

3D geoinformation

Department of Urbanism
Faculty of Architecture and the Built Environment
Delft University of Technology

GEO5017

Machine Learning for the Built Environment

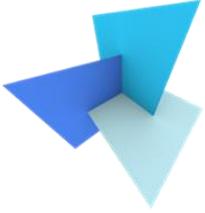
<https://3d.bk.tudelft.nl/courses/geo5017/>

Clustering & Nearest Neighbor Classification

Liangliang Nan

<https://3d.bk.tudelft.nl/liangliang/>

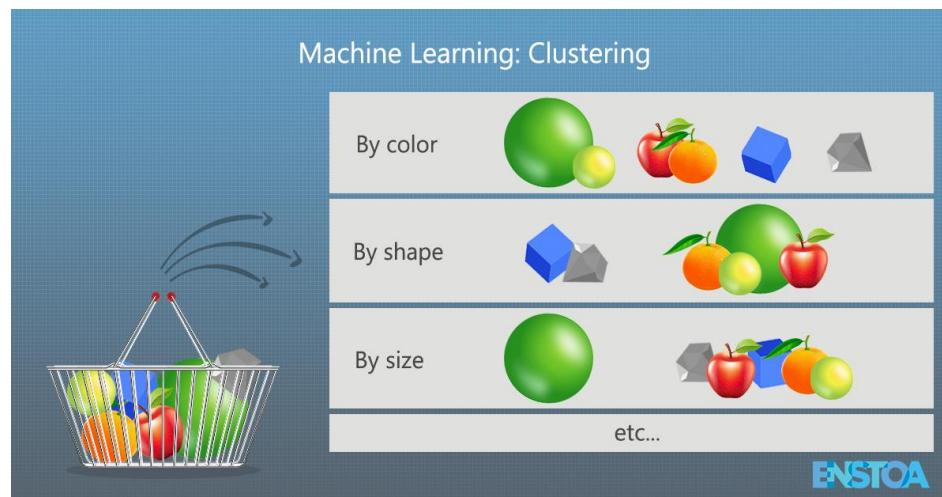
Agenda



- Overview
 - What is clustering?
 - Distance measure (similarity measure)
 - Types of clustering algorithms
- Clustering algorithms
 - K-means clustering
 - Hierarchical clustering
 - Density-based clustering
- Nearest neighbor classification
- Features

What is clustering?

- Clustering
 - A process that **partitions** a given dataset into homogeneous groups based on given features such that **similar** objects are kept in a group whereas **dissimilar** objects are in different groups.



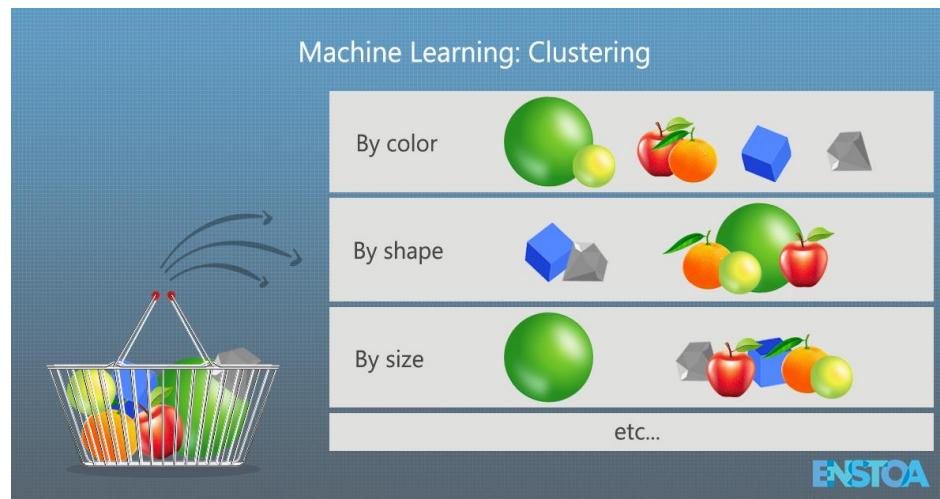
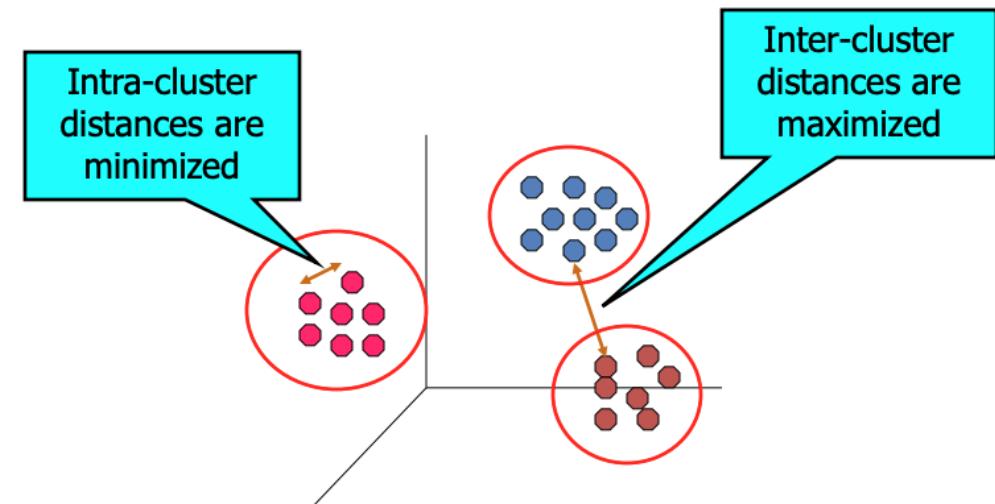
What is a cluster?

What constitutes a good cluster?

What is the “best” criterion for clustering?

What is clustering?

- Clustering
 - A process that **partitions** a given dataset into homogeneous groups based on given features such that **similar** objects are kept in a group whereas **dissimilar** objects are in different groups.



What is clustering?

- Clustering: two components in an algorithm
 - Distance measure → defines similarities
 - Clustering algorithm → partitions the dataset

Different distance measures lead to different clustering results

Distance measure

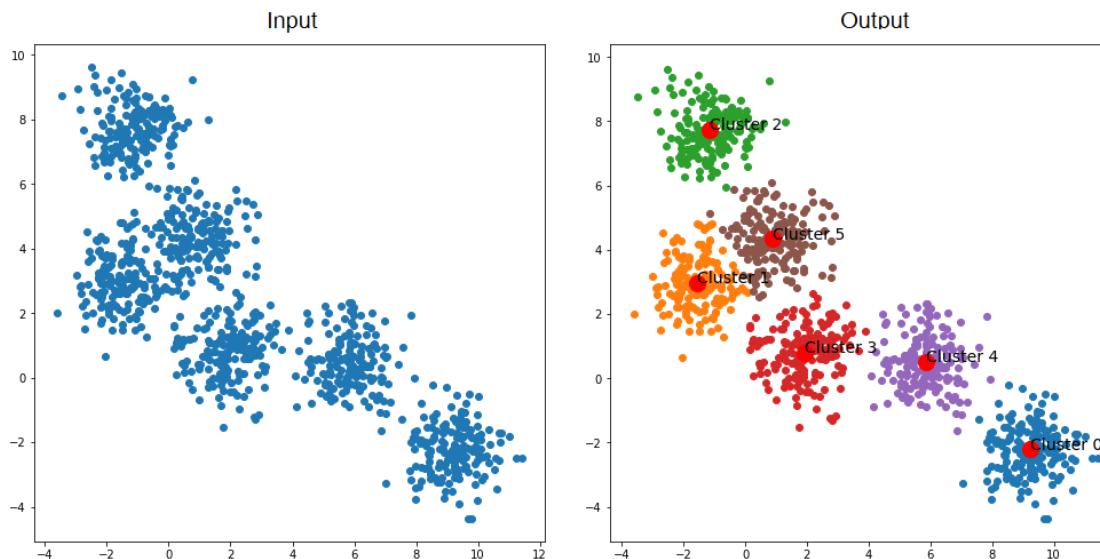
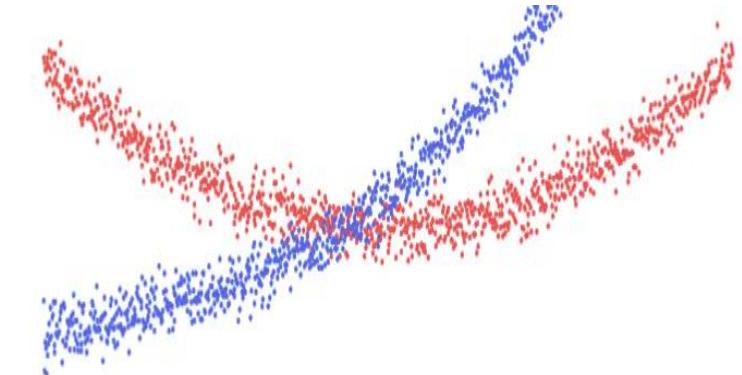
- Problem dependent
 - Minkowski distance/metric is often used
 - Generalization of Euclidean distance (L^2) and Manhattan distance (L^1)

$$D(x_i, x_j) = \left(\sum_{k=1}^d |x_{i,k} - x_{j,k}|^p \right)^{\frac{1}{p}}$$

- Domain knowledge is required
 - When components of data feature vectors not immediately comparable, e.g.,
 - color vs size
 - distance to city center vs energy label

Types of clustering algorithms

- Different criteria
 - Exclusive vs overlapping
 - Whether a data point can belong to two or more clusters

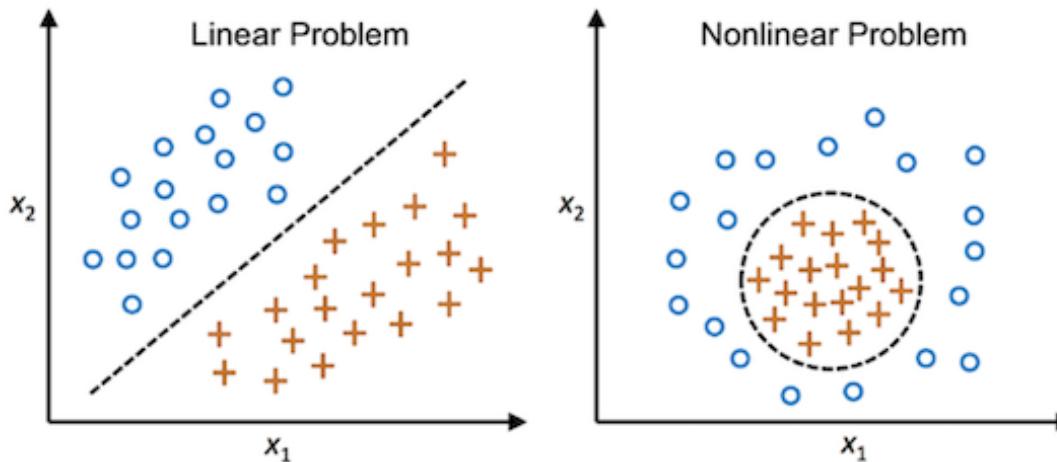
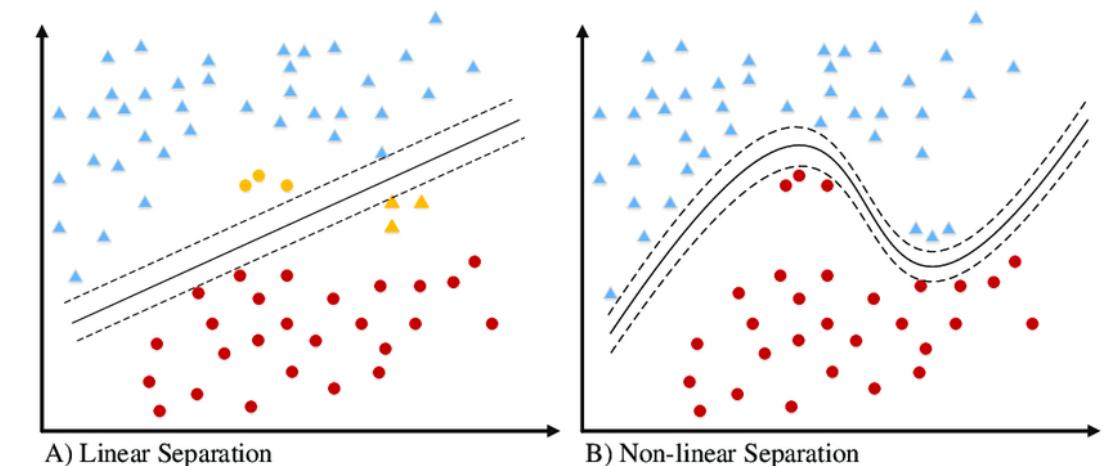


Types of clustering algorithms

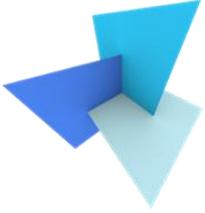
- Different criteria
 - Exclusive vs overlapping
 - Whether a data point can belong to two or more clusters
 - Linear vs non-linear
 - The applicability to different types of data

We will learn:

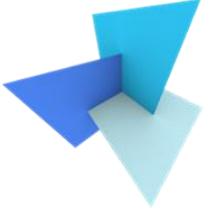
- Linear: K-means, hierarchical clustering
- Non-linear: density-based clustering



Agenda



- Overview
 - What is clustering?
 - Distance measure (similarity measure)
 - Types of clustering algorithms
- Clustering algorithms
 - K-means clustering
 - Hierarchical clustering
 - Density-based clustering
- Nearest neighbor classification
- Features

