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Agenda

• What do students/teachers expect?

• Introduction to machine learning
▪ What is machine learning

▪ Applications of machine learning

▪ The history of machine learning

▪ Machine learning in this course

▪ The pros and cons of using machine learning

• Organization of GEO5017
▪ The teachers

▪ Learning activities

▪ Assessment

▪ Communication 1

Learning objectives:

• explain the impact, limits, and dangers 

of machine learning; 

• give use cases of machine learning for 

the built environment.



What do students expect?

• Why do you choose this course? 

• What do you want to learn from this course?
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Prerequisites - What do teachers expect?

• Basic calculus and linear algebra
• Comfortable with matrix-vector operations

• Familiar with taking derivatives and gradients.

• Basic probability and statistics 
• Know fundamental concepts such as probabilities, Gaussian distributions, mean, 

standard deviation, etc.

• Proficiency in Python programming
• All assignments will be in Python (utilizing libraries like Numpy)
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https://3d.bk.tudelft.nl/courses/geo5017/prerequisites/GEO5017_Math_self_assessment.pdf

Ready to follow GEO5017? 
Self-assessment of math fundamentals

https://numpy.org/
https://3d.bk.tudelft.nl/courses/geo5017/prerequisites/GEO5017_Math_self_assessment.pdf


What is machine learning?

• Ways people have tried to define machine learning
o A field of study that gives computers the ability to learn without being 

explicitly programmed - Arthur Samuel

Known for

o Pioneer in Machine Learning 

o Development of TeX project (with Donald Knuth)

o Checkers-playing program 
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What is machine learning?

• Ways people have tried to define machine learning
o A field of study that gives computers the ability to learn without being 

explicitly programmed - Arthur Samuel

o A computer program is said to learn from experience E with respect to some 
task T and some performance measure P, if its performance on T, as 
measured by P, improves with experience E. - Tom Mitchell

Known for

o contributions to ML and AI

o Author of textbook ”Machine Learning”
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What is machine learning?

• Ways people have tried to define machine learning
o A field of study that gives computers the ability to learn without being 

explicitly programmed - Arthur Samuel

o A computer program is said to learn from experience E with respect to some 
task T and some performance measure P, if its performance on T, as 
measured by P, improves with experience E. - Tom Mitchell

o Machine learning is the study of computer algorithms that can improve 
automatically through experience and by the use of data. Machine learning 
algorithms build a model based on sample data, known as training data, in 
order to make predictions or decisions without being explicitly programmed 
to do so. - Wikipedia
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What is machine learning?
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A computer program is said to learn from experience E with respect to some 
task T and some performance measure P if its performance on T, as measured 
by P, improves with experience E. - Tom Mitchell

Suppose we feed a learning algorithm a lot of historical weather data, 
and have it learned to predict the weather. What would be a 
reasonable choice for P?

A. The process of the algorithm examining a large amount of historical 
weather data.

B. The weather prediction task.
C. The probability of it correctly predicting a future date's weather.
D. None of these.



What are machine learning algorithms?
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Shortest pathDelaunay triangulation Minimum spanning tree

Face recognition Autonomous driving Spam filtering

Equation solving

Recommender systems



Applications of machine learning

• Self-driving cars

• Face recognition

• Handwriting recognition

• Amazon product recommendation

• Spam filtering

• Automatic translation

• Speech recognition

• …
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Applications of machine learning
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• Façade parsing and its applications in 3D modeling

Nan et al. Template Assembly for Detailed Urban Reconstruction. Computer Graphics Forum, Vol. 34, No. 2, 2015



Applications of machine learning
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• Semantic segmentation



History of machine learning

• 1943: First mathematical model of neural networks
o Warren McCulloch (left) and Walter Pitts (right)
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(We only review a small subset of events and influential methods/techniques)



History of machine learning

• 1956: Championship-level computer checkers game
o Not explore every possible path

o Find optimal move by measuring chances of winning

o Mechanisms to continuously improve
▪ Remember previous moves

▪ Compare with chances of winning

13Arthur Samuel and IBM 700 

Arthur Samuel is the first person to come 
up with and popularize the term "machine 
learning".



