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Preface 

Probability and statlstlcs appear explicitly or implicitly in many disciplines, 
including computer and information science, physics, chemistry, geology, biology, 
medicine, psychology, sociology, political science, education, economics, business, 
operations research, and all branches of engineering. 

The purpose of this book is to present an introduction to principIes and methods 
of probability and statistics which would be useful to all individual s regardless of 
their fields of specialization. It is designed for use as a supplement to all current 
standard texts, or as a textbook in a beginning course in probability and statistics 
with high school algebra as the only prerequisite. 

The material is divided into two parts, since the logical development is not 
disturbed by the division while the usefulness as a text and reference book is 
increased. 

Part 1 covers descriptive statistics and elements of probability. The first chapter 
treats descriptive statistics which motivates various concepts appearing in the 
chapters on probability, and the second chapter covers sets and counting which 
are needed for a modern treatment of probability. Part 1 also includes a chapter 
on random variables where we define expectation, variance, and standard deviation 
of random variables, and where we discuss and prove Chebyshev's inequality and the 
law of large numbers. This is followed by a separate chapter on the binomial and 
normal distributions, where the central limit theorem is discussed in the context of 
the normal approximation to the binomial distribution. 

Part II treats inferential statistics. It begins with a chapter on sampling 
distributions for sampling with and without replacement and for small and large 
samples. Then there are chapters on estimation (confidence intervals) and hypoth­
esis testing for a single population, and then a separate chapter covering these topics 
for two populations. Lastly, there is a chapter on chi-square tests and analysis of 
vanance. 

Each chapter begins with clear statements of pertinent definitions, principIes, 
and theorems together with illustrative and other descriptive material. This is 
followed by graded sets of solved and supplementary problems. The solved 
problems serve to illustrate and amplify the material, and provide the repetition of 
basic principIes so vital to effective learning. The supplementary problems serve as 
a complete review of the material in the chapter. 

We wish to thank many friends and colleagues for invaluable suggestions and 
critical review of the manuscript. We also wish to express our gratitude to the staff 
of McGraw-Hill, particularly to Barbara Gilson and Mary Loebig Giles, for their 
excellent cooperation. 
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PART 1: Descripfive Sfafisfics and Probabilify 

Chapter 1 
Preliminary: Descriptive Statistics 

1.1 INTRODUCTlON 

Statistics, on the one hand, means lists of numerieal values; for example, the salaries of the employ­
ees of a eompany, or the SAT seores of the ineoming students of a university. Statisties as a seienee, 
on the other hand, is the braneh of mathematies whieh organizes, analyzes, and interprets sueh raw 
data. Statistieal methods are applieable to any are a of human endeavor where numerieal data are 
eolleeted for some type of deeision-making proeess. 

This preliminary ehapter simply eovers topies related to gathering and deseribing data ealled 
Descriptive Statistics. It will be used in both the first part of the text, whieh mainly treats Probability 
Theory, and the seeond part of the text, whieh mainly treats Inferential Statisties. 

Real Line R 

The notation R will be used to denote the set of real numbers, whieh are the numbers we use for 
numerieal data. We assume the reader is familiar with the graphieal representation of R as points on a 
straight line, as pietured in Fig. 1 - 1 .  We refer to sueh a line as the real Une or the real Une R. 

-:n; -,[5 -,fi :n; 

i 1 i 1 i i i 1 i i 1 i .. 
-4 -3 -2 - 1 o 2 3 4 

The real l ine R 
Fig. 1-1 

Frequently we will de al with sets of numbers ealled intervals. Speeifieally, for any real numbers a 
and b, with a < b, we denote and define intervals from a to b as follows: 

(a, b) = {x : a < x < b} , open interval 

[a, b] = {x : a :::; x :::; b} ,  closed interval 

[a, b) = {x : a :::; x < b} , closed-open interval 

(a, b] = {x : a < b :::; b} ,  open-closed interval 

That is, eaeh interval eonsists of all the points between a and b; the term "closed" and a braeket are used 
to indieate that the endpoint belongs to the interval and the term "open" and a parenthesis are used to 
indieate that an endpoint does not belong to the interval. 

Subscript Notation, Surnrnation Syrnbol 

Consider a list of numerieal data, say the weights of eight students. They may all be denoted by: 

The numbers 1 , 2, . . .  , 8  written below the ws are ealled subscripts. An arbitrary element in the list will 
be denoted by Wj' The subseript j is ealled an index beeause it gives the position of the element in the 
list. (The letters i and k are also frequently used as index symbols.) 
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The sum of the eight weights of the students may be expressed in the form 

W¡ + W2 + W3 + W4 + Ws + W6 + W7 + Wg 
Clearly, this expression for the sum would be very long and awkward to use if there were many more 
numbers in the list. Mathematics has developed a shorthand for such sums which is independent of the 
number of items in the list. 

Summation notation uses the summation symbol ¿ (the Greek letter sigma). Specifically, given a 
list X¡ , X2 , . . .  , Xn of n numbers, its sum may be denoted by 

or 

which is read: 

¿n 
x· j=¡ J 

The sum of the x-sub-js asj goes from 1 to n. If the number n of items is understood we may simply 
write 

¿ x} 
More generally, suppose f(k) is an algebraic expression involving the variable k, and n¡ and n2 are 
integers for which n¡ :::; n2 . Then we define 

n2 ¿ f(k) = f(n¡ ) + f(n¡ + 1) + f(n¡ + 2) + . . .  + f(n2) k=n¡ 
Thus we have, for example, 

g 
¿ w} = W¡ + W2 + W3 + W4 + Ws + W6 + W7 + Wg 
}=¡ 

s 
¿ k2 = 32 + 42 + 52 = 9 + 16  + 25 = 50 
k=3 

¿ akbk = a¡b¡ + a2b2 + . . .  + anbn 

¿ (x) - .xl = (x¡ - .xl + (X2 - .xl + . . .  + (xn - .xl 
(We assume the index goes from 1 to n in the last two sums.) 

1.2 FREQUENCY TABLES, HISTOGRAMS 

One of the first things one usually does with a large list of numerical data is to form some type of 
frequency table, where the table shows the number of times an individual item occurs or the number of 
items that fall within a given interval. These frequency distributions may be pictured using histo­
grams. We illustrate this technique with two examples. 

EXAMPLE 1 .1 An apartment house has 45 apartments, with the following number of tenants: 
2 3 5 2 2 2 4 2 6 2 4 3  
2 4 3  4 4 2 4 4 2 2 3 4 2 

3 4 3 5 2 4  3 2 4 4 2 5  

Observe that the only numbers which appear in the list are 1 ,  2, 3, 4, 5, and 6. The frequency distribution of 
these numbers appears in Fig. 1 -2. Specifically, column l lists the given numbers and column 2 gives the frequency 
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ofeach numbcr. (Thcse frcqucncics can lx: obtailled by somc sort of"tally coun\"' as in Problcm 1.2.) Figure 1-2 
also glVCS the clIlllulative frcquency distribution. Spccifically. colunlll 3 gives the eumulative frequeney of each 
nllmbcr, which is the llllmbcr of tenant nllmbers not excccding the givcll numbcr. Thc cllllllllative friXIllency is 
obtaincd by simply adding IIp the frcqllcncies untíl the given frequency. Ckarly, the last eUlllulative frequency 
nUlllbcr 45 is the same as the sum of all frequencies, that is, the nUlllber of apartments. 

The frequency distribution in Fig. ]-2 may be pictured by a hislogram shown in Fig. 1-3. A 
hislogram is simply a bar graph where Ihe height of the bar gives the number of times the given number 
appears in the list. Similarly, the cumulative frequency distribution could be presented as a histogram, 
Ihe heights of the bars would be 8, 22, 29, . . .  , 45. 

Numberof Cumulative " 
_" Frequency frequency 

-
1 8 8 " 
2 14 22 

3 7 29 , 
4 12 4 1  
5 3 44 • 
6 1 45 ---¡ 
S� 45 , 

, • , 

Fig. 1-2 Fig. 1-3 

EXAMPlE 1.2 Suppose Ihe 6:00 P.M. lemperaturcs (in degrccs Fahrenheil) for a 35-day period are as follows: 
72 78 86 93 lOó 107 98 82 81 77 87 82 
91 95 92 83 76 78 73 81 86 92 93 84 

107 99 94 86 81 77 73 76 80 88 91 

Ralhcr Ihan fmd the frcqucncy dislribulion of each individual data item, it is more usefnl lo conslrucl a frcquency 
table which counts Ihc numbcr oflimes Ihc obscrviXI tcmperalllre falls in a givcn class, i.e. an inlerval with ccrlain 
¡imils. This is donc in rig. 1-4. 

The numbers 70, 75, 80, . . .  are called Ihe c/ass bOllfldaries or class lililÍ/s. If a dala item falls on a 
class boundary, il is usually assigned 10 Ihe higher class; for example, Ihe number 95° was placed in Ihe 
95-100 class. $ometimes a frequency lable also lisIs each c/ass I'allle, i.e. the midpoinl of the class 
interval which serves as an approximalion 10 the values in Ihe interval. 

Figure ]-5 shows Ihe hislogram which corresponds to Ihe frequeney dislribulion in Fig. 1-4. II also 
shows IheJi"cqllcllcy polygoll, which is a line graph obtained by connecling the midpoints of the topS of 
the reclangles in Ihe hislogram. Observe Ihal Ihe line graph is eXlended 10 Ihe class value 67.5 on the 
left and 10 1 12.5 on Ihe right. In sueh a case, Ihe sum of the areas of Ihe rcclangles equals Ihe area 
bounded by the frequency polygon and the x-axis. 

Inlen'al NOlation, Number of Clas.ws 

The entries forming a class can be denOled using intcrval notation. Sincc a bracket indicates IItal a 
class boundary bclongs 10 an interval, bUI a parenthesis means thal it does not, the classes in Fig. 1·3 can 
be denoted by 

[70,75), [75, 80), . . .  , [lOS, l lO) 

respcctively. Also, tItere is no fixed rule for the number of classes that should be formed for data. The 
fewer the number of classes, tbe less specific is the infonnalion displaycd by the histogram, but a larger 
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Class el", 
boundarics, valuc, Cumulative 

°F °F Frequency frequcncy 

70-75 72.5 3 3 " 
75-80 77.5 6 9 

80-85 82.5 8 17 \ 
85-90 87.5 5 22 
90-95 92.5 7 29 

95-100 97.5 3 32 

/ / \ �. \ 
� / \ , / \ 

100-105 102.5 o 32 
, 

105-110 107.5 3 35 / \ 
, ., � " � " � " ,ro '" '" '" 

S= 35 T"""""' .... 

Fig. 1-4 Fig. 1-5 

numbcr of classcs may defcat ¡he purpose 01' grouping ¡he data (sec Problem 1.1). The rule ofthumb is 
that Ihe numbcr 01' classes should lic somewhcre between 5 and 10. 

Qualitatil'e Dala, Bar and Circular Graphs 

Masl data in Ihis text \ViII be numerical unless othcrwisc stated or implied. I-Iowevcr, somclimcs \Ve 
do come into contact with nonnulllcrical data, called qllalilalire da/a, such as gcndcr (male or remale), 
majar subjccI (English, Mathcmatics, Philosophy, . . .  ), place of birth, aud so on. Clcarly, a frcqucncy 
table can bc formcd for such data (but a cumulativc frcqucncy tablc would havc no mcaning). lnstcad 
01' a histogram, such data may bc picturcd as (a) a bar graph and/or (h) a circular graph (also called a pie 
graph or pie cha,,). 

EXAMPlE 1.3 Suppos.:: the studenls al a slllall COm1llunily College in Philadelphia are partitioned into five 
groups according to their home address: (1) Philadelphia. (2) suburbs of Philade1phia. (3) Pennsylvania (outside 
Philade1phia and its suburbs), (4) New Jersey, and (5) elsewhere; and suppose the following is the frequency 
dislribulion for Ihe collegc dunng somc semcSler: 

Philade1phia Suburbs PA NJ Els.::whcre Sum 

Number of studenls: 225 100 60 75 40 500 

Draw (a) Ihe bar graph, and (h) Ihe circular graph of Ihe data. 

(a) Figure 1-6 shows a bar gmph for Ihe dala. The Icngth of each bar is proporlional to the number of students 
living in Ihe area. The bar graph is nOI a horiwntal hislogram. Spccifically, Ihe order or ¡he dala can he 
interchanged in Ihe bar graph, e.g. pulling New Jersey berore Pennsylvania. Wilhoul esscntially changing the 
graph. This cannOI be done with a histogmm, sincc ¡he dala is numerical and has a given order. (A 
histogram may be viewed as a spccial kind of bar graph.) 

(h) Figure 1-7 shows a circular graph ror Ihe dala. If (�is thc number ofdegrces in a "slice" (sector) correspond­
ing 10 a group with l'i ilems out of SUM items, thcn 

(�= (l/jjSUM) (360) 

For example, Philadclphia is assigncd a slice with 

[(225)/(500)1(360) = 162 degrees 

Clearly, Ihe sum of the degrces as�igncd lO the dala must equal 360 degrces. 
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<l) 
• � '00 ,� '00 = \ 

Pbiladelphia N� 
Jersey 

Suburbs 

Pcnnsylvania I Pennsylvania 

New Jersey 

Elscwhere =:J 
f·ig. )...{l 

1.3 MEASURES OF CENTRAL TENIlENCY: MI<.:AN ANlJ MlmlAN 

Philadclphia 

s._ 

Fig. 1-7 

5 

There are various ways of giving an overview of data. One way is by the graphical descriptions 
discussed aboye. There are also numerical descriplions of data. Numbers such as the mean and 
median give, in sorne sense, the central or middlc value� of the data. Olher numbers. such as variancc 
and standard deviation, measure the dispersion or spread of the data abou1 the mean. The central 
tendency of data is discussed in this section and dispersion in the following section. 

The data we discuss will come either from a random samplc of a larger population or from the larger 
population itsclf. We distinguish these two cases using different notation as fo[]ows: 

JI = number of ilems in Ihe sample, 

.\' (read: x-bar) = sample mean, 

; = sample variancc, 

N = number of elcmems in Ihe populalion 

¡.t (read: mu) = populalÍon mean 

cr2 = population variance 

No/e: Greek letters are uscd with the population and are callcd parame/ers. Latin lctters are used with 
the sampJcs aod are called SIa/ü/ics. 

Mean 

Suppose a sample consists of the eight numbcrs: 

7, II� 11, 8, 12, 7, 6, 6 

The sample mean .\' is defllled to be the sum of the values divided by the number of values; Ihat ¡s, 

\'= 
7+11+11+8+12+7+6+6 - 8 

68 
8�8_5 

Generally speaking, suppose Xl, x2," . , Xli are 11 numerical vnlues of some samplc. Then: 

Sample mean: _ Cx"'_+CCX" 2_+C-'_'_'+ccx�-" 
x=-

" 
(J. i) 

Now suppose 1hat the data are organized into a frequency tablc; let there be k distillel numerical 
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values xI , x2 , . . .  , xb occurring with respective frequencies 11 , 12 , . . .  , Ik . Then the product II XI gives 
the sum of the XI 's, 12X2 gives the sum of the X2'S, and so on. Also, 

11 +12 + · · · +lk = n  

the total number of data items. Hence, formula (1.1) can be rewritten as 

Sample mean: 

Conversely, formula (1.2) reduces to formula (1.1) in the special case k = n and aH!; = 1 .  

(1.2) 

For data organized into classes, (1.2) is applied withfi as the number of data items in the ith class 
and Xi as the ith class value. 

EXAMPLE 1 .4 

(a) Consider the data of Example 1 . 1 ,  of which the frequency distribution is given in Fig. 1 -2. The mean is 
x = 8 ( 1 )  + 14(2) + 7(3) + 12(4) + 3 (5) + 1 (6) = 126 = 2.8 45 45 

In other words, there is an average of 2.8 people living in an apartment. 

(b) Consider the data of Example 1 .2, of which the frequency distribution is given in Fig. 1 -4. Using the class 
values as approximations to the original values, we obtain 

_ 3 (72. 5) + 6(77. 5) + 8 (82. 5) + 5 (87 .5) + 7(92.5) + 3 (97.5) + 0( 102. 5) + 3 ( 107.5) 3042.5 x =  35 =�",, 86.9 

i.e. the mean 6:00 P.M. temperature is approximately 86.9 °F. 

Remark: The formula for the population mean JL is the same as the formula for the sample mean 
x. That is, suppose XI , X2 , . . .  , XN are the N numerical values of the entire population. Then: 

Population mean: 
XI + x2 + . . .  + XN 

JL =  N 
¿ Xi 

N 

The reader may wonder why we give separate formulas for the sample mean x and population mean JL, 
since the formulas are the same. The reason is that the formulas will not be the same when we discuss 
the sample variance i and population variance 172 in Section 1 .4. 

Median 

Consider a list XI , X2 , . . .  , Xn of n data values which are sorted in increasing order. The median of 
the data, denoted by 

X (read: x-tilde) 

is defined to be the "middle value". That is, 

Median: 
{ [(n + 1 )j2]th term 

X - (nj2)th term + [;nj2) + l]th term 

when n is odd, 

when n is even. 

Note that x is the average of the (n/2)th and [(n/2) + l]th terms when n is even. 
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Suppose, for example, the following two lists of sorted numbers are given: 

List A: 1 1 , 1 1 , 16 , 17 , 25 

List B: 1 , 4, 8 , 8 , 10 , 16 , 16 , 1 9  

List A has five terms; its median x = 1 6, the middle or  third termo List B has eight terms; its median 
x = 9, the average of the fourth term (8) and the fifth term (lO). 

One property of the median x is that there are just as many numbers les s than x as there are greater 
than x. 

The cumulative frequency distribution can be used to find the median of an arbitrary set of data. 

EXAMPLE 1 .5 

(a) Consider the data in Fig. 1 -2, which gives the number of tenants in 45 apartments. Here n = 45. The 
cumulative frequency column tells us that the median x = 3, the 23rd value. 

(b) Consider the data in Fig. 1 -4 which gives the 6:00 P.M. temperatures for a 35-day periodo The median x = 87.5, 
the approximate 1 8th value. 

Comparison of Mean and Median 

Although the mean and median each locate, in some sense, the center of the data, the mean is 
sensitive to the magnitude of the values on either side of it, whereas the median is sensitive only to the 
number of values on either side of it. 

EXAMPLE 1 .6 The owner of a small company has 1 5  employees. Five employees earn $25,000 per year, seven 
earn $30,000, three earn $40,000, and the owner's annual salary is $ 1 53,000. (a) Find the mean and median salaries 
of all 1 6  persons in the company. (b) Find the mean and median salaries if the owner's salary is increased by 
$80,000. 

(a) The mean salary is 
_ 5 . 25,000 + 7 . 30,000 + 3 . 40,000 + 1 53,000 x = --'---------'----------'------'---

= 
608,000 

= $38 000 16  ' 
1 6  

Since there are 1 6  persons, the median i s  the average of the eighth (lf) and ninth (lf + 1 )  salaries when the 
salaries are arranged in increasing order from left to right. The eighth and ninth salaries are each 
$30,000. Therefore, the median is 

(b) The new mean salary is 

x = $30,000 

x = 
608,000 + 80,000 

= 
688,000 

= $43 000 1 6  1 6  ' 

The median is still $30,000, the average of the eighth and ninth salaries, which did not change. Hence, the 
mean moves in the direction of the increased salary, but the median does not change. 

1.4 MEASURES OF DISPERSION: V ARIANCE AND STANDARD DEVIATlON 

Consider the following two samples of numerical values: 

List A: 12, 10 , 9, 9 , 10 
List B: 5, 10 , 16 , 1 5 , 4 

For both A and B, the sample mean is x = 10. However, observe that the values in A are clustered 
more closely about the mean than the values in B. To distinguish between A and B in this regard, we 
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define a measure of the dispersion or spread of the values about the mean, called the sample variance, and 
its square root, called the sample standard deviation. 

Let x be the sample mean of the n values Xl , X2 , . . .  , Xn- The difference Xi - x is called the deviation 
of the data value about the mean x; it is positive or negative according as Xi is greater or less than 
x. The sample variance i is defined as follows: 

Sample variance: 2 (Xl - x)2 + (X2 - x)2 + . . .  + (xn - x)2 s = -'-----'----'-----'-------'----'-
n - l 

The sample standard deviation s is the nonnegative square root of the sample variance; that is: 

Sample standard deviation: s = # 

(1.3) 

(1.4) 

Since each squared deviation is nonnegative, so is i. Moreover i is zero precisely when each data 
value Xi is equal to x. The more spread out the data values are, the larger the sample variance and 
standard deviation will be. 

EXAMPLE 1 .7 Consider the lists A and B aboye. 

(a) In list A, whose sample mean is x = 10, the deviations of the five data are as follows: 
12 - 10 = 2, 10 - 10 = 0, 9 - 10 = -1 , 9 - 10 = -1 , 10 - 10 = 0  

The squares of the deviations are then 

22 = 4, 02 = 0, (-1 )2 = 1 , (-1 )2 = 1 , 02 = 0  

Also n - 1 = 5 - 1 = 4. Thus the sample variance i and standard deviation s are as follows: 

i = 4 + 0 + 1 + 1 + 0 = � = 1 . 5  4 4 

and s = Vf5 "" 1 .22 

(b) In list B, we obtain the following: 

and 

2 (5 - 10)2 + ( 10  _ 10)2 + ( 1 6  - 10)2 + ( 1 5  _ 10)2 + (4 - 10)2 
s = 5 - 1  

25 + O + 16 + 25 + 36 122 = = - = 30.5 4 4 
s = V30.5 "" 5 .52 

Note that B, which exhibits more dispersion than A, has a much larger variance and standard deviation than A. 
The following is another formula for the sample variance; that is, it is equivalent to (1.3): 

Sample variance: 2 I:X¡ - ("¿xi In s = =---'="--':"""':"-
n - l (1.5) 

Although formula (1.5) may look more complicated than formula (1.3), it is actually more convenient to 
use than formula (1.3), especially when the data are given in tabular formo In particular, this formula 
can be used without calculating the sample mean x. 
EXAMPLE 1 .8 Consider the following values: 

3 ,  5, 8, 9, 10, 12, 13 ,  15 ,  20 
Find: (a) the sample mean x and (b) the sample variance i.  
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First construct the following table: 

Xi 3 5 
2 Xi 9 25 

(a) By formula (1.1), where n = 9, 

8 9 10 12 13  
64 8 1  100 144 1 69 

x = (Lxi)/n = 95/9 "" 10 .56 

(b) Here we use formula (1.5) with n = 9 and n - 1 = 8 :  

1 5  
225 

i 
= 

1217 - (95)2/9 "" 1217 - 1002.7778 "" 26.78 8 8 

Sum 

20 95 
400 1217 

Note that if we used formula (1.3) we would need to subtract x= 10 .56 from each Xi before squaring. 

9 

Remark: The formula for the population variance 172 is not the same as the formula for the 
sample variance i in that, when computing 172 , we divide by N and not N - 1 .  That is, suppose 
XI ,  X2 , . . .  , XN are the N numerical values of the entire population and suppose JL is the population 
mean. Then: 

Population variance: 172 (XI - JL)2 + (X2 - JL)2 + . . .  + (XN - JL)2 

N 

Population standard deviation: 17 = yf;i 
Some texts do define i using n rather than n - 1 .  The reason that n - 1 is usually used for the sample 
variance i is that one wants to use i as an estimate of the population variance 172 . One can prove that 
using n rather than n - 1 for i tends to underestimate 172• 

Sample Variance with a Frequency Distribution 

For n data items organized into a frequency distribution consisting of k distinct values XI ,  X2 , . . .  , Xk 
with respective frequencies 11'.12, . . .  ,lb the product ¡;(Xi - ji gives the sum of the squares of the 
deviations of each Xi from x. Also, II + 12 + . . .  + Ik = n. Hence we can rewrite formulas (1.3) and 
(1.5) as follows: 

Sample variance: 

and Sample variance: 2 2:: ¡;xT - (2:: ¡;x;)2/ 2:: ¡; s = (2:: ¡;) - 1 

2:: ¡;(Xi - x)2 

(2:: ¡;) - 1 
(1 .6) 

(1.7) 

If the data are organized into classes, we use the ith class value for Xi in the aboye formulas (1.6) and 
(1.7). 
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EXAMPLE 1 .9 Consider the data in Example 1 . 1 ,  which gives the number of tenants in 45 apartments. By 
Example 1 .4(a), the sample mean is x = 2.8. Find the sample variance i and the sample standard deviation s. 

First extend the frequency distribution table of the data in Fig. 1 -2 to obtain the table in Fig. 1-8 .  We 
then obtain, using formula (1 .7), 

Note n = 45 and n - 1 = 44. 

i = 
430 - (126)2/45 "" 1 .75 44 

Numberof TI. 

people,x¡ J; 
1 8 

2 14 

3 7 

4 1 2  

5 3 

6 1 

Sums 45 

Fig. 1-8 

and S ""  1 . 32 

J;x¡ xl J;x? 
8 1 8 

28 4 56 

2 1  9 63 

48 1 6  1 92 

1 5  25 75 

6 3 6  3 6  

126 430 
'----

EXAMPLE 1 .1 0  Three hundred incoming students take a mathematics exam consisting of 75 multiple-choice 
questions. Suppose the following is the distribution of the scores on the exam: 

Test scores 5-1 5  1 5-25 25-35 35-45 45-55 
Number of students 2 O 8 36 1 1 0  

Find the sample mean x, variance i, and standard deviation s. 
First enter the data in a table as in Fig. 1 -9. Then, by formulas (1.2) and (1 . 7), 

x = 
1 6,500 

= 55 300 ' i = 
944,200 - ( 16,500)2/300 "" 122.74 299 

Class 
Class 
limits Xi J; 

5-15 10 2 

1 5 -25 20 O 

25-35 30 8 

35-45 40 36 

45-55 50 1 10 

55-65 60 78 

65-75 70 66 

Sums 300 

Fig. 1-9 

and 

55-65 65-75 
78 66 

s "" 1 1 .08 
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1.5 MEASURES OF POSITlON: QUARTlLES AND PERCENTlLES 

The preceding two sections discussed numerical measures of central tendency and of dispersion for a 
sample of data values. Now we consider numerical measures of position within the values when they 
are arranged in increasing order. 

Quartiles 

The median x of n data values arranged in increasing order has been defined as a number for which 
at most half the values are less than x and at most half are greater than x. Here, "half" means n/2 if n 
is even and (n - 1)/2 if n is odd. The first quartile, Q¡ , is defined as the median of the first half of the 
values, and the third quartile, Q3 , is the median of the second half. Hence about one-quarter of the data 
values are less than Q¡ and three-quarters are greater than Q ¡ .  Similarly, about three-quarters are less 
than Q3 , and one-quarter are greater than Q3 . The second quartile, Q2, is defined to be the median x. 

EXAMPLE 1 .1 1  Consider the following ten numerical values: 
2 5 3 4 7 O 1 1  2 3 8 

Find Q ¡ ,  Q2, and Q3 for the data. 
First arrange the values in increasing order: 

O 2 2 3 3 4 5 7 8 1 1  
Since n= 10, the median x = Q2 is the average of the fifth and sixth values: 

Q2 = 
3 + 4 

= 3 5  2 . 

Q¡ is the median of the first five values, which are O, 2, 2, 3, 3, and Q3 is the median of the last five values, which are 
4, 5, 7, 8, 1 1 ; hence 

Percentiles 

Q¡ = 2 and Q3 = 7 

Suppose n data values are arranged in increasing order. The kth percentile, denoted by Pb is a 
number for which at most k percent of the values are less than Pk and at most (lOO - k) percent are 
greater than Pk. Specifically, Pk is defined as follows. 

First compute knj 100 and break it into its integer part 1 and its decimal part D; that is, set 

kn 

Then: 

100 = 1 + D  { (1 + 1 )th value 
Pk = Ith value + (� + 1 )th value 

when D el O 

when D = O 

EXAMPLE 1 .12  Suppose 50 data values are arranged in increasing order. Find (a) P35 and (b) P30 . 
(a) Given n=50, k=35. Thus 

kn 35(50) 
100 = � = 1 7. 5  = 17 + 0 .5 

Here, 1 = 1 7  and D = 0.5 .  Since D el O and 1 + 1 = 18 , 
P35 = 1 8th value 
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(b) Given n = 50, k = 30. Thus 
!5!!.... 

= 
30(50) 

= 1 5  = 1 5  O 100 100 + 

Here, 1 = 1 5  and D = O. Since D = O, 
1 5th value + 16th value P30 = 2 

EXAMPLE 1.13 Consider the following 50 values, listed in order, column by column: 

10 20 35 44 55 64 75 8 1  8 7  99 
1 1  22 36 48 56 68 76 82 89 101 
13 23 38 49 57 69 76 83 90 102 
1 5  23 41 50 60 70 78 83 94 105 
18 30 44 50 63 73 80 85 96 107 

Find P3S and P30 . 
According to Example 1 . 12, 

P3S = 18th value = 49 

P30 = 
1 5th value + 1 6th value 

= 
44 + 44 = 44 2 2 

[CHAPo 1 

EXAMPLE 1.14 Consider the 50 data values in Example 1 . 1 3 .  Find (a) P2S, (b) Pso, (e) P7S .  Compare these 
values with Q¡ , Q2, and Q3 , respectively. 

(a) Given n = 50, k = 25. Thus 
!5!!.... = 

25(50) 
= 12.5 = 12 0 .5 

100 100 + 

Note D = 0.5 el O, and 1 + 1 = 1 3 .  Hence 
P2S = 1 3th value = 38 

Q¡ is the median of the first 25 values, which is the 13th value or 38. Hence Q¡ = P2S .  
(b) Given n = 50, k = 50. Thus 

Since D = O, 

!5!!.... 
= 

50(50) 
= 25 = 25 O 100 100 + 

PSO = 
25th value + 26th value 

= 
63 + 64 

= 63.5 2 2 
Q2 is the median of the 50 values, which is the same as Pso. That is, Q2 = Pso. 

(e) Given n = 50, k = 75. Thus 
!5!!.... = 

75(50) 
= 37.5 = 37 0 .5 100 100 + 

Note D = 0.5 el O, and 1 + 1 = 38 .  Hence 
P7S = 38th value = 83 

Q3 is the median of the last 25 values, which is the 1 3th of these values, or 83 .  Hence Q3 = P7S .  
Remark: The results in Example 1 . 14 are true for any set of numerical values; that is: 

In other words, the percentiles form a generalization of the quartiles. 



CHAPo 1 ]  PRELIMINARY: DESCRIPTIVE STATISTICS 1 3  

Five-Number Summary 

The 5-number summary of a collection of numerical data consists of the lowest value L, the quartiles 
Q¡ , Q2 , Q3 , and the highest value H. Thus the 5-number summary of the 50 values in Example 1 . 13 
follows: 

L = 10 ,  Q¡ = 38 ,  Q2 = 63 .5 ,  H =  107 
(The quartiles were obtained in Example 1 . 14.) We note that each of the four intervals 

will contain about 25% (one-quarter) of the data items. 

1.6 MEASURES OF COMPARISON: STANDARD UNITS AND COEFFICIENT OF 
VARIATlON 

Sometimes we want to compare data which come from different samples or populations. This is 
sometimes done using standard units andjor the coefficient of variation. 

