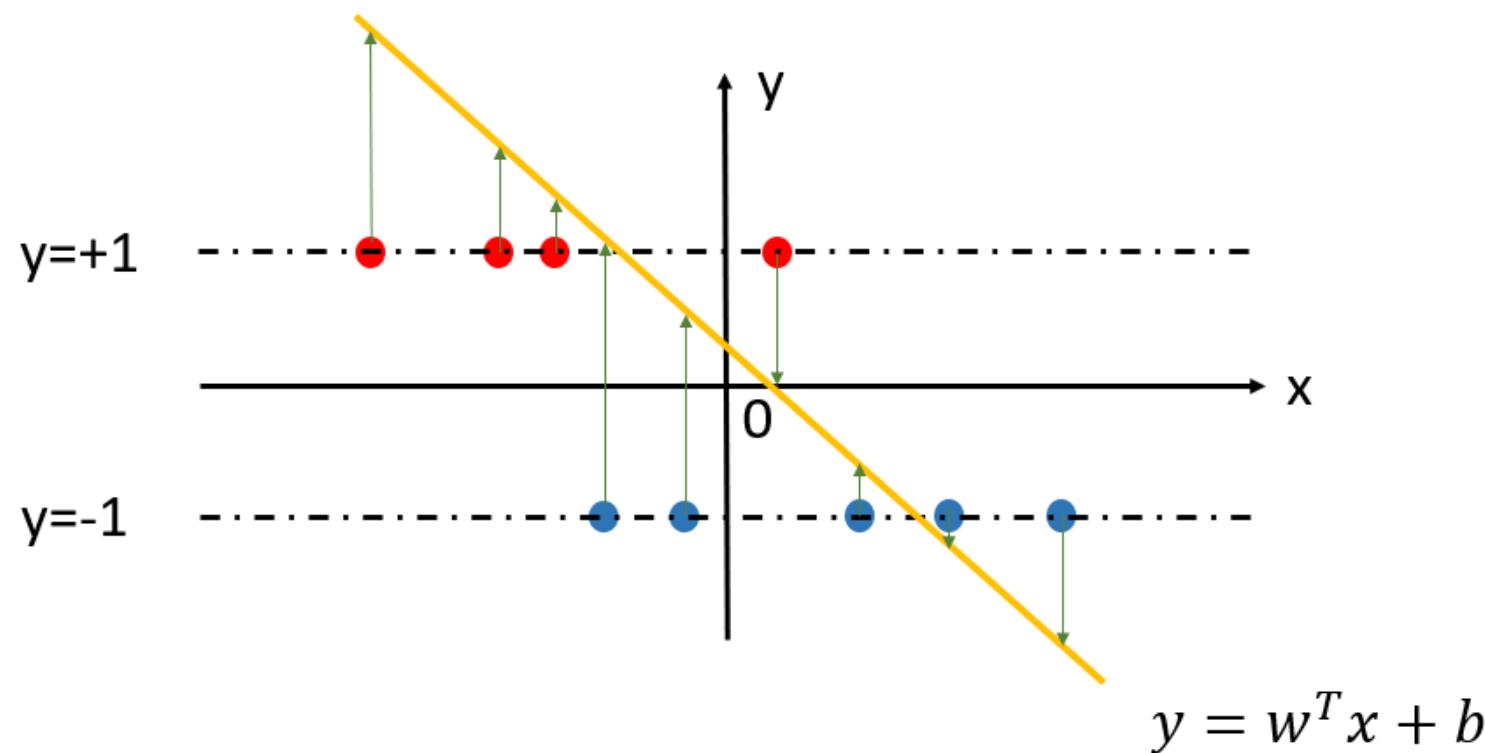
$$y_i = \begin{cases} +1, & \text{if the class is positive} \\ -1, & \text{if the class is negative} \end{cases}$$