History of machine learning

• 1965: First Deep Neural Network
o Foundations for nowadays’ most powerful algorithms

o First multi-layer perceptron

o Alexey Ivakhnenko is considered the father of deep learning

o Not popular until around 2010
▪ Limited computing power

▪ Lack of annotated data
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History of machine learning

• 1995: Random decision forest
o Creates and merges decisions from individual tree structures into a "forest”

o The final prediction is based on majority voting

o Significantly improves its accuracy and decision-making
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History of machine learning

• 2009: ImageNet: dataset
o 1K object categories

o > 14 million manually annotated images

o Crowdsourced annotation (otherwise 19 years by Li’s teams)
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Imagenet: A large-scale hierarchical image database Fei-Fei Li

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=rDfyQnIAAAAJ&citation_for_view=rDfyQnIAAAAJ:qjMakFHDy7sC


History of machine learning

• 2009: ImageNet: Large Scale Visual Recognition Challenge
o 1K object categories

o > 14 million manually annotated images

o Crowdsourced annotation

o Error rate: 28% (2010), 16% (2012, AlexNet) …

o The start of a "deep learning revolution"
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- Deep learning revolution
- Transformed the AI industry



History of machine learning

• 2014: Generative adversarial networks (GAN)
o Teaches AI how to generate new data based on training set

o Two network opposing each other
▪ Generator vs Discriminator
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History of machine learning

• 2015: DeepMind's AlphaGo
o The first AI to beat a professional Go player

• 2017: Waymo launches autonomous taxis

• 2021: DeepMind's AlphaFold
o Reveals human protein structures

• 2022: ChatGPT
o Generative Pre-trained Transformer
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History of machine learning

• 2024

22

1986



Machine learning in this course

• Different types of machine learning 
o Supervised learning

o Unsupervised learning

o Semi-supervised learning

o Reinforcement learning
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Supervised learning

• Learn from both labeled inputs and desired outputs
o Almost all applications of deep learning that are in the spotlight these days 

belong in this category: optical character recognition, speech recognition, 
image classification/segmentation, object detection, and language translation

• Good at
o Regression: map input variables to a continuous function and predict values

▪ Given sizes (and energy labels, ages, distance to city center) of houses, predict their price

▪ Given a picture of a person, predict his/her age

o Classification: map input variables into discrete categories
▪ Given a patient with a tumor, predict whether the tumor is malignant or benign

▪ Spam mail detection
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y = ax + b

Example of regression
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Example of classification



Supervised learning

• Exercise 1: Which is regression, and which is classification?
o Problem 1: Use a learning algorithm to predict tomorrow's 

temperature (in degrees Centigrade/Fahrenheit)

o Problem 2: Given historical data of two football teams' wins/losses, 
examine the statistics of the two teams and predict which team will win 
tomorrow's match.

• Exercise 2: Turn the following regression problem into a
classification problem
o Given sizes, energy labels, ages, distance to city center of a house,

predict its price.
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Unsupervised learning

• Train on unlabeled data to look for meaningful connection
o Approach problems with little or no idea what our results should look like

o Often a necessary step in better understanding a dataset before attempting 
to solve a supervised-learning problem

• Good at
o Clustering: Splitting the dataset into groups based on similarity, without

knowing what each group represents
▪ Take a collection of 1M different genes and group these genes into groups that are 

somehow similar or related by different variables, such as lifespan, location, roles.

o Anomaly detection: identifying rare items, events or observations
▪ Automatic video surveillance for theft detection in ATM machines 
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Clustering vs classification

Clustering or classification?



Semi-supervised learning

• Mix of supervised and unsupervised learning
o Training data might be provided, but the model is free to explore the data on it

own and develop its own understanding of the dataset

o Why: performance usually improves when trained on labeled datasets, but
labeling data can be time consuming and expensive

o Strikes a middle ground between the performance of supervised learning and 
the efficiency of unsupervised learning

• Good at
o Machine translation: teaching algorithms to translate language based on less 

than a full dictionary of words

o Fraud detection: identifying cases of fraud when you only have a few examples

o Labelling data: algorithms trained on small data sets can learn to apply data 
labels to larger sets automatically 30