Standard Units 

Suppose x is a value coming from a sample (or population) with mean x (or JL) and standard 
deviation s (or o} Then the value of x in standard units, denoted by z, is defined as follows: 

Standard units: x - x  z = -­s 
x - JL  or z = -­(J 

Standard units tell the number of standard deviations a given value lies aboye or below the mean of 
its sample (or population). It can also be used to compare values from different samples (or popula­
tions). 

EXAMPLE 1.15 Student A got a score of 85 in a test whose scores had mean 79 and standard deviation 8. 
Student B got a score of 74 in a test whose scores had a mean of 70 and standard deviation 5. Which student 
got a "higher score"? 

The standard scores for students A and B are, respectively, 
85 - 79 6 

ZA = --8-= "8 = 0.75 and 74 - 70 4 
ZB = --5-= "5 = 0.8 

Thus student B did bet1er than student A, even though his actual score, 74, was less than 85 .  

Coefficient of Variation 

One major disadvantage of the standard deviation as a measure of variation or dispersion is that it 
depends on the units of measurements and on the sample (or population). 

Clearly, a variation of 2 pounds when measuring a weight of 40 pounds represents a different effect 
than the same variation of 2 pounds when measuring a weight of 1 60 pounds. This effect is measured 
by the relative variation, defined by: 

l . . .  Variation 
Re atIve varIatIon = -A.,-----­

verage 

Thus, for the aboye data, there is a relative variation of 2/40 = 0.05 = 5 percent in the first case, but a 
relative variation of 2/ 160 = 0.0125 = 1 .25 percent in the second case. 
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Now suppose the variation is the standard deviation s (or o) and the average is the mean x (or JL); 
then the relative variation is called the coefficient 01 variation, denoted by Vand usually expressed as a 
percentage. That is: 

Coefficient of variation: 
s 

V = -= ( 100 percent) 
x 

(J 
or V = - ( 100 percent) JL 

EXAMPLE 1.16 Suppose measurements of an item with a metric micrometer A had a mean of 3 .25 mm and a 
standard deviation of 0.01 mm, and suppose measurements of another item with an English micrometer B had a 
mean of 0.80 in and a standard deviation of 0.002 in. Which micrometer is relatively "more" precise? 

Calculating the two coefficients of variation yields 

0.01 ( ) VA = -- 100 percent "" 0.31 percent 3 .25 

Thus micrometer B is more precise. 

and 

1.7 ADDITlONAL DESCRIPTlONS OF DATA 

0.002 VB = -- ( 100 percent) = 0.25 percent 0.80 

There are additional descriptions of data, besides the mean, median, variance, and standard devia­
tion. Some of them will be discussed in this section. 

Mode 

The mode of a list of numerical data is the value which occurs most often and more than once. The 
mode may not exist (e.g. every value may occur only once), and if it does exist it may not be unique. 
Geometrically, the mode is the highest point in the histogram or the frequency polygon. 

Consider, for example, the following three lists: 

List A: 2, 3, 3, 5, 7, 7, 7, 8, 9 

List B: 2, 3 ,  5, 7, 8, 9, 1 1 ,  1 3  

List C :  2 ,  3 ,  3 ,  3 ,  5 ,  7 ,  7, 7 ,  8 

List A has the unique mode 7; it is said to be unimodal. List B has no mode. List C has two modes, 3 
and 7; it is said to be bimodal. 

The mode also applies to nonnumerical (qualitative) data. For example, the mode of the data in 
Example 1 .3 is Philadelphia. Geometrically, it is the item with the longest bar in the bar graph or the 
largest sector in the circular graph. 

The mode of grouped data is usually the class value of the class with the greatest frequency. For 
example, the mode of the grouped temperature data in Example 1 .2 is the class value 82. 5 °F. 

Range Interval, Range, and Midrange 

The range interval of a set of numerical data is the smallest interval containing the data or, in other 
words, the interval whose endpoints are the smallest and largest values. Thus the range interval of 
the aboye list A is the interval [2, 9]; we also say the data lies between 2 and 9. The range intervals of 
the lists B and C are, respectively, [2, 1 3] and [2, 8]. 

The range of a set of numerical data is the difference between the largest and smallest values or, in 
other words, the length of the range interval. Thus the ranges of the aboye lists A, B, and C are, 
respectively, 7, 1 1 ,  and 6. 
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The midrange of a set of numerical data is the average of the smallest and largest values or, in other 
words, the midpoint of the range interval. Thus the midranges of the aboye lists A, B, and e are, 
respectively, 5.5, 7.5, and 5. 

Weighted Mean 

Sometimes numerical data X¡ , X2 , . . .  , Xn are assigned respective weights W¡ , W2 , . . .  , Wn - For 
example, each weight may be the frequency that an item occurs, or the probability that the item occurs, 
or some measure of the "importance" of the item. The weighted mean, denoted by xw, is defined as 
follows: 

Weighted mean: 

Observe that the weighted mean formula is the same as the sample mean formula (1.2) when the weights 
represent frequencies. 

Grand Mean 

Suppose we want to find the overall mean of a collection of data where the data has been partitioned 
into t sets, where: 

n¡ , n2 , . . .  , n¡ are the numbers of elements in the sets 
x¡ , x2 , . . .  , x¡ are the means of the corresponding sets 

Then the grand mean of the total collection of data, denoted by x (read: x-double bar), is defined as 
follows: 

Grand mean: 

One may view the grand mean as a special case of the weighted mean. 

EXAMPLE 1.17 A philosophy class contains 10 freshmen, 20 sophomores, 1 5  juniors, and 5 seniors. The class is 
given an exam where the freshmen average 75, the sophomores 78, the juniors 80, and the seniors 82. Find the 
mean grade for the class. 

Use the grand mean formula with 
nI = 10, XI = 75, 

This yields 
x 

= 
10 (75) + 20(78) + 1 5 (80) + 5(82) 

= 
3920 

= 78.4 10 + 20 + 15 + 5 50 
That is, 78.4 is the grand mean grade for the class. 

1.8 BIVARIATE DATA, SCATTERPLOTS 

Quite often in statistics it is desired to determine the relationship, if any, between two variables such 
as age and weight, weight and height, years of education and salary, or amount of daily exercise and 
cholesterol level. Letting x and y denote the two variables. The data will consist of a list of pairs of 
numerical values: 

(x¡ , y¡ ) , 
where the first values correspond to the variable x and the second values correspond to y. 
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As with a single variable, we can describe such bivariate data both graphically and numerically. 
Our primary concern is to determine whether there is a mathematical relationship, such as a linear 
relationship, between the data. 

It should be kept in mind that a statistical relationship between two variables does not necessarily imply 
that there is a causal relationship between them. For example, a strong relationship between weight and 
height does not imply that one variable causes the other. Specifically, eating more does usually increase 
theweight ofa person, but it does not usuallymean that there will be an increase in the height ofthe persono 

This section will give geometrical descriptions of bivariate data. The next section will discuss 
numerical descriptions of such data. 

Carfesian Plane R2 

The notation R
2 is used to denote the collection of all ordered pairs (a, b) of real numbers. (By 

definition, (a, b) = (c, d) if and only if a = c and b = d.) Just as we can identify R with points on a line 
as in Fig. 1 - 1 ,  so can we identify R2 with points in the planeo This identification, discussed below, is 
called the cartesian plane (named after the French mathematician René Descartes (1 596-1650)) , the 
coordinate plane, or simply the plane R2

. 
Two perpendicular lines L¡ and L2 are chosen in the plane; the first line L¡ is pictured horizontally 

and the second line L2 is pictured vertically. The point of intersection of the lines is called the origin 
and is denoted by O. These lines, called axes, are now viewed as number lines, each with zero at the 
common origin and with the positive direction to the right on L¡ and upward on L2. Also, L¡ is usually 
called the x-axis and L2 the y-axis (see Fig. 1 - 10). Normally, we choose the same unit length on both 
axes, but this is not an absolute requirement. 

N ow each point P in the plane corresponds to a pair of real numbers (a, b) , called the coordinates 01 
P, as pictured in Fig. 1 - 10 ;  that is, where the vertical line through P intersects the x-axis at a and where 
the horizontal line through P intersects the y-axis at b. (We will frequently write P( a, b) when we want 
to indicate a point P and its coordinates a and b.) Note that this correspondence is one-to-one, i.e. each 
point P corresponds to a unique ordered pair (a, b) , and vice versa. Thus, in this context, the terms 
point and ordered pair of real numbers are used interchangeably. 

The two axes partition the plane into four regions, called quadrants, which are usually numbered 
using the Roman numerals I, Il, IIl, and IV, as pictured in Fig. 1 - 1 1 .  That is: 

Quadrant I: Both coordinates are positive, (+, +) . 
Quadrant Il: First coordinate negative, second positive (-, + ) .  
Quadrant IIl: Both coordinates are negative , (- ,  -) . 
Quadrant IV: First coordinate positive , second negative, (+, -) .  

Thus the quadrants are numbered counterclockwise from the upper-right-hand position. 

y 

P(a,b) 

y Axis 

QuadrantII 
(-, +) 

o x Axis 

QuadrantN 
(+,-) 

x 

Fig. 1-10 Plane R2 Fig. 1-11 Quadrants 
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EXAMPLE 1.18 Locate and find the quadrant containing each of the following points in the plane R2 : 
A(2, -5) ,  B(-5, 2), C(-3, -7), D(4, 4) , E(0, 6) , F(-7, 0) 

1 7  

To  locate the point P(x, y), start at the origin, go  x directed units along the x-axis and then y directed units 
parallel to the y-axis. The final point is P(x, y). Figure 1 - 12 shows the given points in the planeo Thus D( 4, 4) is 
in quadrant 1, B( -5, 2) in quadrant 11, ce -3, -7) in quadrant I1I, and A( -2, 5) in quadrant IV. The points E(O, 6) 
and F( -7, O) lie on the axes, so they do not belong to any quadrant. 

y 

E(O, 6) 

D(4, 4) B(-1' 2) 

F(-7, O) O x 

A (2,-5) 

C(-3, -7) 

Fig. 1-12 

Scatterplots 

Consider a list of pairs of numerical values representing variables x and y. The scatterplot of the 
data is simply a picture of the pairs of values as points in a coordinate plane R2. The picture sometimes 
indicates a relationship between the points, as illustrated in the following examples. 

EXAMPLE 1.19 Consider the following data, where x denotes the respective nurnber of branches that 10 different 
banks have in sorne rnetropolitan area and y denotes the corresponding share of the total deposits held by the banks: 

x 198 1 86 1 16 89 120 109 28 58 34 3 1  
y 22.7 1 6.6 1 5.9 12 .5 10 .2 6.8 6.8 4.0 2.7 2.8 

The scatterplot of the data appears in Fig. 1 - 13 .  The picture of the points indicates, roughly speaking, that the 
rnarket share increases as the nurnber of branches increases. We then say that x and y have a positive correlation. 

24 
• 

20 
;;F. 
� 16 • • 

.:;¡ • tí 12 

� • 

::;E 8 
• • 

4 • '" 
o 40 80 120 160 200 

Number ofbranches 

Fig. 1-13 
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EXAMPLE 1.20 Consider the following data, where x denotes the average daily temperature in degrees Fahrenheit 
and y denotes the corresponding daily natural gas consumption in cubic feet: 

x, OF 50 45 40 38 32 40 55 
y, ft3 2.5 5.0 6.2 7.4 8.3 4.7 1 .8 

The scatterplot of the data appears in Fig. 1 - 14. The picture of the points indicates, roughly speaking, that the gas 
consumption decreases as the temperature increases. We then say that x and y have a negative correlation . 

• 

• 

• 

• • 

• 
• 

o 
30 40 50 60 

Temperature, °F 

Fig. 1-14 

EXAMPLE 1.21 Consider the following data, where x denotes the average daily temperature in degrees Fahrenheit 
over a lO-day period and y denotes the corresponding daily stock index average (in 1998): 

x 63 72 76 70 71  65 70 74 68 61  

Y 8385 8330 8325 8320 8330 8325 8280 8280 8300 8265 

The scatterplot of the data appears in Fig. 1 - 1 5 . The picture of the points indicate that there is no apparent 
relationship between x and y. 

8390 

8370 

� 8350 
., 1;j 8330 � 8310 

8290 

8270 

60 

1.9 CORRELATlON COEFFICIENT 

• 

• 

64 

• • 
• 

• 

• 

• • 

68 72 76 

Temperature, °F 

Fig. 1-15 

Scatterplots indicate graphically whether there is a linear relationship between two variables x and 
y. A numeric indicator of such a linear relationship is the sample correlation coefficient r of x and y, 
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which i s  defined a s  follows: 

Sample correlation coefficient: (1 .8) 

We assume that the denominator in formula (1.8) is not zero. It can be shown that the correlation 
coefficient r has the following properties: 

(1) - 1 :::; r :::; 1 
(2) r > O if Y tends to increase as x increases and r < O if Y tends to decrease as x increases 
(3) The stronger the linear relationship between x and y, the closer r is to -1  or 1 ;  the weaker the linear 

relationship between x and y, the closer r is to O 

An alternative formula for computing r is given below; we then illustrate the aboye properties of r with 
examples. 

Formula (1.8) can be written in the more compact form as 

� � (1 .9) 

where Sx and Sy are the sample standard deviations of x and y, respectively [see formulas (1.3) and (1.4)], 
and where sXY' called the sample covariance of x and y, is defined by 

¿:)Xi - X) (Yi - ji) Sxy = n - 1 

An alternative formula for computing r follows: 

(1.10) 

(1.11) 

This formula is very convenient to use after forming a table with the values of Xi , Yi , XT , l, XiYi , and their 
sums, as illustrated below. 

EXAMPLE 1.22 Find the correlation coefficient r for the data in (a) Example 1 . 19, (b) Example 1 .20, (e) Example 
1 .21 . 

(a) Construct the table in Fig. 1 - 16 .  Then use formula (1 . 11) and that the number of points is n = 10 to obtain: 

r = 13 , 105.3 - (969) ( 10 1 )/10 "" 0.8938 )127,723 - (969)2/10)1427.56 - ( 10 1 )2/10 

Here r i s  close to 1 ,  which i s  expected since the scatterplot Fig. 1 - 13  indicates a strong positive linear relation­
ship between x and y. 

(b) Construct the table in Fig. 1 - 17 .  By formula (1 .11), with n = 7, 

r = 143 1 .8 - (300) (35.9)/7 "" -0.9562 ) 1 3 .218 - (300)2/7 )218 .67 - (35.9)2/7 

Here r is close to - 1 ,  and the scatterplot Fig. 1 - 14 does indicate a strong negative linear relationship between 
x and y. 



20 

x¡ 
198 

1 86 

1 1 6  

89 

1 20 

1 09 

28 

58 

34 

3 1  

Sums 969 
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y¡ x¡y¡ 
22.7 39,204 5 15.29 4494.6 

1 6.6 275.56 3087.6 

1 5.9 252.81  1 844.4 x¡ y¡ xl 
12.5 1 56.25 1 1 12.5 50 2.5 2,500 

10.2 1 04.04 1224.0 45 5.0 2,025 

6.8 46.24 741 .2 40 6.2 1 ,600 

6.8 46.24 1 90.4 38 7.4 1 ,444 

4.0 1 6.00 232.0 32 8.3 

2.7 7.29 9 1 . 8  40 4.7 

2.8 961 7.84 86.8 55 1 .8 3,025 

1 0 1 .0 127,723 1427.56 1 3 , 1 05.3 Sums 300 35.9 13,2 1 8  

Fig. 1-16 Fig. 1-17 

Ce) Construct the table in Fig. 1 - 1 8 .  By formula (l .11), with n = 10, 

2,286,555 - (690) (33,140)/10 r = "" -0.0706 )47,816 - (690)2/10) 109,836,700 - (33, 140)2/10 

[CHAPo 1 

Yt x¡y¡ 
6.25 125.0 

25.00 225.0 

38.44 248.0 

54.76 281.2 

68.89 265.6 

22.09 1 88.0 

3.24 99.0 

2 1 8.67 1 43 1 . 8  

Here r i s  close to  O ,  which i s  expected since the scatterplot Fig. 1 - 1 5  indicates no linear relationship between x 

and y. 

Xi 
63 

72 

76 

70 

71 

65 

70 

74 

68 

61 

Sums 690 

Fig. 1-18 

1.10 METHODS OF LEAST SQUARES, REGRESSION UNE, CURVE FITTING 

Suppose a scatterplot of the data points (Xi ' Yi) indicates a linear relationship between variables x 
and y or, alternatively, suppose the correlation coefficient r of x and y is close to 1 or -1 .  Then the next 
step is to find a line L that, in sorne sense, fits the data. The line L we choose is called the least-squares 
lineo We discuss this line in this section, and then we discuss more general types of curve fitting. 

Least-Squares Line 

Consider a given set of data points Pi (Xi, Yi) and any (nonvertical) linear equation L. Let yi denote 
the y value of the point on L corresponding to Xi' Furthermore, let di = Yi - yi, the difference between 
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the actual value of y and the value of y on the curve or, in other words, the vertical (directed) distance 
between the point Pi and the line L as shown in Fig. 1 - 19. The sum 

¿ d¡ = dr + di + . . .  + d;; 
is called the squares error between the line L and the data points. 

The least-squares Une or the Une 01 best jit or the regression Une of y on x is, by definition, the line L 
whose squares error is as small as possible. It can be shown that such a line L exists and is unique. Let 
a denote the y-intercept of the line L and let b denote its slope; that is, let 

y = a + bx (1 .12) 
be the equation of L. Then a and b can be obtained from the following two equations in the two 
unknowns a and b, where n is the number of points: 

na + (¿ xi)b = ¿Yi 
(¿ xi)a + (¿ xT)b = ¿ XiYi 

In particular, the slope b and y-intercept a can also be obtained from the following: I b � '[;' and a � y - bx I 
The second equation in (1. 14) tells us that (x, jI) lies on the regression line L, since 

ji = (ji - bx) + bx = a + bx 

(1 .13) 

(1 .14) 

The first equation in (1 .14) then tells us that the point (x + sx , jI + rsy) is also on L, as in Fig. 1 -20. 

y 

x 

Fig. 1-19 Fig. 1-20 

Remark: Recall that the above line L which minimizes the squares of the vertical distances from 
the given points Pi to L is called the regression Une of y on x; it is usually used when one views y as a 
function of x. There also exists a line L' which minimizes the squares of the horizontal distances of the 
points Pi from L'; it is called the regression Une of x on y. Given any two variables, the data usually 
indica tes that one of them depends upon the other; we then let x denote the independent variable and let 
y denote the dependent variable. For example, suppose the variables are age and height. We normally 
assume height is a function of age, so we would let x denote age and y denote height. Accordingly, our 
least-squares lines will be regression lines of y on x, unless otherwise stated. 
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EXAMPLE 1.23 Find the line of best fit for the scatterplots in (a) Fig. 1 - 13 ,  (b) Fig. 1 -14. 

(a) By Fig. 1 - 1 6  and Example 1 .22(a), 
r = 0.8938, x = 969/10 = 96.9, y = 10 1 .0/10 = 10 . 1  

Using formulas (1.3) and (1 .4), we obtain 

s = x 
127,723 - (969)2/10 = 61 3070 9 . 

Substituting these values in (1. 14), we get 

= (0.8938) (6.7285) = 0.098 1 b 61 .3070 
Thus the line L of best fit is 

and 

and 

s = y 
1427.56 - ( 10 1 )2/10 = 6 7285 9 . 

a = 10 . 1  - (0.0981) (96.9) = 0. 5941 

y = 0.5941 + 0.098 1x 

[CHAPo 1 

To graph L, we need only plot two points on L, and then draw the line through these points. Here we plot 
(O, a) = (0, 0 .5941) and (x, y) = (96.9, 10. 1 )  

(approximately), and then draw L,  as shown in Fig. 1 -21 (a). 

t: 
�. 
.¡¡¡ 
o 
� 
� 

y y = 0.5941 + 0.0981x 

24 

20 

16 • 

12 (0, 0.5941) : 1: 
o 40 80 120 160 

Number ofbranches 
(a) 

y 

10 

• 

� 8 

200 X 

Fig. 1-21 

gf 
Oll 

"i.i! 
� Z 4 

2 

.1 

30 

y = 17.8100 
(30,8.933) 

40 50 
Temperature, °F 

(h) 

(b) By Fig. 1 - 1 7  and Example 1 .22(b), 

r = -0.9562, x = 300/7 = 42.8571 , y = 35 .9/7 = 5 . 1286 

Using formulas (1.3) and (1 .4), we obtain 

1 3,21 8 - (300)2/7 
6 = 7.7552 

Substituting these values in (1. 14), we get 

and 21 8.67 - (35.9)2/7 
Sy = 6 = 2.3998 

0.2959x 

60 

b = (-0.9562)(2.3998) = -0.2959 7.7552 and a = 5. 1286 - (-0.2959)(42.857 1 )  = 17 .8 100 

Thus the line L of best fit is 

y = 17 .8 100 - 0.2959x 

x 

The graph of L, obtained by plotting (30, 8 .933) and (42.8571 , 5 . 1286) (approximately) and drawing the line through 
these points, is shown in Fig. 1 .21 (b). 
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Curve Fitting 

Sometimes the scatterplot does not indicate a linear relationship between the variables x and y, but 
one may visualize some other standard (well-known) curve y = f(x) which may approximate the data, 
called an approximate curve. Several such standard curves, where letters other than x and y denote 
constants, follow: 

(1) Parabolic curve: 
(2) Polynomial curve: 

(3) Hyperbolic curve: 

(4) Exponential curve: 
(5) Geometric curve: 

y = ao + a¡ x + a2x 2 
2 n y = ao + a¡ x + a2x + . . .  + anx 

1 1 
y = -- or - = a + bx a + bx y 
y = abx or logy = ao + a¡x 
y = axb or logy = log a + b log x 

Pictures of some of these standard curves appear in Fig. 1 -22. 

(a) Parabolic (b) Exponential (e) Hyperbolic 

Fig. I-22 

It is generally not easy to decide which curve to use for a given set of data points. On the other 
hand, it is usually easier to determine a linear relationship by looking at the scatterplot or by using 
the correlation coefficient. Thus it is standard procedure to find the scatterplot of transformed data. 
Specifically: 

(a) If log Y versus x indicates a linear relationship, use the exponential curve (4). 
(b) If l /y versus x indicates a linear relationship, use the hyperbolic curve (3). 
(e) If log y versus log x indicates a linear relationship, use the power curve (5). 

Once one decides upon the kind of curve that is to be used, then the particular curve that one uses is 
the one that minimizes the squares error. We state this formally: 

Definition: Consider a collection of curves and a given set of data points. The best-jitting or least­
squares curve e in the collection is the curve which minimizes the sum 

(where di denotes the vertical distance from a data point Pi(Xi , Yi) to the curve C). 

Just as there are formulas to compute the constants a and b in the regression line L for a set of 
data points, so there are formulas to compute the constants in the best-fitting curve e in any of 
the above types (collections) of curves. Further discussion of curve fitting appears in the problem 
sections. 
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Solved Problems 

FREQUENCY DLSTRI:8UTIONS, IJISI'LA YING DATA 

1.1. Considcr the following frcqucncy distribution which gives the numbcr f of studcnts wlto gOL .\" 
corrCCl answcrs on a 20-question cxam: 

x (correct answers) 9 10 12 1 3  14 15 16 1 7  1 8  1 9  20 

J (numbcr of studcnts) I 2 I 2 7 2 I 7 2 6 4 

Display the data in a hislogram and a frequcncy polygon. 

The hislogram appcars in Fig. [·23. The frcqucllcy polygoll also appcars in Fig. ].23; il is obtaincd 
from Ihe histogram by connccling the midpoints of Ihe tops of Ihe rcctanglcs in Ihe histogram. 

, 

• 7\ 
, 

• 

� , 

, 

rP\ y 
; """ ..Y.. 

, p,L 
• � � 1I 11 Il 14 l' 16 n II 19 W 

x (Corrcct 8nSWeB) 

Fig. 1-23 

1.2. Consider the fol1owing twenty data itcms: 

3 

2 

5 

5 

3 

5 

4 

6 

4 

4 

7 

3 

6 

5 

5 

4 

2 

5 

4 

5 

\ 

(a) Construct a frequcncy distribution (f) and a cumulativc distribution (el) of the data. 
(b) Display lhe data in a hislOgram. 
(a) Construcl Ihe tablc in Fig. 1-24(a). Hcre we show the /(1ft y COUIIl, which is llscd lo find Ihe frequency 

of each nllmner. Thal is, as we run Ihrollgh the dala IISI, we add a slash each time the nllmbcr 
appears. and a IIne Ihrough four slashes indkates a fifth lime Ihe number appearcd. 

(b) The hislogram is shown in Fig. 1-24{b). 

1.3. The following scores were obtained in a slatislics cxam: 

74 
75 

80 
75 

65 
60 

85 
74 

95 
75 

72 
63 

76 
78 

72 
87 

93 
90 

84 
70 
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, -
• 

r Tally I '1 , 
2 11 2 2 • 
3 111 3 5 f 
4 HH 5 10 , ,--
5 HH II  7 1 7  , ,-- -
6 11 2 lO 

• ---:l • • , 

7 1 l 20 

, 
(o) (b) 

t"ig. 1-24 

Find lhe rrequeney dislribulion when Ihe dala are classified in 10 rour classcs 60-70, 70-80, 80-90, 
90-100, aod display Ihe resulls in a histogral1l. (Ir a OUl1lber ralls on a class boundary, put it io 
the class 10 Ihe righl or Ihe nUl1lber.) 

The frequency distriblltlon, indllding the tally COllnt, appears in Fig. 1-25(a) and the histogram appears 
in Fig. 1-25(h). 

Class Tally Frequency 

60-70 111 3 

70-80 HH HH  10 

80-90 1111 4 

90-100 111 3 

(o) 
Fig. 1-25 

" ,--

-
, 

r­
r-

.Lv������-60 70 80 90 100 
s= 

(b) 

1.4. The yearly rainrall, measured 10 lhe nearesl tcnth or a eenlimeter, ror a 30-year period ro[]ows: 

42.3 35.7 47.6 31.2 28.3 37.0 41 .3 32.4 41 .3 29.3 
34.3 35.2 43.0 36.3 35.7 41 .5 43.2 30.7 38.4 46.5 
432 3 1 .7 36.8 43.6 45.2 32.8 30.7 36.2 34.7 35.3 

Classiry the data into 10 c\asses, [28, 30), [30, 32),. . .  , [44, 46), [46, 48), and display the results in 
a hislogram. 

The freqllency distriblltion of the classification, where Xi denotes the class vallle and JI denotes the 
freqllency, follows: 

Class 28-30 30-32 32-34 34-36 36-38 38-40 40-42 42-44 44-46 46-48 

XI 29 JI  JJ 35 J7 30 41 43 45 47 

Ji 2 4 2 6 4 l 3 5 I 2 

The histogram ofthe distriblltion appears in Fig. 1-26. 
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-

,--

,-- -

,--

,-- - ,--
- f-

29 1] 33 1'1 17 ]9 41 4) 4'1 41 

Clas.s value 

Fig. 1-26 

Stem 

5 

6 

7 
8 

, 
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Loo! 
, 
3 8 S 6 1 

6 7 O 5 1 , 4 

, 2 S 2 

7 O 2 

t'ig. 1-27 

1.5. COllstrucI a stem-and-leaf display for Ihe following exam scores: 

63 68 59 66 76 82 70 7 1  74 85 
97 65 89 90 77 61 75 79 92 82 

The stem-and-leaf display appears in Fig. 1-27. Specifically, we use a place value, in this case ¡he lens 
dígito as ¡he " slem" and the uní¡ digits as " leaves", The display gives ¡he following frcquency distribulion: 

Class inlcrvaJ [50- 60) [60-70) [70-80) [80-90) [99-1(0) 

Class value Xi 55 65 75 85 95 

F rlX) uency f¡ 1 5 7 4 3 

Note Ihal the class valuc is the midpoint bClween the stems. 

1.6. Construcl a dotplot lo obtain the frequency dislribution for ¡he following class values of exam 
scorcs: 

65 

95 

70 

65 

60 

90 

65 

90 

75 

75 

80 

60 

(The dotplol i� SOlllctimes uscd instcad of a tally count.) 

70 

75 

70 

80 

75 

90 

85 

80 

The dotplot appcars in Fig. 1-28. Spccifically, we mark off Ihe c1ass values on a horizontal axis. and 
then record the occurrence of a c1ass value by a dOI over Ihe mark dcnoting Ihe c1ass value on Ihe axis. The 
frequency dislribulion follows: 

Class value 60 65 70 75 80 85 90 95 

Frequcncy 2 3 3 4 3 1 3 1 

• 
• • • • • 

• • • • • • 
• • • • • • • • 

, , , , 
w " m " � " w " 

Eum seores 
I<'ig. 1-2R 
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MEAN, MEDIAN, VARIANCE, STANDARD DEVIATlON 

1.7. Find the sample mean x, median X, variance i, and standard deviation s for the data: 

4, 6, 6, 7, 9, 10 
Use formula (1.3) to obtain i. 

There are n = 6 numbers. Hence, 
_ 4 + 6 + 6 + 7 + 9 + 10 42 x =  =- = 7 6 6 

The median is the average of the third and fourth numbers: 

By formula (1.3), 

_ 6 + 7  x = -- = 6 5  2 . 

(4 _ 7)2 + (6 _ 7)2 + (6 _ 7)2 + (7 _ 7)2 + (9 _ 7)2 + ( 10  _ 7)2 
5 

= 9 + 1 + 1 + O + 4 + 9 = 24 = 4.8 5 5 
s = J4.8 "" 2.19 

1.8. Find the sample mean x, median X, variance i, and standard deviation s for the data: 

8 ,  7, 12 , 5, 6, 7, 4 

Use formula (1.5) to obtain i. 
There are n = 7 numbers. Hence, 

8 + 7 + 12 + 5 + 6 + 7 + 4 49 x = = - = 7  7 7 
To find the median, first arrange the numbers in increasing order: 

4, 5, 6, 7, 7, 8 , 12 
The median i s  the fourth number: x = 7. 

To apply formula (1.5) for i, we first construct the following table from the given data: 

x 8 7 

64 49 

Then, by formula (1.5), 

12 5 6 

144 25 36 

i = 383 -
(49)2/7 "" 6 67 6 . 

s =  H ",, 2.58 

Sum 

7 4 

49 16 

27 

1.9. Find the sample mean x, median X, variance i, and standard deviation s for the number x of 
correct scores in Pro blem 1 . 1 .  
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First compute the table in Fig. 1 -29. Then, by formula (1.2) 

x = L jiXi = 560 = 16 L Ji 35 

[CHAPo 1 

The 35 scores Xi (including repetitions) are arranged in increasing order in Fig. 1 -29. The median x is the 
1 8th score; hence x = 17. Using formula (1 . 7) for i we get 

2 L jiX¡ - (L Jix;)2/ L Ji 9278 - (560)2/35 s = (L ji) - 1 = 
34 

"" 9.35 

s =  # ",, 3 .06 

Xi /¡ /¡X¡ xl /¡x? 
9 1 9 8 1  8 1  

1 0  2 20 100 200 

1 2  1 1 2  144 144 

13 2 26 1 69 338 

1 4  7 98 1 96 1 372 

1 5  2 30 225 450 

1 6  1 1 6  256 256 

1 7  7 1 19 289 2023 

1 8  2 36 324 648 

1 9  6 1 54 361  2 1 66 

20 4 80 400 1 600 

Sums 35 560 9278 

Fig. 1-29 

1.10. Find the sample mean x, median X, variance i, and standard deviation s for the scores obtained 
in a statistics exam in Problem 1 .3 .  