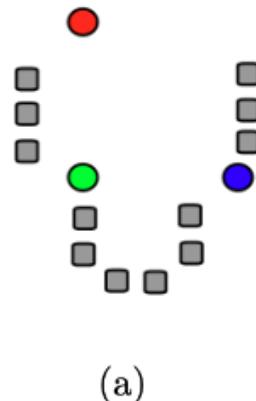
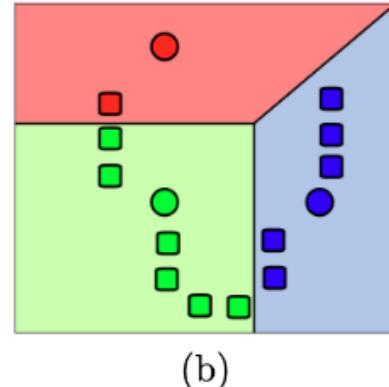
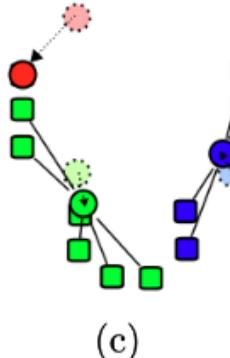
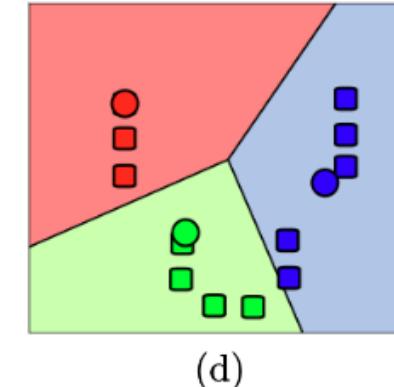


k-means

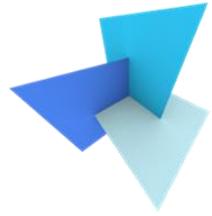
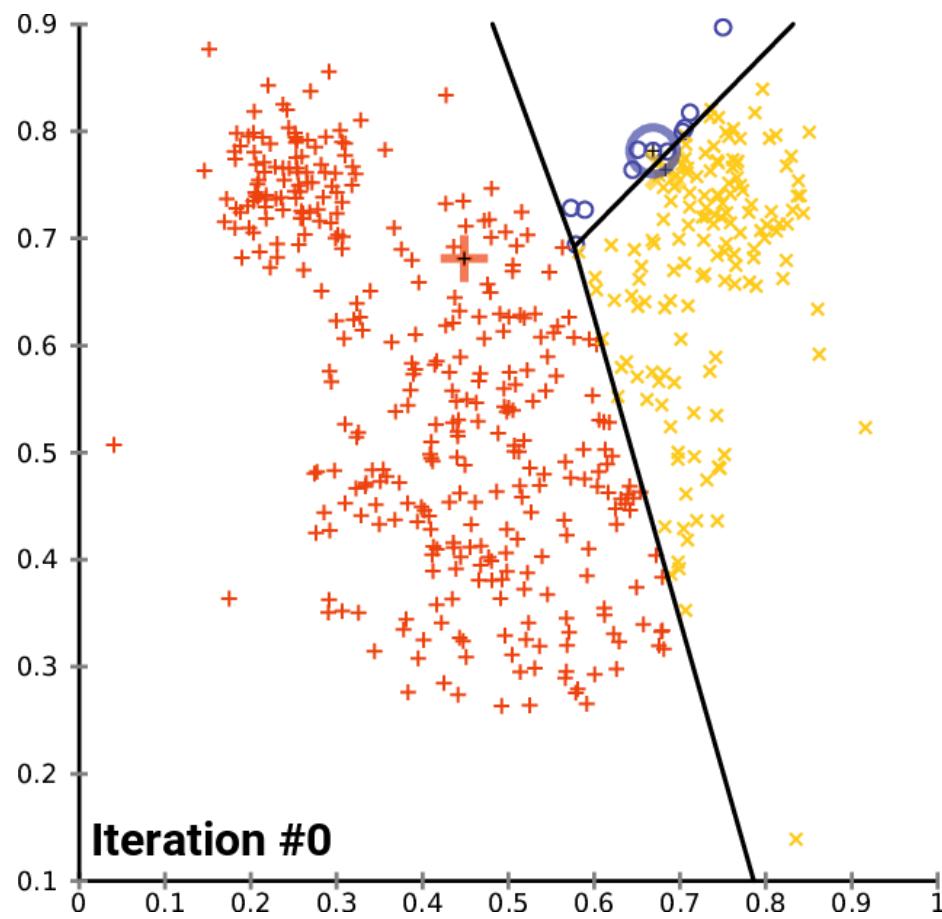
- 1) Initialize the k clusters $\ell^0 = \{c_1^0, c_2^0 \dots c_k^0\}$ in a way such that the initial centroids are placed as far as possible from each other.
- 2) Calculate the centroids of the clusters: $u_j^i = \frac{1}{|c_j^i|} \sum_{x \in c_j^i} x$, where $j = 1, \dots, k$ and i denotes the i -th iteration.
- 3) Take each point belonging to a given data set and associate it to the nearest centroid:

$$\begin{aligned} c_j^{i+1} &= \{x \mid d(x, u_j^i) \leq d(x, u_{j'}^i), \forall j', 1 \leq j' \leq k\} \\ \ell^{i+1} &= \{c_j^{i+1} \mid 1 \leq j \leq k\} \end{aligned} \quad (2)$$

- 4) Repeat steps 2 and 3 until no more changes can be made to the clusters, i.e., $\ell^{i+1} = \ell^i$. In other words, centroids do not move any more.



k-means





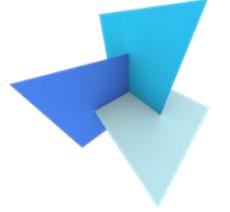
k-means: an optimization perspective

- Objective function

- SSE (Sum of Squared Error)

$$J = \sum_{i=1}^k \sum_{x \in c_i} \|x - u_i\|^2$$

$$SSE = (1 - 1.5)^2 + (2 - 1.5)^2 + (4 - 4.5)^2 + (5 - 4.5)^2 = 1$$



k-means: an optimization perspective

- Objective function

- SSE (Sum of Squared Error)

$$J = \sum_{i=1}^k \sum_{x \in c_i} \|x - u_i\|^2$$

- Convergence

- K-means is exactly coordinate descent on J

- Step 2: fixed cluster assignment—compute cluster centroids that minimize the current error
 - Step 3: fixed cluster centroids—find cluster assignment that minimizes the current error

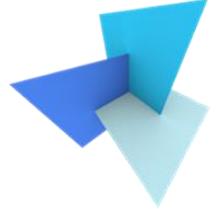
- 1) Initialize the k clusters $\ell^0 = \{c_1^0, c_2^0 \dots c_k^0\}$ in a way such that the initial centroids are placed as far as possible from each other.

- 2) Calculate the centroids of the clusters: $u_j^i = \frac{1}{|c_j^i|} \sum_{x \in c_j^i} x$, where $j = 1, \dots, k$ and i denotes the i -th iteration.

- 3) Take each point belonging to a given data set and associate it to the nearest centroid:

$$\begin{aligned} c_j^{i+1} &= \{x \mid d(x, u_j^i) \leq d(x, u_{j'}^i), \forall j', 1 \leq j' \leq k\} \\ \ell^{i+1} &= \{c_j^{i+1} \mid 1 \leq j \leq k\} \end{aligned} \quad (2)$$

- 4) Repeat steps 2 and 3 until no more changes can be made to the clusters, i.e., $\ell^{i+1} = \ell^i$. In other words, centroids do not move any more.

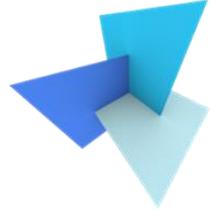


k-means: an optimization perspective

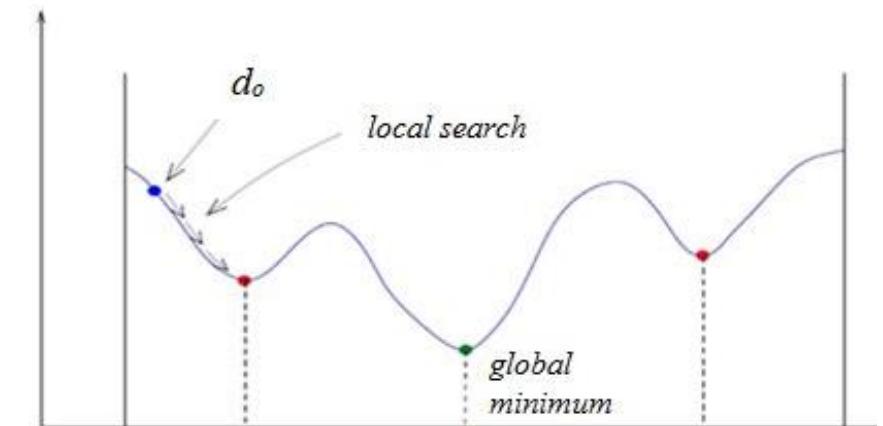
- Objective function
 - SSE (Sum of Squared Error)
$$J = \sum_{i=1}^k \sum_{x \in c_i} \|x - u_i\|^2$$
- Convergence
 - K-means is exactly coordinate descent on J
 - Step 2: fixed cluster assignment—compute cluster centroids that minimize the current error
 - Step 3: fixed cluster centroids—find cluster assignment that minimizes the current error

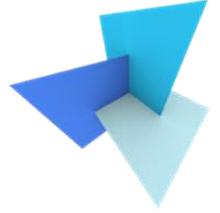
J converges a global minimum?

k-means: an optimization perspective



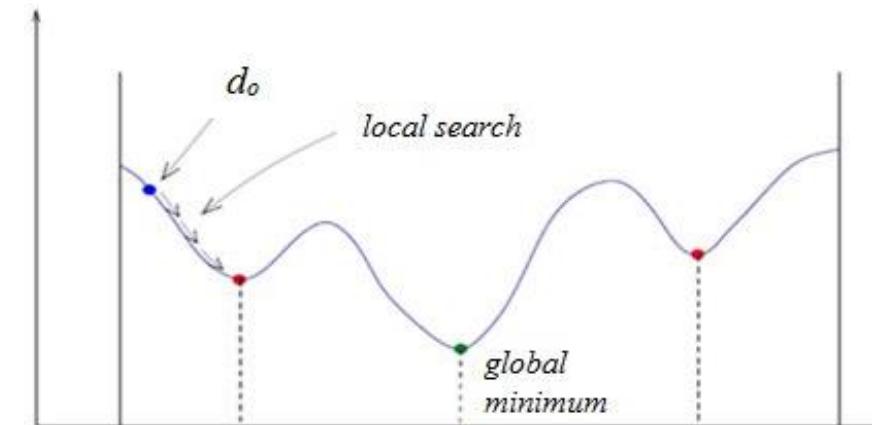
- Objective function
 - SSE (Sum of Squared Error)
$$J = \sum_{i=1}^k \sum_{x \in c_i} \|x - u_i\|^2$$
- Convergence
 - K-means is exactly coordinate descent on J
 - Step 2: fixed cluster assignment—compute cluster centroids that minimize the current error
 - Step 3: fixed cluster centroids—find cluster assignment that minimizes the current error
- Not necessarily the optimal configuration
 - i.e., local minimum of the objective function





k-means: an optimization perspective

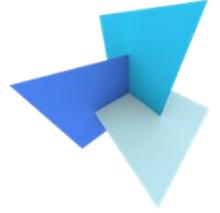
- Objective function
 - SSE (Sum of Squared Error)
$$J = \sum_{i=1}^k \sum_{x \in c_i} \|x - u_i\|^2$$
- Convergence
 - K-means is exactly coordinate descent on J
 - Step 2: fixed cluster assignment—compute cluster centroids that minimize the current error
 - Step 3: fixed cluster centroids—find cluster assignment that minimizes the current error
- Not necessarily the optimal configuration
 - i.e., local minimum of the objective function
 - Solution: repeat many times and pick the best
 - Best configuration not guaranteed



k-means



- Advantages
 - Fast and efficient
 - Given good results when groups are distinct or well separated from each other
 - Easy to implement



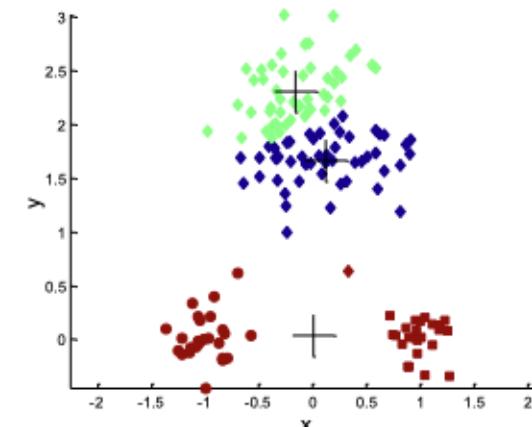
k-means

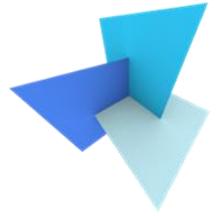
- Advantages
 - Fast and efficient
 - Given good results when groups are distinct or well separated from each other
 - Easy to implement
- Limitations



k-means

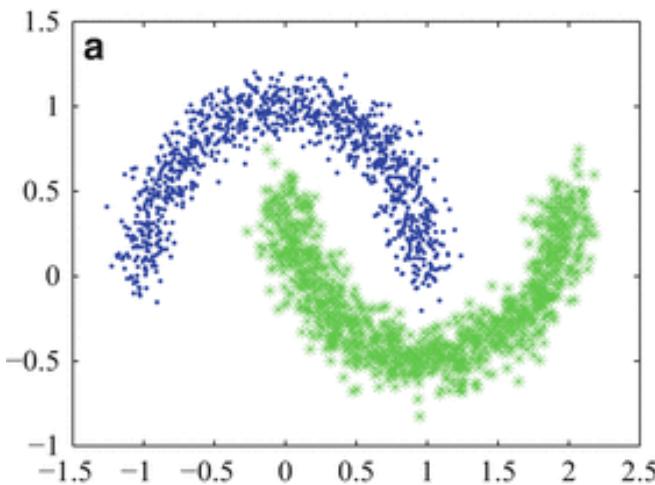
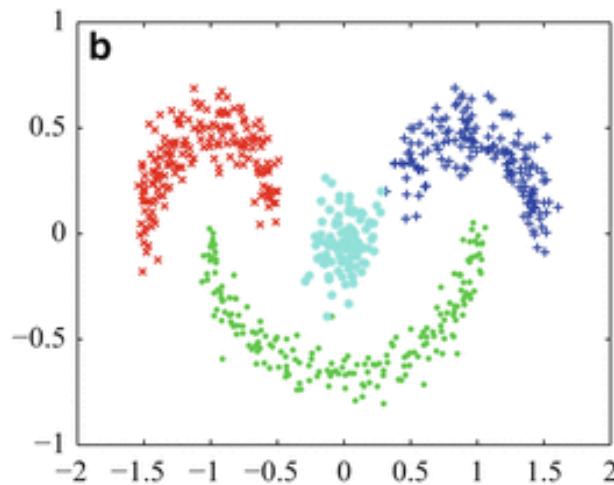
- Advantages
 - Fast and efficient
 - Given good results when groups are distinct or well separated from each other
 - Easy to implement
- Limitations
 - Requires a priori specification of the number (i.e., k) of clusters
 - Local minima
 - Sensitive to initialization
 - Cannot guarantee optimal clusters
 - Not invariant to non-linear transformations
 - e.g., cartesian coordinates vs polar coordinates