Reinforcement learning
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• Teach a machine to complete a multi-step process with defined rules
o Positive or negative cues are given

o The algorithm decides on its own what steps to take to maximize reward

• Good at
o Robotics: robots can learn to perform tasks 

o Video gameplay: to teach bots to play a number of video games
▪ Example: DeepMind’s AlphoGo

o Resource management: Given finite resources and a defined goal, help 
enterprises plan out how to allocate resources

• Mostly a research area and no significant successes beyond games
o Has potential in large range of real-world applications: self-driving cars, robotics, 

resource management, education



Limitation and danger of using ML

• Generalization issue/Data biases
o A model trained on one dataset may not work well one other datasets

▪ Dataset does not reflect the realities of the environment
➢ E.g., facial recognition systems trained primarily on images of white men and women

➢ E.g., breast cancer prediction algorithms primarily trained on X-rays of white women

34

Fact: almost all big datasets, generated by systems powered by ML/AI based models, are known to be biased.



• Lack of data & lack of good data
o Require large amounts of data to give useful results 

▪ fewer data -> poor results

▪ poor quality annotation -> poor results

35

Limitation and danger of using ML

Caltech 101 dataset



• Lack of data & lack of good data
o Require large amounts of data to give useful results 

▪ fewer data -> poor results

▪ poor quality annotation -> poor results

36

Limitation and danger of using ML

Biased against "rare events" 



• Lack of data & lack of good data
o Require large amounts of data to give useful results 

▪ fewer data -> poor results

▪ poor quality annotation -> poor results

• Reusing data is bad

• Data augmentation is useful to some extent

• Having more good data is almost always the preferred solution

37

Limitation and danger of using ML



• Machine learning is stochastic, not deterministic
o You can never assert that a result is 100% correct.

o Example 1: weather forecast
▪ Computationally expensive, may take weeks or longer

▪ Replace simulation by machine learning?

o Example 2: medical care
▪ Error or inaccuracy may cause patient injury 

➢ Recommend wrong drug

➢ Fail to notice a tumor

38

Limitation and danger of using ML



• Sensitive to changes in context

39

Limitation and danger of using ML

Photoshopping objects into a picture of a monkey in the jungle confuses deep nets



• Susceptibility to adversarial attacks
o To find limitations: test ML learning systems with "adversarial examples" 

o Models susceptible to manipulation by inputs explicitly designed to fool them
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Limitation and danger of using ML

Charles Choi. Medical Imaging AI Software Is Vulnerable 
to Covert Attacks. IEEE Spectrum. 04 Jun 2018

Example:
- Introducing small amounts of noise (imperceptible to

human) fools an ML system classifying medical images
- The noise could also be incorporated directly

into the image-capture process
- Someone who has access to the data could commit

different kinds of fraud, not just using adversarial attacks
- Very difficult to detect if the attack has occurred



• Ethics
o Trust algorithms and data more than our own judgment and logic

o Who do we blame if an algorithm is wrong?
▪ Example: failures in medical care

▪ Example: accidents by autonomous driving cars

41

Limitation and danger of using ML



This course

• Machine learning

o Introductory level
▪ Basic theories & commonly used algorithms

➢Linear regression, clustering, Bayesian classification, logistic regression, 
SVM, decision trees, random forest, neural networks, deep learning …

o Hands-on experiences
▪ Data processing, feature crafting, feature selection, parameter tuning, etc.

o Our focus: processing geo-spatial data

42



Learning objectives

• Explain the impact, limits, and dangers of machine learning; give use cases of 
machine learning for the built environment;

• Explain the main concepts in machine learning (e.g., regression, classification, 
unsupervised learning, supervised learning, dimensionality reduction, overfitting, 
training, validation, cross-validation, learning curve, and regularization);

• Explain the principles of well-established unsupervised and supervised machine 
learning techniques (e.g., clustering, linear regression, Bayesian classification, 
logistic regression, SVM, random forest, and neural networks);

• Preprocess data (e.g., labeling, normalization, feature selection, augmentation, 
train-test split) for applying machine learning techniques;

• Select and apply the appropriate machine learning method for a specific 
geospatial data processing task (e.g., object classification or semantic 
segmentation);

• Evaluate the performance of machine learning models.
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Organization of GEO5017