Letting Xi denote the class value of the ith class, compute the table in Fig. 1 -30. Then, by formula 
(1.2), 

x = 1570 = 78.5 20 
There are 20 scores; hence the median x is the average of the 10th and 1 1th class values. Therefore 

Using formula (1 .7)  for i we get 

_ 75 + 75 x = --- = 75 2 

2 124,900 - (1 570)2/20 s = 19 "" 87. 1 1 ,  s ",, 9.33 

Class Class 

limits x¡ /¡ 
60-70 65 3 1 95 4225 12,675 

70-80 75 1 0  750 5625 56,250 

80-90 85 4 340 7225 

90-1 00 95 3 285 9025 

Sums 20 1 570 

Fig. 1-30 
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QUARTlLES AND PERCENTlLES 

1.11. Consider the following data: 

1.12. 

2, 7, 4, 4, 6, 1 ,  8, 1 5 ,  12, 7, 3, 16 ,  1 ,  2, 1 1 ,  5, 1 5 ,  4 
(a) Find the first quartile Q¡ , second quartile Q2, and third quartile Q3 for the data. 
(b) Find the 5-number summary of the data. 

(a) First arrange the data in numerical order: 

1 ,  1 ,  2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 8 , 1 1 ,  12, 1 5, 1 5, 1 6 
Q2 i s  the median X, and since there are 18 values x i s  the average of the 9th and 10th values. Thus 

Q2 = 5 + 6 = 5 5 2 . 

Q¡ is the median of the values to the left of x. There are nine of these, so Q¡ is the fifth 
one. Thus Q¡ = 3 . 

Q3 is the median of the values to the right of x. There are also nine of these, so Q3 is the fifth 
one. Thus Q3 = 1 1 .  

(b) The 5-number summary consists of the lowest value L, the quartiles Q¡ , Q2 , Q3, and the highest value 
H. Thus: 

L = 1 ,  Q ¡  = 3, Q2 = 5 .5 , Q3 = 1 1 ,  H =  1 6  

Consider the following data: 

5 6 7 7 9 10 12 1 5 1 5 20 
21 22 25 27 28 32 34 34 35 40 
41 48 5 1 56 57 65 75 76 78 80 
8 1  84 88 88 89 90 9 1 92 93 97 

Find the percentiles (a) P21 , (b) P40 , (e) P7S . 

There are 40 data points, and they are arranged in numerical order. To determine the kth percentile, 
we first break up kn/l00 into its integer and decimal parts. 

(a) n = 40, k = 21 . Thus 
� = 21 · 40 = 8.4 = 8 0.4 100 100 + 

The integer part is 8 and the decimal part is 0.4. Hence, 

(b) n = 40, k = 40. Thus 
P21 = 9th value = 1 5  

Here, the integer part i s  16 and the decimal part i s  zero. Hence, 

(e) n = 40, k = 75. Thus 

1 6th value + 17th value 32 + 34 P40 = 2 = --2-= 33 

kn 75 · 40 
100 = � = 30 = 30 + O 
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The integer part is 30 and the decimal part is zero, so 

P75 = 30th value + 3 1st value = 80 + 81 = 80.5 2 2 

[CHAPo 1 

1.13. For the 40 data points in Problem 1 . 12, verify that 

(a) Q¡ = P2S , (b) Q¡ = Pso , (e) Q3 = P7S· 
(a) Q¡ is the median of the first 20 data points, which is the average of the 10th and 1 1  th values: 

20 + 21 Q¡ = -2- = 20.5 
For P25 we first compute (25 · 40)/100 = 10 = 10 + O. Hence P25 is also the average of the 10th and 
1 1  th values. 

(b) Q2 is the median of all 40 data points, which is the average of the 20th and 21st values: 

Q2 = 40 + 41 = 40 5 2 . 

For P50 we first compute (50 · 40)/100 = 20 = 20 + O. Hence P50 is also the average of the 20th and 
21st values. 

(e) Q3 is the median of the last 20 values, or the average of the 30th and 3 1st values: 

80 + 81 Q3 = -2- = 80.5 
which is the value of P75 determined in Problem 1 . 12. 

MISCELLANEOUS PROBLEMS INVOLVING ONE VARIABLE 

1.14. Find the mode, range, and midrange of the data in: 

(a) Problem 1 . 1 ,  (b) Problem 1 .4, (e) Problem 1 . 1 1  
The mode is the value (or class value) which occurs most often (and more than once), the range is the 

difference between the largest and smallest values, and the midrange is the average of the smallest and 
largest values. Accordingly: 

(a) Mode = 17 , range = 20 - 9 = 1 1 ,  midrange = (20 + 9)/2 = 14.5 
(b) Mode = 35 , range = 47 - 29 = 1 8 , midrange = (47 + 29)/2 = 38 
(e) Mode = 4, range = 16 - 1 = 15 , midrange = ( 1 6 + 1 ) /2 = 8 .5 

1.15. An English class for foreign students consists of 20 French students, 25 ltalian students, and 1 5  
Spanish students. On an exam, the French students average 78 ,  the ltalian students 75, and the 
Spanish students 76. Find the mean grade for the class. 

Here we use the formula for the grand mean x (page 1 5) with 

This yields 

n¡ = 20, n2 = 25, n3 = 1 5, X¡ = 78 , X2 = 75, X3 = 76 

x = 20(78) + 25(75) + 1 5 (76) = 4575 = 76.25 20 + 25 + 1 5  60 
That is, 76.25 is the mean grade for the class. 
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1.16. Student A received a score of 91 in a test whose scores had mean 82 and standard deviation 
6. Student B received a score of 87 in another test whose scores had mean 80 and standard 
deviation 4. Which student got a "higher score"? 

Transform the grades into standard units using 

This yields: 

Thus, relatively speaking, B did bet1er than A. 

x - x  z = -­
s 

and 87 - 80 7 zB =--4- = ;:¡: = 1 .75 

1.17. Suppose measurements of an item with a metric micrometer A yield a mean of 4.20 mm and a 
standard deviation of 0.0 1 5  mm, and suppose measurements of another item with an English 
micrometer B yield a mean of 1 . 10 inches and a standard deviation of 0.005 inches. Which 
micrometer is relatively "more" precise? 

Calculate the two coefficients of variation. This yields: 

0.0 1 5 
VA = 4.20 (100%) = 0.36% and 0.005 

VB = T.lO ( 100%) = 0.45% 
Thus micrometer A is more precise. 

BIVARIATE DATA 

1.18. Estimate the correlation coefficient r for each data set shown in the scatterplots in Fig. 1 . 3 1 .  

1.19. 

The correlation coefficient r lies in the interval [-1 , 1] . Moreover, r is close to 1 if the data are 
approximately linear with positive slope, r is close to -1 if the data are approximately linear with negative 
slope, and r is close to O if there is no relationship between the points. Accordingly: 

(a) r is close to 1, say r "" 0.9, since there appears to be a strong linear relationship between the points with 
positive slope. 

(b) r "" O since there appears to be no relationship between the points. 
(e) r is close to -1 , say r "" -0.9, since there appears to be a strong linear relationship between the points 

but with negative slope. 

- - -- - - 11 -- - - -
- - - - -- - - -- - - -- - - 11 

o o 

(a) (h) Ce) 

Fig. 1-31 

Consider the following list of data values: 

I x I 4 2 10 5 8 
Y 8 12 4 10 2 
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(a) Plot the data in a scatterplot. 
(b) Compute the correlation coefficient r. 

(e) Find L, the least-squares line y = a + bx. 
(d) Graph L on the scatterplot in Part (a). 

(a) The scatterplot (with L) is shown in Fig. 1 -32(a). 
(b) First complete the table in Fig. 1 -32(b). Then, by formula (1 . 11), with n = 5, 

162 - [(29) (36)l/5 -46.8 r = = = -8833 )209 - (29)2/5)328 - (36)2/5 V40.8v'68.8 

(e) First compute the standard deviations Sx and Sy of x and y, respectively. Using formulas (1.4) and 
(1 .5), we get 

209 - (29)2/5 = 3 193 = Sx = 4 . 7, Sy 328 - (36)2/5 = 4 1473 4 . 
Substituting r, sx' Sy into formula (1. 14) for the slope b of the least-squares line L gives 

b = rsy = (-0.8833) (4. 1473) = - 1 . 1470 Sx 3 . 1937 
To determine the y-intercept a of L, we first compute 

Then, by formula (1. 14), 
x = 29/5 = 5.8 and y = 36/5 = 7.2 

a = y - bx = 7.2 - (-1 . 1 470) (5.8) = 1 3 .8526 
Hence L is the following equation: 

y = 13.8526 - 1 . 1470x 
Alternatively, we can find a and b using the normal equations in formula (1. 13) with n = 5: 

na + Lxb = LY 
Lxa + Lx2b = L XY 

or 5a + 29b = 36 
29a + 209b = 162 

(These equations would be used if we did not also want r, Sx , Sy , X, and y.) 
(d) To graph L, we find two points on L and draw the line through them. One of the two points is 

(x, y) = (5.8 , 7.2) 
(which is on any least-squares line). Another point is (lO, 2.3826), which is obtained by substituting 
x = 10 in the regression equation and solving for y. The line L appears in the scatterplot in Fig. 1 .32(a). 

y 

o 2 4 6 

(a) 

10  x Sums 

Fig. 1-32 

x y 
4 8 

2 1 2  

1 0  4 

5 1 0  

8 2 

29 3 6  

X2 y2 xy 
1 6  64 32 

4 144 24 

1 00 1 6  40 

25 1 00 50 

64 4 1 6  

209 328 1 62 

(h) 
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1.20. Repeat Problem 1 . 1 9  for the following data: 

3 
4 

(a) The scatterplot (with L) is shown in Fig. 1 -33(a). 

4 7 
8 10 

(b) First complete the table in Fig. 1 -33(b). Then, by formula (1 . 11), where n = 4, 
1 1 7  - [( 1 5) (25)l/4 23.25 r = = = 0.9382 )75 - ( 1 5)2/4)1 89 - (25)2/4 VI8 .75V32.75 

33 

(e) First compute the standard deviations Sx and Sy of x and y, respectively. Using formulas (1.4) and 
(1.5), we get 

s = x 75 - ( 1 5)2/4 = 2 5 3 . and s = y 189 - (25)2/4 = 3 304 3 . 
Substituting r, Sx , Sy into formula (1. 14) for the slope b of the least-squares line L gives 

b = rsy = (0.9675) (4.03) = 1 .24 Sx 2.5 
To determine the y-intercept a of L, we first compute 

Then, by formula (1. 14), 

1 5  x = - =  3 75 4 . and 25 y = - =  6 25 4 . 

a = y - bx = 6.25 - ( 1 .24) (3 .75) = 1 .60 
Hence L is the following equation: 

y = 1 .60 + 1 .24x 
Alternatively, we can find a and b by solving the normal equations in formula (1. 13) with n = 4: 

na + Lxb = LY 
Lxa + Lx2b = LXY 

or 4a + 15b = 25 
1 5a + 75b = 1 1 7  

(These equations would be used if we did not also want r, sx , Sy ' x, and y.) 
(d) To graph L, we find two points on L and draw the line through them. One point is 

(x, y) = (3 .75, 6.25) . Another point is (0, 1 .60), the y-intercept. The line L appears in the scatterplot 
in Fig. 1 -33(a). 

y 

12 

x y X2 y2 xy 

1 3 1 9 3 

3 4 9 1 6  1 2  

4 8 1 6  64 32 

7 1 0  49 100 70 

x Sum 1 5  25 75 289 1 17 

(a) (b) 

Fig. I-33 
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1.21. Find the sample covariance Sxy of x and y for the data in (a) Problem 1 . 19, (b) Problem 1 .20. 

The sample covariance Sxy is obtained from the formula 

(a) We have: 

�(Xi - X) (Yi - y) Sxy = n - 1 

Sxy = [(4 - 5.8) (8 - 7.2) + (2 - 5.8) ( 12 - 7.2) + ( 10 - 5.8) (4 - 7.2) 
+ (5 - 5.8) ( 10 - 7.2) + (8 - 5.8) (2 - 7.2)l/4 

= [-1 .44 - 18 .24 - 1 3.44 - 2.24 - 1 1 .44l/4 
= -46.8/4 = -1 1 .7 

We note that the variances Sx and Sy are always nonnegative, but the covariance Sxy can be negative, 
which indicates that y tends to decrease as x increases. 

(b) We have: 

Sxy = [( 1 - 3.75)(3 - 6.25) + (3 - 3 .75) (4 - 6.75) (4 - 3 .75) (6 - 8 .25) + (7 - 3.75) ( 10 - 6.25)l/3 
= [8 .9375 + 2.0625 - 0.5625 + 12 .1 875l/3 
= 22.625/3 = 7.541 7 

The covariance here is positive, which indicates that y tends to increase as x increases. 

1.22. Let W denote the number of American women graduating with a doctoral degree in mathematics 
in a given year. Suppose that, for certain years, W has the following values: 

Year 1980 1985 1990 1995 
W 28 36 40 45 

Assuming that the increase, year by year, is approximately linear and that it will increase linearly 
in the near future, estimate W for the years 2000, 2003, and 2005. 

The estimation uses the least-squares line L, that is, the line y = a + bx of best fit for the data (where x 
denotes the year and y denotes the value of W). The unknowns a and b will be determined by the following 
normal equations in formula (1. 13): 

na + (¿ x)b = ¿ y  

(¿ x)a + (¿ x2)b = ¿ xy 

(We do not use formula (1. 14) for a and b since we do not need the correlation coefficient r nor SXl Sy l X, 
and y.) 

The sums in the aboye system are obtained by computing the table in Fig. 1 -34(a). Substitution in the 
normal equations, with n = 4, yields: 

4a + 350b = 149 
350a + 30,750b = 13, 175 

or E¡ : 4a + 350b = 149 
El : 70a + 61 50b = 2635 

Eliminate a by forming the equation E = -70E¡ + 4El . This gives 

100b = 1 10 or b = 1 . 1  
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y 

50 

40 

X Y X2 30 
80 28 

85 36 
20 

90 40 10 
95 45 9,025 4,275 

Sum 350 149 30,750 1 3, 175 1980 1985 1990 
(a) 

Fig. 1-34 

Substitute b = 1 . 1  in the first equation El to obtain a = -59. Thus 

y = -59 + 1 . 1x 

(h) 
1995 

is the line L. The original points and the line L are plotted in Fig. 1 -34(b). 

35 

2000 2005 

(1) 

Substitute 100, 103, and 105 in (1) to obtain 51, 54.3, and 56.5, respectively. Thus one would expect 
that, approximately, W = 51 , W = 54, and W = 57 women will receive doctoral degrees in the years 2000, 
2003, and 2005, respectively. 

1.23. Find the least-squares parabola e for the following data: 

3 5 6 9 
7 8 7 5 

Plot e and the data points in the plane R2. 

10 
3 

The parabola e has the form y = a + bx + cx2 where the unknowns a, b, e are obtained from the 
following normal equations (which are analogous to the normal equations for the least-squares line L in 
formula (1. 13)): 

na + (L x)b + (L X2) C = LY 
(L x)a + (L x2)b + (L x3 ) c = L xy 
(L x2) a + (L x3)b + (L x4) c = L x2y 

The sums in the system are obtained by computing the table in Fig. 1 -35(a). Substitution in the normal 
equations, with n = 6, yields: 

Solving the system yields 

12845 

6a + 34b + 252c = 35 

34a + 252b + 2098c = 183 

252a + 2098b + 1 8  564c = 1225 

4179 1279 a = 3687 = 3 .48, b = 2458 = 1 .70, e = - -- = -0. 1 73 7374 
Thus y = 3 .48 + 1 .  70x - 0 . 173x2 
is the required parabola C. The given data points and e are plotted in Fig. 1-35(b). 
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y 

12 

x y X2 x3 x4 xy x2y 10 

1 5 1 1 1 5 5 

3 7 9 27 8 1  2 1  63 

5 8 25 125 625 40 200 

6 7 36 216 l,296 42 252 

9 5 8 1  729 45 405 

1 0  3 1 00 1 000 1 0,000 30 300 

Sum 34 35 252 2098 1 8,564 1 83 1225 x 
(a) (h) 

Fig. 1-35 

1.24. Consider the following data which indicates exponential growth: 

x 1 2 3 4 5 6 

Y 6 18  55 160 485 1460 

Find the least-squares exponential curve e for the data, and plot the data points and e on the 
plane R2. 

The curve e has the form y = abx where a and b are unknowns. The logarithm (to base 10) of Y = abx 
yields 

logy = log a + x logb = a' + b 'x 
where a ' = log a and b ' = 10g b. Thus we seek the least-squares line L for the following data: 

x 1 2 3 

log Y 0.7782 1 .2553 1 .7404 

Using the normal equations (1. 13) for L, we get 

a ' = 0.3028, 
The antiderivatives of a ' and b ' yield, approximately, 

a = 2.0, 

4 5 6 

2.2041 2.6857 3 . 1 644 

b ' = 0.4767 

b = 3.0 
Thus y = 2(3X) is the required exponential curve C. The data points and e are plotted in Fig. 1 -36. 

1.25. Derive the normal equations (1.13) for the least-squares line L for n data points Pi(Xi , y;) . 
[Our solution uses calculus.] 

We want to minimize the least-squares error 

D = ¿ df = ¿ [Yi - (a + bXi)]2 = ¿ [a + bXi - yi 
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1600 

1400 

1200 

1000 

800 

600 

400 

200 

Fig. 1-36 

which may be viewed as a function of a and b. The minimum may be obtained by setting the partial 
derivatives Da and Db of D with respect to a and b, respectively, equal to zero. The partial derivatives 
follow: 

and Db = L 2(a + bXi - Yi)Xi 
Setting Da = O and Db = O, we obtain the required equations 

na + (LXi)b = L Yi 
(L Xi)a + (L x¡)b = L XiYi 

Supplementary Problems 

FREQUENCY DISTRIBUTIONS, DISPLAYING DATA 

1.26. The following distribution gives the number of hours of overtime during one month for the employees of a 
company: 

Overtime, h O 1 2 3 4 5 6 7 8 9 10  

Employees 10 2 4 2 6 4 2 4 6 2 8 

Display the data in a histogram. 

1.27. The frequency distribution of the weekly wages in dollars of a group of unskilled workers follows: 

Weekly wages, $ 140-160 1 60-1 80 1 80-200 200-220 220-240 240-260 260-280 

Number of workers 18  24 32 20 8 6 2 

Display the data in a (a) histogram, (b) frequency polygon. 
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1.28. The amounts of 45 personal loans from a loan company follow: 

$700 $450 $725 $1 125 $675 $1650 $750 $400 $1050 

$500 $750 $850 $1250 $725 $475 $925 $1050 $925 

$850 $625 $900 $1 750 $700 $825 $550 $925 $850 

$475 $750 $550 $725 $575 $575 $1450 $700 $450 

$700 $1 650 $925 $500 $675 $1300 $1 125 $775 $850 

(a) Group the data into $200 classes, beginning with $400, and construct a frequency and cumulative 
frequency distribution for the grouped data. 

(b) Display the frequency distribution in a histogram. 

1.29. During a 30-day period, the daily number of station wagons rented by an automobile rental agency was as 
follows: 

7 10  6 7 9 4 7 9 9 8 5 5 7 8 4 

6 9 7 12  7 9 10  4 7 5 9 8 9 5 7 

(a) Construct a dotplot (defined in Problem 1 .6) of the data. 
(b) Find its frequency and cumulative frequency distribution. 
(e) Display the frequency distribution in a histogram. 

1.30. A foreign automobile dealer sells English, French, German, Japanese, and Korean automobiles. The 
number of such automobiles sold in a month follow: 

1.31. 

Country English French German Japanese Korean 

Number 5 3 12 20 10  

Display the data in a (a) (horizontal) bar graph, (b) circular graph. 

The following data are weights of the men (M) and women (W) in an exercise class. 

122 (W) 1 1 7  (W) 1 1 7  (W) 1 67 (M) 1 1 4  (W) 
195 (M) 145 (M) 1 58 (M) 1 58 (M) 190 (M) 
1 10 (W) 1 34 (W) 165  (M) 104 (W) 132 (W) 
107 (W) 105 (W) 1 8 1  (M) 142 (W) 123 (W) 
1 55 (M) 1 55 (M) 1 72 (M) 149 (M) 120 (W) 
140 (W) 1 63 (M) 125 (W) 1 30 (W) 1 50 (M) 
187  (M) 147 (M) 1 1 8  (W) 1 59 (M) 160 (M) 
1 1 5  (W) 175  (M) 125 (W) 1 77 (M) 121 (W) 

(a) Construct a stem-and-leaf display (defined in Problem 1 . 5) of the data with the ten s and hundreds digits 
as the stem and the units digit as the leaf. 

(b) Construct a stem-and-leaf display of the data as in part (a), but put the leaves for the men's weights to 
the right of the stem and the lea ves for the women's weights to the left of the stem. 

MEAN, MEDIAN, MODE, MIDRANGE, VARIANCE, AND STANDARD DEVIATION 

1.32. The prices of a pound of coffee in seven stores are: 

$5.58, $6. 18 ,  $5.84, $5.75, 

Find the (a) mean price, (b) median price. 

$5.67, $5.95, $5.62. 
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1.33. For a given week, the average daily temperature was 35°, 33°, 30°, 36°, 40°, 37°, 38° .  Find the (a) mean 
temperature, (b) median temperature. 

1.34. During a given month, ten salespeople in an automobile dealership sold 1 3, 1 7, 10, 18 , 1 7, 9, 17, 13 , 1 5, 14  

cars, respectively. Find the (a) mean, (b) median, (e) mode, (d) midrange. 

1.35. Find the mean, median, mode, and midrange for the data in (a) Problem 1 .26, (b) Problem 1 .29. 

1.36. Use the class value to find the mean, median, mode, and midrange for the data in (a) Problem 1 .27, 

(b) Problem 1 .28. 

1.37. The students in a mathematics class are divided into four groups: (a) much greater than the median, (b) little 
aboye the median, (e) little below the median, (d) much below the median. On which group should the 
teacher concentrate in order to increase the median of the class? Mean of the class? 

1.38. Find the variance i and standard deviation s for the data in (a) Problem 1 .26, (b) Problem 1 .29. 

1.39. Use the class value to find the variance i and standard deviation s for the data in (a) Problem 1 .27, 

(b) Problem 1 .28. 

1.40. Find the variance i and standard deviation s for the data in (a) Problem 1 .32, (b) Problem 1 .33.  

QUARTILES AND PERCENTILES 

1.41. Find the quartiles Q¡ , Q2 , Q3 for the following data: 1 5, 1 7, 1 7, 20, 21 , 21 , 25, 27, 30, 3 1 , 35.  

1.42. Find the 5-number summary L, Q¡ ,  Q2, Q3 , H for the data in Problem 1 .4 1 .  

1.43. Find the 5-number summary L, Q¡ ,  Q2, Q3 , H for the data in Problem 1 .29. 

1.44. Find P40 , P50, and PS5 for the following test scores: 
55 60 68 73 76 84 88 

57 62 70 75 77 84 90 

58 64 71  75 79 85  91 

58 66 71 76 80 87 93 

58 66 72 76 82 88 95 

1.45. With reference to the data in Problem 1 .3 1 ,  find P60 , P75 , and P93 for (a) the men's weights, (b) the women's 
weights, (e) the men's and women's weights combined. 

MISCELLANEOUS PROBLEMS INVOLVING ONE VARIABLE 

1.46. The students at a small school are divided into four groups: A, B, C, D. The number n of students in each 
group and the mean score x of each group on an exam follow: 

A: n = 80, x = 78;  B: n = 60, x = 74; C: n = 85 ,  x = 77; D: n = 75, x = 80 

Find the mean grade of the school. 
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1.47. Four students, A, B, C, D, received the following scores on exams with the following respective means x and 
standard deviations s: 

A received 88, where x = 85, s = 4; 
B received 85, where x = 82, s = 3;  

C received 90, where x = 86, s = 5; 
D received 85, where x = 82, s = 2 

Rank the students by finding their respective standard scores ZA, ZB, ZC, ZD . 

1.48. Three micrometers, A, B, C, yield the following respective means x and standard deviations s: 

A: x = 23 , s = 0 .2; B: x = 62, s = 0 . 5; C: x = 48, s = 0 .4 

Rank the micrometers by finding their respective coefficients of variation. 

BIVARIATE DATA 

1.49. The following table lists one person's oxygen utilization in units of liters per minute for times of t minutes 
into an exercise routine and t minutes following the routine: 

t minutes O 4 12 1 6  26 

litersjminute during exercise 0 .2 0.4 0 .9 1 .2 3.0 

litersjminute following exercise 3.0 1 .0 0 . 5  0 .4 0 .2 

Let x = the oxygen rate during the exercise and y = the rate after the exercise. Find (a) the covariance Sxy, 
(b) the correlation coefficient r. 

1.50. Consider the data in Problem 1 .49. (a) Plot x against y in a scatterplot. (b) Find the least-squares line L 
for the data and graph L on the scatterplot in (a) . (e) Find the least-squares hyperbolic curve e (which has 
the form y = 1/ (a + bx) or l /y = a + bx) for the data, and plot e on the scatterplot in (a) . (Hint: Find the 
least-squares line for the data points (Xi , I /Yi) .) (d) Which curve, L or e, best fits the data? 

1.51. The following table lists average male weight in pounds and height in inches for certain ages which range 
from 1 to 21 . 

Age 1 3 6 10  1 3  1 6  2 1  

Weight 20 30 45 60 95 140 1 55 

Height 28 36 44 50 60 66 70 

Find the correlation coefficient r for: (a) age and weight, (b) age and height, (e) weight and height. 

1.52. Let x = weight, y = height for the data in Problem 1 . 5 1 .  (a) Plot x against y in a scatterplot. (b) Find the 
line L of best fit. (e) Graph L on the scatterplot in (a) . 

1.53. Repeat Problem 1 . 52, but let x = height and y = weight. 
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1.54. Find the lcasl.squares exponenlial eurve y = ab" for Ihe following data: 

x 1 2 J 4 5 6 

Y 6 12 24 50 95 190 

41 

1.55. Derive Ihe following nonnal cquations for the leasl.squares para bola y = a + bx + c.\·2 for a set of 1/ data 
points p¡(x¡,y¡): 

l/a + (2: x)b + (2: .y-l)e = í> 
(2:x)(I+ (¿xl)b + (2:xJ)e = ¿xy 

(¿ .�)(I + (2: xl)b + (2: i!)e = ¿x"y 
[This problem rcquircs calculus as in Problcm 1.25.1 

Answers lo Supplemenlary Problems 

1.26_ The hislogram is shown in Pig. 1-37. 

, r-
• 
, 

• 

, -

, , 

-

;-

r-
, , . 

r- r-
-

, , 
Ovcrtime hour.s 

"'ig. 1-37 

1.27. Thc histogram alld frcquellcy pOlygOIl are shown in Fig. 1·38. 
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1.28. (a) Thc frcqucncy distribution (whcrc ¡he wage is divided by $100 for notatíonal conveniente) follows: 

Amount -:- $100 4-6 6-8 8-10 10-12 1 2-14 

Number of loans 1 1  1 4  

(b) Thc hislogram is shown in Fig. 1-39. 

" 

" 
-

j " 
� , 

i . z • 
, 

1.29. (a) Thc dOlplol is shown in Fig. [-40(0). 

10 4 

-

f'ig. 1-39 

(b) Thc frcqucncy and cumula ti ve frcquency distribulions follo\\!: 

Daily numbcr of wagons 4 5 

Frcquency 1 4 

CUlllulalÍvc frcqucncy J 7 

(e) Thc hislogram is shown in Hg. 1-40(b). 
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1.30. Scc Fig. 1-41. 

English c::::::J 

FrtrK;h c::::J 

Genrum�����:=:::::::-J� I 
Korean 1 

, " 
0 5 10 15 20 

1.31. Scc Fig. 1·42. 

10 
1 1  
12 

13 
14 

15 

16 
17 

18 

19 

1.32. (a) $5.80. (h) $5.75 

1.33. (a) 35.67°, (h) 36.5" 

(o) 

7 5 4  

0 5 7 7 8 5 4  

2 5 3 O 1 

4 O 2 
O 5 7 2 9 

5 5 8 8 9 0  

3 5 7 O 
5 2 7 

7 1 
5 O 

(o) 

1.34. (a) 14.3, (h) 14.5, (e) 17. (d) 13  

f·ig. 1-41 

Women 
4 5 7  

4 5 8 7 7 5 0  

1 O 3 5 2 

2 O 4 

2 O 

.'ig. 1-42 

(b) 

Moo 
10 
1 1  
12 

13 
14 5 7 9 

15 5 5 8 8 9 0  

,. 3 5 7 O 

17 5 2 7 

18 7 1 
19 5 O 

(b) 

1.35. (a) x = 4.92, X = 5, mode=O, midrange=5; (h) x = 7.3, x = 7, mode = 7, midrange= 8 

1.36. «1) x = 8190.36, x = 8[90, mode= $190, midrange=$21O; 

(h) j' = 8842.22, x = 8700, mode= $700, midrange= $1 100 

1.37. Grollp (e) to increase the median. Likely (h) and (e) 10 increase the mean 

1.38. (a) ; = [2.97 hOllrs squared, s = 3.60 hOllrs; (h) 52 = 4.00. s = 2.00 

1.39. (a) ; = 858.58 dollars sqllarcd. 5 = 829.30; (h) 5" = [ 12,040.40 dollars squared, 5 = 8334.72 

1.40. «1) ; = 0.0218, s = 0. 1476, (h) ; = 2.3654, s = 1.538 

1.41. QI = 17,Q2 = 21 ,Q] = 30 

1.42. L = 15, QI = [7,Ql = 2I , Q3 = 30, H = 35 

43 
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1.43. L = 4, Q1 = 6, Q2 = 7, Q3 = 9, H = 12 

1.44. P40 = 71 . 5 ,  P50 = 75, PS5 = 88 

1.45. (a) P60 = 1 66, P75 = l 76, P93 = 190; (b) P60 = 121 .5 , P75 = 127.5, P93 = 140; (e) P60 = 1 52.5 , P75 = 16 1 .5 , P93 = 187 

1.46. x = 77.4167 

1.47. ZD = 1 . 5 , zE = 1 .0, ze = 0.8 , ZA = 0.75 

1.48. VA = 0.87%, Ve = 0.83%, VE = 0 .81% 

1.49. (a) Sxy = -0. 82, (b) r = -0.64 

[CHAPo 1 

1.50. (a) See Fig. 1 -43, which also shows L and C. (b) y = 1 .78 - 0.66x, (e) y = lj 1 .6x, (d) e seems a bet1er fit 

1.51. (a) r = 0.98, (b) r = 0.98, (e) r = 0.97 

1.52. (a) and (e) are shown in Fig. 1 .44. (b) Y = 28.55 + 0.28x 

1.53. (a) and (e) are shown in Fig. 1 -45. (b) Y = -88 .98 + 3.30x 
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Chapter 2 
Sets and Counting 

2.1 INTRODUCTlON 

The concept of a set lies at the foundations of mathematics and, in particular, probability and 
statlstlcs. This concept formalizes the idea of grouping objects together and viewing them as a single 
entity. This chapter introduces this notion of a set and three basic operations on sets: union, intersection, 
and complement. We then discuss methods of counting the elements in a set or the logical possibilities 
of some event without necessarily enumerating each element or each case. 