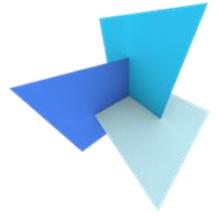


k-means

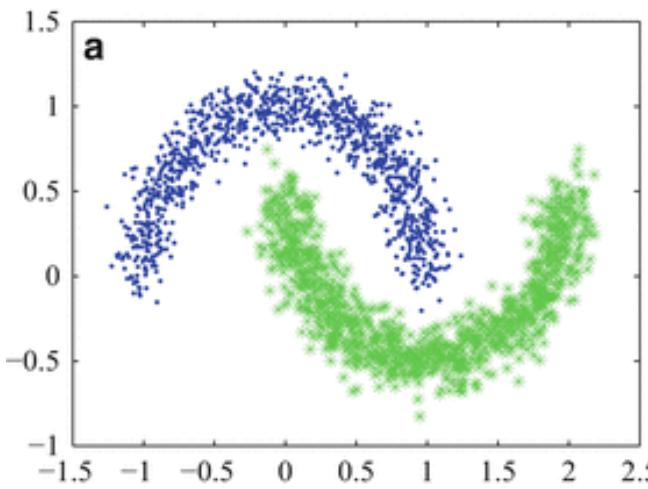
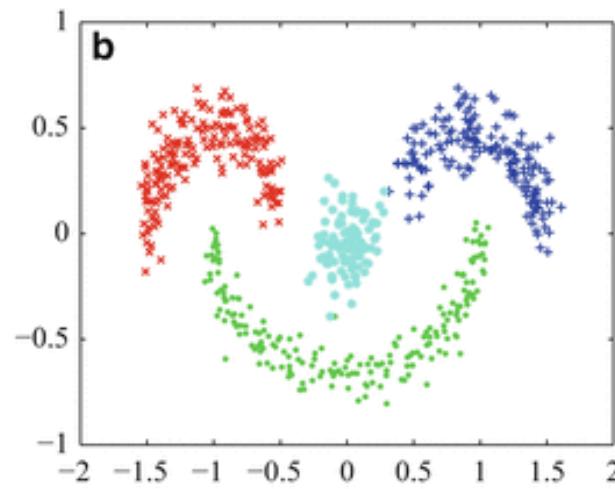
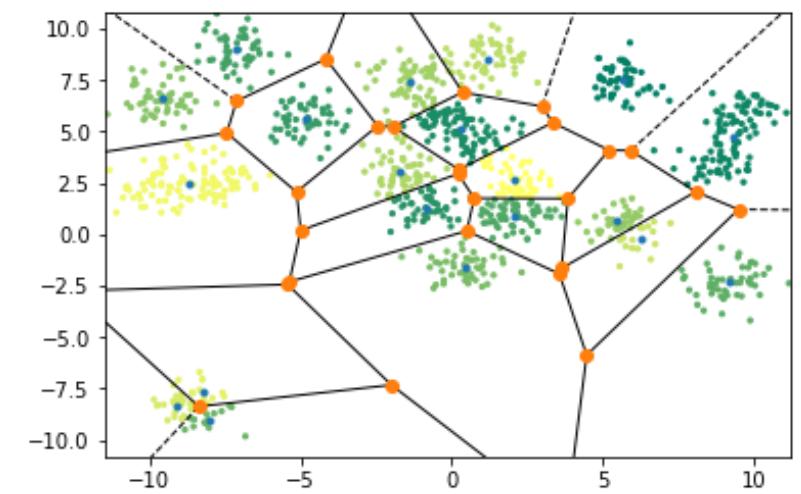
- Can k-means handle?

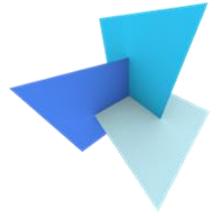


k-means



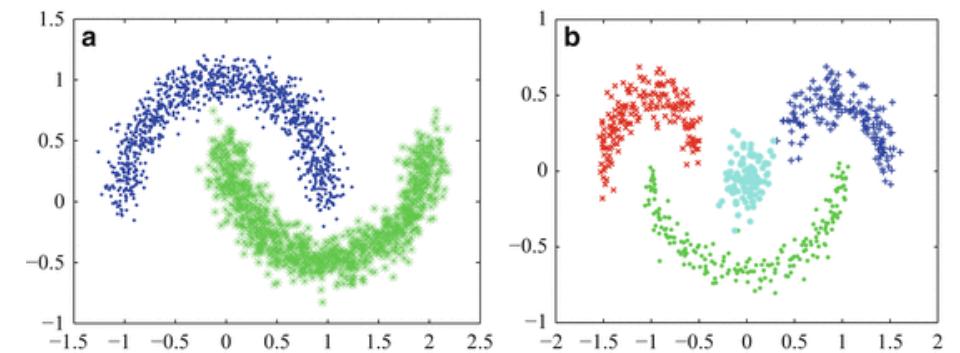
- Can k-means handle?





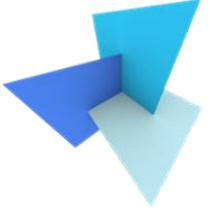
k-means

- Advantages
 - Fast and efficient
 - Given good results when groups are distinct or well separated from each other
 - Easy to implement
- Limitations
 - Requires a priori specification of the number (i.e., k) of clusters
 - Local minima
 - Sensitive to initialization
 - Cannot guarantee optimal clusters
 - Not invariant to non-linear transformations
 - e.g., cartesian coordinates vs polar coordinates
 - Cannot process non-linear datasets



Agenda

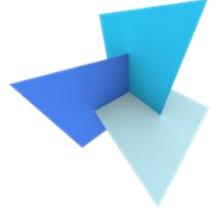
- Overview
 - What is clustering?
 - Distance measure (similarity measure)
 - Types of clustering algorithms
- Clustering algorithms
 - K-means clustering
 - Hierarchical clustering
 - Density-based clustering
- Nearest neighbor classification
- Features



Hierarchical clustering

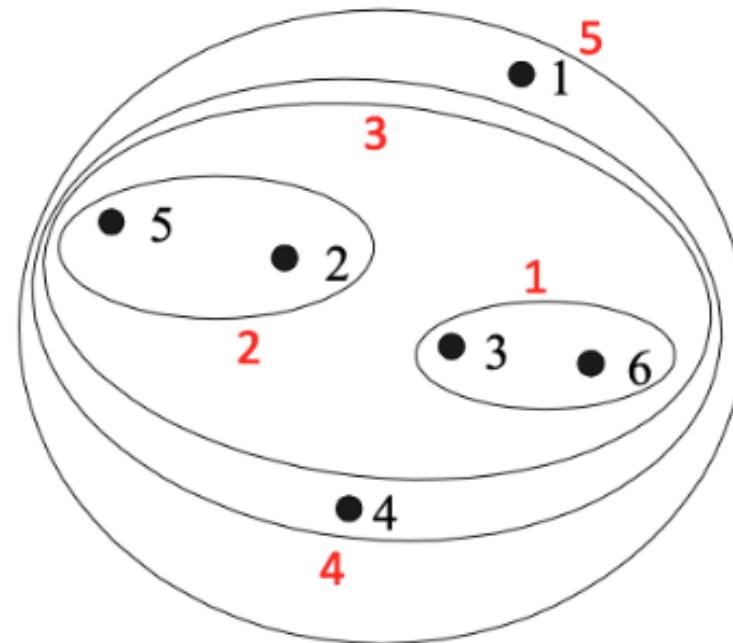
Given a set of N objects $S = \{s_1, s_2, \dots, s_N\}$ to be clustered and a function of distance between two clusters c_i and c_j , build a hierarchy tree on S such that for every $c_i, c_j \in S$, $c_i \cap c_j = \emptyset$. The basic process of hierarchical clustering is as follows:

- 1) Start by assigning each object to a cluster $c_i = s_i (i = 1, \dots, N)$, so that if you have N objects, you have N clusters $\ell = \{c_1, c_2, \dots, c_N\}$, each containing just one item.
- 2) Find the pair of clusters (c_i, c_j) such that $D(c_i, c_j) \leq D(c_{i'}, c_{j'})$, $\forall c_{i'} \neq c_{j'} \in \ell$ and merge them into a single cluster $c_k = c_i \cup c_j$. Delete c_i and c_j from ℓ and insert c_k into ℓ so that now you have one cluster less.
- 3) Compute distances (similarities) between the new cluster and each of the old clusters.
- 4) Repeat steps 2) and 3) until all items are clustered into a single cluster of size N .

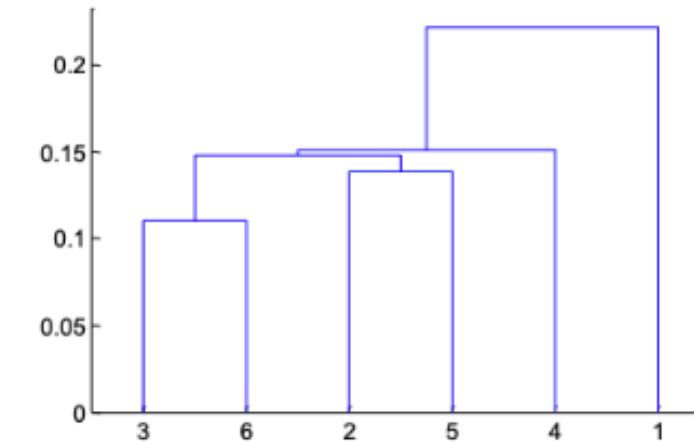


Hierarchical clustering

- Example



Nested Clusters

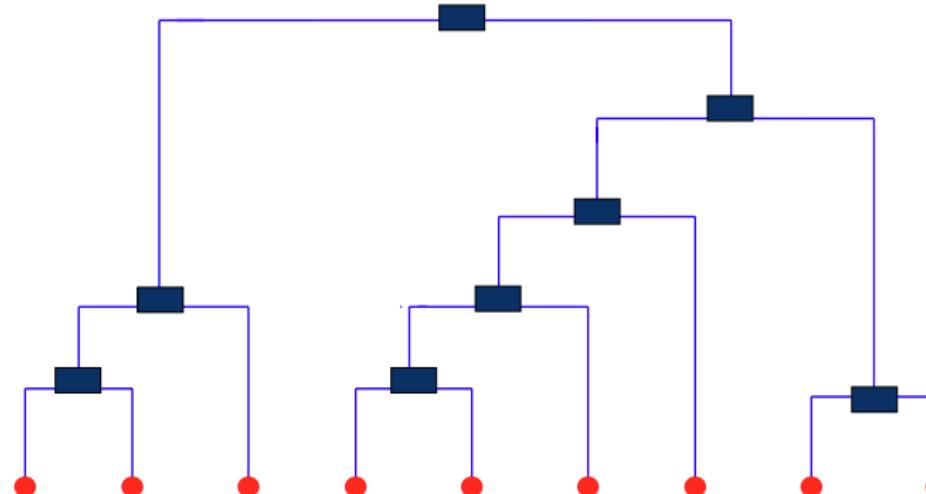


Dendrogram

An example of hierarchical clustering

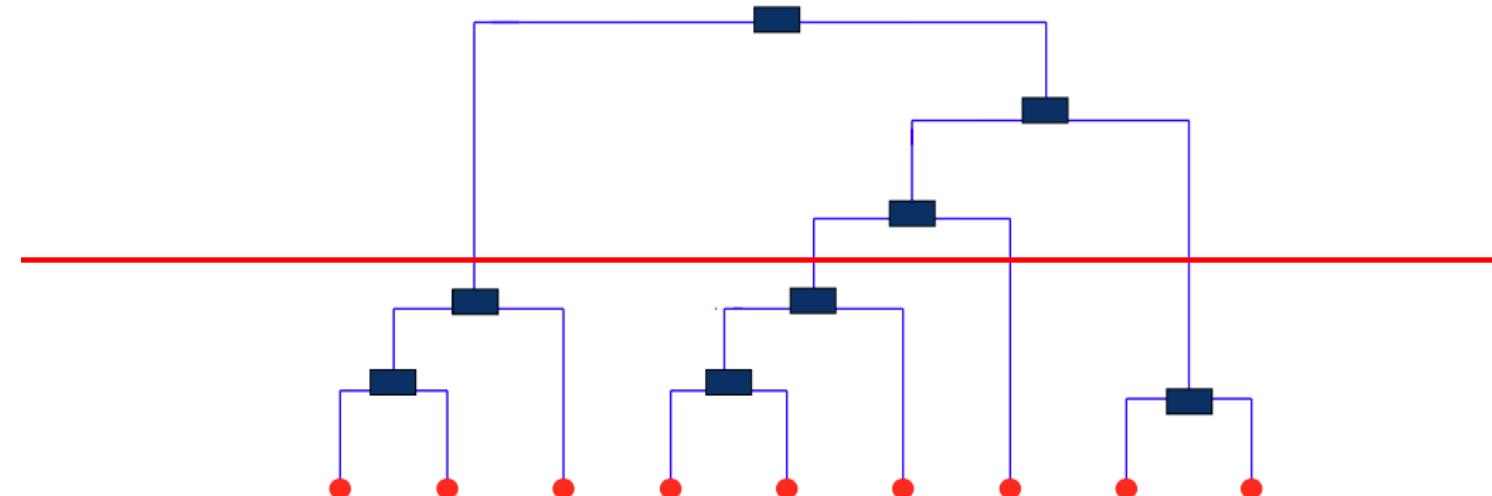
Hierarchical clustering

- Dendrogram
 - A tree that shows how clusters are merged/split hierarchically
 - Each node on the tree is a cluster; each leaf node is a singleton cluster