- We obtain the linear decision boundary of the input space



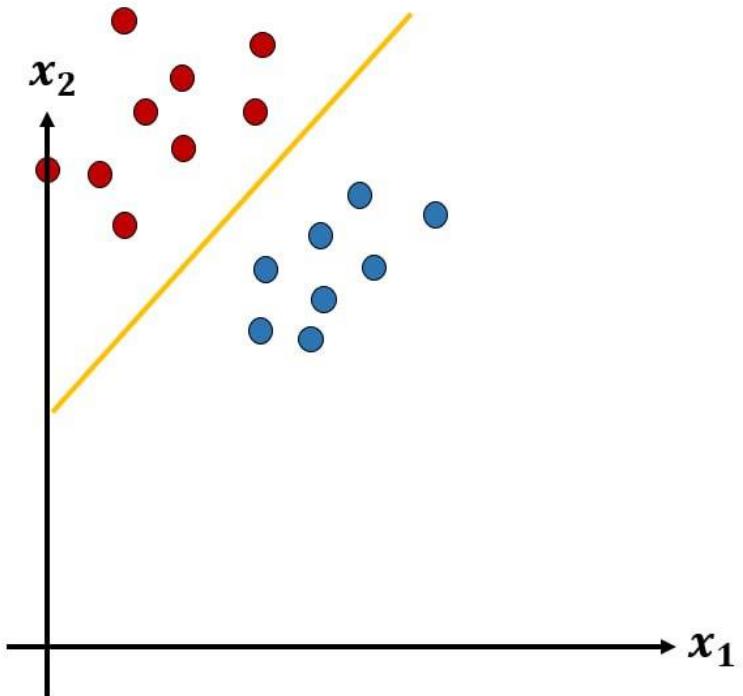
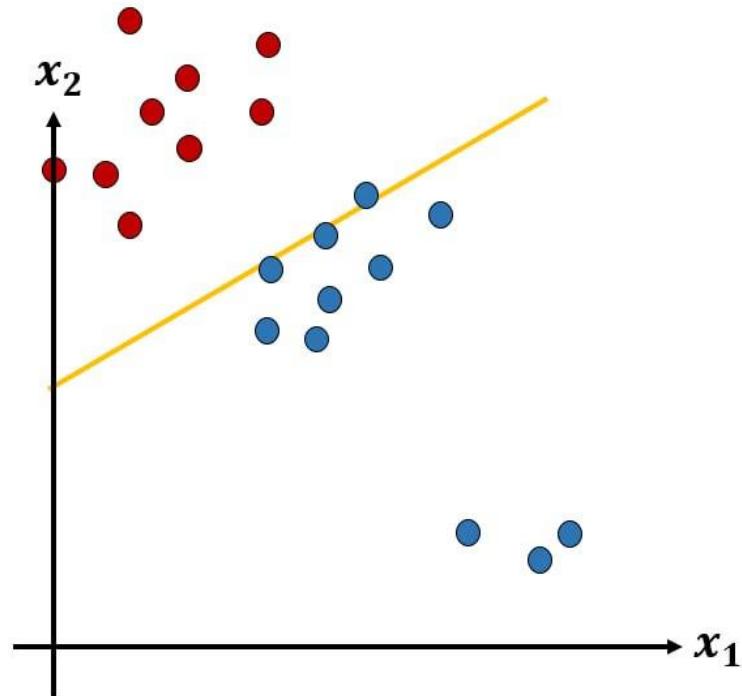
Standard Linear Classifier

- Solution can also be given by least squares



Standard Linear Classifier

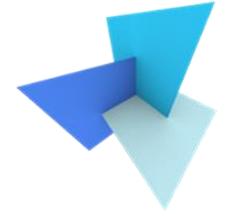
- Minimizing square errors can be sensitive to data distribution



Today's Agenda

- Previous Lecture: Supervised Learning
- Bayes Classification
 - Probability Basics
 - Bayes Classifier
- Linear Classification
 - Standard Linear Classifier
 - Logistic Classifier

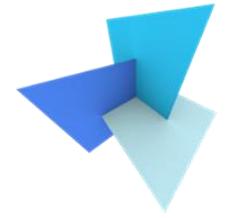
Logistic Classifier



- Also known as logistic regression, although it is a model for classification rather than regression.....
- Trick: link the probabilities to something linear

$$\ln \left(\frac{P(y|\mathbf{x})}{1 - P(y|\mathbf{x})} \right) = \mathbf{w}^T \mathbf{x} + b$$

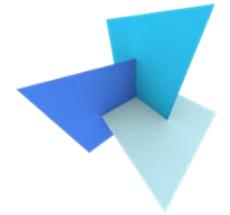
Logistic Classifier



$$\ln\left(\frac{P(y|\mathbf{x})}{1 - P(y|\mathbf{x})}\right) = \mathbf{w}^T \mathbf{x} + b$$

- What is $P(y|\mathbf{x})$?