2.2 SETS AND ELEMENTS, SUBSETS 

A set may be viewed as any well-defined collection of objects, called the elements or members of the 
set. We usually use capital letters; A, B, X, Y, . . .  to denote sets, and lower-case letters, a, b, x, y, . . .  to 
denote elements of sets. Synonyms for set are class, collection, and family. 

The statement that an element a belongs to a set S is written 

a E S 
(Here E is a symbol meaning "is an element of".) We also write a, b E S when both a and b belong to 
S. If every element of a set A also belongs to a set B, that is, if a E A implies a E B, then A is called a 
subset of B, or A is said to be contained in B, written 

or B � A  

Two sets are equal if they both have the same elements or, equivalently, if each is contained in the 
other. That is: 

if and only if and B <;; A I 
The negations of a E A, A <;;; B, and A = B are written a rJ. A, A g; B, and A el B, respectively. 

Remark 1: It is common practice in mathematics to put a vertical line " I " or slanted line "j" 
through a symbol to indicate the opposite or negative meaning of the symbol. 

Remark 2: The statement A <;;; B does not exclude the possibility that A = B. In fact, for any set A, 
we have A <;;; A since, trivially, every element in A belongs to A. However, if A <;;; B and A el B,  then we 
say that A is a proper subset of A (sometimes written A e B) . 

Specifying Sets 

There are essentially two ways to specify a particular set. One way, if possible, lS to list its 
elements. For example, 

A = { 1 , 3 , 5 , 7, 9} 

means A is the set consisting of the numbers 1, 3 ,  5, 7, and 9. Note that the elements of the set are 
separated by commas and enclosed in braces { } .  This is called the tabular form or ros ter method of a 
set. 

45 
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The second way, called the set-builder form or property method, is to state those properties which 
characterize the elements in the set, that is, properties held by the members of the set but not by 
nonmembers. Consider, for example, the expression 

B = {x : x is an even integer, x > O} 

which is read: 

"B is the set of x such that x is an even integer and x > O" 

It denotes the set B whose elements are the positive even integers. A letter, usually x, is used to denote a 
typical member of the set; the colon is read as "such that" and the comma as "and". 

EXAMPLE 2.1 

(a) The aboye set A can also be written as 
A = {x : x is an odd positive integer, x < lO} 

We cannot list all the elements of the aboye set B, but we frequently specify the set by writing 
B =  {2, 4, 6, . . .  } 

where we as sume everyone knows what we mean. Observe that 9 E A but 9 rt B. Also 6 E B, but 6 rt A. 
(b) Consider the sets 

A = { l ,  3, 5, 7, 9}, B = { 1 , 2, 3 , 4, 5} ,  e = {3,  5} 
Then e c:: A and e c:: B, since 3 and 5, the elements of e, are also members of A and B. On the other hand, 
A Cl B, since 7 E A, but 7 rt B, and B Cl A, since 2 E B but 2 rt A. 

(e) Suppose a die is tossed. The possible "number" or "points" which appear on the uppermost face of the die 
belongs to the set { l ,  2, 3, 4, 5, 6} . Now suppose a die is tossed and an even number appears. Then the 
outcome is a member of the set {2, 4, 6} which is a (proper) subset of the set { l ,  2, 3, 4, 5, 6} of all possible 
outcomes. 

The following theorem applies. 

Theorem 2.1: Let A, B, e be any sets. Then: 

(i) A � A 
(ii) If A � B and B � A, then A = B 

(iii) If A � B and B � e, the A � e 
Some sets occur very often in mathematics, so we have special symbols for them. The following 

special symbols will be used: 

P = set of counting numbers or positive integers: 1 , 2, 3 , . . .  

N = set of natural numbers or nonnegative integers: 0, 1 , 2, . . .  

Z = set of integers: . . .  , -2, - 1 , 0 , 1 , 2, . . .  

R = set of real numbers 

Thus we have P � N � Z � R. 

Universal Set, Empty Set 

All sets under investigation in any application of set theory are assumed to be contained in some 
large fixed set called the universal set or universe. We denote this set by U unless otherwise specified. 

Given a universal set U and a property P, there may be no elements in U which have the property 
P. The set with no elements is called the empty set or null set, and is denoted by 0. There is only one 
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empty set: If S and T are both empty, then S = T since they have exactly the same elements, namely, 
none. The empty set 0 is also regarded as a subset of every other set. Accordingly, we have 

for any set A. 

EXAMPLE 2.2 

(a) In plane geometry, the universal set consists of all the points in the planeo In human population studies the 
universal set consists of all the people in the world. 

(b) Consider the set 

s = {x : x is a positive integer, xl = 3} 

Then S has no elements since no positive integer has the required property. Thus, S = 0, the empty set. 

Disjoint Sets 
Two sets A and B are said to be disjoint if they have no elements in common. Consider, for 

example, the sets 

A = { 1 , 2} ,  B = {2, 4, 6 } ,  e = {4, 5 ,  6 , 7 }  
Note that A and B are not disjoint, since each contains the element 2 ,  and B and e are not disjoint since 
each contains the element 4, among others. On the other hand, A and e are disjoint since they have no 
element in common. We note that if A and B are disjoint, then neither is a subset of the other (unless 
one is the empty set). 

2.3 VENN DIAGRAMS 
A Venn diagram is a pictorial representation of sets where sets are represented by enclosed areas in 

the planeo The universal set U is represented by the points in a rectangle, and the other sets are 
represented by disks lying within the rectangle. If A <;;; B, then the disk representing A will be entirely 
within the disk representing B, as in Fig. 2- 1(a). If A and B are disjoint, i.e. have no elements in 
common, then the disk representing A will be separated from the disk representing B, as in Fig. 2- 1 (b). 

On the other hand, if A and B are two arbitrary sets, it is possible that some elements are in A but 
not B, some elements are in B but not A, some are in both A and B, and some are in neither A nor B; 
hence, in general, we represent A and B as in Fig. 2- 1 (c). 

(a) A !:;; B 

2.4 SET OPERATIONS 

u 

(b) A and B are disjoint 

Fig. 2-1 

u u 

Ce) 

This section defines a number of set operations, including the basic operations of union, intersection, 
and complement. 
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Union and Inlersecfion 

Thc wlioll of 1\V0 seIs A and B, denoted by A U S, is the set of all elcments which belong 10 A or 10 B; 
thal is, 

A U B = {x : X E A  or X E S} 

I-Iere " or" is uscd in lhe scnsc of and/or. Figure 242(0) is a Venn diagram in which A U B is shadcd. 
The imerseClioll of t\Vo scts A and B, denoted by A n B, is lhe set of all elemcnts which belong to 

b01h A und B; ll1al ¡s, 
A n B = {x : X E A  and X E S} 

Figure 2-2(b) is a Venn diagram in which A n B is shaded. 
Recall l11a1 seIs A and B are said 10 be disjoint ir ¡hey have no clemcnts in comlllan or, using lhe 

above notation, ir A n B = 0, lhe cmpty sct. Ir s = A U B and A n B = 0, thcn S is callcd ¡he disjoilll 
1I11ioll of A and B. 

(a) A U B is shadcd (h)A naisshaded 

Fig. 2-2 

EXAMPlE 2.3 

(a) Lct A = { l ,  2, 3, 4}, B = {4, 5, 6}, e = {J, 3, 5, 7}. Then 

A U B = {1,2, 3,4,5,6}, 

A n B � {4}, 

A U C = { 1 , 2,3,4,5, 7}, 

A n C � {1,3},  

B U C = { 1, 3,4,5,6,7} 

8n C � {5} 

(h) Let M and F denole, respeclively, Ihe sel ofmaJe studenls and thc set offemaJe studenls in a coUcgc C. Thcll 

M U F = C  

sinec caeh studcnl in C bclongs 10 cilhcr fI1 or F. AIso, 

M n F = 0 

sinee no Sludcnt bclongs 10 both M and F. Thu$ C is Ihe disjoinl union of M and F. 

The operalion of set inclusion is closcly related 10 the opcrations of union and interscction. as shown 
by the following theorem. 

Theorem 2.2: The following are equivalent: A � B, A n B = A, A U B = B. 

This Iheorem is proved in Problcm 2.10. Olher eondilions equivalenl 10 A � B are given in 
Problem 2.67. 

Complements, Differenee, Symmetric Difference 

Recall thal all seIS under consideralion al a particular lime are subsels of a fixed universal sel 
V. The absolwe complemelll or, simply, complemelll of a sel A, denoled by AC is Ihe �et of elements 
tll V whieh do nOI belong 10 A; thal is 

AC = {x : x E V, x 1. A} 
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Some texIs denote the complemenl of A by A' or A. Figure 2-3(a) is a Veno diagram io which AC is 
shaded. 

The re!atire complemclIf of a set a wilh respccI lO a set A or, simply, the differeocc of A and a, 
denotcd by A\B, is the set of clements which belong to A but not lO a; Ihat is, 

The set A\B is read "A minus a". Many lexlS denote A\B by A - a or A '" B. Figure 2-3(b) is a 
Veon diagram in which A\B is shaded. 

The s)'lI1l11etric difference 01' seIS A and B, denOled by A ffi B, consists of those clemcnlS which bcloog 
lO A or a but nOI bOlh. That is, 

A ffi a = (A U B)\(A n a) or, equivalenlly, A ffi a = (A\B) U (B\A) 

Figure 2-3(c) is a Veno diagram in whieh A ffi B is shaded. 

o (]) 
(a) ,te is shaded (b) A.la is s.haded 

Fig. 2-3 

EXAMPlE 2.4 Lel U = ) = {I,2, 3, . . .  } be thc universal sel. and lel 

(]) 
(e) A. $ a is shaded 

A = { 1 , 2,3,4}, 8= {3,4,S,6,7}, C = {6, 7,8, 9}, E =  {2,4,6, . . .  } 

(Hcre E is Ihe sel of evcn positivc inlcgers.) ThCll 

AC = {S, 6, 7, . . .  }, B" = {1,2, 8,9, 10, . .  }, 

Thal is. t< is Ihe set of odd inlegcrs. AIso. 
A\B� {1 ,2), 8\C � {J,4,S}, B\A � {S,6, 7), 

Morco\'cr, A $ B = { 1 ,2,S,6,7} and 
NOle that A $ lJ  = (A\B) U (B\A) and lJ $ e = (lJ\C) u (C\B). 

Algebra of Sefs 

E" = {1 , 3 , S, . .  } 

C\lJ � {8, 9), 

B $ C = p,4,5,8,9} 

Scts under the operations of un ion, intcrscction, and eomp[emem satisfy various laws (identities) 
which are [isted in Tablc 2-1. In fael, we formaIly state this result: 

Theorem 2.3: Sets satisfy the [aws in TabIe 2-1. 
Each of Ihe laws in Table 2-1 follows from ao equivalent logieal law. Coosider, for example, the 

proof of De Morgan's Iaw: 

{A U B)' � {x , x � {A O< Bl) � {x , x � A ""d x � B) � A' U B" 
I-lere \Ve use Ihe equivalenl (De Morgan's) logicaI law: 

--'(p v q) 'Z. --'p A -' q 

where --. means "nol", V meaos "or", and A means "and". 
Sometimes Veno diagrams are used to ilIustrate the Iaws in Table 2-1 (tI ProbIem 2.11).  
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la. 

2a. 

3a. 

4a. 

5a. 
6a. 

8a. 
9a. 

lOa. 

Duality 

A U A  = A  

(A U B) U C = A U (B U C) 

A U B = B u A  

SETS AND COUNTING 

Table 2-1 Laws oC the algebra oC sets 

Idempotent Laws 
lb. 

Associative Laws 
2b. 

Commutative Laws 
3b. 

Distributive Laws 
A U (B n C) = (A U B) n (A U C) 4b. 

Identity Laws 
A u 0 = A  5b. 
A U U =  U 6b. 

Involution Law 
7. (Ac)" = A 

Complement Laws 
A U Ac = U 8b. 
uC = 0  9b. 

De Morgan's Laws 
(A U B)" = AC n Bc lObo 

[CHAP. 2 

A n A = A  

(A n B) n C = A n (B n C) 

A n B = B n A  

A n (B U C) = (A n B) U (A n C) 

A n U = A  
A n 0 = 0  

A n Ac = 0 
0c = U 

(A n B)" = AC U BC 

The identities in Table 2- 1 are arranged in pairs, as, for example, 2a and 2b. We now consider the 
principIe behind this arrangement. Let E be an equation of set algebra. The dual E* of E is the 
equation obtained by replacing each occurrence of u ,  n, U, 0 in E by n, u, 0, U, respectively. For 
example, the dual of 

(U n A) U (B n A) = A  lS (0 U A) n (B U A) = A  
Observe that the pairs of laws in Table 2- 1 are duals of each other. It is a fact of set algebra, called the 
principie 01 duality, that, if any equation E is an identity, then its dual E* is also an identity. 

2.5 FINITE AND COUNTABLE SETS 
Sets can be finite or infinite. A set A is finite if it is empty or if it consists of exactly n elements, 

where n is a positive integer. Otherwise a set is said to be infinite. 

EXAMPLE 2.5 

(a) Let A denote the set of let1ers in the English alphabet. Then A is finite; it has 26 elements. Let D denote the 
set of the days of the week: 

D = {Monday, Tuesday, . . .  , Sunday} 
Then D is also finite; it has 7 elements. 

(b) Let R = {x: x is a river on the earth}. Although it may be difficult to count the number of rivers on the earth, 
R is still a finite seto 
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(e) Let Y denote the set of positive even integers, that is, Y = {2, 4, 6, . . .  }. Then Y is an infinite set. 

(d) Let 1 be the unir interval, that is 
I = {x : O <; x <; l } 

Then 1 is also an infinite set. 

CountabIe Sets 

5 1  

A set i s  countable i f  i t  i s  finite or  if its elements can be  listed in the form of  a sequence, in  which case it 
is said to be countably infinite; otherwise it is said to be uncountable. The aboye set Y of even integers is 
countably infinite, whereas it can be proven that the unit interval I is uncountable. 

2.6 COUNTlNG ELEMENTS IN FINITE SETS, INCLUSION-EXCLUSION PRINCIPLE 

The notation n(S) or IS I is used to denote the number of elements in a set S. Thus n(A) = 26, 
where A consists of the letters in the English alphabet and n(D) = 7 where D consists of the days in a 
week. AIso, n(0) = O, since the empty set has no elements. 

The following lemma applies. 

Lemma 2.4: Suppose A and B are finite disjoint sets. Then A U B is finite and 

n(A U B) = n(A) + n(B) 
Proof: In counting the elements of A U B, first count those that are in A. There are n(A) of 

these. The only other elements in A U B are those that are in B but not in A. But since A and B 
are disjoint, no element of B is in A, so there are n(B) elements in B which are not in A. Therefore, 
n(A U B) = n(A) + n(B) , as claimed. 

Given any sets A and B, we note that A is the disjoint union of the sets A\B and A n B 
(Problem 2.66). Thus Lemma 2.4 gives us the following useful result. 

Theorem 2.5: Suppose A and B are finite sets. Then 

n(A\B) = n(A) - n(A n B) 

That is, the number of elements in A\B, that is, elements in A lying outside of B, is equal to the 
number of elements in A minus the number of elements in both A and B. 

Inclusion-Exclusion PrincipIes 

There is also a formula for n(A U B) even when they are not disjoint, called the inclusion-exclusion 
principIe. Namely: 

Theorem (Inclusion-Exclusion PrincipIe) 2.6: Suppose A and B are finite sets. Then A n B and A U B 
are finite and 

n(A U B) = n(A) + n(B) - n(A n B) 

That is, we find the number of elements in A or B (or both) by first adding n(A) and n(B) (inclusion) 
and then subtracting n(A n B) (exclusion), since its elements were counted twice. 

We can apply this result to get a similar result for three sets. 

Corollary 2.7: Suppose A, B, e are finite sets. Then A U B U e is finite and 

n(A U B U C) = n(A) + n(B) + n(C) - n(A n B) - n(A n C) - n(B n e) + n(A n B n C) 
Mathematical induction (Section 2.9) may be used to further generalize this result to any finite 

number of finite sets. 
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EXAMPLE 2.6 Suppose list A contains the 30 students in a mathematics class and list B contains the 35 students in 
an English class, and suppose there are 20 names on both lists. Find the number of students: 

(a) on list A or B, 
(b) only on list A, 

(e) only on list B, 
(d) on exactly one of the two lists. 

(a) We seek n(A U B) . By Theorem 2.6, 
n(A U B) = n(A) + n(B) - n(A n B) = 30 + 35 - 20 = 45 

In other words, we combine the two lists and then cross out the 20 names which appear twice. 

(b) List A contains 30 names and 20 of them are on list B; hence 30 - 20 = names are only on list A. That is, by 
Theorem 2.5, 

n(A\B) = n(A) - n(A n B) = 30 - 20 = 10 

(e) Similarly, there are 35 - 20 = 1 5  names only on list B. That is, 
n(B\A) = n(B) - n(A n B) = 35 - 20 = 1 5  

(d) By (b) and (e), there are 10 + 1 5  = 25 names on exactly one of the two lists. In other words n(A EB B) = 25. 

2.7 PRODUCT SETS 

Let A and B be two sets. The produet set of A and B, denoted by A x B (read: A eross B), eonsists 
of all ordered pairs (a, b) where a E A and b E B; that is, 

A x B = {(a, b) : a E A , b E B} 
The produet of a set with itself, say A x A, is denoted by A2. 

We note that two ordered pairs (a, b) and (e, d) are equal if and only if theirfirst elements a and e are 
equal and their seeond elements b and d are equal. That is: 

I (a, b) = (e, d) if and only if a = e  and 

EXAMPLE 2.7 

(a) The reader is familiar with the cartesian plane R2 = R x R as discussed in Section 1 .8 .  Here each point P in 
the plane represents an ordered pair (a, b) of real numbers, and vice versa. 

(b) Let A = { 1 , 2, 3} and B = {a, b}. Then 
A x B =  { ( I , a) ,  ( l , b) ,  (2, a), (2, b) , (3 , a) ,  (3, b)} 

The following theorem applies. 

Theorem 2.8: Suppose A and B are finite. Then A x B is finite and 

n(A x B) = n(A) . n(B) 
The proof follows from the faet that, for eaeh a E A, there will be n(B) ordered pairs in A x B, 

beginning with a. Henee altogether there will be n(A) x n(B) ordered pairs in A x B. That is, 
n(A x B) = n(A) . n(B) , as claimed. 

Observe that in Example 2.7(b) we have n(A) = 3, n(B) = 2, and, as expeeted from Theorem 2.8, 
n(A x B) = 3 (2) = 6. 

The eoneept of a produet set is extended to any finite number of sets in a natural way. The produet 
set of sets Al , A2 , . . .  , Am , written 

m 
or II A; 

;=1 



CHAP. 2] SETS AND COUNTING 53 

is the set of all m-tuples (al , a2 , . . .  , am) where al E Al , a2 E A2 , . . .  , am E Am. Furthermore, the aboye 
Theorem 2.8 may easily be extended, by induction, to the product of m sets; that is, 

n(Al x A2 x . . .  x Am) = n(Al )n(A2) . . .  n(Am) 

2.8 CLASSES OF SETS, POWER SETS, P ARTlTlONS 

Given a set S, we may wish to talk about some of its subsets. Thus we would be considering a "set 
of sets". Whenever such a situation arises, to avoid confusion, we will speak of a class of sets or a 
collection of sets. If we wish to consider some of the sets in a given class of sets, then we will use the 
term subclass or subcollection. 

EXAMPLE 2.8 Suppose S = { l ,  2, 3, 4}. Let d be the class of subsets of S which contain exactly three elements 
of S. Then 

d = [{ 1 , 2, 3} ,  { 1 , 2, 4}, { 1 , 3 , 4} ,  {2, 3 , 4}] 
The elements of d are the sets { l ,  2, 3}, { l ,  2, 4}, { l ,  3, 4}, and {2, 3, 4}. 

Let g¡j be the class of subsets of S which contain 2 and two other elements of S. Then 
g¡j = [{ 1 , 2, 3} ,  { 1 , 2, 4} ,  {2, 3 , 4}] 

The elements of g¡j are { l ,  2, 3}, { l ,  2, 4}, and {2, 3, 4} . Thus g¡j is a subclass of d. (To avoid confusion, we will 
usually enclose the sets of a class in brackets instead of braces.) 

Power Sets 

For a given set S, we may consider the class of all subsets of S. This class is called the power set of 
S, and it will be denoted by &(S) . If S is finite, then so is &(S) . In fact, the number of elements in 
&(S) is 2 raised to the power of S; that is, 

n(&(S)) = 2n(S) 
(For this reason, the power set of S is sometimes denoted by 2s.] 

EXAMPLE 2.9 Suppose S = { 1 , 2, 3} .  Then 
.o;>(S) = [0, { I }, {2} , {3} , { 1 , 2} , { 1 , 3} , {2, 3} , S] 

Note that the empty set 0 belongs to .o;>(S), since 0 is a subset of S. Similarly, S belongs to .o;>(S). As expected 
from the aboye remark, .o;>(S) has 23 = 8 elements. 

Partitions 

Let S be a nonempty set. A partition of S is a subdivision of S into nonoverlapping, nonempty 
subsets. Precisely, a partition of S is a collection {AJ of nonempty subsets of S such that: 

(i) Each a in S belongs to one of the A; . 
(ii) The sets of {AJ are mutually disjoint; that is, if 

A; el Aj the A; n Aj = 0 

The subsets in a partition are called cells. Figure 2-4 is a Venn diagram of a partition of the rectangular 
set S of points into five cells, Al , A2 , A3 , A4 , As . 

EXAMPLE 2.10 Consider the following collections of subsets of S = { l ,  2, 3, . . .  , 8, 9}: 
(i) [ { l ,  3, 5}, {2, 6}, {4, 8, 9}] 

(ii) [ { l ,  3, 5}, {2, 4, 6, 8}, {5, 7, 9}] 
(iii) [ { l ,  3, 5}, {2, 4, 6, 8}, {7, 9}] 



54 SETS AND COUNTING [CHAP. 2 

Fig. 2-4 

Then (i) is not a partition of S since 7 in S does not be long to any of the subsets. Furthermore, (ii) is not a partition 
of S since { 1 ,  3, 5} and {5, 7, 9} are not disjoint. On the other hand, (iii) is a partition of S. 

Indexed CIasses of Sets 

When we speak of an indexed class 01 sets {A;: i E I} or simply {AJ, we mean that there is a set A; 
assigned to each element i E l. The set l is called the indexing set and the sets A; are said to be indexed 
by l. When the indexing set is the set P of positive integers, the indexed class {Al ,  A2 , . . .  } is called a 
sequence of sets. By the union of these A; , denoted by U; E l A; (or simply U; A;), we mean the set of 
elements each belonging to at least one of the A;; and by the intersection ofthe A;, denoted by nEl A; (or 
simply n A;), we mean the set of elements each belonging to every A;. We also write 

00 
UA; = A; U A2 U · · ·  
;=1 

and 
00 
nA; = A1 n A2 n . . .  
;=1 

for the union and intersection, respectively, of a sequence of sets. 

Definition: A nonempty class d of subsets of U is called an algebra (IJ-algebra) of sets if it has the 
following two properties: 

(i) The complement of any set in d belongs to d. 
(ii) The union of any finite (countable) number of sets in d belongs to d. 

That is, d is closed under complements and finite (countable) unions. 

It is simple to show (Problem 2.32) that any algebra (IJ-algebra) of sets contains U and 0 and is 
closed under finite (countable) intersections. 

2.9 MATHEMATlCAL INDUCTlON 

An essential property of the set P = { l ,  2, 3, . . .  } of positive integers which is used in many proofs 
follows: 

PrincipIe of MathematicaI Induction 1: Let A (n) be an assertion about the set P of positive integers, i.e. 
A(n) is true or false for each integer n � 1. Suppose A(n) has the following two properties: 

(i) A ( 1 )  is true. 
(ii) A (n + 1 )  is true whenever A (n) is true. 

Then A(n) is true for every positive integer. 

We shall not prove this principIe. In fact, this principIe is usually given as one of the axioms when 
P is developed axiomatically. 

EXAMPLE 2.1 1 Let A (n) be the assertion that the sum of the first n odd numbers is n2; that is: 

A (n) : 1 + 3 + 5 + . . .  + (2n - 1) = n2 
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(The nth odd number is 2n - 1 and the next odd number is 2n + 1 .) Observe that A (n) is true for n = 1 since 

A ( I ) :  1 = 12 
Assuming A (n) is true, we add 2n + 1 to both sides of A (n), obtaining 

1 + 3 + 5 + . . .  + (2n - 1) + (2n + 1 )  = n2 + (2n + 1 )  = (n + 1 )2 
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However, this is A (n + 1) . That is, A (n + 1 )  is true assuming A (n) is true. By the principIe of mathematical 
induction, A(n) is true for all n ::> 1 .  

There i s  another form of the principIe of mathematical induction which is sometimes more con­
venient to use. Although it appears different, it is really equivalent to the aboye principIe of induction. 

PrincipIe of MathematicaI Induction 11: Let A(n) be an assertion about the set P of positive integers 
with the following two properties: 

(i) A ( 1 )  is true. 
(ii) A(n) is true whenever A(k) is true for 1 :::; k < n. 
Then A(n) is true for every positive integer. 

Remark: Sometimes one wants to prove that an assertion A is true for a set of integers of the form 

{a, a + l , a + 2, . . .  } 
where a is any integer, possibly O. This can be done by simply replacing 1 by a in either of the aboye 
principIes of mathematical induction. 

2.10 COUNTlNG PRINCIPLES 

Combinatorial analysis, which includes the study of permutations and combinations, is concerned 
with determining the number of logical possibilities of some event without necessarily identifying every 
case. There are two basic counting principIes used throughout. One involves addition and the other 
multiplication. 

Sum Rule PrincipIe 

The first counting principIe follows: 

Sum Rule Principie: Suppose some event E can occur in m ways and a second event F can occur in 
n ways, and suppose both events cannot occur simultaneously. Then E or F can occur in m + n 
ways. 

This principIe can be stated in terms of sets and it is simply a restatement of Lemma 2.4. 

Sum Rule Principie: Suppose A and B are disjoint sets. Then 

n(A U B) = n(A) + n(B) 

Clearly, the principIe can be extended to three or more events. Specifically, suppose an event El 
can occur in nI ways, an event E2 can occur in n2 ways, an event E3 can occur in n3 ways, and so on, and 
suppose no two of the events can occur at the same time. Then one of the events can occur in 
nI + n2 + n3 + . . .  ways. 
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Product Rule PrincipIe 

The second counting principIe follows: 

Product Rule Principie: Suppose there is an event E which can occur in m ways and, independent 
of this event, there is a second event F which can occur in n ways. Then combinations of E and F 
can occur in mn ways. 

This principIe can also be stated in terms of sets and it is simply a restatement of Theorem 2.8. 

Product Rule Principie: Suppose A and B are finite sets. Then 

n(A x B) = n(A) . n(B) 

Clearly, this principIe can also be extended to three or more sets. Specifically, suppose an event El 
can occur in nI ways, then an event E2 can occur in n2 ways, then an even E3 can occur in n3 ways, and so 
on. Then all of the events can occur in the order indicated in nI . n2 . n3 . . .  ways. 

EXAMPLE 2.1 2 

(a) Suppose a college has 3 different history courses, 4 different literature courses, and 2 different science courses 
(with no prerequisites). 
(1) There are n = 3 + 4 + 2 = 9 ways to choose 1 of the courses. 
(2) There are n = 3 (4) (2) = 24 ways to choose one of each of the courses. 

(b) Suppose Airline A has three daily fiights between Boston and Chicago, and Airline B has two daily fiights 
between Boston and Chicago. 
(1) There are n = 3 + 2 = 5 ways to fiy from Boston to Chicago. 
(2) There are n = 3(2) = 6 ways to fiy Airline A from Boston to Chicago, and then Airline B from 

Chicago back to Boston. 
(3) There are n = 5(5) = 25 ways to fiy from Boston to Chicago, and then back again. 

2.11 FACTORIAL NOTATlON, BINOMIAL COEFFICIENTS 

This section introduces some mathematical notation which is frequently used in combinatorics. 

Factorial Notation 

The product of the positive integers from 1 to n inclusive is denoted by n! (read "n factorial"). 
That is, 

n! = 1 · 2 · 3 ·  . . . . (n - 2) (n - l)n 
In other words, n! is defined by 

1 !  = 1 and n! = n · ( (n - l ) !) 
It is also convenient to define O! = 1 .  

EXAMPLE 2.1 3 

(a) 2! = 1 · 2  = 2, 3! = 1 · 2 ·  3 = 6, 4! = 1 · 2 ·  3 · 4  = 24, 

5! = 5 ·  4! = 5 · 24 = 120, 6! = 6 ·  5 ! = 6 . 120 = 720 
8! 8 · 7 ·  6 ! 

(b) 6T = -6-! -
= 8 · 7  = 56, 12 . 1 1  . 10 . 9! 12! 12 · 1 1 . 10 = 9! 9! '  

1 2  . 1 1  . 10  1 12! 
1 . 2 . 3  = 12 . 1 1 . 10 ' 3[ = 3 ! 9! 
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(e) n(n _ 1 )  . . .  (n _ r + 1) = n(n - 1) · · ·  (n - r + l ) (n - r) (n - r - 1 ) · · · 3 · 2 · 1  = _n_! _ 
(n - r) (n - r - 1) · · · 3 · 2 · 1 (n - r) ! ' 

n(n - 1 ) · · · (n - r + 1 ) 1 n! 1 n! ----'-::-----=---'-=----'-;-...,...,----'- = n (n - 1 )  . . .  (n - r + 1 )  . - = -- . - = --;-;-----,-:-1 · 2 · 3 · · · (r - 1 )r r! (n - r)! r! r! (n - r) !  

Stirling's Approximation to n! 
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A direct evaluation of n! when n is very large is impossible, even with modern-day computers. 
Accordingly, one frequently uses the approximation formula 

n! � .J27rn nne-n 

(Here e = 2.7 1828 . . . .  ) The symbol � means that, as n gets larger and larger (that is, as n ----t (0), the ratio 
of both sides approaches 1 . 

Binomial Coefficients 

The symbol ( �) (read "nCr" or "n choose r"), where r and n are positive integers with r :::; n, is 
defined as follows: 

( n) = n(n - 1 ) (n - 2) . . .  (n - r + 1 )  
r 1 . 2 . 3 . . .  (r - l)r or (by Example 2. 13) ( n) n! 

r - r ! (n - r) ! 

But n - (n - r) = r; hence we have the following important relation: 

or, in other words, if a + b = n then ( :) = ( �) 
EXAMPLE 2.14 

(a) G) = � : � = 28 

(l0) = 10 · 9 · 8  = 120 3 1 · 2 · 3  

(9) _ 9 . 8 . 7 . 6 _ 
4 - 1 . 2 . 3  . 4 - 126 

en = \3 = 1 3  

= = 792 (12) 12 · 1 1  . 10 . 9 . 8 
5 1 · 2 · 3 · 4 · 5  

Note that ( ;) has exactly r factors in both the numerator and the denominator. 