• The teachers

44

Liangliang Nan Nail Ibrahimli Shenglan Du
LiangliangNan#0976 nibrahimli#5857 Shenglan Du#2136
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Learning activities

• Lectures
o Mostly 2 x 45min per week

o Lecture room

• Lab exercises (and work on assignments) 
o Mostly 2 sessions (2 x 45min each) per week

o In the booked lecture rooms

o Teachers available

45



Lectures

1 & 2. Introduction to ML & the course [Liangliang]

3 & 4 Linear regression & Gradient descent  [Liangliang]

5 & 6 Clustering & Nearest neighbor classification [Liangliang]

7 & 8 Bayesian classification & logistic regression [Shenglan]

9 & 10 Support vector machine (SVM)            [Shenglan]

11 & 12 Decision trees and random forest                [Shenglan]

13 & 14 Neural networks    [Nail]

15 & 16 Deep learning (CNN)    [Nail]
46



Assessment

• 2 group assignments (40 %)
o Group performance

o Personal contribution/Peer reviews

• Final exam (60%): 
o Lectures, handouts, assignments

▪ Multiple-choice questions

▪ Open questions

47



Assessment

• Pass (on a 100-point scale)?
o Assignments >= 55%

o Exam >= 55%

o Total >= 57.5%

• Repair an assignment: if lower than 55%
o Only one chance

o Only be assessed with a 60%

• Retake the exam: if lower than 55%
o Only one chance

o An entirely new examination

48



Assignments

• Two mandatory assignments, each released after the lecture 

• Programming: implementation and experiment with ML algorithm(s)

• Work in groups (3 students per group)

• What to submit
o Report

▪ Individual contribution

49



Assignments

• Two mandatory assignments, each released after the lecture 

• Programming: implementation and experiment with ML algorithm(s)

• Work in groups (3 students per group)

• What to submit
o Report

o Code
▪ Collaboration using GitHub

▪ [optional] Include the link to the GitHub repository in the report

▪ Reproduce the results
➢ Doesn’t compile: -10%

➢ Doesn’t reproduce the result: -40%

50



Assignments

• Two mandatory assignments, each released after the lecture 

• Programming: implementation and experiment with ML algorithm(s)

• Work in groups (3 students per group)

• What to submit

• We allow multiple submissions
o Incorporating comments from teachers/peers

o Evaluation based on 1st submission + 5% maximum

51

Example:

 First submission 60%, then final mark will be <= 65%



Assignments

• Two mandatory assignments, each released after the lecture 

• Programming: implementation and experiment with ML algorithm(s)

• Work in groups (3 students per group)

• What to submit

• We allow multiple submissions

• Strict deadlines
o Late submission

▪ 10% deducted per day late 

▪ Not acceptable after 3 days late

52



Assignments

• Two mandatory assignments, each released after the lecture 

• Programming: implementation and experiment with ML algorithm(s)

• Work in groups (3 students per group)

• What to submit

• We allow multiple submissions

• Strict deadline

• Teamwork: Everyone active in coding/discussion/reporting
o We strongly discourage

▪ report writing to one person and code writing to another

▪ one person working on course A and another on course B

▪ perfectly equal individual contributions 53



Assignments

• Copy from others/internet, or use ChatGPT, DeepSeek…
o Code

o Sentences 

o Figures

o …

• Submit to BrightSpace [plagiarism check turned on]

54



Assignments

• Not designed to challenge or test you, but
o To help you gain knowledge and experience

o To help teacher to gain insights into your progress
▪ Tune teaching methods and improve materials

Forget the mark

Ask questions

Enjoy the process!!!
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Final exam

• Multiple-choice questions

• Open questions
o Lectures, handouts, assignments

• Example questions available before the exam

56



Communication

• Course website
o https://3d.bk.tudelft.nl/courses/geo5017/

57

https://3d.bk.tudelft.nl/courses/geo5017/


Communication

• Discussion
o Lab/Lecture hours

o Discord channel

58
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LiangliangNan#0976 nibrahimli#5857 Shenglan Du#2136
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https://3d.bk.tudelft.nl/nibrahimli/
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o Group assignments

o 3 students per team

o Assignments only visible for those in teams

59

Team up for assignments



Next Lecture  

60

• Linear regression & gradient decent
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