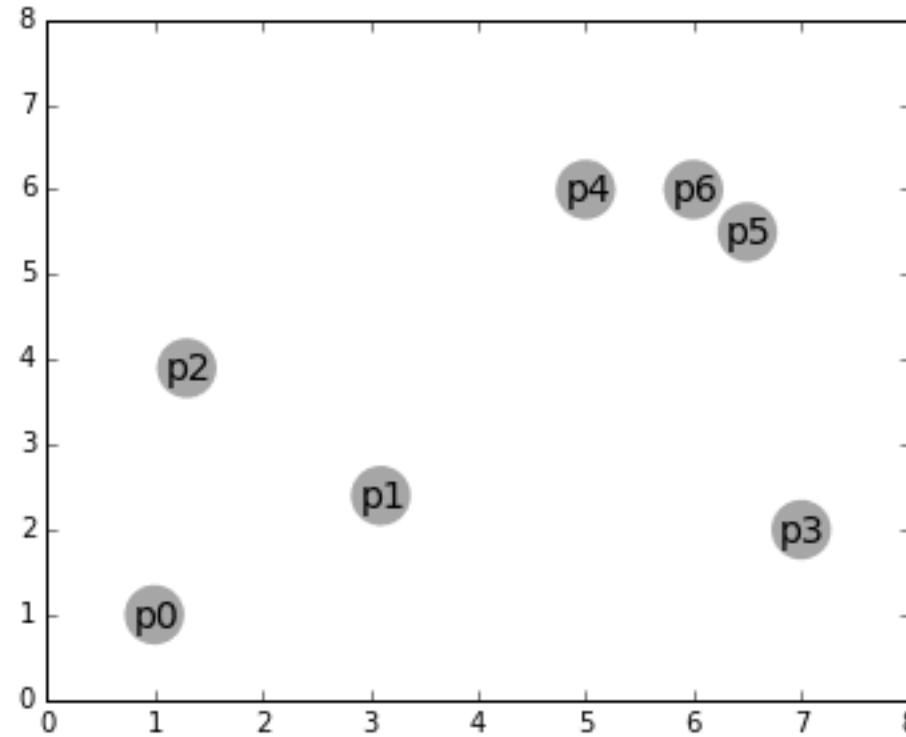
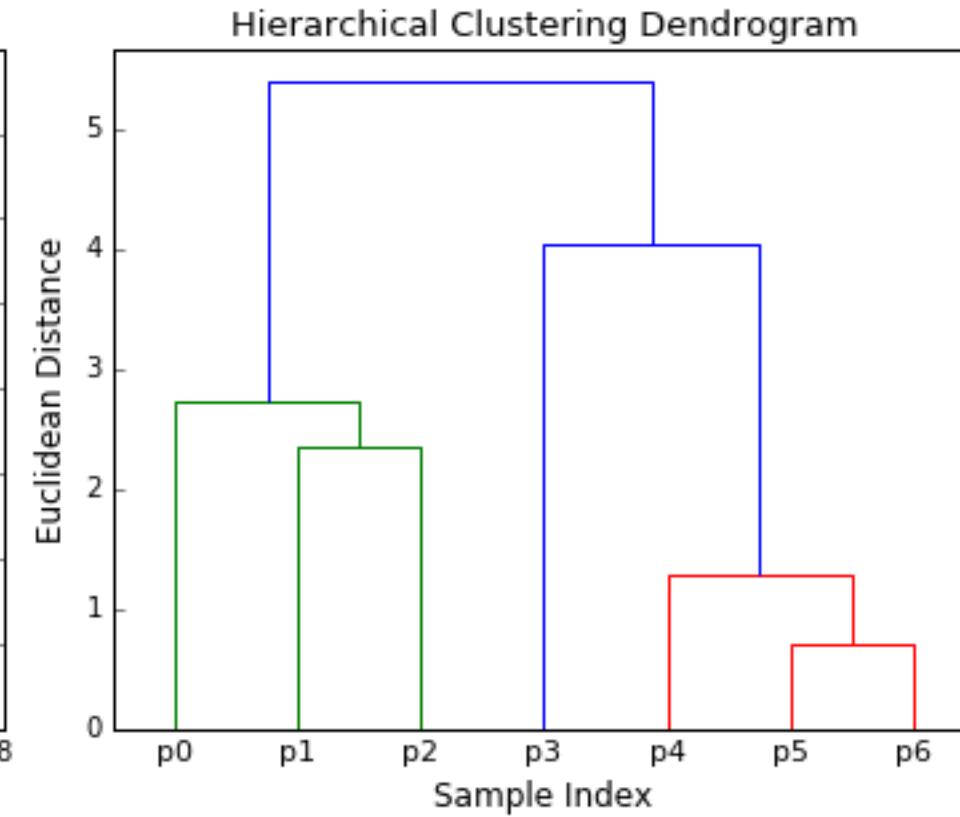
Hierarchical clustering

- Dendrogram
 - A tree that shows how clusters are merged/split hierarchically
 - Each node on the tree is a cluster; each leaf node is a singleton cluster
 - A clustering is obtained by cutting the dendrogram at the desired level (then each connected component forms a cluster)



Hierarchical clustering

- Example



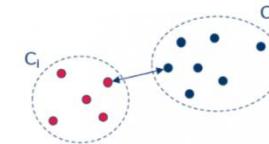
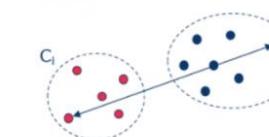
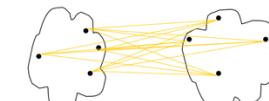
Hierarchical clustering

- Three different distance measures
 - Single-nearest distance: single linkage
 - Complete-farthest distance: complete linkage
 - Average distance: average linkage

- 1) Start by assigning each object to a cluster $c_i = s_i (i = 1, \dots, N)$, so that if you have N objects, you have N clusters $\ell = \{c_1, c_2, \dots, c_N\}$, each containing just one item.
- 2) Find the pair of clusters (c_i, c_j) such that $D(c_i, c_j) \leq D(c_{i'}, c_{j'})$, $\forall c_{i'} \neq c_{j'} \in \ell$ and merge them into a single cluster $c_k = c_i \cup c_j$. Delete c_i and c_j from ℓ and insert c_k into ℓ so that now you have one cluster less.
- 3) Compute distances (similarities) between the new cluster and each of the old clusters.
- 4) Repeat steps 2) and 3) until all items are clustered into a single cluster of size N .

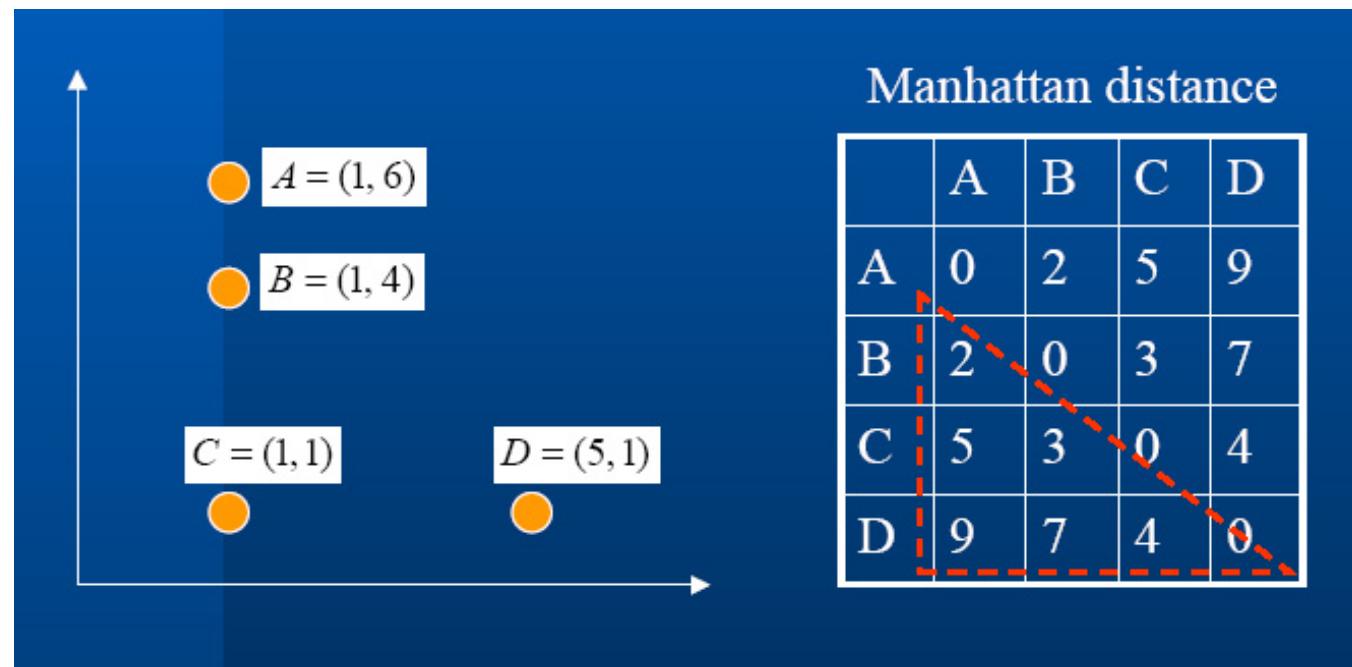
Hierarchical clustering

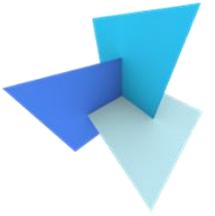
- Three different distance measures
 - Single-nearest distance (single linkage): **shortest** distance between any pair
$$D(c_i, c_j) = \min d(a, b), \forall a \in c_i \text{ and } b \in c_j$$
 - Complete-farthest distance (complete linkage): **greatest** distance between any pair
$$D(c_i, c_j) = \max d(a, b), \forall a \in c_i \text{ and } b \in c_j$$
 - Average distance or average linkage: **average** distance between all pairs



Hierarchical clustering

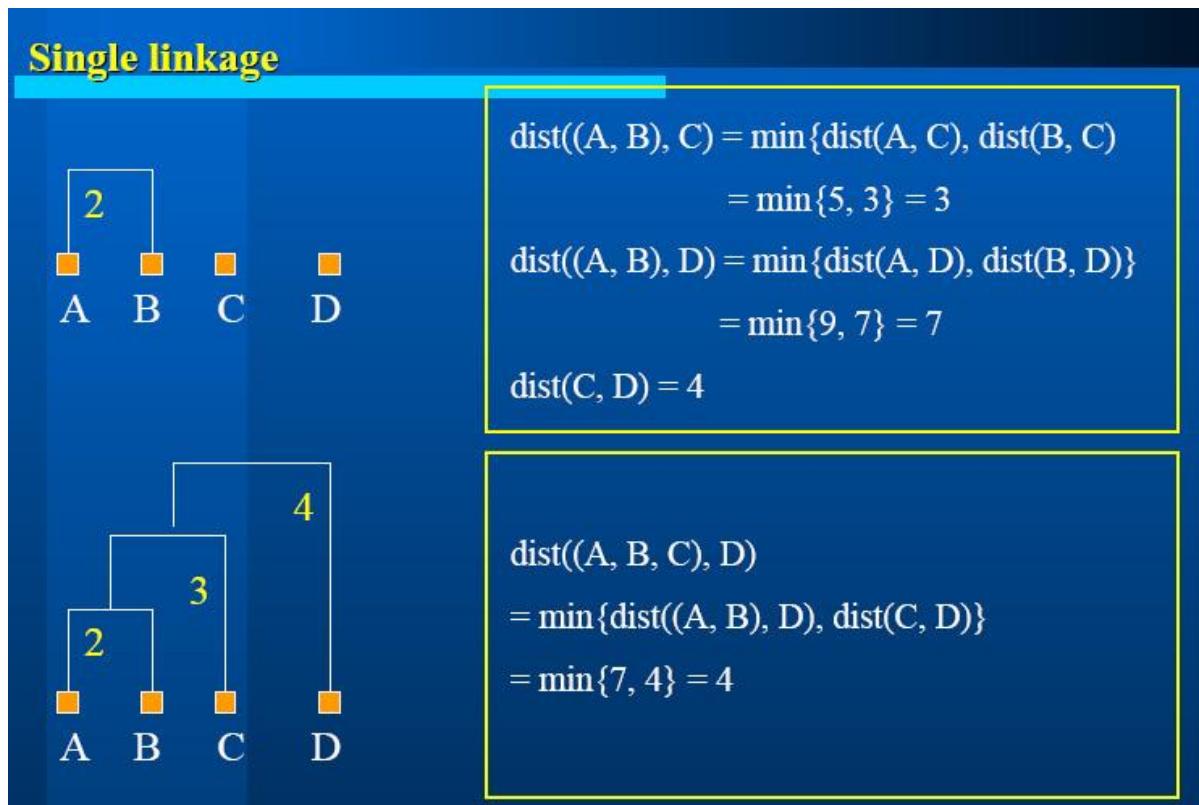
- Example: clustering 4 data items in 2D space