(b) Compute (\0) . This can be done two ways: 

= = 120 (l0) 10 · 9 · 8 · 7 · 6 · 5 · 4  
7 1 · 2 · 3 · 4 · 5 · 6 · 7  or (l0) = ( 10) = 10 · 9 · 8  = 7 3 1 . 2 . 3  120 

Observe that the second method (which uses 7 + 3 = 10) saves space and time. 

Binomial Coefficients and Pascal's Triangle 

The number ( �) are called the binomial coefficients, since they appear as the coefficients in the 

expansion of (a + br. Specifically, one can prove (Problem 2. 59): 

Theorem 2.9: (a + br = ta (�) �-kbk 
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The coefficients of the successive powers of a + b can be arranged in a triangular array of numbers, 
called Pascal's triangle, as pictured in Fig. 2-5. The numbers in Pascal's triangle have the following 
interesting properties: 

(1) The first and last number in each row is 1 .  
(2) Every other number in the array can be obtained by adding the two numbers appearing directly 

aboye it. For example, 10 = 4 + 6, 1 5  = 5 + 10, 20 = 10 + 10. 

( a + b )o = 

( a + b )1 = a + b 

( a + b )3 = a3 + 3o?b + 3ab2 + b3 

( a + b )4 a4 + 4a3b + 6a2b2 + 4ab3 + b4 

( a + b )5 = a5 + 5a4b + lOa3b2 + lOa2b3 + 5ab4 + bS 

Figo 2-5 

6 

2 

3 3 

4 

5 

15 6 

Since the numbers appearing in Pascal's triangle are the binomial coefficients, property (2) comes 
from the following theorem (proved in Problem 2.40): 

Theorem 2010: ( n +
r 

1) ( r _
n 

1) + ( n
r) 

2012 PERMUTATlONS 

Any arrangement of a set of n objects in a given order is called a permutation of the objects (taken 
all at a time). Any arrangement of any r :::; n of those objects in a given order is called an r-permutation 
or a permutation 01 the n objeets taken r at a time. Consider, for example, the set of letters a, b, e, 
and d. Then: 

(1) bdea, deba, and aedb are permutations of the four letters (taken all at a time); 
(2) bad, adb, ebd, and bea are permutations of the four letters taken three at a time; 
(3) ad, eb, da, and bd are permutations of the four letters taken two at a time. 

The number of permutations of n objects taken r at a time is denoted by 

P(n, r) , nP" Pn,, ,  P" or (n)r 
We shall use P(n, r) . Before we derive the general formula for P(n, r) we consider a particular case. 
EXAMPLE 201 5 Find the number of permutations of six objects, say A, B, C, D, E, F, taken three at a time. In 
other words, find the number of "three-Iet1er words" using only the given six let1ers without repetitions. 

Let the general three-Iet1er word be represented by the following three boxes: 

D D D 
Now the first let1er can be chosen in six different ways; following this, the second let1er can be chosen in five different 
ways; and, following this, the last let1er can be chosen in four different ways. Write each number in its appropriate 
box as follows: 

Thus by the fundamental principie of counting there are 6 . 5 . 4 = 120 possible three-Iet1er words without repetitions 
from the six let1ers, or there are 120 permutations of six objects taken three at a time: 

P(6, 3) = 120 
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Derivation of the Formula for P(n, r) 
The derivation of the formula for the number of permutations of n objects taken r at a time, or the 

number of r-permutations of n objects, P(n, r) , follows the procedure in the preceding example. The 
first element in an r-permutation of n objects can be chosen in n different ways; following this, the second 
element in the permutation can be chosen in n - 1 ways; and, following this, the third element in the 
permutation can be chosen in n - 2 ways. Continuing in this manner, we have that the rth (last) element 
in the r-permutation can be chosen in n - (r - 1 )  = n - r + 1 ways. Thus, by the fundamental principIe 
of counting, we have 

P(n, r) = n(n - 1 ) (n - 2) . . .  (n - r + 1) 
By Example 2. 1 3(e), we see that 

n(n - 1 ) (n - 2) · · ·  (n - r + 1) . (n - r) ! n! n(n - 1 ) (n - 2) · · ·  (n - r + 1 )  = (n _ r) ! = -;-(n---r-:--:) !  
Thus we have proven: 

n! 
Theorem 2.11: P(n, r) = (n _ r) ! 

In the special case in which r = n, we have 

P(n, n) = n(n - 1 ) (n - 2) · · · 3 · 2 · 1 = n! 
Accordingly, 

Corollary 2.12: There are n! permutations of n objects (taken all at a time). 

For example, there are 3 !  = 1 · 2 · 3  = 6 permutations of the three letters a, b, and e. These are 

abe, aeb, bae, bea, eab, eba 

Permutations with repetitions 

Frequently we want to know the number of permutations of a multiset; that is, a set of objects some 
of which are alike. We will let 

P(n; n¡ , n2 ' · · ·  , nr) 
denote the number of permutations of n objects of which n¡ are alike, n2 are alike, . . .  , nr are alike. The 
general formula follows: 

n! 
Theorem 2.13: P(n; n¡ , n2 , · · · , nr) =  I I I nI · n2 ·  . . .  nr · 

We indicate the proof of the aboye theorem by a particular example. Suppose we want to form all 
possible five-Ietter "words" using the letters from the word "BABBY" . Now there are 5! = 120 per­
mutations of the objects B¡ , A, B2, B3 , Y, where the three Bs are distinguished. Observe that the 
following six permutations 

produce the same word when the subscripts are removed. The 6 comes from the fact that there are 
3 !  = 3 · 2 ·  1 = 6 different ways of placing the three Bs in the first three positions in the permuta­
tion. This is true for each set of three positions in which the Bs can appear. Accordingly there are 

5 !  120 P(5; 3) = 3 !  = 6 = 20 

different five-Ietter words that can be formed using the letters from the word "BABBY". 
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EXAMPLE 2.1 6 Find the number m of seven-letter words that can be formed using the letters of the word 
"BENZENE". 

We seek the number of permutations of seven objects of which three are alike (the three Es) and two are alike 
(the two Ns). By Theorem 2. 1 3, 

7! 7 . 6 . 5 . 4 . 3 . 2 . 1 m = P(7; 3 , 2) = 3! 2! = 3 . 2 .  1 . 2 .  1 = 420 

Ordered Samples 

Many problems in combinatorial analysis and, in particular, probability and statistics are concerned 
with choosing an element from a set S containing n elements (or a card from a deck or a person from a 
population). When we choose one element after another from the set S, say r times, we call the choice 
an ordered sample of size r. We consider two cases: 

(1) Sampling with replaeement 
Here the element is replaced in the set S before the next element is chosen. Since there are n different 
ways to choose each element (repetitions are allowed), the product rule principIe tells us that there are 

r times 
� r n · n · n · · · n = n  

different ordered samples with replacement of size r. 
(2) Sampling without replaeement 
Here the element is not replaced in the set S before the next element is chosen. Thus there are no 
repetitions in the ordered sample. Accordingly, an ordered sample of size r without replacement is 
simply an r-permutation of the elements in the set S with n elements. Thus there are 

n! P(n, r) = n(n - 1 ) (n - 2) · · ·  (n - r + 1 ) = (n _ r) ! 
different ordered samples without replacement of size r from a population (set) with n elements. In 
other words, by the product rule, the first element can be chosen in n ways, the second in n - 1 ways, and 
so on. 

EXAMPLE 2.1 7 Three cards are chosen in succession from a deck with 52 cards. Find the number of ways this 
can be done (a) with replacement, (b) without replacement. 

(a) Since each card is replaced before the next card is chosen, each card can be chosen in 52 ways. Thus there are 

52(52) (52) = 523 = 140,608 

different ordered samples of size r = 3 with replacement. 

(b) Since there is no replacement, the first card can be chosen in 52 ways, the second card in 51  ways, and the last 
card in 50 ways. Thus there are 

P(52,3) = 52(51 ) (50) = 132,600 

different ordered samples of size r = 3 without replacement. 

2.13 COMBINATIONS 

Suppose we have a collection of n objects. A eombination of these n objects taken r at a time is any 
selection of r of the objects where order doesn't count. In other words, an r-eombination of a set of n 
objects is any subset of r elements. For example, the combinations of the letters a, b, e, d taken three at 
a time are 

{a, b , e} , {a, b, d} , {a, e, d} , {b, e, d} or simply abe, abd, aed, bed 
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Observe that the following combinations are equal: 

abe, aeb, bae, bea, eab, eba 
That is, each denotes the same set {a, b, e}. 

The number of combinations of n objects taken r at a time is denoted by 

C(n, r) 
The symbols nC" Cn " and C� also appear in various texts. Before we give the general formula for 
C(n, r) , we consider � special case. 

EXAMPLE 2.18 Find the number of combinations of four objects, a, b, e, d, taken three at a time. 
Each combination consisting of three objects determines 3! = 6 permutations of the objects in the combination 

as pictured in Fig. 2-6. Thus the number of combinations multiplied by 3! equals the number of permuta­
tions. That is: 

C(4, 3) · 3! = P(4, 3) or C(4 3) = P(4, 3) , 3 !  
But P( 4, 3) = 4 . 3 · 2  = 24 and 3! = 6. Thus C( 4, 3) = 4, which is noted in Fig. 2-6. 

Fig. 2-6 

Formula for C(n, r) 

Since any combination of n objects taken r at a time determines r! permutations of the objects in the 
combination, we can conclude that 

Thus we obtain 

Theorem 2.14: 

P(n, r) = r! C(n, r) 

( ) P(n, r) n! C n, r = --, - = ' ( _ ) ' r . r. n r . 

Recall that the binomial coefficient 
n' 

was defined to be ' ( � ) , . r. n r . 

C(n, r) = ( �) 
We shall use C(n, r) and interchangeably. ( n

r) 
EXAMPLE 2.19 

Thus: 

Ca) Find the number m of committees of three that can be formed from eight people. Each committee is, 
essentially, a combination of the eight people taken three at a time. Thus 

m = C(8 3) = = --= 56 (8) 8 · 7 · 6  , 3 1 · 2 · 3  



62 SETS AND COUNTING [CHAP. 2 

(b) A farmer buys three cows, two pigs, and four hens from a man who has six cows, five pigs, and eight 
hens. How many choice s does the farmer have? 

The farmer can choose the cows in (�) ways, the pigs in (�) ways, and the hens in (!) ways. Hence 

altogether he can choose the animals in (6) (5) (8) 6 . 5 . 4 5 ·  4 8 ·  7 . 6 . 5 
3 2 4 = � . "f:2 . 1 . 2 . 3 . 4  = 20 · 10 · 70 = 14,000 ways 

EXAMPLE 2.20 Find the number m of ways that 9 toys can be divided between 4 children if the youngest is to 
receive 3 toys and each of the others 2 toys. 

There are C(9, 3) = 84 ways to first choose 3 toys for the youngest. Then there are C( 6, 2) = 1 5  ways to 
choose 2 of the remaining 6 toys for the oldest. Next, there are C( 4, 2) = 6 ways to choose 2 of the remaining 4 toys 
for the second oldest. The third oldest receives the remaining 2 toys. Thus, by the product rule, 

m = 84( 1 5) (6) = 7560 
Alternately, by Problem 2. 123, 

9! m = 3! 2! 2! 2! = 7560 

2.14 TREE DIAGRAMS 

A tree diagram is a device used to enumerate all the possible outcomes of a sequence of experiments 
or events where each event can occur in a finite number of ways. The construction of tree diagrams is 
illustrated in the following example. 

EXAMPLE 2.21 

(a) Find the product set A x B x C where A = { 1 ,  2}, B = {a, b, e}, and C = {3, 4}. 
The tree diagram for the set A x B x C appears in Fig. 2-7. Observe that the tree is constructed from left to 

right, and that the number of branches at each point corresponds to the number of possible outcomes of the 
next evento Each endpoint of the tree is labeled by the corresponding element of A x  B x C. As expected 
from Theorem 2.8, A x B x C  contains n = 2(3) (2) = 12 elements. 

(1 , a, 3) 

l�: 
(1 , a, 4) 

(1 , b, 3) 

(1 , b, 4) 
(1 , e, 3) 

e 
(1 , e, 4) 

(2, a, 3) 

(2, a, 4) 

(2, b, 3) 

(2, b, 4) 

(2, e, 3) 

(2, e, 4) 

Fig. 2-7 
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(b) Marc and Erik are to play a tennis tournament. The first person to win two games in a row or who wins a 
total of three games wins the tournament. Find the number of ways the tournament can occur. 

The tree diagram showing the possible outcomes of the tournament appears in Fig. 2-8 . Specifically, there 
are 10 endpoints, which correspond to the 10 ways that the tournament can occur: 

MM, MEMM, MEMEM, MEMEE, MEE, EMM, EMEMM, EMEME, EMEE, EE 

The path from the beginning of the tree to the endpoint describes who won which game in the individual 
tournament. 

M 

E 

M 

E E 

Fig. 2-8 

Solved Problems 

SETS, SUBSETS 

2.1. List the elements of the following sets, where P = { l ,  2, 3, . . .  }: 

M 

E 

M 

E 

(a) A = {x : x E P, 3 < x < 7} ,  (e) C = {x : x E P, x + 4 = 3} ,  
(b) B = {x : x E P, x is even, x < 9} ,  (d) D = {x : x E P, x is a multiple of 5} 

(a) A consists of the positive integers between 3 and 7; hence A = {4, 5, 6} .  
(b) B consists of the even positive integers less than 9; hence B = {2, 4, 6, 8} .  
(e) There are no positive integers which satisfy the condition x + 4 = 3; hence C contains no elements. In 

other words C = 0, the empty set. 
(d) D is infinite, so we cannot list all its elements. However, sometimes we can write 

D = {5, 10 ,  1 5, 20, . . .  } assuming everyone understands that we mean the multiples of 5. 

2.2. Show that A = {2, 3, 4, 5} is not a subset of B = {x : x E P, x is even} .  

It  i s  necessary to show that at  least one element in A does not be long to B. Now 3 E A and, since B 
consists of even numbers, 3 rt B; hence A is not a subset of B. 

2.3. Show that A = {2, 3, 4, 5} is a proper subset of C = { l ,  2, 3, . . .  , 8 , 9}. 

Each element of A belongs to C so A c:: C. On the other hand, 1 E C but 1 rt A. Hence 
A el C. Therefore A is a proper subset of C. 
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2.4. Prove Theorem 2. 1 (iii): If A <;;; B and B <;;; e, then A <;;; C. 
We must show that each element in A also belongs to e. Let x E A. Now A c:: B implies x E B. But 

B c:: e; hence x E e. We have shown that x E A implies x E e, that is, that A c:: e. 

SET OPERATIONS 

2.5. Let U = { l ,  2, . . .  , 9} be the universal set, and let 

Find: 

A = { 1 , 2, 3 , 4, 5} 
B = {4, 5, 6, 7} 

e =  {5 , 6 , 7 , 8 , 9} 
D = { 1 , 3 , 5 , 7 , 9} 

E = {2, 4, 6, 8} 
F = { 1 , 5 , 9} 

(a) A U B and A n B 
(b) B U D  and B n D  

(e) A U e and A n e 
(d) D U E and D n E 

(e) E U E and E n E  
(1) D U F  and D n F 

Recall that the union X U Y consists of those elements in either X or Y (or both), and that the 
intersection X n y consists of those elements in both X and Y. 

(a) A U B =  { 1 , 2, 3, 4, 5, 6, 7} A n B = {4, 5} 
(b) B U D  = { 1 , 3, 4, 5, 6, 7, 9} B n D  = {5, 7} 
(e) A U e = { 1 , 2, 3 , 4, 5, 6, 7, 8, 9} = U A n e = {5} 
(d) D U E  = { 1 , 2, 3, 4, 5, 6, 7, 8, 9} = U D n E = 0 
(e) E U E =  {2, 4, 6, 8}  = E  E n E =  {2, 4, 6, 8}  = E  
(f) D U F = { 1 , 3, 5, 7, 9} = D  D n F =  { 1 , 5, 9} = F  

Observe that F c:: D; so by Theorem 2.2 we must have D U F  = D and D n F = F. 

2.6. Consider the sets in the preceding Problem 2.5. Find: 

(a) Ae, Be, De, Ee (b) A\B, B\A, D\E, F\D (e) A ffi B, e ffi D, E ffi F  
(a) The complement XC consists of those elements in the universal set U which do not belong to 

X. Hence: 

Ae = {6, 7, 8, 9}, Be = { 1 , 2, 3 , 8 , 9}, De = {2, 4, 6, 8}  = E, Ee = {l, 3, 5, 7, 9} = D 

(b) The difference X\Y consists of the elements in X which do not be long to Y. Hence: 

A\B = { 1 , 2, 3}, B\A = {6, 7}, D\E = { 1 , 3 , 5, 7, 9} = D, F\D = 0 

(e) The symmetric difference X EB Y consists of the elements in X or Y but not in both X and Y. Hence: 

A EB B = { 1 , 2, 3, 6, 7}, e EB D = { 1 , 3 , 8, 9}, 

2.7. Show that we can have A n B = A n e without B = C. 

E EB F  = {2, 4, 6, 8, 1 , 5, 9} = E U F  

Let A = { 1 , 2}, B = {2, 3} ,  and e = {2, 4}. Then A n B = {2} and A n e = {2}. Accordingly, 

A n B = A n e but B el e 

2.8. Prove: B\A = B n Ae. Thus the set operation of difference can be written in terms of the 
operations of intersection and complementation. 

B\A = {x : X E B, x rj. A} = {x : x E B, X E Ae} = B n Ae 
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2.9. Provc: (A n B) � A � (A U B) and (A n B) � B �  (A U B).  
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Since every clemenl in A n B is in bolh A and B, il is cerlainly Irue Ihal if x E (A n B) then x E A; hence 
(A n Bl � A. Furlhermore, if x E A, Ihen x E (A U B) (by Ihe defmilion of A U B), so A � (A U B). 
Puning Ihese logelher givcs (A n B) c;;. A c;;. (A U B). Similarly, (A n B) c;;. 13 c;;. (A U O). 

2.10. Prove Theorem 2.2: The following are equivalent: A � B, A n B = A, and A U B = B. 

Suppose A c;;. 13 and lel x E A. Then x E B, hcnce x E ,.I n B and A c;;. A n B. By Problem 2.9. 
(A n B) c;;. A.  Thereforc A n B = A. On Ihe other hand, suppose A n O = A  and lel x E A. Then 
x E (A n o); hence x E A and x E O. Therefore, A c;;. B. 80th reslIlls show Ihal A c;;. O is equivalenl 10 
A n B =  A. 

Suppose again Ihal A � B. Lel x E (A U B). Then x E A or x E B. If x E A, then x E B bccause 
A c;;. S. In eilher case, x E lJ. Therefore A U S c;;. B. By Problem 2.9, B c;;. A U B. Thcrefore 
A U B = B. Now suppose A U B = 13 and lel x E A.  Then x E A U lJ by definition of union of seIS. 
Hence x E S = A U B. Therefore A c;;. B. BOlh resulls show Ihal A c;;. lJ is equi\lalen! 10 A U B = B. 

Thus A � B, A U B = A and A U B = B are equi\lalcnt. 

V'ENN OIAGRAMS, ALGEBRA OF SETS, L>UALlTY 

2.11. Illustrale De Morgan's Law (A u Bt = Ac n lf  (proved in Seclion 2.5) using Ven n diagrams. 

Shade the arca oulside A U B in a Veno diagram of seIs A and lJ. This is shown io Fig. 2-9(0); hcnce 
Ihe shaded arca rcpresenls (A U Sy:. Now shadc Ihe arca oulside A in a Veon diagram of A and S wilh 
slrokes in one dircclion Uf(), and Ihco shade Ihc arca oulside B \IIilh slrokcs in anolher direc.tion (\\\). This 
is showo in Fig. 2-9(b); heoce Ihe cross-halched arca (arca \IIhere bOlh lines are present) represcnlS Ihe 
iOlerscclion of ,.le and Jt, i.c. AC nlf. Both (A U Bt and AC n lf  are represcnted by Ihe same arca; 
Ihus Ihe Venn diagrams indieale (A U JJt = ,.le n Jt. (\Ve emphasizc Ihal a Venn diagram is nol a fomlal 
proof, bul il can indicale rclationships bclwccn sets.) 

(.) (b) 

2.12. Provc ¡he Distribulive Law: A n (BU C) = (A n B) U (A n C) (Theorem 2.3(4b)). 

By Ihe definilions of union and intersectioll. 

A n (B U C) = {X : X E A, x E lJ U C} 

= {x : X E A, x E B  x E A, x E C} = (A n B) U (A n C) 

Here we use Ihe aualogous logicld law p 1\ (q V r) == (" 1\ q) V (p 1\ r) where 1\ denoles " aud" and v denotes 
"or". 
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2.13. Prove (A U B)\ (A n B) = (A\B) U (B\A) . (Thus either one may be used to define the symmetric 
difference A EB B.) 

U sing X\ y = X n ye and the laws in Table 2-1 ,  including De Morgan's laws, we obtain: 

(A U B)\(A n B) = (A U B) n (A n B)" = (A U B) n (Ae U F) 
= (A U Ae) U (A n Be) U (B n Ae) U (B n Be) 
= 0 U (A n Be) U (B n Ae) U 0 
= (A n Be) U (B n Ae) = (A\B) U (B\A) 

2.14. Write the dual of each set equation: 

(a) (U n A) U (B n A) = A  
(b) (A U B U C)c = (A U C)" n (A U B)" 

(e) (A n U) n (0 U AC) = 0 
(d) (A n U)" n A = 0 

Interchange U and n and also U and 0 in each set equation: 

(a) (0 U A) n (B U A) = A 
(b) (A n B n C)" = (A n C)" U (A n B)" 

(e) (A U 0) U ( U  n Ae) = U 
(d) (A U 0)" U A = U 

FINITE SETS AND THE COUNTlNG PRINCIPLE 

2.15. Determine which of the following sets are finite: 

(a) A = {seasons in the year} 
(b) B = {states in the Union} 
(e) e = {positive integers less than 1 }  

(d) D = {odd integers} 
(e) E = {positive integral divisors of 12} 

(1 ) F = {cats living in the United States} 

(a) A is finite since there are four seasons in the year, i.e. n(A) = 4. 
(b) B is finite because there are 50 states in the Union, i.e. n(B) = 50. 
(e) There are no positive integers less than 1 ;  hence C is empty. Thus C is finite and n(C) = O. 
(d) D is infinite. 
(e) The positive integer divisors of 12 are 1 , 2, 3, 4, 6, and 12. Hence E is finite and n(E) = 6. 
(f ) Although it may be difficult to find the number of cats living in the United States, there is still a finite 

number of them at any point in time. Hence F is finite. 

2.16. Suppose 50 science students are polled to see whether or not they have studied French (F) or 
German (G) yielding the following data: 25 studied French, 20 studied German, 5 studied 
both. Find the number of the students who studied: (a) only French, (b) French or German, 
(e) neither language. 

(a) Here 25 studied French, and 5 of them also studied German; hence 25 - 5 = 20 students only studied 
French. That is, by Theorem 2.5, 

n(F\G) = n(F) - n(F n G) = 25 - 5 = 20 
(b) By the inclusion-exclusion principIe, Theorem 2.6, 

n(F U G) = n(F) + n( G) - n(F n G) = 25 + 20 - 5 = 40 

(e) Since 40 studied French or German, 50 - 40 = 10  studied neither language. 
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2.17. In a survey of 60 people, it was found that: 

25 read Newsweek magazine 
26 read Time 
26 read Fortune 

9 read both Newsweek and Fortune 
1 1  read both Newsweek and Time 
8 read both Time and Fortune 

3 read all three magazines 

(a) Find the number of people who read at least one of the three magazines. 
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(b) Fill in the correct number of people in each of the eight regions of the Venn diagram in 
Fig. 2- 10(a) where N, T, and F denote the set of people who read Newsweek, Time, and 
Fortune, respectively. 

(e) Find the number of people who read exactly one magazine. 

(a) We want n(N U T U  F) , by Corollary 2.7: 
n(N U T U F) = n(N) + n(T) + n(F) - n(N n T) - n(N n F) - n(T n F) + n(N n T n F) 

= 25 + 26 + 26 - 1 1  - 9 - 8 + 3 = 52 
(b) The required Venn diagram in Fig. 2-1O(b) is obtained as follows: 

3 read all three magazines 
1 1  - 3 = 8 read Newsweek and Time but not all three magazine s 
9 - 3 = 6 read Newsweek and Fortune but not all three magazine s 
8 - 3 = 5 read Time and Fortune but not all three magazines 
25 - 8 - 6 - 3 = 8 read only Newsweek 
26 - 8 - 5 - 3 = 10 read only Time 
26 - 6 - 5 - 3 = 12 read only Fortune 
60 - 52 = 8 read no magazine at all 

(e) 8 + 10 + 12 = 30 read only one magazine. 

(a) 

Fig. 2-10 

8 

(b) 

2.18. Prove Theorem 2.6: If A and B are finite sets, then A U B and A n B are finite and 
n(A U B) = n(A) + n(B) - n(A n B) . 

If A and B are finite, then clearly A n B and A U B are finite. 
Suppose we count the element of A and then count the elements of B. Then every element in A n B 

would be counted twice, once in A and once in B. Hence 

n(A U B) = n(A) + n(B) - n(A n B) 



68 SETS AND COUNTING [CHAP. 2 

Alternatively (Problem 2.66), A is the disjoint union of A\B and A n B, B is the disjoint union of B\A 
and A n B, and A U B is the disjoint union of A\B, A n B, and B\A. Therefore, by Lemma 2.4, 

n(A U B) = n(A\B) + n(A n B) + n(B\A) 
= n(A\B) + n (A n B) + n(B\A) + n(A n B) - n (A n B) 
= n(A) + n (B) - n(A n B) . 

2.19. Show that each set is countable: (a) set Z of integers, (b) P x P. 

A set S is countable if (a) S is finite or (b) the element of S can be listed in the form of a sequence or, in 
other words, there is a one-to-one correspondence between the positive integers (counting numbers) 
P = {1 , 2, 3, . . .  } and S. Neither set is finite. 

(a) The following shows a one-to-one correspondence between P and Z: 

Counting numbers P: 

Integers Z: 
1 
O 

2 
1 

3 
1 

- 1  

4 5 6 7 
1 1 1 1 
2 - 2  3 - 3  

8 
1 
4 

That is, n E P corresponds to either n/2, when n is even, or (1 - n)/2, when n is odd. Thus Z is 
countable. 

(b) Figure 2-1 1 shows that P x P can be written as an infinite sequence as follows: 

( 1 , 1 ) , (2, 1 ) , ( 1 , 2) , ( 1 , 3) , (2, 2) , 
Specifically, the sequence is determined by "following the arrows" in Fig. 2- 1 1 .  

(1 , 1) 

PRODUCT SETS 

(1 , 2) ----+ ( 1, 3) (1 ,  4) ----t> 

(2, (2, 

(3, 3) 

(4, (4, 

Fig. 2-11 

2.20. Find x and y given that (3x, x - 2y) = (6, -8). 
Two ordered pairs are equal if and only if the corresponding components are equal. Hence we obtain 

the equations 3x = 6 and x - 2y = -8 from which x = 2, Y = 5. 
2.21. Let A = { l ,  2, 3} and B = {a, b}. Find (a) A x B, (b) B x A. 

(a) A x B consists of all ordered pairs with the first component from A and the second component from 
B. Thus 

A x B =  { ( l , a) ,  ( l , b) , (2, a) , (2, b) ,  (3 , a) , (3 , b)} 
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(b) Here the first component is from B and the second component is from A: 
B x A = { (a, I ) , (a, 2), (a, 3) , (b, I ) , (b, 2) , (b, 3)} 
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2.22. Let A = {a, b, e, d} and B = {x , y, z}. Determine the number ofelements in (a) A x B, (b) B x A, 
(e) A3 , (d) B4 . 

Here n(A) = 4 and n(B) = 3. To obtain the number of elements in each product set, multiply the 
number of elements in each set in the product: 
(a) n(A x B) = 4(3) = 12 
(b) n(B x A) = 3(4) = 12 
(e) n(A3 ) = 4(4) (4) = 64 
(d) n(F) = 34 = 8 1  

2.23. Each tos s of  a coin will yield either a head or  a tail. Let e = {H, T} denote the set of  out­
comes. Find C3 , n( C3) ,  and explain what C3 represents. 

Since n(C) = 2, we have n(C3 ) = 23 = 8. Omitting certain commas and parentheses for notational 
convenience, 

C3 = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} 
C3 represents all possible sequences of outcomes of three tosses of the coin. 

2.24. Prove: A x (B n C) = (A x B) n (A x e). 
A x (B n C) = {(x, y) : x E A, Y E B n C} 

= {(x, y) : x E A, Y E B,y E C} 
= {(x, y) : (x, y) E A x B, (x, y) E A x C} 
= (A x B) n (A x C) 

CLASSES OF SETS, P ARTlTlONS 

2.25. Find the elements of the set A = [{ l ,  2, 3}, {4, 5}, {6, 7, 8} ] .  
A i s  a class of sets; its elements are the sets { 1 ,  2, 3} ,  {4, 5} ,  and {6 ,  7 ,  8} .  

2.26. Determine the power set &(A) of A = {a, b, e, d}. 
The elements of g>(A) are the subsets of A. Hence 

g>(A) = [A, {a, b, e}, {a, b, d} , {a, e, d} , {b, e, d}, {a, b}, {a, e}, {a, d}, {b, e}, {b, d}, 
{e, d}, {a} , {b}, {e}, {d}, 0] 

As expected, g>(A) has 24 = 1 6  elements. 

2.27. Let S = {a, b , e , d, e, f, g} . Determine which of the following are partitions of S: 
(a) PI = [{a, e, e}, {b}, {d, g}] 
(b) P2 = [{a, e, g} ,  {e, d}, {b, e, f }] 

(e) P3 = [{a, b, e, g} , {e}, {d, f }] 
(d) P4 = [{a, b , e , d, e ,  f, g}] 
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(a) PI is not a partition of S since f E S does not belong to any of the cellso 
(b) P2 is not a partition of S since e E S belongs to two of the cellso 
(e) P3 is a partition of S since each element in S belongs to exactly one cello 
(d) P4 is a partition of S into one cell, S itself. 