Logistic Classifier

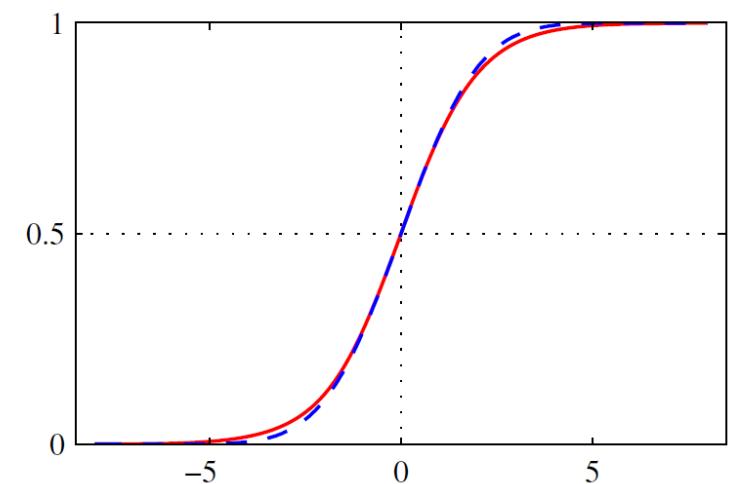


$$P(y|x) = \frac{1}{e^{-(\mathbf{w}^T \mathbf{x} + b)} + 1}$$

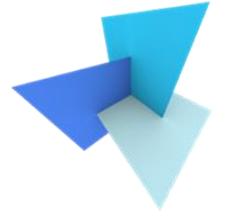
- Can be rewritten as:

$$P(y|x) = \sigma(\mathbf{w}^T \mathbf{x} + b)$$

$$\sigma(f) = \frac{1}{e^{-f} + 1}$$



Logistic sigmoid function



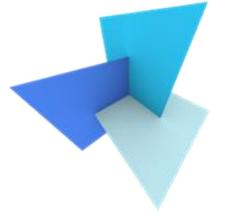
Logistic Classifier

- Overall objective function: to maximize

$$P(\mathbf{y}|\mathbf{x}) = P(y_1|\mathbf{x}_1)P(y_2|\mathbf{x}_2) \dots P(y_n|\mathbf{x}_n)$$

- Which equals to maximizing:

$$\ln P(\mathbf{y}|\mathbf{x}) = \sum_{i=1}^n \ln P(y_i|\mathbf{x}_i)$$



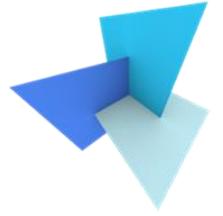
Logistic Classifier

- If $y_i = +1$,

$$P(y_i | \mathbf{x}_i) = \frac{1}{e^{-f(\mathbf{x}_i)} + 1}$$

- If $y_i = -1$,

$$P(y_i | \mathbf{x}_i) = 1 - \frac{1}{e^{-f(\mathbf{x}_i)} + 1} = \frac{1}{e^{f(\mathbf{x}_i)} + 1}$$

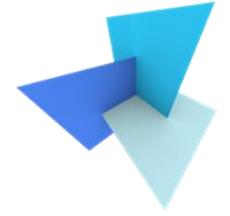


Logistic Classifier

$$\ln P(y|x) = \sum_{i=1}^n \ln \frac{1}{e^{-y_i f(x_i)} + 1} = - \sum_{i=1}^n \ln(e^{-y_i f(x_i)} + 1)$$

- Therefore, the problem transfers to minimizing

$$\sum_{i=1}^n \ln(e^{-y_i f(x_i)} + 1)$$

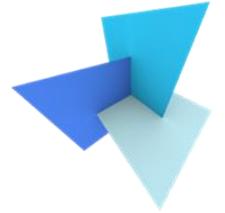


Logistic Classifier

$$\sum_{i=1}^n \ln(e^{-y_i f(x_i)} + 1)$$

- Robust to outliers
- Can be solved by gradient descent
- No close form solution
- Solution depends on the initialization

Conclusions



- Many classification or regression problems can be specified as:
 - Find a suitable model / hypothesis
 - Define a loss function (i.e., least squares, maximum likelihood ...)
 - Feed the data samples into the model and find the model parameters that lead to the least loss