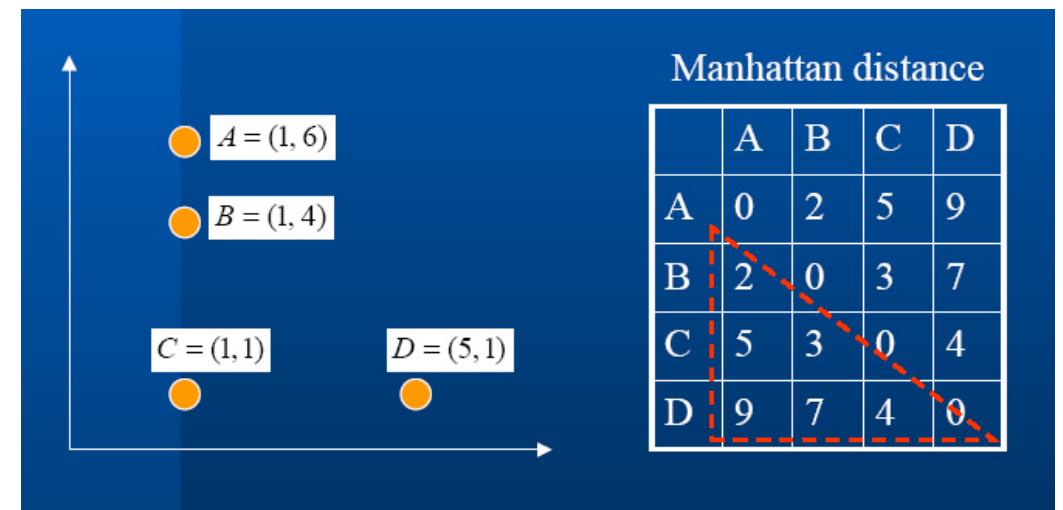


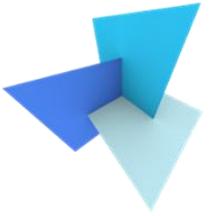
Hierarchical clustering

- Method: *single-linkage* clustering



$$D(c_i, c_j) = \min d(a, b), \forall a \in c_i \text{ and } b \in c_j$$



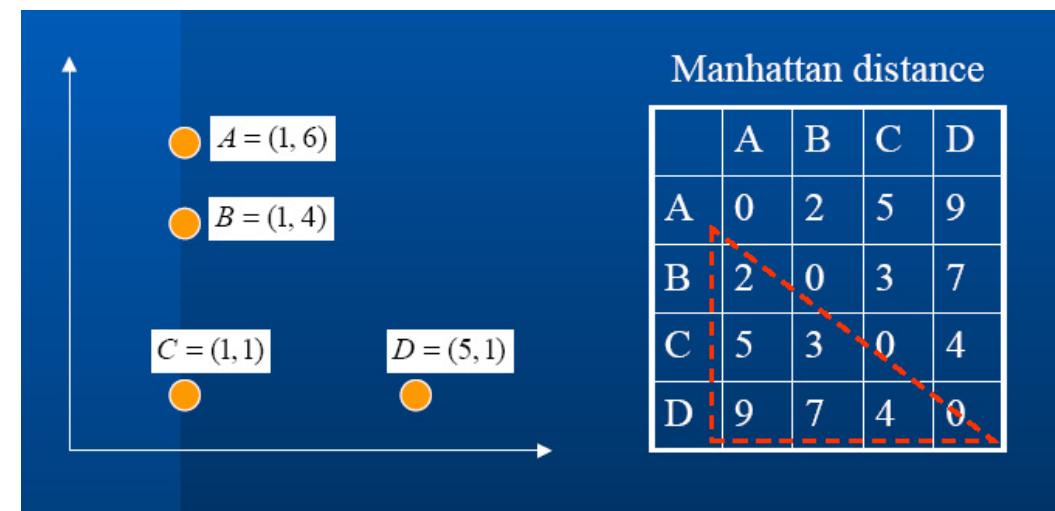


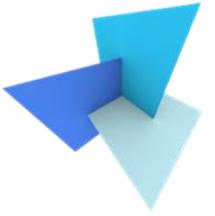
Hierarchical clustering

- Method: *complete-linkage* clustering



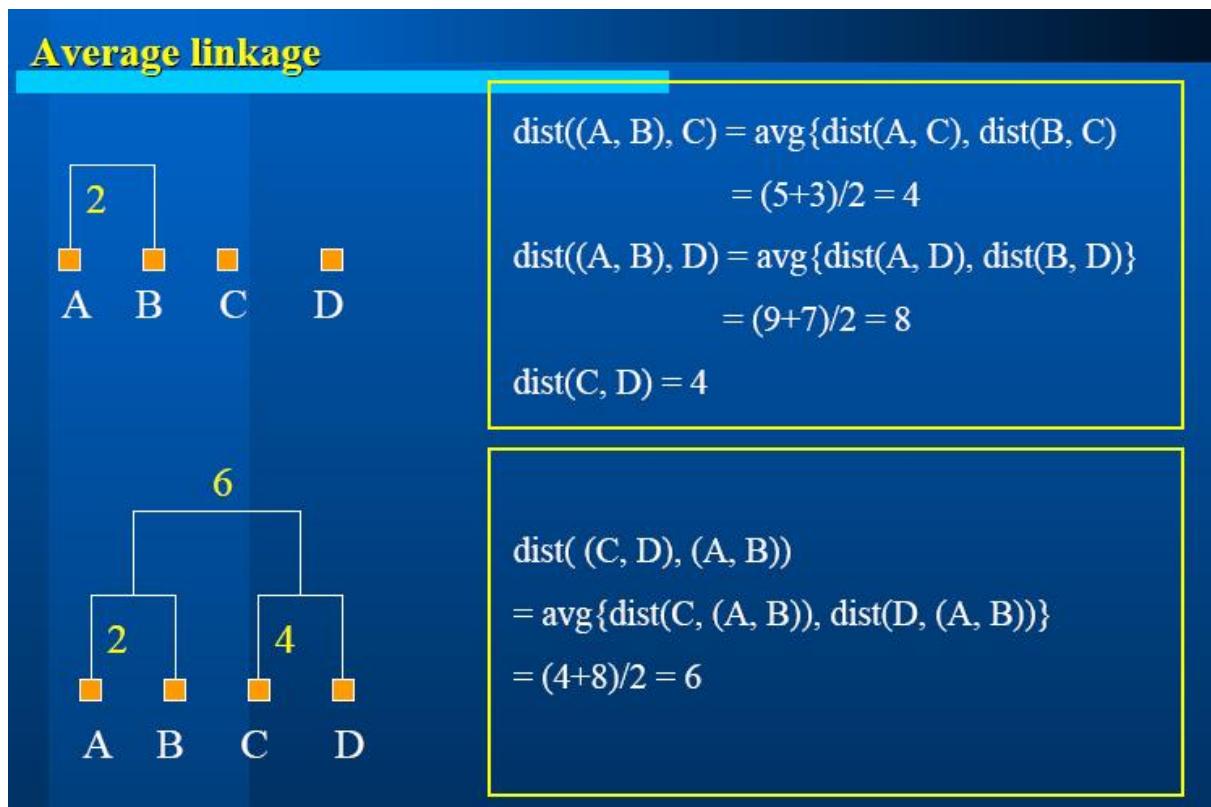
$$D(c_i, c_j) = \max d(a, b), \forall a \in c_i \text{ and } b \in c_j$$



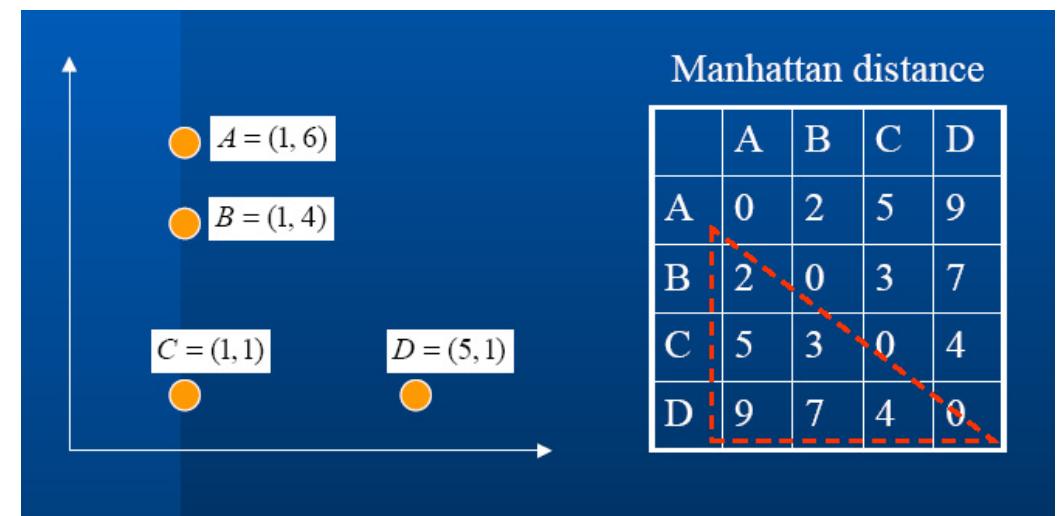


Hierarchical clustering

- Method: *average-linkage* clustering

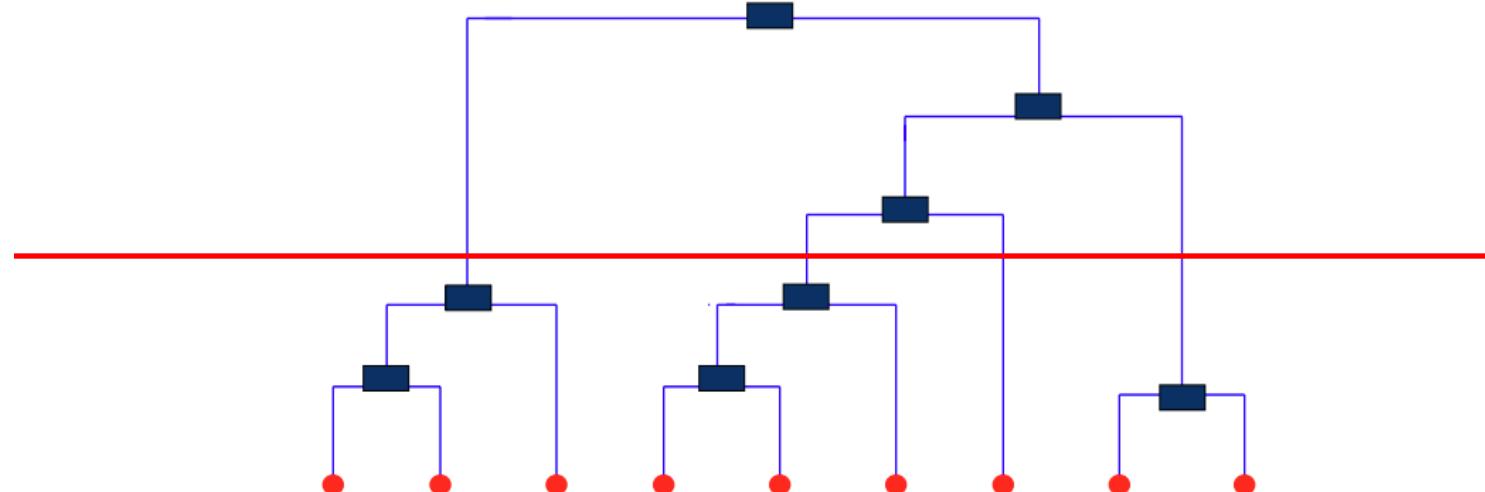


$$D(c_i, c_j) = \frac{1}{|c_i||c_j|} \sum_{a \in c_i, b \in c_j} d(a, b)$$



Hierarchical clustering

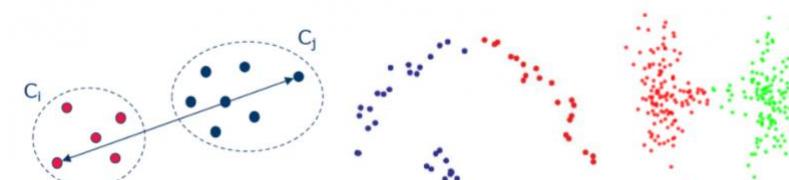
- Advantages
 - No a priori information about the number of clusters required
 - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level
 - Easy to implement and gives best result in some cases



Hierarchical clustering

- Advantages
 - No a priori information about the number of clusters required
 - Easy to implement and gives best result in some cases
- Limitations
 - Can never undo what (i.e., merging two clusters) was done previously
 - Can be slow if a large number data points (due to pairwise distance computation)
 - It may not be easy to choose a proper distance measure