[CHAPo 2 

2.28. Find all partitions of S = {a, b, e, d} o 
Note first that each partition of S contains either 1 ,  2, 3, or 4 distinct cellso The partitions are as 

follows: 

(1) [{a, b, e, d}] 
(2) [{a}, {b, e, d}] , [{b} , {a, e, d}] , [{e}, {a, b, d}] , [{d} , {a, b, e}] , 

[{a, b} , {e, d}] , [{a, e}, {b, d}] , [{a, d}, {b, e}] 
(3) [{a}, {b}, {e, d}] , [{a} , {e}, {b, d}] , [{a} , {d}, {b, e}] , [{b}, {e}, {a, d}] , [{b} , {d}, {a, e}] , [{e}, {d}, {a, b}] , 
(4) [{a}, {b}, {e}, {d}] o 
There are 1 5  different partitions of So 

2.29. Let P = { l ,  2, 3, o o o} and, for each n E P, let 

An = {x : x is a multiple of n} = {n, 2n, 3n, o o o} 
Find (a) A3 n As, (b) A4 n A6 ,  (e) UiE Q Ai ,  where Q = {2, 3 , 5, 7, 1 1 , o o o } i s  the set of prime numberso 

(a) Those numbers which are multiples of both 3 and 5 are the multiples of 1 5; hence A3 n As = AIs o  
(b) The multiples of 12 and no other numbers belong to both A4 and A6; hence A4 n A6 = A12 0  
(e) Every positive integer except 1 is a multiple of at least one prime number; hence 

U Ai = {2, 3 , 4, o o  o } = P\{ I } 
i E Q 

2.30. Prove: Let {Ai : i E I} be an indexed class of sets and let io E lo Then 

n A C A  C U A 1 - lO - 1 i E l i E l 

Let x E niE l Ai; then x E Ai for every i E lo In particular, x E Aio o Hence niEl Ai c:: Aio o  Now let 
y E Aio o  Since io E 1, Y E nEl Aio Hence Aio c:: UiE l Aio 

2.31. Prove (De Morgan's law): For any indexed class {Ai : i E I}, we have (Ui Ai)" = n A�o 
Using the definitions of union and intersection of indexed classes of sets: 

(Ui Ai) "  = {x :  x rt Ui Ai} = {x : x rt Ai for every i} 
= {x : x E A� for every i} = ni A� 

2.32. Let .91 be an algebra (O"-algebra) of subsets of Uo Show that: (a) U and 0 belong to .91; and (b) 
.91 is closed under finite (countable) intersectionso 
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Recall that d i s  closed under complements and finite (countable) unions. 

(a) Since d is nonempty, there is a set A E d. Hence the complement AC E d, and the umon 
U = A u AC E d. AIso the complement 0 = UC E d. 

(b) Let {Ai} be a finite (countable) class of sets belonging to d. By De Morgan's law (Problem 2.31) 
(Ui A�t = ni A�c = ni Ai. Hence ni Ai belongs to d, as required. 

MATHEMATlCAL INDUCTlON 

2.33. Prove the assertion A (n) that the sum of the first n positive integers is 1 n( n + 1 ) ;  that is, 

A(n) : 1 + 2 + 3 +  . . .  + n = !n(n + l )  

The assertion holds for n = 1 since 

A ( I ) :  1 = ! . 1 ( 1 + 1 ) = 1  

Assuming A (n) is true, we add n + 1 to both sides of A (n), obtaining 

1 + 2 + 3 + . . .  + n + (n + 1 )  = !n(n + 1 + (n + 1 )  
= ! ln(n + 1 )  + 2(n + 1 )] 
= ! l(n + 1 ) (n + 2)] 

which is A (n + 1 ) .  That is, A (n + 1) is true whenever A (n) is true. By the principIe of induction, A (n) is 
true for all n. 

2.34. Prove the following assertion (for n � O): 
A(n) : 1 + 2 + 22 + 23 + . . .  + 2n = 2n+l - 1 

A(O) is true since 1 = 21 - 1 .  Assuming A (n) is true, we add 2n+1 to both sides of A (n), obtaining 

1 + 21 + 22 + . . .  + 2n + 2n+1 = 2n+1 - 1 + 2n+1 

which is A (n + 1 ) .  Thus A (n + 1 )  i s  true whenever A (n) i s  true. By the principIe of induction, A (n) is true 
for all n ::> O. 

FACTORIAL NOTATlON, BINOMIAL COEFFICIENTS 

2.35. Compute: (a) 4!, 5 ! , 6 ! , 7 ! , 8 ! ,  9 ! , (b) 50! 
(a) Use (n + 1 ) !  = (n + l )n! after calculating 4! and 5 ! :  

4! = 1 . 2 . 3 . 4 = 24, 
5! = 1 · 2 · 3 · 4 · 5  = 5(24) = 120, 
6! = 6(5!) = 6 ( 120) = 720, 

7! = 7(6!) = 7(720) = 5040 
8! = 8 (7!) = 8 (5040) = 40,320 
9! = 9(8!) = 9 (40,320) = 362,880 

(b) Since n is very large, we use Stirling's approximation that n! � v'2iiinne-n (where e = 2.718). Thus 

50! � VI001f 5050e-50 = N 

Evaluating N using a calculator, we get N = 3 .04 X 1064 (which has 65 digits). 
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Alternatively, using (base 10) logarithms, we get 

10g N = log(VI001f50soe-so ) 
= � log 100 + � log 1f + 50 log 50 - 50 log e 
= � (2) + � (0.4972) + 50( 1 .6990) - 50(0.4343) 
= 64.4836 

The antilog yields N = 3.04 X 1064 . 

1 3 ' 7 ' 
2.36. Compute: (a) Tri (b) 1¿! 

1 3 !  1 3 · 12 ·  1 1  . 10 . 9 . 8 . 7 . 6 . 5 . 4 · 3 · 2 · 1  (a) - =  = 13 · 12 = 1 56 1 1 !  1 1 · 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 

Alternatively, this could be solved as follows: 
13 !  
1 1 !  

13  . 12 · 1 1 !  = 1 3 . 12 = 1 56 1 1 !  
7! (b) lO !  

7 !  
10 · 9 · 8 · 7 ! 10 · 9 · 8  

2.37. Compute: (a) C3
6) , (b) C�) 

720 

Recall that there are as many factors in the numerator as in the denominator. 

(a) (1 6) = 1 6 · 1 5 · 14 = 560 3 1 · 2 · 3  

2.38. Compute: (a) G) , (b) G) 
(8) 8 . 7 . 6 . 5 . 4 (a) 5 = 1 . 2 .  3 . 4 .  5 = 56 

(b) 

or, since 

(b) Since 9 _ 7 = 2 (9) = (9) = 9 . 8 = 36 , 7 2 1 · 2 

2.39. Prove: C6
7) = Cs

6) + C66) 

= = 495 (12) 12 · 1 1 · 10 · 9  
4 1 · 2 · 3 · 4  

8 - 5 = 3 (8) = (8) = � = 56 , 5 3 1 · 2 · 3  

[CHAP. 2 

Now C5
6) + C6

6) = 5��� ! + 6���! " Multiply the first fraction by � and the second by �� to obtain 

the same denominator in both fractions; and then add: 

2.40. Prove Theorem 2.10 : 

6 . 1 6! 1 1  . 16 !  6 . 1 6! 1 1  . 16 !  = + = -- + --6 · 5! · 1 1 !  6 ! · 1 1 · 10! 6! · 1 1 !  6 ! · 1 1 !  
6 · 1 6! + 1 1 · 1 6! (6 + 1 1 ) · 16 !  1 7 · 1 6! 17 !  

6 ! · 1 1 !  6 ! · 1 1 !  6 ! · 1 1 !  6! · 1 1 !  

(n +r 1) = ( r _n 1) + (nr) 
(The technique in this proof is similar to that of the preceding problem.) 
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( n ) ( n) n! n! b . h d . . b h Now + = ( ) ' ( ) ' + ' ( ) , . To o tam t e same enommator m ot r - 1 r r - 1 . .  n - r + l .  r. · n - r . 
fractions, multiply the first fraction by � and the second fraction by n - r + l . Hence r n - r + l ( n ) ( n) r · n! (n - r + l ) · n! 

r - l  + r = r . (r - l ) ! . (n - r + l) ! + r! . (n - r + l) . (n - r) ! 

COUNTlNG PRINCIPLES 

r · n! (n - r + l ) · n! 
--:-;-------:cc:- + -'-:-,-------'--,...,-;-r! (n - r + l ) ! r! (n - r + l ) ! 
r · n! + (n - r + l) · n! [r + (n - r + l )] · n! 

r! (n - r + l ) ! r! (n - r + l) ! 
(n + l )n! (n + l ) ! ( n + l) - r! (n - r + l ) ! - r! (n - r + l ) ! - r 

2.41. Suppose a bookcase shelf has 6 mathematics texts, 3 physics texts, 4 chemistry texts, and 5 
computer science texts. Find the number n of ways a student can choose: (a) one of the texts, 
(b) one of each type of text. 

(a) Here the sum rule applies; hence n = 6 + 3 + 4 + 5 = 18 .  
(b) Here the product rule applies; hence n = 6 . 3 · 4 · 5  = 360. 

2.42. A restaurant has a menu with 3 appetizers, 4 entrées, and 2 desserts. Find the number n of ways 
a customer can order an appetizer, entrée, and dessert. 

Here the product rule applies, since the customer orders one of each. Thus n = 3 . 4 . 2 = 24. 

2.43. A history class contains 7 male students and 5 female students. Find the number n ofways that 
the class can elect: (a) a class representative, (b) two class representatives, one male and one 
female, (e) a president and a vice-president. 

(a) Here the sum rule is used; hence n = 7 + 5 = 12. 
(b) Here the product rule is used; hence n = 7 · 5  = 35. 
(e) There are 12 ways to elect the president and then 11 ways to elect the vice-president. Thus 

n = 12 · 1 1 = 1 32. 

2.44. There are four bus lines from city A to city B and three bus lines from city B to city C. Find 
the number n ofways a person can travel by bus: (a) from A to C by way of B, (b) round-trip from 
A to C by way of B, (e) round-trip from A to C by way of B, without using a bus line more 
than once. 

(a) There are 4 ways to go from A to B, and 3 ways from B to C; hence, by the product rule, n = 4 · 3  = 12. 
(b) There are 12 ways to go from A to C by way of B, and 12 ways to return. Thus, by the product rule, 

n = 12 · 12 = 144. 
(e) The person will travel from A to B to C to B to A. Enter these let1ers with connecting arrows as 

follows: 
A ---+ B ---+ C ---+ B ---+ A 

There are 4 ways to go from A to B and 3 ways to go from B to C. Since a bus line is not to be used 
more than once, there are only 2 ways to go from C back to B and only 3 ways to go from B back 
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to A. Enter these numbers aboye the corresponding arrows as follows: 

Thus, by the product rule, n = 4 ·  3 . 2 . 3 = 72. 

[CHAP. 2 

PERMUTATlONS, ORDERED SAMPLES 

2.45. State the essential difference between permutations and combinations, with examples. 

Order counts with permutations, such as words, sitting in a row, or electing a president, vice-president, 
and treasurer. Order does not count with combinations, such as committees or teams (without counting 
positions). The product rule is usually used with permutations since the choice for each of the ordered 
positions may be viewed as a sequence of events. 

2.46. A family has 3 boys and 2 girls. (a) Find the number of ways they can sit in a row. (b) How 
many ways are there if the boys and girls are each to sit together? 

(a) The five children can sit in a row in 5 · 4 ·  3 · 2 ·  1 = 5 ! = 120 ways. 
(b) There are two ways to distribute them according to sex: BBBGG or GGGBB. In each case, the boys 

can sit in 3 · 2 ·  1 = 3! = 6 ways, and the girls can sit in 2 · 1  = 2! = 2 ways. Thus, altogether, there are 
2 . 3! . 2! = 2 . 6 . 2 = 24 ways. 

2.47. Suppose repetitions are not allowed. (a) Find the number n of three-digit numbers that can be 
formed from the digits 2, 3 , 5, 6, 7, and 9. (b) How many of them are even? (e) How many of 
them exceed 400? 

There are 6 digits, and the three-digit number may be pictured by _ ,  _ ,  _ .  In each case, write down 
the number of ways that one can fill each of the positions. 

(a) There are 6 ways to fill the first position, 5 ways to fill the second position, and 4 ways to fill the third 
position. This may be pictured by: --º-- , -.l , -±... . Thus n = 6 · 5 · 4  = 120. 

Alternatively, n is the number of permutations of 6 things taken 3 at a time, so 

n = P(6, 3) = 6 · 5 · 4  = 120 
(b) Since the numbers must be even, the last digit must be either 2 or 4. Thus the third position is filled 

first and it can be done in 2 ways. Then there are now 5 ways to fill the middle position and 4 ways to 
fill the first position. This may be pictured by: -±... , -.l , -.l... . Thus 4 . 5 . 2 = 120 of the numbers are 
even. 

(e) Since the numbers must exceed 400, they must begin with 5, 6, 7, or 9. Thus we first fill the first 
position, which can be done in 4 ways. Then there are 5 ways to fill the second position and 4 ways to 
fill the third position. This may be pictured by: -±... , -.l , -±... . Thus 4 ·  5 . 4 = 80 of the numbers 
exceed 400. 

2.48. Find the number n of distinct permutations that can be formed from all the letters of each word: 
(a) THEM, (b) UNUSUAL, (e) SOCIOLOGICAL. 

This problem concerns permutations with repetitions. 

(a) n = 4 ! = 24, since there are 4 letters and no repetitions. 

(b) n = � = 840, since there are 7 letters of which 3 are U. 3 . 
( ) 12! . h I f h· h d e n = 3! 2! 2! 2! ' smce t ere are 12 etters o w IC 3 are O, 2 are C, 2 are 1, an 2 are L. 
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2.49. A class contains 8 students. Find the number of ordered samples of size 3: (a) with replacement, 
(b) without replacement. 

Ca) Each student in the ordered sample can be chosen in 8 ways; hence there are 8 . 8 . 8 = 83 = 512 samples 
of size 3 with replacement. 

eb) The first student in the sample can be chosen in 8 ways, the second in 7 ways, and the last in 6 
ways. Thus there are 8 . 7 . 6 = 336 samples of size 3 without replacement. 

2.50. Find n if: (a) P(n, 2) = 72, (b) 2P(n, 2) + 50 = P(2n, 2) . 

Ca) P(n, 2) = n(n - 1) = n2 - n; hence n2 - n = 72 or n2 - n - 72 = O or (n - 9) (n + 8) = O. 
Since n must be positive, the only answer is n = 9. 

eb) P(n, 2) = n(n - 1) = n2 - n and P(2n, 2) = 2n(2n - 1 ) = 4n2 - 2n. Hence 

2(n2 - n) + 50 = 4n2 - 2n or 2n2 - 2n + 50 = 4n2 - 2n or 

Since n must be positive, the only answer is n = 5. 
COMBINA TlONS, P ARTlTlONS 

or 

2.51. A class contains 10 students with 6 men and 4 women. Find the number n of ways: 

(a) a 4-member committee can be selected from the students, 
(b) a 4-member committee with 2 men and 2 women can be selected, 
(e) the class can elect a president, vice-president, treasurer, and secretary. 

Ca) This concerns combinations, not permutations, since order does not count. There are "10 choose 4" 
such committees. That is, 

n = C(1O 4) = (10) = 10 · 9 · 8 · 7  = 210 , 4 4 · 3 · 2 · 1 
eb) The 2 men can be chosen from the 6 men in G) ways, and the 2 women can be chosen from the 4 

women in (�) ways. Thus, by the product rule, 

n = (6) (4) = 6 . 5 . 4 · 3  = 15 (6) = 90 ways 2 2 2 · 1 2 · 1  
Ce) This concerns permutations, not combinations, since order does count. Thus 

n = P(6, 4) = 6 · 5 · 4 · 3  = 360 
2.52. A box contains 7 blue socks and 5 red socks. Find the number n of ways two socks can be 

drawn from the box if: (a) they can be any color, (b) they must be the same color. 

Ca) There are "12 choose 2" ways to select 2 of the 12 socks. That is, 

n = C( 12, 2) = C�) = 1� : � 1 = 66 
eb) There are C(7, 2) = 21 ways to choose 2 of the 7 blue socks, and C(5, 2) = 10 ways to choose 2 of the 5 

red socks. By the sum rule, n = 21 + 10 = 3 1 .  
2.53. Let A, B, . . .  , J be 10 given points in the plane R2 such that no three of the points lie on the same 

lineo Find the number n of: 

(a) lines in R2 where each line contains two of the points, 
(b) lines in R2 containing A and one of the other points, 

(e) triangles whose vertices come from the given points, 
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(d) triangles whose vertices are A and two of the other points. 

Since order does not count, this problem involves combinations. 
(a) Each pair of points determines a line; hence 

n = "10 choose 2" = C(10, 2) = C2
0) = 66 

(b) We need only choose one of the 9 remaining points; hence n = 9. 
(e) Each triple of points determines a triangle; hence 

n = "10 choose 3" = C( 10, 3) = C3
0) = 120 

(d) We need only choose two of the 9 remaining points; hence n = C(9, 2) = 36. 

[CHAP. 2 

2.54. There are 12 students in a class. Find the number n of ways that 12 students can take three 
different tests if four students are to take each test. 

There are C(12, 4) = 495 ways to choose four students to take the first test; following this, there are 
C(8, 4) = 70 ways to choose four students to take the second test. The remaining students take the third 
test. Thus n = 70(495) = 34,650. 

2.55. Find the number n of ways 12 students can be partitioned into three teams A¡ , A2, A3 , so that 
each team contains four students. (Compare with preceding Problem 2.54.) 

Let A denote one of the students. There are C(l l ,  3) = 165 ways to choose three other students to be 
on the same team as A. Now let B be a student who is not on the same team as A. Then there are 
C(7, 3) = 35 ways to choose three from the remaining students to be on the same team as B. The remaining 
four students form the third team. Thus n = 35 ( 1 65) = 5925. 

Alternatively, each partition [A ¡ , A2 , A3l can be arranged in 3! = 6 ways as an ordered partition. By 
the preceding Problem 2. 54, there are 34,650 such ordered partitions. Thus n = 34 650/6 = 5925. 

TREE DIAGRAMS 

2.56. Construct the tree diagram that gives the permutations of {a, b, e} . 
The tree diagram appears in Fig. 2- 12. The six paths from the root of the tree yield the six permuta­

tions: 
abe, aeb, bae, bea, eab, eba 

2.57. Jack has time to play roulette at most five times. At each play he wins or loses $ 1 .  He begins 
with $1 and will stop playing before the five times if he loses all his money or if he wins $3, that is, 

Fig. 2-12 
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if he has $4. Find the number of ways the betting can OCCUf, and find the number of times he 
will stop before betting five times. 

Construct the appropriate tree diagram, as shown in Fig. 2-13 .  Each number in the diagram denotes 
the number of dollars he has at that moment of time. The betting can occur in 1 1  ways, and Jack will stop 
betting before the five times are up in only three of the cases. 

Fig. 2-13 

MISCELLANEOUS PROBLEMS 

2.58. Prove the binomial theorem 2.9: (a + b r = ta (�) an-r br. 
The theorem is true for n = 1, since 

We assume the theorem holds for (a + br and prove it is true for (a + br+l . 
(a + br+1 = (a + b) (a +W  

= (a + b) [an + C)an-1b + . . .  + ( , � l ) an-r+lbr-1 + e )an-rbr + . . .  + C )abn-I + bn] 
Now the term in the product which contains br is obtained from 

= [ ( , � 1 ) + e) ] an-r+1 br 
But, by Theorem 2 . 10 ( r � 1) + ( ;) = ( n � 1 ) . Thus the term containing br IS 

( n � 1 )an-r+1 br . Note that (a + b) (a + br is a polynomial of degree n +  1 in b. Consequently, 

(a + br+1 = (a + b)(a + W = � ( n � 1 )an-r+1br 
which was to be proved. 
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Note 1 6 = 24 = ( 1 + 1{ Expanding ( 1 + 1 )4 , using the binomial theorem, yields: 

= (�) + (�) + (�) + (�) + (:) 

[CHAP . 2  

2.60. Let n and n¡ , n2 , . . .  , nr be nonnegative integers such that nI + n2 + . . .  + nr = n. The multi­
nominal eoefficients are denoted and defined by: 

n ) n! 
n - nI ' n2 ' · · ·  n , r . .  r " 

Compute the following multinomial coefficients: 

(a) C, �, l) , (b) (
4, 2

�
2, O

) , (e) (
5 , 3

1
,
�
, 2
) 

( 6 ) 6! 6 . 5 . 4 . 3 . 2 . 1 (a) --- - - 60 3, 2, 1 - 3 ! 2! 1 ! - 3 · 2 · 1 · 2 · 1 · 1 -

( 8 ) 8! 8 . 7 . 6 . 5 . 4 . 3 . 2 . 1 (b) 4, 2, 2, O = 4! 2! 2! O! = 4 · 3 · 2 ·  1 · 2 ·  1 . 2 . 1 . 1 = 420 

(e) The expression ( 10 ) has no meaning, since 5 + 3 + 2 + 2 el 10. 5, 3 , 2, 2 

Supplementary Problems 
SETS AND SUBSETS 

2.61. List the elements of the following sets if the universal set is U = {a, b, e, . . .  , y, z} . Furthermore, identify 
which of the sets, if any, are equal. 

A = {x : x is a vowel} C = {x : x precedes f in the alphabet} 
B = {x : x is a let1er in the word "[¡ttle"} D = {x : x is a let1er in the word "tille"} 

2.62. Let A = {1 , 2, . . .  , 8, 9}, B = {2, 4, 6, 8}, C = { 1 , 3, 5, 7, 9}, D = {3, 4, 5}, and E = {3, 5} . Which of the 
above sets can equal a set X under each of the following conditions? 

(a) X and B are disjoint 
(b) X c::: D but X Cl B 

SET OPERATIONS 

(e) X c::: A but X Cl C 
(d) X c::: C but X Cl A 

Problems 2.63-2.66 refer to the universal set U = { 1 , 2, 3, . . .  , 8 , 9} and the sets: 
A = { 1 , 2, 5, 6} , B = {2, 5, 7} , C = {1 , 3 , 5, 7, 9} 

2.63. Find: (a) A n B and A n C, (b) A U B and B U  C, (e) AC and Cc. 
2.64. Find: (a) A\B and A\C, (b) A EB B and A EB C. 
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2.65. Find: (a) (A U e)\B, (b) (A u B)", (e) (B EB e)\A. 

2.66. Let A and B be any sets. Prove: 

(a) A is the disjoint union of A\B and A n B. 
(b) A U B is the disjoint union of A\B, A n B, and B\A. 

2.67. Pro ve the following: 

(a) A c:: B if and only if A n Be = 0. 
(b) A c:: B if and only if Ae U B = U. 
(Compare results with Theorem 2.2.) 

(e) A c:: B if and only if Be c:: Ae. 
(d) A c:: B if and only if A\B = 0. 

2.68. Pro ve the absorption laws: (a) A U (A n B) = A, (b) A n (A U B) = A. 

79 

2.69. The formula A\B = A U Be defines the difference operation in terms of the operations of intersection and 
complement. Find a formula that defines the union A U B in terms of the operations of intersection and 
complement. 

VENN DIAGRAMS, ALGEBRA OF SETS, DUALITY 

2.70. The Venn diagram in Fig. 2- 14 shows sets A, B, C. Shade the following sets: 

(a) A\(B U e) , (b) Ae n (B n e), 

2.71. Write the dual of each equation: 

(e) (A U e) n (B U e) . 

Fig. 2-14 

(a) A U (A n B) = A, (b) (A n B) U (Ae n B) U (A n Be) U (Ae n Be) = U 

2.72. Use the laws in Table 2-1 to prove (A n B) U (A n Be) = A. 

FINITE SETS AND THE COUNTING PRINCIPLE 

2.73. Determine which of the following sets are finite: 

(a) lines parallel to the x-axis, 
(b) let1ers in the English alphabet, 

(e) animals living on the earth, 
(d) circles through the origin (O, O). 

2.74. Given n( U) = 20, n(A) = 12, n(B) = 9, n(A n B) = 4, find: 

(a) n(A U B), (b) n(Ae), (e) n(F), (d) n(A\B), (e) n(0) .  
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2.75. Among 120 freshmen at a college, 40 take mathematics, 50 take English, and 1 5 take both mathematics and 
English. Find the number of freshmen who: 

(a) do not take mathematics, 
(b) take mathematics or English, 
(e) take mathematics, but not English, 

(d) take English, but not mathematics, 
(e) take exactly one of the two subjects, 

(f ) take neither mathematics nor English. 

2.76. A survey on a sample of 25 new cars being sold at a local auto dealer was conducted to see which of three 
popular options, air-conditioning (A), radio (R), and power windows (W), were already installed. The 
survey found: 

1 5  had air-conditioning 
12 had radio 

1 1  had power windows 

5 had air-conditioning and power windows 
9 had air-conditioning and radio 

4 had radio and power windows 
3 had all three options 

Find the number of cars that had: (a) only power windows, (b) only air-conditioning, (e) only radio, (d) radio 
and power windows but not air-conditioning, (e) air-conditioning and radio, but not power windows, (f )  
only one o f  the options, (g) none o f  the options. 

2.77. Use Theorem 2.6 to prove Corollary 2.7: Suppose A, B, e are finite sets. Then A U B U e is finite and 
n(A U B U e) = n(A) + n(B) + n( e) - n(A n B) - n(A n e) - n(B n e) + n(A n B n e) 

PRODUCT SETS 

2.78. Find x and y if: (a) (x + 2, 3) = (7, 2x + y), (b) (y - 3, 2x + 1) = (x + 2, y + 4) . 
2.79. Let A = {a, b} and B = { 1 , 2, 3}. Find: (a) A x B, (b) B x A. 
2.80. Let e = {H, T}, the set of possible outcomes if  a coin lS tossed. Find: (a) el = e x e, 

(b) e4 = e x e x e x e. 

2.81. Suppose n(A) = 3, and n(B) = 5. Find the number of elements in: (a) A x B, B x A, (b) Al, F, A3 , B3 ; 
(e) A x A x B x A. 

CLASSES OF SETS, P ARTITIONS 

2.82. Find the power set g>(A) of A = {a, b, e, d, e} . 
2.83. Let S = {1 , 2, 3, 4, 5, 6} . Determine whether each of the following is a partition of S: 

(a) [{ 1 , 3, 5}, {2, 4}, {3, 6}] 
(b) [{ 1 , 5}, {2}, {3, 6}] 
(e) [{ 1 ,  5} , {2} , {4} , {3, 6}] 

2.84. Find all partitions of S = { 1 , 2, 3}. 

(d) [{ 1 } , {3, 6}, {2, 4, 5}, {3, 6}] 
(e) [{ 1 ,  2, 3, 4, 5, 6}] 
(f) [{ 1 } , {2}, {3}, {4} , {5} , {6}] 

2.85. For each positive integer n E P, let An = {n, 2n, 3n, . . .  }, the multiples of n. Find: (a) Al n A7, (b) A6 n As , 
(e) As U AlO, (d) As n AlO, (e) As U Ast, where s ,  t E  P, (f )  As n Ast, where s ,  t E  P.  

2.86. Prove: If J c:: P is infinite, then n(Ai: i E J) = 0. (Here the Ai are the sets in Problem 2.85.) 
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2.87. Let [A ¡ , A2 , . . .  , Aml and [B¡ , B2 , . . .  , Bnl be partitions of S. Show that the collection of sets 
i = 1 , . . .  , m, j = 1 , . . .  , nl\0 

(where the empty set 0 is deleted), is also a partition of S, called the eross partition. 

8 1  

2.88. Prove: For any indexed class of sets {Ai: i E I} and any set B: (a) B U (ni Ai) = n(B U Ai), 
(b) B n  (Ui A;) = Ui(B n AJ 

2.89. Pro ve (De Morgan's law): (n Ait = Ui A�. 
2.90. Show that each of the following is an algebra of subsets of U: (a) d = {0, U}, (b) g¡j = {0, A, AC, U}, 

(e) g>(U) , the power set of U. 
2.91. Let d and g¡j be algebras (a-algebras) of subsets of U. Pro ve that the intersection d n g¡j is also an algebra 

(a-algebra) of subsets of U. 

MATHEMATICAL INDUCTION 

2.92. Prove: 2 + 4 + 6 + . . .  + 2n = n(n + 1 ) . 
2.93. Prove: 1 + 4 + 7 + . . .  + (3n - 2) = 2n(3n - 1 ) . 
2.94. Prove: 12 + 22 + 32 + . . .  + n2 = n(n + 1 )6

(2n + 1 ) . 
2.95. Pro ve that, for n ::> 4: (a) n! ::> 2n; (b) 2n ::> n2; (e) n2 ::> 2n + 5. 

FACTORIAL NOTATION AND BINOMIAL COEFFICIENTS 

2.96. Find: (a) lO! , 1 1 ! , 12! , (b) 60! (Hint: Use Stirling's approximation to n! .) 
2.97. 

. ] "f ( )  (n + 1 ) ! S¡mp ¡ y: a --,-, n. 
n! (b) (n - 2) ! ' 

(n - 1 ) ! (e) (n + 2) ! ' (d) (n - r + l) ! 
(n - r - l) ! 

2.98. Evaluate: (a) G) , (b) G) , (e) C2
4) , (d) (�) , (e) G�) ' 

2.99. Show that: 

(a) ( � )  + C) + ( ; ) + G) + . . .  + ( :) = 2n 

(b) ( � )  - C) + ( ; )  - G) + . . .  + ( :) = 0  

2.100. Evaluate the following multinomial coefficients (defined in Problem 2.58): 

COUNTING PRINCIPLES, SUM AND PRODUCT RULES 

(j) C�) 

2.101. A store sells clothes for meno It has 3 different kinds of jackets, 6 different kinds of shirts, and 4 different 
kinds of pants. Find the number of ways a person can buy: (a) one of the items for a present, (b) one of 
each of the items for a present. 
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2.102. A restaurant has, on its dessert menu, 4 kinds of cakes, 3 kinds of cookies, and 5 kinds of ice cream. Find 
the number of ways a person can select: (a) one of the desserts, (b) one of each kind of dessert. 

2.103. A class contains 8 male students, and 6 female students. Find the number of ways that the class can elect: 
(a) a class representative, (b) two class representatives, one male and one female, (e) a president and a vice­
president. 

2.104. There are 6 roads between A and B and 4 roads between B and C. Find the number of ways a person can 
drive: (a) from A to C by way of B, (b) round-trip from A to C by way of B, (e) round-trip from A to C by 
way of B without using the same road more than once. 

2.105. Suppose a code consists of two let1ers followed by a digit. Find the number of: (a) codes, (b) codes with 
distinct let1ers, (e) codes with the same let1ers. 

PERMUTATIONS, ORDERED SAMPLES 

2.106. Find the number n of ways a judge can award first, second, and third places in a contest with 18 contestants. 

2.107. Find the number n of ways 6 people can ride a toboggan where: (a) anyone can drive, (b) one of three must 
drive. 

2.108. Find the number n of permutations that can be formed from all the let1ers of each word: (a) QUEUE, 
(b) COMMITTEE, (e) PROPOSITION, (d) BASEBALL. 

2.109. A box contains 10 light bulbs. Find the number n of ordered samples of size 3: (a) with replacement, 
(b) without replacement. 

2.110. A class contains 6 students. Find the number n of ordered samples of size 4: (a) with replacement, 
(b) without replacement. 

COMBINA TIONS, P ARTITIONS 

2.111. A class contains 9 boys and 3 girls. Find the number of ways a teacher can select a commit1ee of 4. 

2.112. Repeat Problem 2. 1 1 1 ,  but where: (a) there are to be 2 boys and 2 girls, (b) there is to be exactly one girl, 
(e) there is to be at least one girl. 

2.113. A box contains 6 blue socks and 4 white socks. Find the number ofways two socks can be drawn from the 
box where: (a) there are no restrictions, (b) they are different colors, (e) they are to be the same color. 