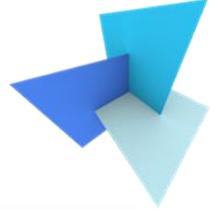
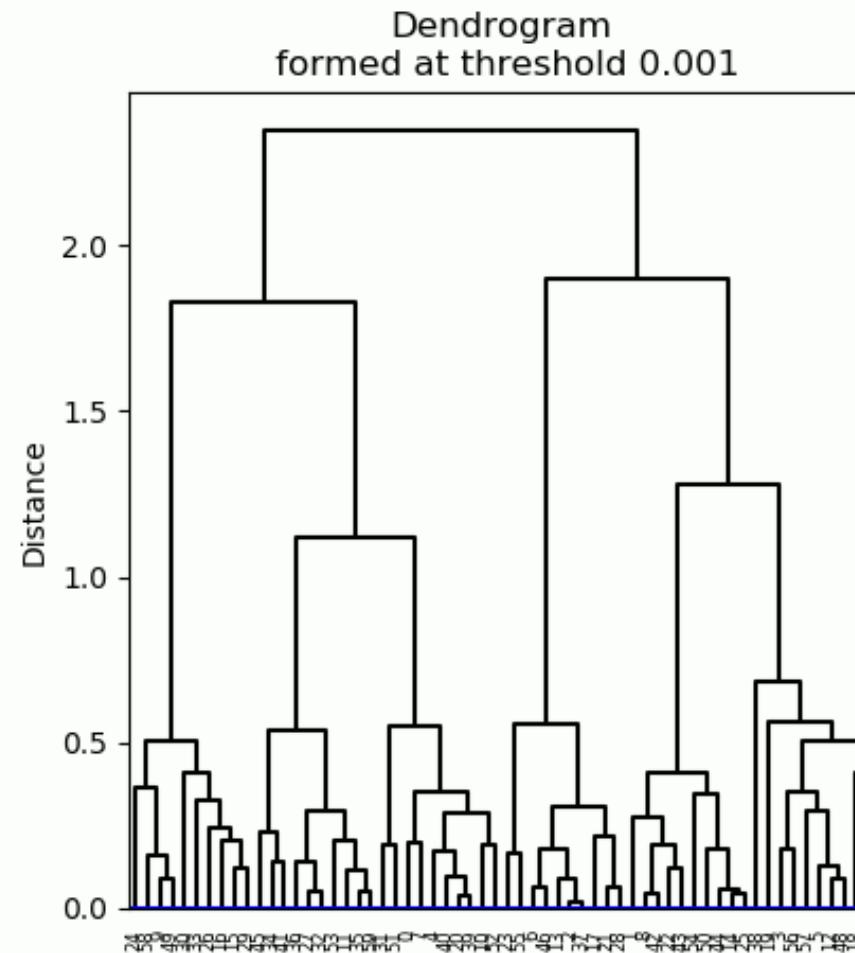
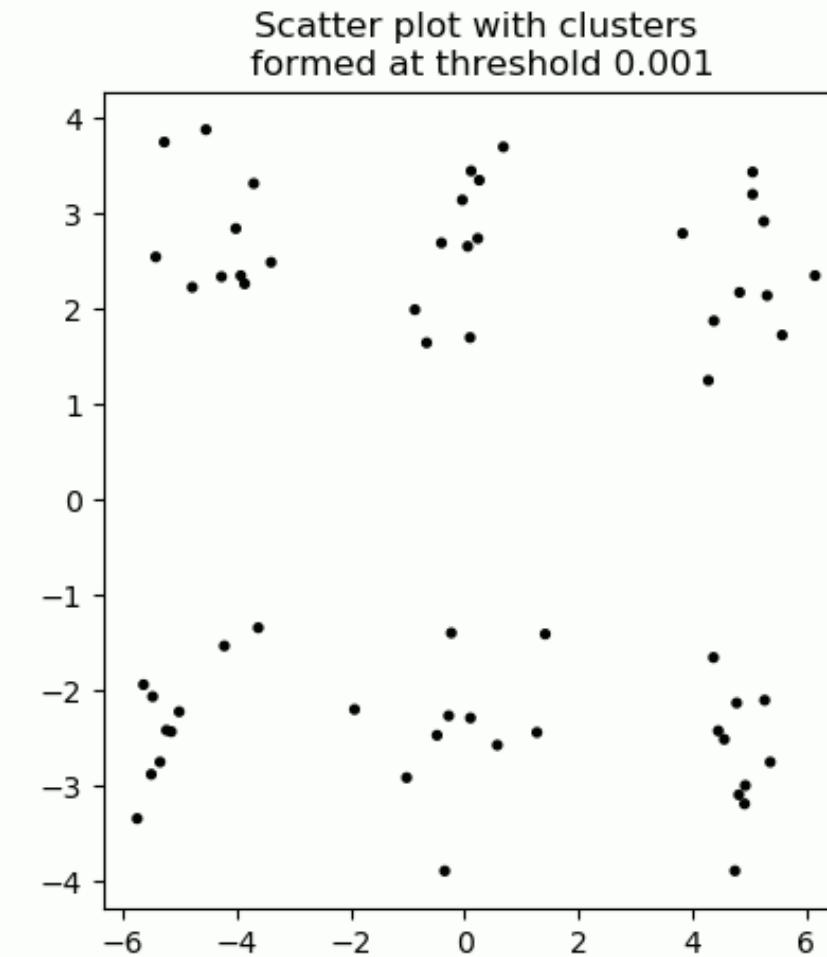
Single linkage: well-separated clusters



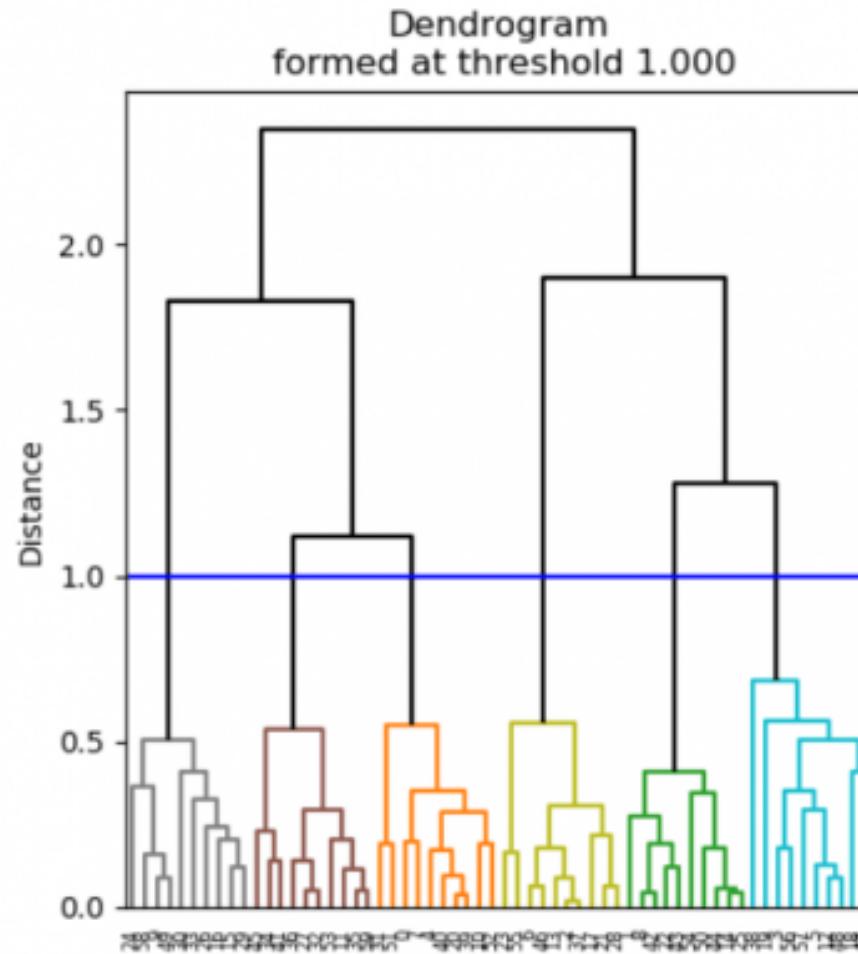
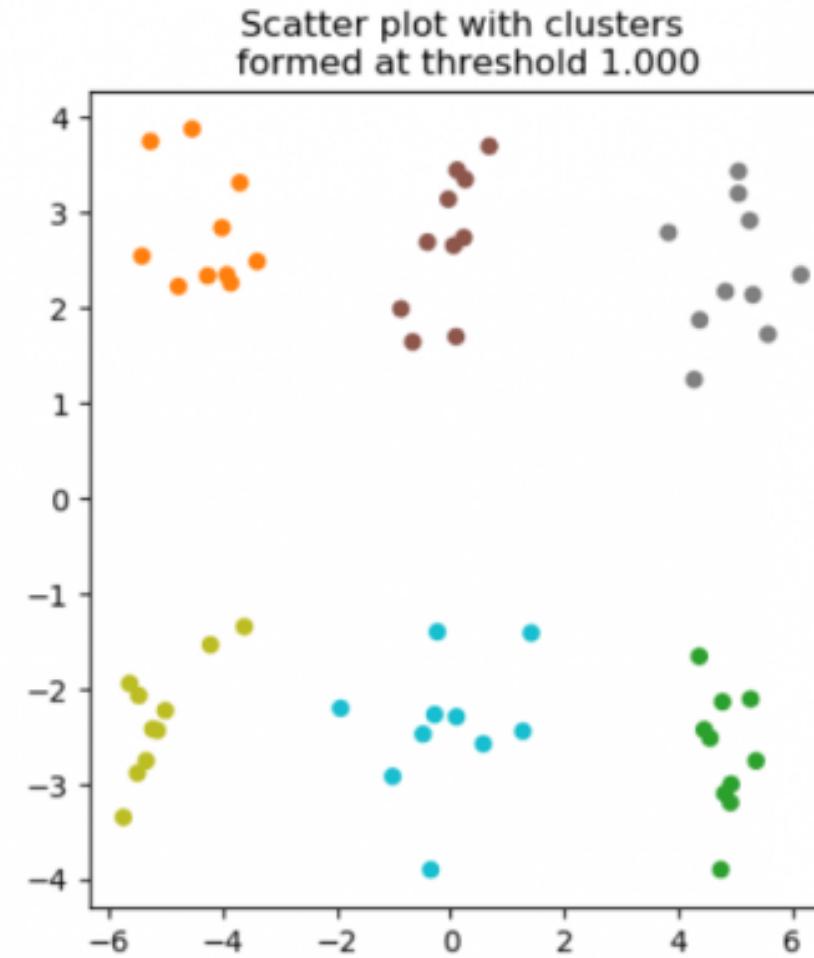
Complete linkage: compact clusters

- It may not be easy to identify the correct number of clusters by the dendrogram

Hierarchical clustering

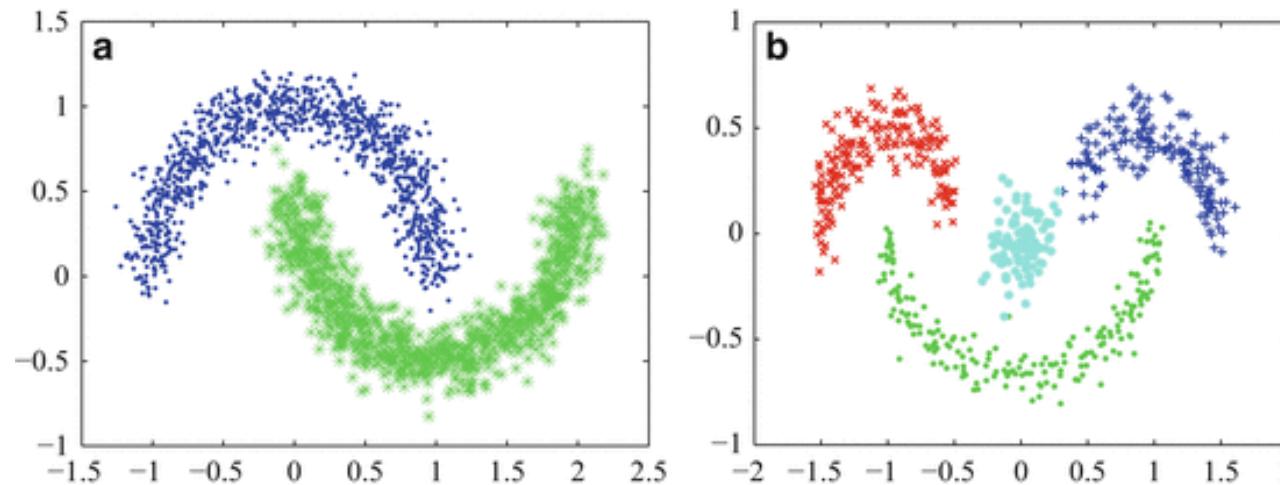


Hierarchical clustering



Hierarchical clustering

- Can hierarchical clustering method handle?

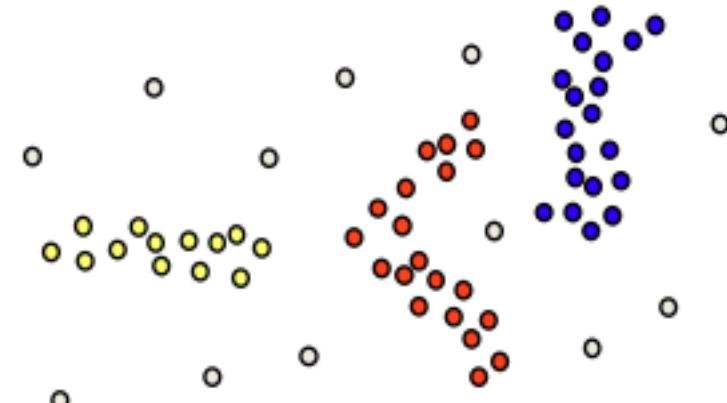


Agenda

- Overview
 - What is clustering?
 - Distance measure (similarity measure)
 - Types of clustering algorithms
- Clustering algorithms
 - K-means clustering
 - Hierarchical clustering
 - Density-based clustering
- Nearest neighbor classification
- Features

Density-based clustering

- Basic ideas
 - Clusters are contiguous regions of high density in the data space, separated by regions of lower data density
 - A cluster is defined as a maximal set of density connected points
- DBSCAN
 - Density-Based Spatial Clustering of Applications with Noise



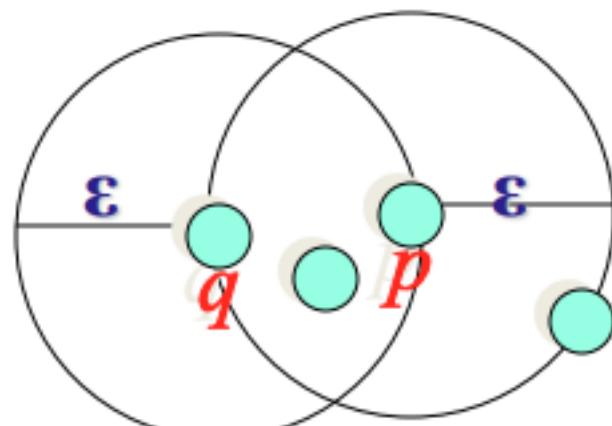
Density definition: two parameters

- ϵ -neighborhood: objects within a radius of ϵ from a cluster

$$N_\epsilon(p) : \{q \mid d(p, q) \leq \epsilon\}$$

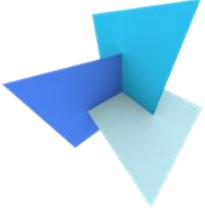
- The minimum number of points required to form a cluster

- High density: ϵ -neighborhood of an object contains at least $minPts$ of objects.