2.114. A woman has 1 1  close friends. Find the number of ways she can invite 5 of them to dinner. 

2.115. Repeat Problem 2. 1 14, but where: (a) two of the friends are married and will not at1end separately, (b) two of 
the friends are not on speaking terms and will not at1end together. 

2.116. A student is to answer 8 out of 10 questions on an exam. Find the number of choices. 

2.117. Repeat Problem 2. 1 16, but where: (a) the first three questions must be answered, (b) at least 4 of the first 5 
questions must be answered. 

2.118. There are 9 students in a class. Find the number ofways the students can take three tests if 3 students are to 
take each test. 

2.119. There are 9 students in a class. Find the number of ways the students can be partitioned into three teams 
containing 3 students each. (Compare with Problem 2.1 18 .) 
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2.120. Find the number of ways 9 toys may be divided among four children if the youngest is to receive 3 toys and 
each of the others 2 toys. 

TREE DIAGRAMS 

2.121. Teams A and B play in the World Series of baseball, where the team that first wins four games wins the 
series. Find the number n of ways the series can occur given that A wins the first game and that the team 
that wins the second game also wins the fourth game, and list the n ways the series can occur. 

2.122. Suppose A, B, . . .  , F  in Fig. 2-1 5  denote islands, and the lines connecting them bridges. A man begins at A 
and walks from island to island. He stops for lunch when he cannot continue to walk without crossing the 
same bridge twice. (a) Construct the appropriate tree diagram, and find the number of ways he can take 
his walk before eating lunch. (b) At which islands can he eat his lunch? 

Fig. 2-15 

MISCELLANEOUS PROBLEMS 

2.123. Suppose n objects are partitioned into r ordered cells with nI , n2 , . . .  , nr elements. Show that the number of 
such ordered partitions is 

n! 

2.124. There are n married couples at a party. (a) Find the number of (unordered) pairs at the party. (b) Find 
the number of handshakes if each person shakes hands with every other person other than his or her spouse. 

Ánswers to Supplementary Problems 

2.61. A = {a, e, i, o, u}, B = D = {I, i, t, e}, C = {a, b, c, d, e} 
2.62. (a) C, E; (b) D, E; (e) B; (d) none 

2.63. (a) A n B  = {2, 5}, A n C = {5}; (b) A U B  = { 1 , 2, 5, 6, 7}, B U  C = {1 , 2, 3 , 5, 7, 9}; 
(e) Ae = {3 , 4, 7, 8 , 9}, Ce = {2, 4, 6, 8} 

2.64. (a) A\B = {1 , 6}, A\C = {2, 6}; (b) A EB B = {1 , 6, 7}, A EB C = {2, 6, 7, 9} 
2.65. (a) { 1 ,  3, 6, 9} , (b) {3, 4, 8, 9}, (e) {3, 9} 
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2.69. A U B = (Ae n 11")' 

2.70. Scc Fig. 2·16. 

/ l\ '\ A J B ,  
,,/x'" ( e 7 

-

(o) (b) 

Fil;. 2-16 

2.71. (a) A n (A U B) = A, (h) (A U B) n (A" U B) n (A U J1') n {AC uB") = 0 

2.7.1. (h), (d), (e) 

2.74. (a) \1, (h) 8, (e) l l .  (rI) 8, (e) O 

2.75. (a) 80, (h) 75, (e) 25, (ti) 35, Ce) 60, en 45 

2.76. (a) 5, (h) 4, (e) 2, (ti) l .  (e) 6, (j) 1 1 ,  (g) '1 

2.78. (1I) x = 5, y = 7; (b) x = 8, y = J 3  

2.79. A x 8 =  {al,al,a3,bl,b2,b3}, B x  A = {la, Ib,2lJ,2b,3a,3b} 

[CHAPo 2 

(,) 

2.80. el = {J-1 H l-rr TJ-/ TT} 
el = { HI1�1J-1 

' 
J-/lJIlT �/JlTH J-/IfTT J-/7HI1 flTflT flTTIl fJ1TT TI1HfI, TJ-II-/T, TJ-/TI-I, , , , , , , , , 

TIlTT, 'ITI-lJ-/, TTwr, 7TTlI, rrTT} 

2.81. (//) 15 ,  [5, 9, 25; (h) 45, 27 

2JU. peA) = [0, a, b, e, d, e, ab, l/C, (Id, l/C, be, bd, be, ed, el:, de, abe, ahd, libe, llcd, (Ice, ade, bul, bce, b(I(�, u/e, 
abc/I, abce, abde, acde, bcde, A]. Note I/(I'(a)) = 25 = 32. 

2.83. (a) and (b): no. Others: yeso 

2.lW. [S]. [{t. 21. {J}}. [{t. JI. {2}}. [{l. JI· {I }[. [{ll, (21· {J}} 

2.85. (a) A14• (b) A24. (e) As. (d) A20• (e) As. (1) AS1 

2.96. (a) 3,628.800; 39,916,800; 479.001 ,600. (h) log(60!)= 8 1 .92 so 60! = 6.59 x 10Sl 

2.97. (a) 11 + 1 ,  (b) 11(11 - 1) = 11
2 - 11, (e) 1/[11(11 + 1)(11 +2)1. «(1) (11 - r)(1I - r + 1 )  

2.98. (a) lO, (b) 35, (e) 91,  (d) 15, (e) 1 140, (f) 816 

2.99. Hin!: (a) expand ( 1  + lt, (h) expand ( 1  - Ir 

2.100. « 1) 60. (h) 280, (e) 560. (d) nOI defined 
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2.101. (a) 13 , (b) 71 

2.102. (a) 12, (b) 60 

2.103. (a) 14, (b) 48, (e) 1 82 

2.104. (a) 24, (b) 576, (e) 360 

2.105. (a) 6760, (b) 6500, (e) 260 
2.106. n = 18 · l7 · 1 6 = 4896 
2.107. (a) 6! = no, (b) 3 . 5! = 360 

9! 1 1 !  8 ! 
2.108. (a) 30, (b) 2! 2! 2! = 45,360, (e) 2! 3! 2! = 1 ,663 ,200, (d) 2! 2! 2! = 5040 
2.109. (a) 103 = 1000, (b) 10 · 9 · 8  = no 

2.110. (a) 64 = 1296, (b) 6 ·  5 · 4 · 3  = 360 
2.111. C(12, 4) = 495 

2.112. (a) C(9, 2) · C(3 , 2) = 108, (b) C(9, 3) · C(3, 1 ) = 252, (e) 9 + 108 + 252 = 369 or C(12, 4) - C(9, 4) = 495 - 126 = 369 
2.113. (a) C( 10, 2) = 45, (b) 6 · 4  = 24, (e) C(6, 2) + C( 4, 2) = 21 or 45 - 24 = 21 
2.114. C( 1 1 , 5) = 462 
2.115. (a) 210, (b) 252 
2.116. C(10, 8) = C(1O, 2) = 45 
2.117. (a) C(7, 5) = C(7, 2) = 21, (b) 25 + 10 = 35 
2.118. 1 680 
2.119. 280 
2.120. 7560 
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2.121. Construct the appropriate tree diagram as in Fig. 2-17 . Note that the tree begins at A, the winner of the 
first game, and that there is only one choice in the fourth game, the winner of the second game. The 
diagram shows that n = 1 5  and that the series can occur in the following 1 5  ways: 

AAAA, AABAA, AABABA, AABABBA, AABABBB, ABABAA, ABABABA, ABABABB, 

ABABBAA, ABABBAB, ABABBB, ABBBAAA, ABBBAAB, ABBBAB, ABBBB 

2.122. (a) See Fig. 2-18 . There are 1 1  ways to take his walk. (b) B, D, or E 

2.124. (a) C(2n, 2) = 2n(2n - 1 )/2, (b) C(2n, 2) - n = 2n(2n - 1) /2 - n 
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A A B -- A A B A A B A A B A B 
Fig. 2-17 

---D 
A---B ---D 

Fig. 2-18 



Chapter 3 
Basic Probability 

3.1 INTRODUCTlON 

Probability theory is the mathematical modeling of the phenomenon of chance or randomness. If a 
coin is tossed in a random manner, it can land heads or tails, but we do not know which of these will 
occur on a single toss. However, suppose we let s be the number of times heads appears when the coin 
is tossed n times. As n increases, the ratio f = s/n, called the relative frequency of the outcome, becomes 
more stable. If the coin is perfectly balanced, then we expect that the coin will land heads approximately 
50 percent of the time or, in other words, the relative frequency will approach 1/2. Alternatively, 
assuming the coin is perfectly balanced, we can arrive at the value 1/2 deductively. That is, any side 
of the coin is as likely to occur as the other; hence the chances of getting a head is one in two, which 
means the probability of getting a head is 1/2. Although the specific outcome on any one toss is 
unknown, the behavior over the long mn is determined. This stable long-mn behavior of random 
phenomena forms the basis of probability theory. 

Consider another experiment, the tossing of a six-sided die (Fig. 3-1) and observing the 
number of dots, or pips, that appear on the top side. Suppose the experiment is repeated n times 
and let s be the number of times 4 dots appear on topo Again, as n increases, the relative frequency 
f = s/n of the outcome 4 becomes more stable. Assuming the die is perfectly balanced, we would 
expect that the stable or long-mn value of this ratio is 1/6, and we say the probability of getting a 4 
is 1/6. 

Alternatively, we can arrive at the value 1/6 deductively. That is, with a perfectly balanced die, 
any one side of the die is as likely as any other to occur on topo Thus the chance of getting a 4 is one in 
six or, in other words, the probability of getting a 4 is 1/6. Again, although the specific outcome on any 
one toss is unknown, the behavior over the long mn is determined. 

• • 

• • 
• • • • • 

• • • • 
• • • • • 

• 
• 

• 

Fig. 3-1 

The historical development of probability theory is similar to the aboye discussion. That is, 
letting E denote an event, an outcome of an experiment, there were two ways to obtain the probability 
p of E: 

(a) Classical (a priori) definition: Suppose an event E can occur in s ways out of a total of n equally 
likely possible ways. Then p = s/n. 

(b) Frequency (a posteriori) definition: Suppose after n repetitions, where n is very large, an event E 
occurs s times. Then p = s/n. 
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Both of the aboye definitions have serious fiaws . The classical definition is essentially circular, since 
the idea of "equally likely" is the same as that of "with equal probability" which has not been 
defined. The frequency definition is not well-defined since "very large" has not been defined. 

The modern treatment of probability theory is axiomatic, using set theory. Specifically, a math­
ematical model of an experiment is obtained by arbitrarily assigning probabilities to all the events, except 
that the assignments must satisfy certain axioms listed below. Naturally, the reliability of our math­
ematical model for a given experiment depends upon the closeness of the assigned probabilities to the 
actual limiting relative frequencies. This then gives rise to problems of testing and reliability, which 
form the subject matter of statistics. 

3.2 SAMPLE SPACE AND EVENTS 

The set S of all possible outcomes of a given experiment is called the sample space. A particular 
outcome, i.e. an element in S, is called a sample point. An event A is a set of outcomes or, in other 
words, a subset of the sample space S. In particular, the set {a} consisting of a single sample point 
a E S is called an elementary evento Furthermore, the empty set 0 and S itself are subsets of S and so 
are events ; 0 is sometimes called the impossible event or the null evento 

Since an event is a set, we can combine events to form new events using the various set operations: 

(1) A U B is the event that occurs iff A occurs or B occurs (or both). 
(2) A n B is the event that occurs iff A occurs and B occurs. 
(3) AC, the complement of A, also written A, is the event that occurs iff A does not occur. 

Two events A and B are called mutually exclusive if they are disjoint, that is, if A n B = 0. In other 
words, A and B are mutually exclusive iff they cannot occur simultaneously. Three or more events are 
mutually exclusive if every two of them are mutually exclusive. 

EXAMPLE 3.1 

(a) Experiment: Toss a die and observe the number (of dots) that appears on topo 
The sample space S consists of the six possible numbers; that is, 

S = { l , 2, 3, 4, 5, 6} 
Let A be the event that an even number occurs, B that an odd number occurs, and C that a prime number 
occurs; that is, let 

A = {2, 4, 6}, B = { l , 3, 5}, C = {2, 3 ,  5} . 
Then 

A U C = {2, 3, 4, 5, 6} is the event that an even or a prime number occurs. 
B n C = {3 , 5} is the event that an odd prime number occurS. 
Ce = {l ,  4, 6} is the event that a prime number does not occur. 

Note that A and B are mutually exclusive: A n B = 0. In other words, an even number and an odd number 
cannot occur simultaneously. 

(b) Experiment: Toss a coin three times and observe the sequence of heads (H) and tails (T) that appears. 
The sample space S consists of the following eight elements: 

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} 
Let A be the event that two or more heads appear consecutively, and B that all the tosses are the same; that is, let 

A = {HHH, HHT, THH} and B = {HHH, TTT} 
Then A n B = {HHH} is the elementary event in which only heads appear. The event that five heads appear is 
the empty set 0. 
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(e) Experiment: Toss a coin unlil a hcad appcars. alld then eount the number of timcs the eoin is losscd. 
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The samplc spaee ofthis cxpcrimenl is S = { 1, 2,3, . . .  ,ooJ. Here 00 rcfcrs to Iheeasc whcn a hcad never 
appenrs, and Ihc coin is tosscd an infinite number oftimcs. Sinec cvery positive integer is an elcment of S, I.he 
sample spaee is inflllite. Ln fael, Ihis is an examplc of a samplc spaee whieh is eOlllltably illfillite. 

(d) Expcriment: Lel a pencil drop, head first. inlo a re<:tangular box alld note Ihc point al the bollom oflhe box 
Ihal the peneil first touehes. Hen:: S consists of all lhe points on Ihe bottom of the box. Lel the rectangular 
arca in Fig. 3-2 rcpresent these poinls. Le¡ A and B be Ihe e\'ents Ihal lhe pencil drops inlO the corresponding 
areas illuslrdled in Fig. 3·2. 

Remark: Thc sample space S in Example 3.I(d) is an example ofa continuous sample space. (A 
sample spacc S is comillllOus if il is an interval or a product of inlervals.) In such a case, only special 
subsets (callcd lIleaSllrable scts) will be cvents. On Ihe other hand, ir the samp[e spacc S is discrele, thal 
is, ir S is finite or countably infinite, then every subSCI of S is an event. 

s 

t'ig. 3-2 

EXAMPlE 3.2: Toss 01 a pair 01 dice A pair of dice is tossed aod Ihe two numhers appcaring on Ihe !Op are 
recordcd. There are six possible nUl1lbers, 1 , 2, . . .  ,6, on each dic. Thus S consiSIS of Ihe pairs ofnumbers from 1 
10 6, and hencc I/(S) = 6 · 6  = 36. Figure 3-3 show$ thesc 36 pairs of numbers arranged in an array where the rows 
are labeled by the firSl die and Ihe columns by Ihe sccond dic. lel A be Ihe cvenl ¡hal the sum of¡he IWO nllmbers is 
6, and lel 8 be Ihe event Ihat Ihe largest of Ihe two numbers is 4. Thal is, lel 

A � {(1 ,5), (2,4), (3,3), (4,2), (5 , 1)} ,  8� ( 1 1 ,4), (2,4), (3,4), (4,4), (4,3), (4,2), (4. 1)} 
Thesc evcnts are picl ured in Fig. 3·3. Thcll lhe evcnt ., A and 8" eonsists of those pairs of integers whose sum is 6 

and whose largest numbcr is 4 or, in olhcr words, Ihe interscction of A and 8. Thus 
A n B � {(2,4), (4,2)} 

Similarly, " A  or 8" . ¡he SUlll is 6 or Ihe largesl is 4, shadcd in Fig. 3-3, is Ihe union A U B. 

Sccond die 

D D D D D D . .  . . . . 

D A 
(1, 1) (1,2) (1,3) (1,4) (1,6) 

D (2, 1) (2,2) (2,3) (2, 4) (2, 5) (2, 6) 

• D (3,1) (3,2) (3, 4) (3, 5) (3,6) " 
.� D � (4, 1) (4, 3) (4, 4) (4, 5) (4, 6) · . 

B 

D · . (5, 2) (5, 3) (5,4) (5, 5) (5,6) 

· . D (6, 1) (6,2) (6, 3) (6, 4) (6, 5) (6, 6) 

Fig. 3-3 
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EXAMPlE 3.3: Deck 01 cards A card Is drawn [rom an ordinary dcck of 52 cards which is piclurcd in 
Fig. 3-4(a). Thc samplc spacc S consists of lhe fOUT suits. clubs (e), di:HllOnds (O), hcarts (H), alld spades (S), 
where caeh suit contains 13 cards which are numbcrcd 2 10 10, andjack (J), queen (Q), king (1<). and ace (A). Thc 
hcarts (H) and diamonds (D) are red cards, and Ihe spades (S) and clubs (C) are black cards. Figure 3-4(b) piCIUTCS 
52 poinls which represenl ¡he dcck S of cards in Ihe obvious \\Iay. Let E be ¡he cvcnt of a piClllre caril, Ihal ¡s, 
a jack (J). quccn (Q). or king (K), and let F be lhe cvcnt of a hcart. Thcn En F = {JH, QH, KH}, as shadcd in 
Fig. 34(b). 

4 Suits 

Clubs Diamonds Hearts 

t----

2. 2. 2. 
• • • 
• • • 

., ., ., 
Black Red Red 

(a) 

3.3 AXIOMS OF PROHAHIUTY 

Spades e D H S 

A 

K 
Q E 

J 

10 

9 

8 

7 

6 

2. 5 

• 4 

3 
• 

.' 
2 F 

Black 
(6) 

Fig. 3-4 

Let S be a samp[e spaee, let (e be the dass of HlI events, Hnd let P be a reHI-va[ued function defined 
on (6. Then P is CH[[cd a probabilil)' f¡mcfioll, and P(A) is cH[[cd the probabilil)' of the event A when the 
following axioms hold: 

[P¡] For Hny event A. we hHve P(A) � o. 
[P2l For the certHin evcnt S, we have P(S) = l .  
[P31 For any two disjoint events A and B, we have 

P(A U B) � prAl + P(B) 

[P.í1 For Hny infinite sequence of mutually disjoint cvents A l, Az, A), . . . , we have 

P(A, U A, U A, U . . .  ) � P(A,) - ,- prA,) + P(A,) + . . . 

Moreovcr, when P does satisfy the above axioms, the sample space S will be called a probabilil)' space. 
The first axiom sta tes that the probHbility of Hny evcnt is nonnegative, Hnd the sccond axiom sta tes 

that the certain or surc evcnt S has probability 1 .  The ncxt remarks concern the t\Vo axioms [PJ1 and 
[P.íl. The axiom [PJl formalizcs the natural assumption thHt if A Hnd B Hre t\Vo disjoint events then the 
probability of either of tltem occurring is the sum of their individual probabilities. Using mathematical 
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induction, we can then extend this additive property for two sets to  any finite number of  disjoint events; 
that is, for any mutually disjoint sets Al , A2 , . . .  , Am we have 

(*) 
We emphasize that [P�l does not follow from [P3 ] ,  even though (*) is true for every posltIve 
integer n. However, if the sample space S is finite, then only [P3 l is needed, that is, [P�l is superfiuous. 

Theorems on Probability Spaces 

The following theorems follow directly from our axioms, and will be proved in Problems 3 .20-3 .25. 

Theorem 3.1: The impossible event or, in other words, the empty set 0, has probability zero; that is, 
P(0) = O. 

The next theorem, called the complement rule, formalizes our intuition that if we hit a target, say, 
p = 1/3 of the times, then we miss the target 1 - p = 2/3 of the times. (Recall AC denotes the comple­
ment of the set A.) 

Theorem 3.2 (complement rule): For any event A, we have 

P(AC) = 1 - P(A) 

The next theorem tells us that the probability of any event must lie between O and 1 .  That is: 

Theorem 3.3: For any event A, we have O :::; P(A) :::; 1 .  

The following theorem applies to the case that one event is a subset of another event. 

Theorem 3.4: If A � B, then P(A) :::; P(B) . 

The following theorem concerns two arbitrary events. 

Theorem 3.5: For any two events A and B, we have 

P(A\B) = P(A) - P(A n B) 

The next theorem, called the general addition rule, or simply addition rule, is similar to the inclusion­
exclusion principIe for sets. 

Theorem (addition rule) 3.6: For any two events A and B, 

P(A U B) = P(A) + P(B) - P(A n B) 

Applying the aboye theorem twice (Problem 3 .26), we obtain: 

Corollary 3.7: For any events, A, B, e, we have 

P(A U B U e) = P(A) + P(B) + P( C) - P(A n B) - P(A n e) - P(B n e) + P(A n B n C) 

Clearly, like the analogous inclusion-exclusion principIe for sets, the addition rule can be extended 
to any finite number of sets. 
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3.4 FINITE PROBABILlTY SP ACES 

Consider a sample space S and the class C{5 of all events. (If S is finite then we assume, unless 
otherwise stated, that all subsets of S are events.) As noted aboye, S becomes a probability space by 
assigning probabilities to the events in C{5 so that they satisfy the probability axioms. This section shows 
how this is usually done for finite sample spaces. The next section discusses infinite sample spaces. 

Finite Equiprobable Spaces 

Suppose S is a finite sample space with n elements, and suppose the physical characteristics of the 
experiment suggest that the various outcomes of the experiment be assigned equal probabilities. Then 
S becomes a probability space, called a finite equiprobable space, if each point in S is assigned the 
probability 1/n and if each event A containing r points is assigned the probability r In. In other words, 

or 

P(A) = number of elements in A = n(A) 
number of elements in S n(S) 

number of ways that the event A can occur P(A) = 
number of ways that the sample space S can occur 

We emphasize that the aboye formula for P(A) can only be used with respect to an equiprobable space, 
and cannot be used in general. 

We state the aboye result formally. 

Theorem 3.8: Let S be a finite sample space and, for any subset A of S, let P(A) = n(A)/n(S) . Then P 
satisfies axioms [PI ] ,  [P2] ,  and [P3 l .  

The expression "at random" will be  used only with respect to  an equiprobable space; formally, the 
statement "choose a point at random from a set S" shall mean that S is an equiprobable space where 
each point in S has the same probability. 

EXAMPLE 3.4 

(a) A card may be selected at random from an ordinary deck of 52 playing cards (see Fig. 3-4). Consider the 
events: 

A = {card is a heart} and B = {card is a face card} 

(A face card is a jack (1), queen (Q), or king (K).) We compute peA), P(B), and peA n B) . Since we have an 
equiprobable space, 

peA) = number of hearts = � = � 
number of cards 52 4 ' P(B) = number of face cards = 12 = � 

number of cards 52 1 3  

peA n B) = number of heart face cards = � 
number of cards 52 

Suppose we want the probability that the card is a heart or a face card, that is, suppose we want peA U B) . We 
can count the number of such cards and use Theorem 3.8, or use the aboye data and Theorem 3.6, to obtain 

1 3 3 22 1 1  peA U B) = peA) + P(B) - peA n B) = 4 + 13 - 52 = 52 = 26 
(b) Suppose a student is selected at random from 80 students where 30 are taking mathematics, 20 are taking 

chemistry, and 10 are taking mathematics and chemistry. Find the probability p that the student is taking 
mathematics (M) or chemistry (C). 

Since the space is equiprobable, we have: 
30 3 P(M) = 80 = "8 '  

20 1 P(C) = 80 = 4 '  
10 1 P(M and C) = P(M n C) = 80 = "8 
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Thus, by the addition rule (Theorem 3 .6), 
3 1 1 1 P = P(M or e) = P(M U e) = P(M) + P( e) - P(M n e) = "8 + 4 - "8  = 2" 

Finite Probability Spaces 
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Let S be a finite sample spaee, say S = {al , a2 , . . .  , an} .  A finite probability space, or finite 
probability model, is obtained by assigning to eaeh point ai in S a real number Pi ' ealled the probability 
of ai , satisfying the following properties: 

(1) Eaeh Pi is nonnegative, that is, Pi � o. 
(2) The sum of the Pi is 1 ,  that is, PI + P2 + . . .  + Pn = 1 .  
The probability P(A) of an event A i s  defined to be the sum of the probabilities of the points in A .  For 
notational eonvenienee, we write P(a;) instead of P( {aJ) . 

Sometimes the points in a finite sample spaee S and their assigned probabilities are given in the form 
of a table as follows: 

Outcome al al . . .  an 

Probability PI Pl . . .  Pn 

Sueh a table is ealled a probability distribution. 
The faet that P(A) , the sum of the probabilities of the points in A, does define a probability spaee is 

stated formally below (and proved in Problem 3.30). 

Theorem 3.9: The aboye funetion P(A) satisfies the axioms [PI ] ,  [P2] ,  and [P3l .  

EXAMPLE 3.5 

(a) Experiment: Let three coins be tossed and the number of heads observed. (Compare with Example 
3 . 1 (b).) Then the sample space is S = {O, 1 , 2, 3} .  The following assignments on the elements of S defines 
a probability space: 

Outcome ° 1 2 3 

Probability 1/8 3/8 3/8 1 /8 

That is, each probability is nonnegative, and the sum of the probabilities is l .  Let A be the event that at least 
one head appears, and let B be the event that all heads or all tails appear; that is, let 

Then, by definition 

and 

A = { 1 , 2, 3} and B = {O, 3}  

3 3 1  7 peA) = P(I) + P(2) + P(3) = "8 + "8 + "8  = "8  
1 1 1 P(B) = P(O) + P(3) = "8  + "8  = 4 

(b) Three horses A, B, e are in a race; A is twice as likely to win as B, and B is twice as likely to win as e. Find 
their respective probabilities of winning, that is find peA), P(B), P( e) . 

Let P( e) = p. Since B is twice as likely to win as e, P(B) = 2p; and since A is twice as likely to win as B, 
peA) = 2P(B) = 2(2p) = 4p. Now the sum of the probabilities must be 1 ;  hence 

p + 2p + 4p = 1 or 7p = 1 1 or P = 7 
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Accordingly, 

BASIC PROBABILITY 

4 peA) = 4p = 7 '  2 P(B) = 2p = 7 '  1 P(C) = p  = -7 

Question: What is the probability that B or C wins, that is, P( {B, C})7 By definition 

2 1 3 P( {B, C}) = P(B) + P( C) = 7 + 7 = 7 

3.5 INFINITE SAMPLE SP ACES 

[CHAPo 3 

This section considers infinite sample spaces So There are two cases, the case where S is countably 
infinite, and the case where S is uncountableo We note that a finite or a countably infinite probability 
space S is said to be discreteo Moreover, an uncountable space S which consists of a continuum of 
points, such as an interval or product of intervals, is said to be continuouso 

Countably Infinite Sample Spaces 

Suppose S is a countably infinite sample space; say 

Then, as in the finite case, we obtain a probability space by assigning each ai E S a real number Pi ' called 
its probability, such that: 

(1) Each Pi is nonnegative, that is, Pi � 00 
(2) The sum of the Pi is equal to 1 ,  that is 

00 
PI + P2 + P3 + o o o = L Pi = 1 

i=1 

The probability P(A) of an event A is then the sum of the probabilities of its pointso 

EXAMPLE 3.6 Consider the sample space S = { 1 ,  2, 3, o o o , oo} of the experiment of tossing a coin until a head 
appears; here n denotes the number of times the coin is tossedo A probability space is obtained by setting 

Consider the events: 

Then 

1 p( l )  = 2 ' 1 p(2) = 4 ' 
1 1 p(3) = 8 '  o o o ,p(n) = 2n ' o o o ,p(oo) = O 

A = {n is at most 3}  and B = {n is even} 

1 1 1 7 P(A) = P( 1  2 3) = - + - + - = -" 2 4 8 8 
1 1 1 P(B) = P(2, 4, 6, 8 , o o o ) = 4 + 42 + 43 + o o o 

Note P(B) is a geometric series with a = 1 /4 and r = 1 /4; hence 

P(B) = _a_ = 1/4 = � 
l - r 3/4 3 
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Uneounfable Spaees 

The only uncountablc sample spaces S which we will consider here are lhose with some finite 
geometrical measurement meS) such as length. arca, or volume, and in which a point is sclccted at 
random. Tite probability 01' an event A, i.e. that the �clected point belongs to A, is then the ratio 01' 
meA) to meS); that is, 

peA) = length of A 
length of S 0' p area of A 

(A) = 
area of S 

Such a probability space is said to be l/niform. 

p volume of A 
(A) = 

volume of S 

EXAMPlE 3.7 On Ihe real line R, points a and b are seleeled at random sueh thal -2 � b � O and O � a � 3, as 
shown in Fig. 3.5(a). Find Ihe probability p that the distancc d octween (J and b is greater than 3. 

The sample spaee S eonsists of the orderoo pairs (a. b) and so forms the rectangular region shown in 
Fig. 3-5(b). On the other hand, the set A of points (a, b) for which (/ = (/ - b > 3 eonsists ofthose points which lie 
bclow Ihe line x - y = 3. and hence form the shadcd region in Fig. 3-5(b). Thus 

I� 
I • I 
-, b • 

d 

(o) 

area of A 2 1  P = I'(A) = 
area of S 6 3 

• 
o 

l<'ig. 3--5 

3.6 CLASSICAL HI.RTHUA y PROHLEM 

, 

• • 

A 

(b) 

The classical birlhday problem concernS the probability p thal JI people have distinct birthdays. In 
solving this problem, we assume that a person's birthday can faH on any day with the same probability 
and that JI :5 365. 

Since there are JI people and 365 different days, there are 365" ways in which the 11 people can have 
their birthdays. On the other hand, if the 11 persons are tO have distinct birthdays, then Ihe first person 
can be bom on any of the 365 days, the second person can be born on the remaining 364 days, the third 
person can be born on the remaining 363 days, etc. Thus there are 365 . 364 . 363 . . . . . (365 - JI + 1) 
ways the 11 persons can have distinct birthdays. The probability p that at least twO people have the same 
birthday follows: 

p = I - the probability that no two people have the same birthday 

365 · 364 · 363 · . . . . (365 - 11 + 1 )  
= 1 -

365" 

The values of p where 11 is a mulliple of 10 up to 60 rollow: 

" 10 20 JO 40 50 60 

P 0. 1 17 0.411 0.706 0.891 0.970 0.994 
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We also note that P = 0.476 for n = 22 and that P = 0.507 for n = 23. Accordingly: 

In a group of 23 people, it is more likely that at least two of them have the 
same birthday than that they all have distinct birthdays. 

[CHAP. 3 

The aboye table also tells us that, in a group of 60 or more people, the probability that two or more of 
them have the same birthday exceeds 99 percent. 

3.7 EXPECTATION 

Games of chance involving probability are very popular throughout the world. Mathematical 
expectation, defined and discussed in this section, is the measure which decides the fairness of such a 
game of chanceo 

Suppose a game has n outcomes al , a2 , . . .  , an with corresponding probabilities PI , P2 , . . .  , Pm 
where PI + P2 + . . .  + Pn = 1 ,  and suppose the payoff to the player on outcome ai is Wi , where a positive 
Wi is a win for the player, and a negative Wi a loss. Then the quantity 

E = wIPI + w2P2 + . . .  + wnPn 
is called the mathematical expectation or expected value for the player. 