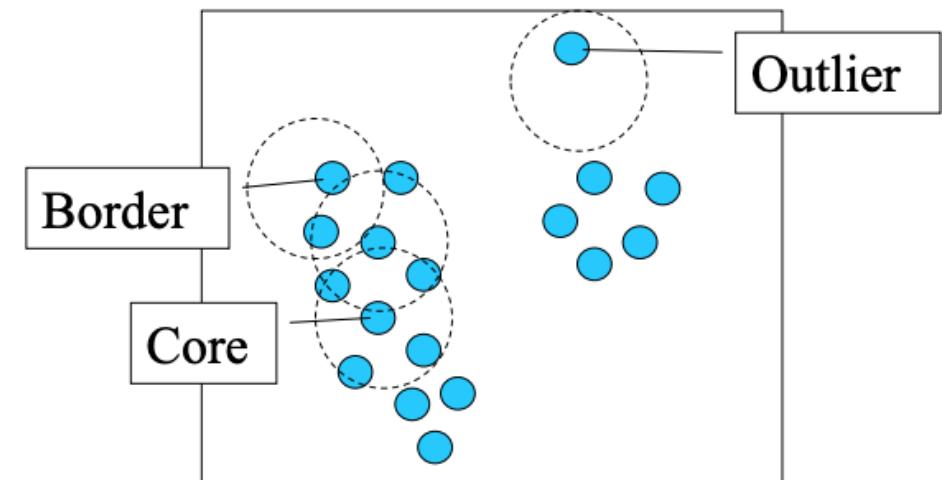


ϵ -neighborhood of p and q

Three types of data points



- Given ϵ and $minPts$
 - Core point: has at least $minPts$ neighbors within its ϵ -neighborhood
 - At the interior of a cluster
 - Border point
 - has fewer than $minPts$ neighbors within its ϵ -neighborhood
 - is within the ϵ -neighborhood of a core point
 - Outlier/Noise
 - Any point that is neither core nor border

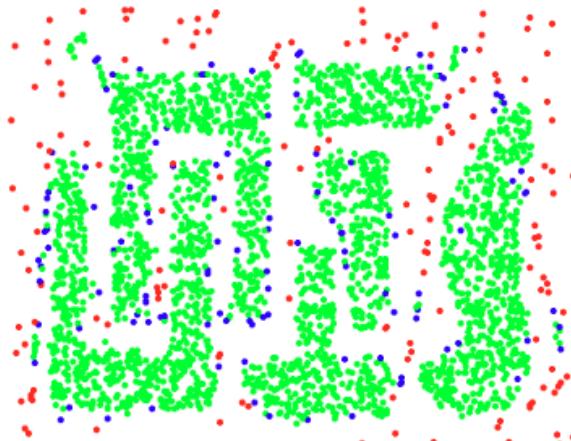


ϵ = circle radius, $minPts$ = 5

Three types of data points

- Example

Original Points

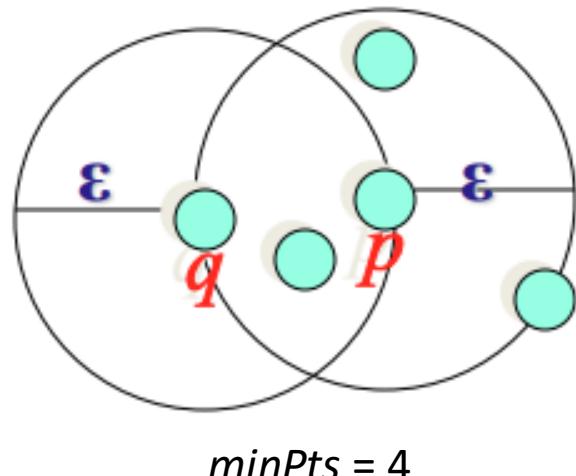


$\epsilon = 10, \ minPts = 4$

Point types: **core**,
border and **outliers**

Density definition: two concepts

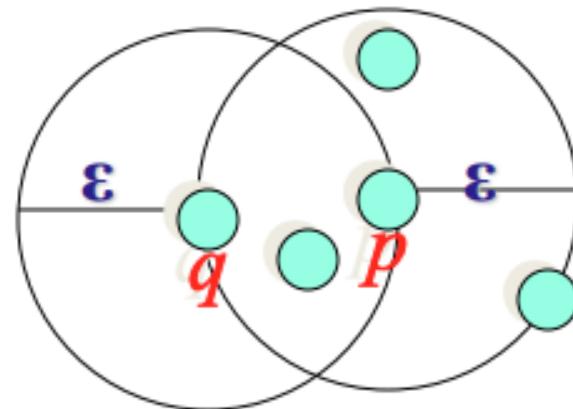
- Density reachability
 - A point q is said to be directly reachable from a point p if
 - p is a **core point** (i.e., has at least $minPts$ points within ϵ -neighborhood)
 - q is within distance ϵ from p



In this example, q is density reachable from p .
Is p also density reachable from q ?

Density definition: two concepts

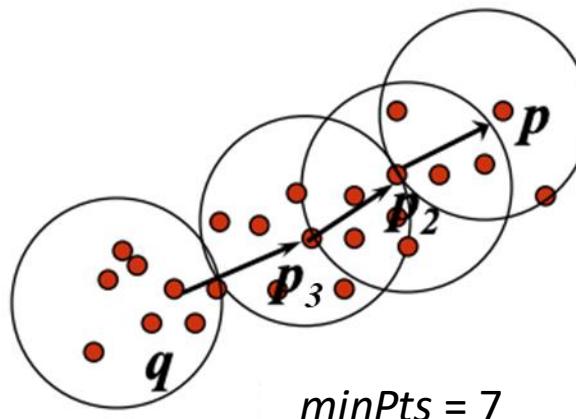
- Density reachability
 - A point q is said to be directly reachable from a point p if
 - p is a **core point** (i.e., has at least $minPts$ points within ϵ -neighborhood)
 - q is within distance ϵ from p
 - Density reachability is asymmetric
 - Only core points can reach other points



$minPts = 4$

Density definition: two concepts

- Density reachability
- Density connectivity
 - A point p is said to be reachable from q if
 - There is a path p_1, \dots, p_n with $p_1 = p$ and $p_n = q$, where each p_i is directly reachable from p_{i+1}
 - Density connectivity is transitive (i.e., it forms a chain)



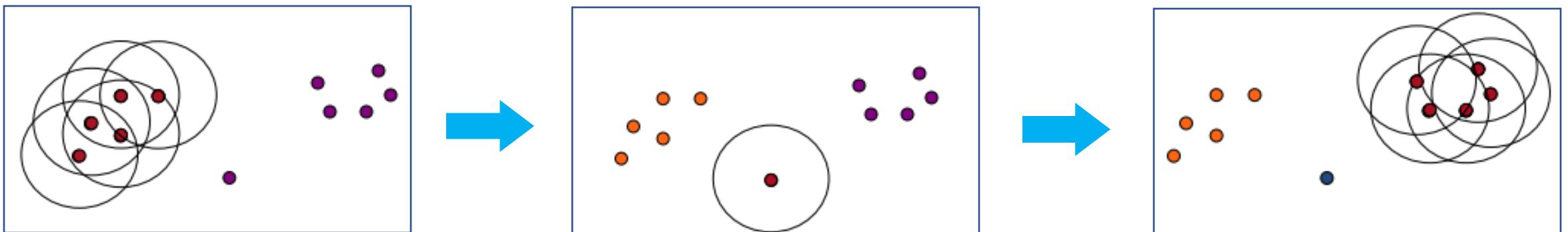
Example:

- p is directly reachable from p_2
- p_2 is directly reachable from p_3
- p_3 is directly reachable from q

So we say: p is reachable from q (p and q density connected)

DBSCAN algorithm

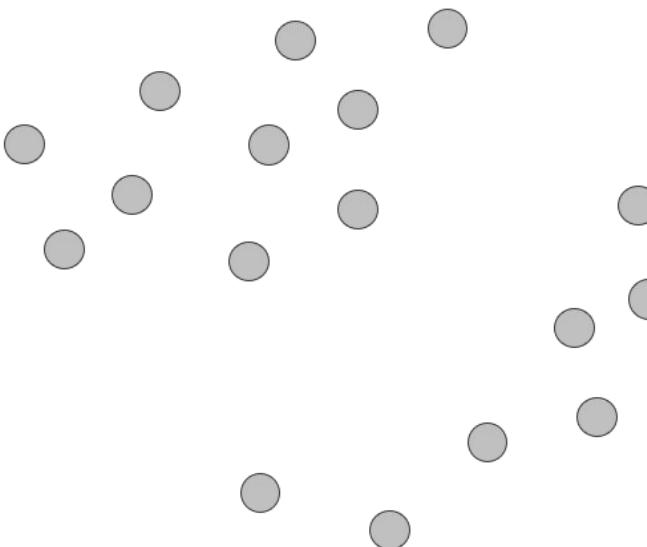
```
for each  $o \in D$  do
  if  $o$  is not yet classified then
    if  $o$  is a core-object then
      collect all objects density-connected by  $o$ ,
      and assign them to a new cluster.
    else
      assign  $o$  to NOISE
```

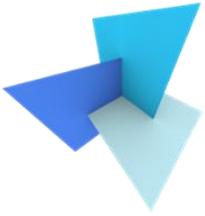


An example of DBSCAN clustering: $minPts = 3$

DBSCAN algorithm

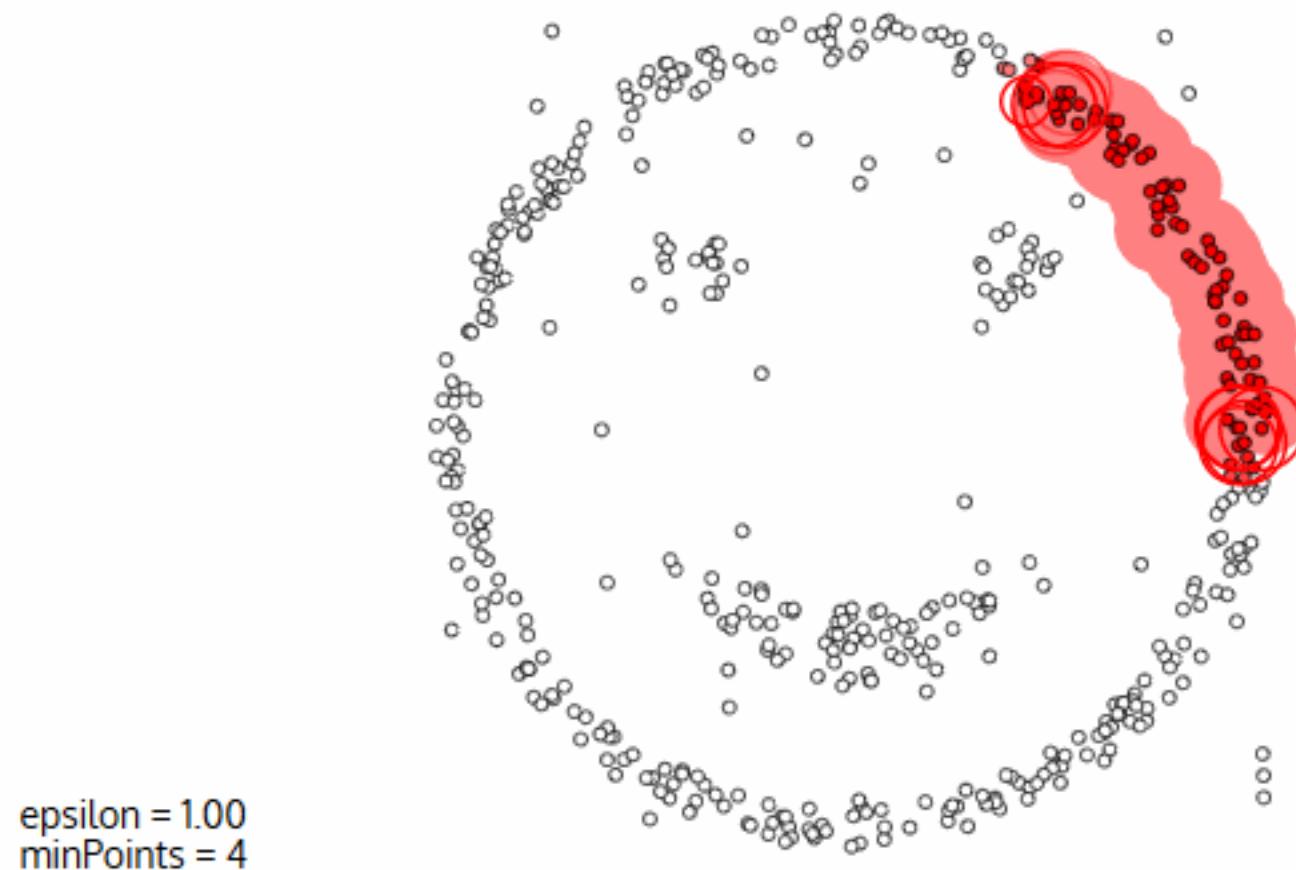
- Illustration

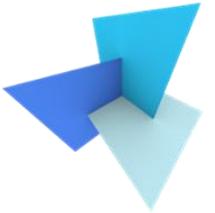




DBSCAN algorithm

- Illustration





DBSCAN algorithm

- Example



Original Points

Clusters

DBSCAN algorithm

- Determining the two parameters

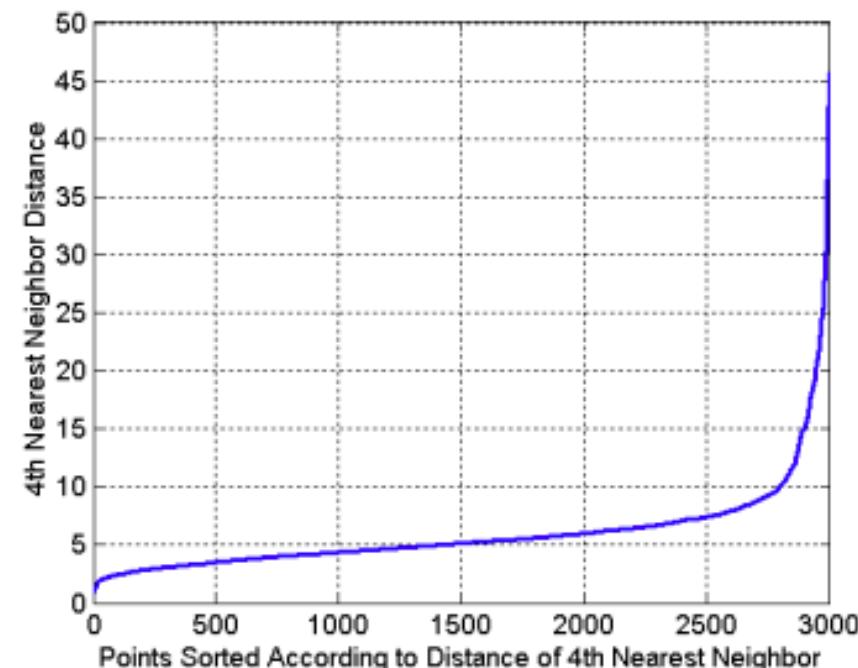
- $minPts$

- $minPts = 1$?
 - $minPts = 2$ (same as single linkage hierarchical method, with dendrogram cut at height ϵ)
 - $minPts = 2 * \text{dimension}$

- ϵ (distance threshold)

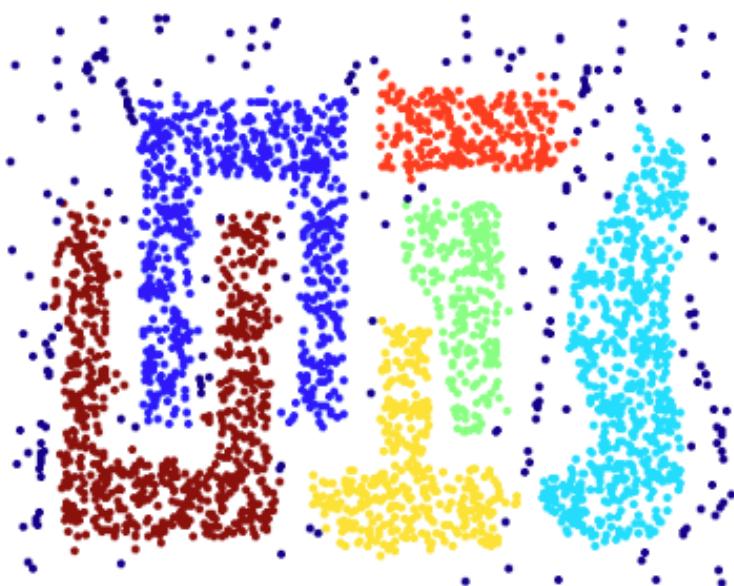
- k-distance graph ($k = minPts - 1$)
 - Look for the “elbow”
 - The point with maximum curvature

K-distance graph plots the k-th nearest neighbor distance of all points sorted from smallest to largest.



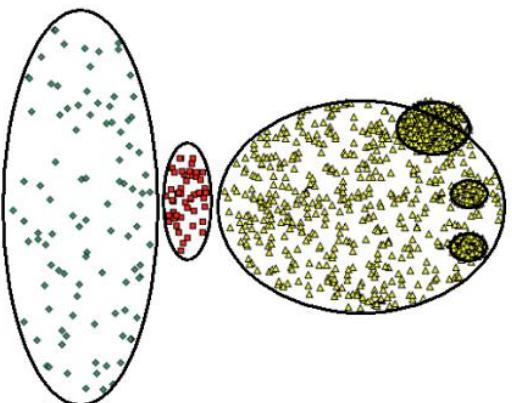
DBSCAN algorithm

- Advantages
 - Resistant to Noise
 - Robust to clusters of different shapes and sizes

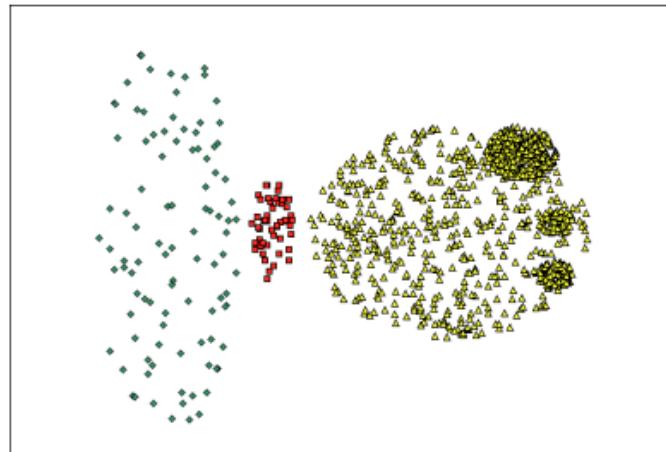


DBSCAN algorithm

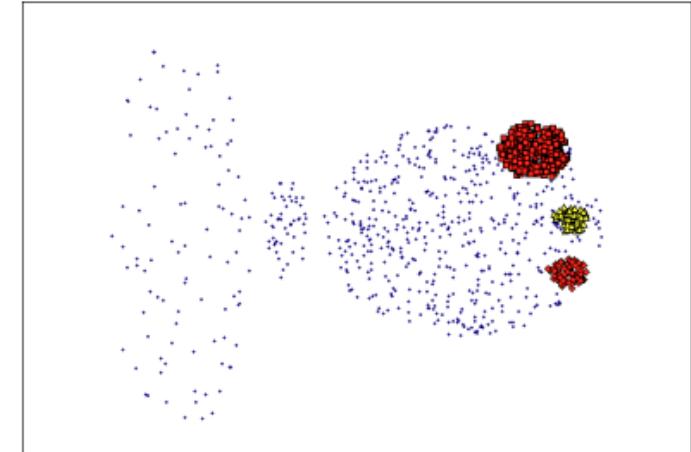
- Limitations
 - Cannot handle varying densities
 - Hard to determine a good set of parameters



Original points



$minPts = 4, \epsilon = 9.92$



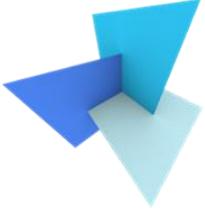
$minPts = 4, \epsilon = 75$



Question

- Which method (DBSCAN or k-means) was used to produce each result?

Agenda

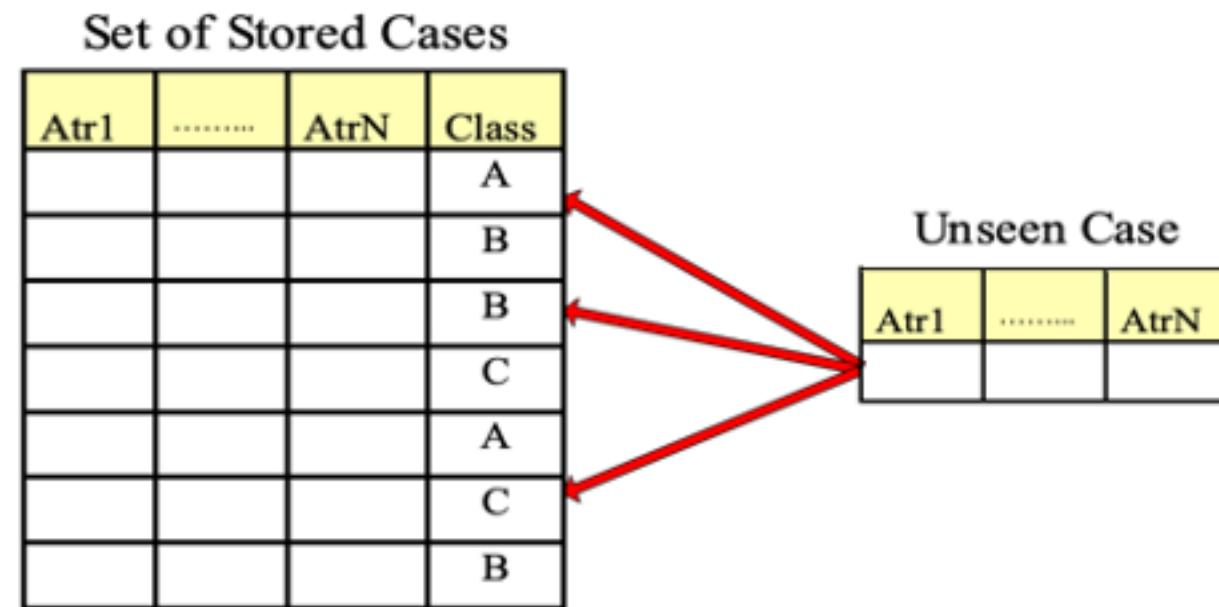


- Overview
 - What is clustering?
 - Distance measure (similarity measure)
 - Types of clustering algorithms
- Clustering algorithms
 - K-means clustering
 - Hierarchical clustering
 - Density-based clustering
- Nearest neighbor classification
- Features



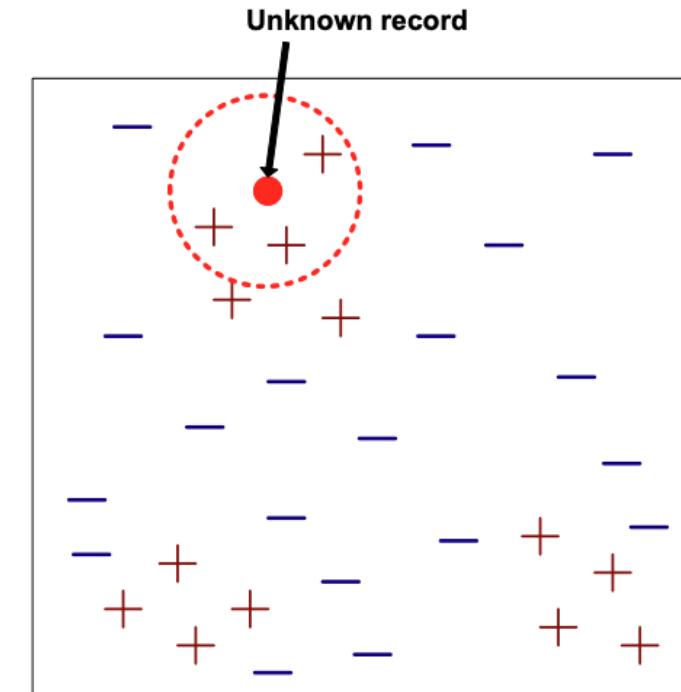
Nearest neighbor classification

- Basic ideas
 - Store the training records
 - Use training records to predict the class label of unseen cases



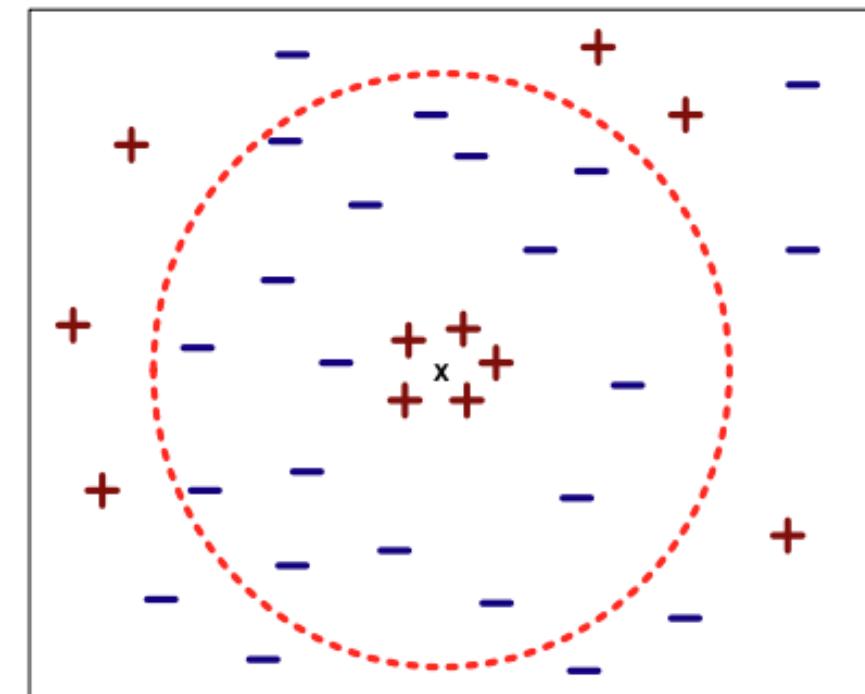
Nearest neighbor classification

- Requires three things
 - The set of stored records
 - Distance metric to compute distance between records
 - The value of k , the number of nearest neighbors to retrieve
- To classify an unknown record
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of the k nearest neighbors to determine the class label of the unknown record (e.g., by taking majority vote)

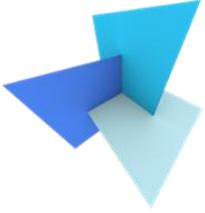


Nearest neighbor classification

- Choosing the value of k
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes



Agenda



- Overview
 - What is clustering?
 - Distance measure (similarity measure)
 - Types of clustering algorithms
- Clustering algorithms
 - K-means clustering
 - Hierarchical clustering
 - Density-based clustering
- Nearest neighbor classification
- Features



Features

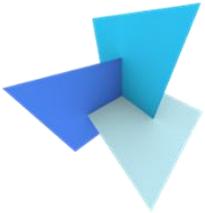
- A set of attributes of an object
- Typically stored as a vector – feature vector
- Scaling issue: distance measure dominated by one of the attributes
 - Example
 - height of a person [1.5m, 1.8m]
 - weight of a person [40kg, 100kg]
 - income of a person [€10K, €1M]
 - Solution
 - Normalization, i.e.,
$$\frac{\text{each attribute value}}{\text{max possible value of this attribute}}$$

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}$$



You should have learned

- Clustering
 - The basic ideas, strengths, and weaknesses of the 3 clustering methods
 - K-means
 - How is K-means interpreted as an optimization problem?
 - Hierarchical clustering
 - Several ways of defining inter-cluster distance
 - Density-based clustering
 - The parameters and the definitions of neighborhood and density in DBSCAN
- Classification
 - The basic idea of k-nearest neighbor classifier



Next Lecture

- Bayesian classification & logistic regression