The expectation E is the amount that the player can expect to "win" on the average each time the 
game is played. If E is positive, then the game is in the player' s favor; if E is negative, then the game is 
biased against the player, that is, negative expected winnings represent losses. On the other hand, 
suppose the expectation E = O. Then the game is said to be ¡air, and a player's winnings and los ses 
should be about equal when the fair game is played a large number of times. Of course, when playing a 
lottery or gambling in a casino, E is almost always negative. 

EXAMPLE 3.8 

(a) There are three envelopes containing $100, $200, and $6000, respectively. A player selects an envelope and 
keeps what is in it. Find the expected winnings E of the player. 

The player chooses an envelope at random; hence each envelope has probability of 1/3 of being chosen. 
Accordingly, 

E = 100 ( �) + 200 ( �) + 6000 ( �) = 2, 100 

That is, the expected winnings of the player is $2100. 

(b) A player tosses two fair dice. If the sum is 7 or 1 1 ,  the player wins $7, otherwise the player loses $2. Deter­
mine the expected value E of the game. 

The sample space S consists of the 36 pairs of numbers pictured in Fig. 3-3. Eight of them will result in a 
sum of 7 or 1 1 ,  namely, 

( 1 , 6) ,  (2, 5) , (3, 4), (4, 3) ,  (5, 2) ,  (6, 1 ) ,  (5, 6) , (6, 5) 
and 36 - 8 = 28 will noto Thus 

Therefore, 

8 p(7 or 1 1 )  = 36 and P (neither 7 nor 1 1 )  = �� 

Thus the game is fair, and the player should break even over the long runo 
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Solved Problems 

SAM.PLE SI'ACfS AND EVENTS 

3.1. Let A and S be events. Find an expression and exhibit the Venn diagram for the events: 
(a) A but not S. (h) neither A Ilor S. (e) either A or S, but not both. 
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(a) Since A but nOI R occurs, shade the arca of A oulside of R, as in Fig. 3-6(a). Note Ihal ¡f, the 
complcment of B, oecurs, since B does nOI occur; hence A and lf' occur. In olher words the evcnt is 
A nlf. 

(h) " Ncithcr A nor B" Illeans "110t A and not B·· or AC n lf. By Dc Morgan's law, tbis is also thc set 
(A U B)c; hcnce shadc tbe arca outsidc 01' A and B, i.c. outsidc A U B, as in Fig. 3-6(b). 

(e) Since A or B, bUI nOl both, oecurs, shade the arca of A and B, execpt wherc they interscct. as in 
Fig. 3-6(c). Thc evcnt is equivalent to the occurrenee of A but not B or B but not A. Thus the cvenl is 
(A n Lf) u (B n A'). 

(a),{ but not B (h) Ncithcr,( nor B (c).A or B, bul nol both 

Fig. 3-6 

3.2. Let A, S, e be events. Find an expression and exhibit ¡he Vcnn diagram for the cvcnts: 
(a) A and S bUI nOl e occurs, (b) only A oecurs. 

(a) Sinee A and B bUl not e occurs, shade Ihe interSCclion of A and B whieh lies oulside of C. as in 
Fig. 3-7(a). Thc evenl eonsisls ofthe elemenls in A, in B. and in C (nol in C), thal is, Ihe evenl is Ihe 
interscction A n B n  C. 

(h) Since only A is to occur, shadc Ihe arca of A which Hes outside of B and e, as in Fig. 3-7(b). The evenl 
consists of Ihe elcmenlS in A,  in ¡f (not in B), and in C (nol in C), Ihat is, Ihe event is the inlcrscclion 
A n ¡f n C'. 

A 

e 

A and B bul nOI e occurs 
Co) 

"·ig. 3-7 

A B 

e 

Only A occurs 
Cb) 
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3.3. Let a coin and a die be tossed; and let the sample space S consist of the 12 elements: 

S = {H1 ,  H2, H3 ,  H4, H5,  H6,  TI, T2, T3 , T4, T5, T6} 

(a) Express explicitly the following events: 

A = {heads and an even number appears} ,  

B = {a prime number appears} ,  e = {tails and an odd number appears} 

(b) Express explicitly the events that: (i) A or B occurs, (ii) B and e occur, (iii) only B occurs. 

(e) Which pair of the events A, B, and e are mutually exclusive? 

(a) The elements of A are those elements of S consisting of an H and an even number: 

A = {H2, H4, H6} 
The elements of B are those points in S whose second component is a prime number: 

B = {H2, H3, H5, T2, T3, T5} 
The elements of C are those points in S consisting of a T and an odd number: C = {TI ,  T3, T5}. 

(b) (i) A U B = {H2, H4, H6, H3, H5, T2, T3, T5} 
(ii) B n C = {T3, T5} 
(iii) B n Ae n Ce = {H3, H5, T2} 

(e) A and C are mutually exclusive, since A n C = 0. 

3.4. A pair of dice is tossed and the two numbers appearing on the top are recorded. Recall that S 
consists of 36 pairs of numbers, which are pictured in Fig. 3-3. Find the number of elements in 
each of the following events: 

(a) A = {two numbers are equal} 
(b) B = {sum is 10 or more} 

(e) e = {5 appears on first die} 
(d) D = {5 appears on at least one die} 

Use Fig. 3-3 to help count the number of elements in each of the events: 

(a) A = { ( I , I ) ,  (2, 2), . . .  , (6, 6)} ,  so n(A) = 6. 
(b) B = { (6, 4), (5, 5) , (4, 6) ,  (6, 5) , (5, 6) , (6, 6)} ,  so n(B) = 6. 
(e) C = {(5, 1 ) ,  (5 , 2) ,  . . .  , (5 , 6)} ,  so n(C) = 6. 
(d) There are six pairs with 5 as the first element, and six pairs with 5 as the second element. However, 

(5, 5) appears in both places. Hence 

n(D) = 6 + 6 - 1 = 1 1  
Alternatively, count the pairs in Fig. 3-3 which are in D to get n(D) = 1 1 .  

FINITE EQUIPROBABLE SPACES 

3.5. Determine the probability p of each event: 

(a) An even number appears in the toss of a fair die. 
(b) One or more heads appear in the toss of three fair coins. 

(e) A red marble appears in random drawing of one marble from a box containing four white, 
three red, and five blue marbles. 

Each sample space S is an equiprobable space. Hence, for each event E, use 

P(E) = number of elements in E = n(E) 
number of elements in S n(S) 



CHAP. 3] BASIC PROBABILITY 

(a) The event can occur in three ways, 2, 4, or 6, out of 6 cases; hence p = 3/6 = 1 /2. 
(b) Assuming the coins are distinguished, there are 8 cases: 

HHH, HHT, HTH, HTT, THH, THT, TTH, TTT 

Only the last case is not favorable; hence p = 7/8. 
(e) There are 4 + 3 + 5 = 12 marbles of which 3 are red; hence p = 3/12 = 1/4. 
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3.6. A single card is drawn from an ordinary deck S of 52 cards (see Fig. 3-4). Find the probability p 
that the card is: (a) a king, (b) a face card Gack, queen, or king), (e) a red card (heart or diamond), 
(d) a red face cardo 

Here n(S) = 52. 
(a) There are four kings; hence p = 4/52 = 1/ 13 .  
(b) There are 4(3) = 12 face cards; hence p = 12/52 = 3/13 .  
(e) There are 1 3  hearts and 13 diamonds; hence p = 26/52 = 1 /2. 
(d) There are six face cards which are red; hence p = 6/52 = 3/26. 

3.7. Consider the sample space S and events A, B, C in Problem 3.3 ,  where a coin and a die are 
tossed. Suppose the coin and die are fair; hence S is an equiprobable space. Find: 
(a) P(A) , P(B) , P( C) , (b) P(A U B) , P(B n C) , P(B n Ae n Ce) .  

Since S i s  an equiprobable space, use P(E) = n(E)/n(S) . Here n(S) = 12. So we need only count 
the number of elements in the given seto 

(a) peA) = 3/12, P(B) = 6/12, P(C) = 3/12. 
(b) peA U B) = 8/12, P(B n C) = 2/12, P(B n Ae n Ce) = 3/12. 

3.8. A box contains two white sox and two blue sox. Two sox are drawn at random. Find the 
probability p they are a match (s ame color). 

There are C( 4, 2) = ( �) = 6 ways to draw two of the sox. Only two pairs will yield a match. Thus 
p = 2/6 = 1/3. 

3.9. Five horses are in a race. Audrey picks two of the horses at random, and bets on them. Find 
the probability p that Audrey picked the winner. 

There are C(5, 2) = ( �) = 10 ways to pick two of the horses. Four of the pairs will contain the 

winner. Thus p = 4/10 = 2/5. 

3.10. A class contains 10 men and 20 women, of which half the men and half the women have brown 
eyes. Find the probability p that a person chosen at random is a man or has brown eyes. 

Let A = {men}, B = {brown eyes}. 

peA) = 10 = � 
30 3 ' 

Thus, by Theorem 3 .6 (addition rule), 

We seek peA U B) . 
1 5  1 P(B) = 30 = 2 '  

We have 
5 1 p(A n B) = - = -
30 6 

1 1 1 2 peA U B) = peA) + P(B) - peA n B) = - + - - - = -3 2 6 3 
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FINITE PROBABILlTY SPACES 

3.11. A sample space S consists of four elements; that is, S = {a¡ , a2 , a3 , a4} .  Under which of the 
following functions does S become a probability space? 

(a) 1 P(a¡ ) = "2  1 P(a2) = "3  1 P(a3) = 4" 1 P(a4) = "5  
1 1 1 1 (b) P(a¡ )  = "2  P(a2) = 4" P(a3) = - - P(a4) = "2  

4 

(e) 1 P(a¡ )  = "2  1 P(a2) = 4" 1 P(a3 )  = "8  1 P(a4) = "8  

(d) 
1 P(a¡ ) = "2  1 P(a2) = 4" 1 P(a3) = 4" P(a4) = O 

(a) Since the sum of the values on the sample points is greater than one, the function does not define S as a 
probability space. 

(b) Since P(a3 ) is negative, the function does not define S as a probability space. 
(e) Since each value is nonnegative and the sum of the values is one, the function does define S as a 

probability space. 
(d) The values are nonnegative and add up to one; hence the function does define S as a probability space. 

3.12. A coin is weighted so that heads is twice as likely to appear as tails. Find P(T) and P(H) . 
Let P(T) = p; then P(H) = 2p. Now set the sum of the probabilities equal to one, that is, set 

p + 2p = l .  Then p = 1/3 .  Thus P(H) = 1 /3 and P(T) = 2/3 . 

3.13. Suppose A and B are events with P(A) = 0.6, P(B) = 0 .3 and P(A n B) = 0.2. Find the prob­
ability that: 

(a) A does not occur. 
(b) B does not occur. 

(e) A or B occurs. 
(d) Neither A nor B occurs. 

(a) By the complement rule, P(not A) = P(AC) = 1 - peA) = 0.4 
(b) By the complement rule, P(not B) = P(BC) = 1 - P(B) = 0.7 
(e) By the addition rule, 

peA or B) = peA U B) = peA) + P(B) - peA n B) 
= 0.6 + 0.3 - 0.2 = 0.7 

(d) Recall (Fig. 3-6(b)) that neither A nor B is the complement of A U B. Therefore, 

P (neither A nor B) = pe cA U Bt) = 1 - peA U B) = 1 - 0.7 = 0.3 

3.14. A die is weighted so that the outcomes produce the following probability distribution: 

Outcome 1 2 3 4 5 6 

Probability 0 . 1  0 .3 0 .2 0 . 1  0 . 1  0.2 

Consider the events: 

A = {even number} , B = {2 , 3, 4, 5} , e = {x : x < 3} ,  D = {x : x > 7} 

Find the following probabilities: (a) P(A) , (b) P(B) , (e) P(C) , (d) P(D). 
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ror any event E. find P(E) by summing the probabilities of the clements in E. 

(a) A = {2,4,ó}, so P(A) = 0.3 +0.1 + 0.2 = 0.6 

(b) 1'(8) = 0.3 + 0.2+0.1 +0.1  = 0.7 

(e) C = {1,2},so P(C) = 0.1 + 0.3 = 0.4 

(d) 1) = 0. ¡he elllpty set. Hence I'(D) = O 

3.15. For the data in Problcm 3.14, find: (a) P(A n B), (h) P(A U C), (e) P(B n C). 
First find the elcments in the event. and then add the probabilities of the elements. 

(a) A n H = {2,4}, so p(A n B) = 0. 3 + 0.1 = 0.4 

(b) A u C =  { 1 , 2,3,4,5} = {óV. so P(A U C) =  1 - 0.2 = 0.8 

(e) H n C =  {2}, so p(O n c) = 0.3 

3.16. Find the probability p of an cvenl E if the odds thal E occurs are a to b. 

The odds that E occurs are given by the ratio p : ( 1  -p). Hence 

P " 
I -p b 

bp = a - op 0' ap + bp = a  0' 
" 

p = --
a H  

3.17. The odds that an event E occurs are 3 to 2. Find the probability of E. 

Let p = 1'(1:"). Set the odds equal to p : ( J  - p) to obtain 

� =
3 

1 - p  2 
0' 2p = 3 - 3p 0' 5p = 3 0' J 

p = -
7 

Alternativcly. use the fonnula in Problem 3.16 10 dircctly obtain p = aj(a + b) = 3j(3 + 2) = 3j5. 

UNCOUNTABLE UNrFORM SI)ACES 
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3.18. A point is chosen at random inside a reclangle measuring 3 inches by 5 inches. Find Ihe 
probabilily p Ihal the poinl is al least one inch from Ihe edge. 

u:1 S denOle Ihe set of pOillts inside the rcctanglc, and lel A denole Ihe set of poilltS al leasl one 
inch fr0111 the edge. S and A are pictured in Fig. 3-8«(1). Note that A is a rectangular arca measuring 
I inch by 3 inches. Thus: 

, l" 

area of A l · 3 3 I 
p =  = - = � = -area 01' S 3 · 5  15 5 

• (m, n + 1) (m+ l,n+l) 

r S 

(m,n) (m +1,II) 

(a)A isshadcd (b)A isshadcd 
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3.19. Consider the plane R2, and let X denote the subset of points with integer coordinates. A coin 
of radius 1/4 is tos sed randomly on the planeo Find the probability that the coin covers a point 
of X. 

Let S denote the set of points inside a square with comers 

(m, n) , (m, n +  1 ) ,  (m + 1 ,  n), (m + 1 ,  n +  1 )  

where m and n are integers. Let A denote the set o f  points in S with distance less than 1/4 from any 
comer point, as pictured in Fig. 3-8(b). Note that the area of A is equal to the area inside a circle of radius 
1 /4. Suppose the center of the coin falls in S. Then the coin will cover a point in X if and only if its center 
falls in A .  Accordingly, 

p = area of A = 1f( lj4)2 = � "" 0.2 area of S 1 1 6  

(Note: We cannot take S to b e  all o f  R2, since the area o f  R2 i s  infinite.) 

PROOFS OF THEOREMS 

3.20. Prove Theorem 3 . 1 :  P(0) = O 
For any event A, we have A U 0 = A, where A and 0 are disjoint. Using [P3l ,  we get 

peA) = peA U 0) = peA) + P(0) 

Adding -peA) to both sides gives P(0) = O. 

3.21. Prove Theorem 3.2 (complement rule): P(AC) = 1 - P(A) . 

S = A U AC where A and AC are disjoint. By [P2l ,  peS) = 1 .  Thus, using [P3] ,  we get 

1 = peS) = peA U AC) = peA) + P(AC) 

Adding -peA) to both sides gives us P(AC) = 1 - peA) .  

3.22. Prove Theorem 3.3 :  O :::; P(A) :::; 1 .  

By [Pl l ,  peA) ::> O. Hence we need only show that peA) <::: 1 .  Since S = A U A", where A and A C  are 
disjoint, we get 

1 = peS) = peA U AC) = peA) + P(AC) 

Adding _P(AC) to both sides gives us peA) = 1 - P(AC) . Since P(AC) ::> O, we get peA) <::: 1 ,  as required. 

3.23. Prove Theorem 3 .4: If A � B, then P(A) :::; P(B) . 

If A c:: B, then, as indicated by Fig. 3-9(a), B = A U (B\A), where A and B\A are disjoint. Hence 

P(B) = peA) + P(B\A) 

By [PI ] ,  we have P(B\A) ::> O; hence peA) <::: P(B). 
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® EID. A B 

B is shaded  .A is shaded 
(o) (b) 

l<'ig. 3-9 

3.24. Prove Thcorem 3.5: P(A\B) = P(A) - P(A n B). 
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ffi A B 

.A U B is shaded 
« )  

As indicaled by Fig. 3-9(6), A = (A\B) U (A n 8), where A\B and A n B are disjoint. Accordingly, 
by [1')[, 

P(A) = P(A\B) + P(A n B) 

from which our result follows. 

3.25. Prove Theorem (addition rule) 3.6: For any evenlS A and B, 

peA U B) = peA) + p(B) - peA n B) 
As indicaled by Fig. 3.9(c), A U B = (A\B) U B, whcre A\B and B are disjoint seIS. Thus, using 

Thcorcm 3.5, 

P(A U B) = I'(A\B) + P(B) = P(A) - I'(A n B) + I'(B) 

= I'(A) + 1'(8) - I'(A n 8) 

3.26. Prove Corollary 3.7: For any events A, B, e, 

peA U B U  C) = peA) + p(B) + p(C) - p(A n B) - p(A n c) - p(Bn C) + P(A n B n  C) 
Let D = B u C. Then A n D = A n (B U C) = (A nB) u tA n C) and 

Thus 
P(A nD) = 1'(..1 n8) + 1'(..1 n C) - 1'(..1 n B n A  n C) = P(A n B) + p(A n C) - P(A n 8 n C) 

P(A U lJ U C) = I'(A U D) = 1'(..1) + 1'(1) - 1'(..1 n D) 
= P(A) + P(B) + P(C) - p(Bn CJ - [p(A n B) + p(A nc) - p(A n B n  CJ[ 

= 1'(..1) + 1'(8) + P(C) - p(B n C) - P(A n 8) - P(A n C) + P(A n B n C) 

EXPEcrATION 

3.27. A player losses I\VO rair eoins. He wins S2 ir 2 heads occur, and $1 ir 1 head oecurs. On lhe 
Olher hand, he loses $3 if no heads occur. Find Ihe expccted value E of Ihe game. ls Ihe game 
fair? (The game is fair. favorable, or unfavorable 10 Ihe playcr according as E = 0, E >  O. or 
E < O.) 

The sample space S = {HH, HT, TH, TI} where each OUlcome has probabilily 1/4. The player wins 
$2 in the first case, SI  in the second alld third cases, alld loses $3 in Ihe lasl casco Thus 

Thus Ihe gamc is favorable 10 Ihe player. (Spccifically. he will win, on ¡he average, 25 cenls per play, e.g. ir 
he plays 100 limes, Ihen he will likely win aboul 525.) 
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3.28. A casino lets you play the following game. You pick a card at random from an ordinary deck of 
52 cards (Fig. 3-4). If it is an ace, you win $10; otherwise you lose $ 1 .  Find the expected value 
E of your playing. 

There are 4 aces, and 52 - 4 = 48 cards which are not aces. Thus you win $10 with probability 
4/52 = 1/ 13, and lose $1 with probability 48/52 = 12/13 .  Therefore, 

E = 10G3) - I CD = - 1
2
3 � -0. 1 5  

That is, i f  you play the game many times, you will lose, on  the average, 1 5  cents per game. 

MISCELLANEOUS PROBLEMS 

3.29. Show that axiom [P3 l follows from axiom [pn . 
First we show that P(0) = O using [P�l instead of [P3l .  We have 0 = 0 + 0 + 0 + . . .  where the 

empty sets are disjoint. Say P(0) = a. Then, by [P� ] ,  

P(0) = P(0 + 0 + 0 + . . .  ) = P(0) + P(0) + P(0) + 

However, zero is the only real number a satisfying 

a = a + a + a +  

Therefore, P(0) = O. 
Suppose A and B are disjoint. Then A, B, 0, 0, . . .  are disjoint, and A U B = A U B U 0 U 0 U . . . . 

Hence, by [P�l ,  

peA U B) = peA U B U 0 U 0 U . . .  ) = peA) + P(B) + P(0) + P(0) + . . .  
= peA) + P(B) + O + O + . . .  = peA) + P(B) 

3.30. Prove Theorem 3.9. Suppose S = {al , a2 , . . .  , an} and each ai is assigned the probability Pi 
where: (i) Pi � 0, and (ii) ¿Pi = 1 .  For any event A, let 

P(A) = ¿(Pj : aj E A) 

Then P satisfies: (a) [PI ] ,  (b) [P2] ,  (e) [P3 l .  
(a) Each Pj ::> O; hence peA) = 'LPj ::> O. 
(b) Every aj E S; hence peS) = PI + P2 + . . .  + Pn = l .  
(e) Suppose A and B are disjoint, and 

Then the a/s and ak 's are distinct. Therefore: 

peA U B) = 'L(PI : PI E A U B) 
= 'L(PI : al E A) + 'L(PI : al E B) = peA) + P(B) 
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3.31. Let S = {a¡ , a2 ' . . .  , as} and T = {b¡ , b2 , . . .  , b¡} be finite probability spaces. Let the number 
Pi} = P(ai)P(bj) be assigned to the ordered pair (ai ' bj) in the product set 
S x T = { (s, t) : s E S, t E T}. Show that the Pi} define a probability space on S x T; that is, 
show that: (i) the Pi} are nonnegative, and (ii) the sum of the Pi} equals one. This is called the 
product probability space. (We emphasize that this is not the only probability function that can 
be defined on the product set S x T.) 

Since P(ai) , P(bj) ::> O, for each i and each j, Pij = P(ai)P(bj) ::> o. Furthermore, 

Pl l + P¡2 + . . .  + p¡¡ + P21 + P22 + . . .  + P2¡ + . . .  + PsI + Ps2 + . . .  + PSI 
= P(a¡ )P(b¡ ) + . . .  + P(a¡ )P(b¡) + . . .  + P(as)P(b¡ ) + . . .  + P(as)P(b¡) 
= P(a¡ ) [P(b¡ ) + . . .  + P(b¡) ] + . . .  + P(as) [P(b¡ ) + . . .  + P(b¡)] 
= peal) . 1 + . . .  + peas) . 1 = peal) + . . .  + peas) = 1 

3.32. A die is tos sed 100 times. The following table lists the six numbers and the frequency with which 
each number appeared: 

Number 1 2 3 4 5 

Frequency 14 17  20 18  15  

(a) Find the relative frequency f of each of the following events: 

6 

1 6  

A = {3 appears} ,  B = {5 appears} ,  e = {even number appears} 

(b) Find a probability model for the data. 

. number of successes (a) The relal1ve frequency f = l b f · l · Thus: tota num er o tna s 
20 fA = 100 = 0.20, 1 5  fE = 100 = 0 . 1 5, 1" = 1 7  + 1 8  + 16  = 0.52 J C  100 

(b) The geometric symmetry of the die indicates that we first assume an equal probability space. Statistics 
is then used to decide whether or not the given data supports the assumption of a fair die. 

Supplementary Problems 
SAMPLE SP ACES AND EVENTS 

3.33. Let A and B be events. Find an expression and exhibit the Venn diagram for the event that: 
(a) A or not B occurs, (b) only A occurs. 

3.34. Let A, B, and e be events. Find an express ion and exhibit the Venn diagram for the event that: 
(a) A and B but not e occur, (e) none of the events occurs, 
(b) A or e, but not B, occur, (d) at least two of the events occur. 

3.35. A penny, a dime, and a die are tossed. 
(a) Describe a suitable sample space S, and find n(S). 
(b) Express explicitly the following events: 

A = {two heads and an even number}, B = {2 appears} 
e = {exactly one head and an odd number} 

(e) Express explicitly the events: (i) A and B, (ii) only B, (iii) B and e. 
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FINITE EQUIPROBABLE SP ACES 

3.36. Determine the probability of each event: 
(a) An odd number appears in the toss of a fair die. 
(b) One or more heads appear in the toss of four fair coins. 
(e) One or both numbers exceed 4 in the toss of two fair die. 
(d) A red or a face card appears when a card is randomly selected from a 52-card deck. 

[CHAP. 3 

3.37. A student is chosen at random to represent a class with five freshmen, eight sophomores, three juniors, and 
two seniors. Find the probability that the student is: (a) a sophomore, (b) a junior, (e) a junior or a senior. 

3.38. Of 10 girls in a class, 3 have blue eyes. Two of the girls are chosen at random. Find the probability that: 
(a) both have blue eyes, (b) neither has blue eyes, (e) at least one has blue eyes, (d) exactly one has blue eyes. 

3.39. Three bolts and three nuts are in a box. Two parts are chosen at random. Find the probability that one is 
a bolt and one is a nut. 

3.40. A box contains two white sox, two blue sox, and two red sox. Two sox are drawn at random. Find the 
probability they are a match (same color). 

3.41. Of 120 students, 60 are studying French, 50 are studying Spanish, and 20 are studying both French and 
Spanish. A student is chosen at random. Find the probability that the student is studying: (a) French or 
Spanish, (b) neither French nor Spanish, (e) only French, (d) exactly one of the two languages. 

FINITE PROBABILITY SP ACES 

3.42. Under which of the following functions does S = {a¡ ,  a2 , a3 } become a probability space? 

(a) P(a¡ ) = * , P(a2) = t , P(a3 ) = � , 
(b) P(a¡ ) = ¡ , P(a2) = - t , P(a3 ) = ¡, 

(e) P(a¡ ) = i , P(a2) = t , P(a3 ) = �, 
(d) P(a¡ ) = 0, P(a2) = t , P(a3 ) = ¡. 

3.43. A coin is weighted so that heads is three times as likely to appear as tails. Find P(H) and P(T). 
3.44. Three students A, B, and e are in a swimming race. A and B have the same probability ofwinning and each 

is twice as likely to win as e. Find the probability that: (a) B wins, (b) e wins, (e) B or e wins. 

3.45. Suppose A and B are events with P(A) = 0.7, P(B) = 0.5 and P(A n B) = 0.4. Find the probability that: 

(e) A but not B occurs. (a) A does not occur. 
(b) A or B occurs. (d) Neither A nor B occurs. 

3.46. Consider the following probability distribution: 

Outcome 1 2 

Probability 0 . 1 0 .4 

Find the following probabilities, where: 

3 

0 . 1 
4 

0 . 1 

A = {even number}, B = {2, 3, 4, 5} , 
(a) P(A), P(B), P( e), (b) P(A n B), P(A u e) , P(B n e) . 

5 6 
0.2 0 . 1 

e = { 1 , 2} 

3.47. Find the probability of an event E if the odds that it will occur are: (a) 2 to 1 ,  (b) 5 to 1 1 .  
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3.48. In a swimming race, the odds that A will win are 2 to 3 and the odds that B will win are 1 to 4. Find the 
probability p and the odds that: (a) A or B will win, (b) neither A nor B will win. 

NONCOUNTABLE UNIFORM SPACES 

3.49. A point is chosen at random inside a circle. Find the probability p that the point is closer to the center of 
the circle than to its radius. 

3.50. A point A is selected at random inside an equilateral triangle whose side length is 3. Find the probability p 

that the distance of A from any comer is greater than l .  

3.51. A coin of diameter 1/2 is tos sed randomly onto the plane Rl . Find the probability p that the coin does not 
intersect any line of the form: (a) x = k, where k is an integer, (b) x + y = k, where k is an integer. 

3.52. A point X is selected at random from a line segment AB with midpoint o. Find the probability p that the 
line segments AX, XB, and AO can form a triangle. 

EXPECTATION 

3.53. You have won a contest. Your prize is to select one of four envelopes and keep what is in it. One 
envelope contains a check for $100, another for $200, another for $400, and another for $2000. What is 
the mathematical expectation E of your winnings? 

3.54. A game consists of tossing a fair die. A player wins if the number is even and loses if the number is 
odd. The winning or losing (dollar) payoff is equal to the number appearing. Find the player's math­
ematical expectation E. 

3.55. A mathematics professor gives an "extra-credit" problem on a test. If it is done correctly, 1 5  points are 
added to the test score, and if it is done partially correctly, 5 points are added; otherwise 5 points are 
subtracted. Suppose a student's probability of getting the problem completely right is 1 /4, and only 
partially correct is 1 /2. Find the student's mathematical expectation E for extra credit. 

3.56. A game consists of tossing a fair coin four times. A player wins $3 if two or more heads appear; otherwise 
the player loses $4. Find the expected value E of the game. 

MISCELLANEOUS PROBLEMS 

3.57. A die is tos sed 50 times. The following table gives the six numbers and their frequency of occurrence: 

Number 1 2 3 4 5 6 

Frequency 7 9 8 7 9 10 

Find the relative frequency of each event: 
(a) 4 appears, (b) an odd number appears, (e) a prime number, 2, 3, or 5, appears. 

3.58. Use mathematical induction to prove: For any events Al ,  Al , . . .  , An ,  

i<j i<j<k 
Remark: This result generalizes Theorem 3 .6 (addition rule) for two sets, and Corollary 3.7 for 

three sets. 
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Ánswers to Supplementary Problems 
3.33. (a) A U Be, (b) A n Be 

3.34. (a) A n B n Ce, (b) (A U C) n B, (e) (A U B U B)" = Ae n Be n Ce, 
(d) (A n B) U (A n C) U (B n C) 

3.35. (a) n(S) = 24, S = {H, T} x {H, T} x { 1 ,  2, . . .  , 6} 

[CHAP. 3 

(b) A = {HH2, HH4, HH6}, B = {HH2, HT2, TH2, TT2}, C = {HTl , HT3 , HT5, TH1 ,  TH3, TH5} 
(e) (i) HH2, (ii) HT2, TH2, TT2, (iii) 0 

3.36. (a) 3/6, (b) 1 5/ 16, (e) 20/36, (d) 32/52 

3.37. (a) 8/18, (b) 3/ 18 ,  (e) 5/1 8  

3.38. (a) 1 / 1 5, (b) 7/ 1 5, (e) 8/1 5, (d) 7/1 5  

3.39. 3/5 

3.40. 1/5 

3.41. (a) 3/4, (b) 1 /4, (e) 1 /3, (d) 7/12 

3.42. (e) and (d) 

3.43. P(H) = 3/4, P(T) = 1 /4 

3.44. (a) 2/5, (b) 1 /5, (e) 3/5 

3.45. (a) 0.3, (b) 0.8, (e) 0.2, (d) 0.2 

3.46. (a) 0.6, 0.8, 0.5, (b) 0.5, 0.7, 0.4 

3.47. (a) 2/3, (b) 5/1 6  

3.48. (a) p = 2/5; odds 3 to 2, (b) p = 3/5; odds 2 to 3 

3.49. 1 /4 

3.50. 1 - 21f/ (9V3) = 1 - 2V31f/27 

3.51. (a) 1 /2, (b) 1 - v2/2 

3.52. 1 /2 

3.53. $675 

3.54. $0.50 

3.55. 5 

3.56. 13/16 "" $0.81 

3.57. (a) 7/50, (b) 24/50, (e) 26/50 



Chapter 4 
Conditional Probability and Independence 

4.1 INTRODUCTlON 

The notions of conditional probability and independence will be motivated by two well-known 
examples. 

Gender Gap 

Suppose candidate A receives 52 percent of the entire vote, but only 46 percent of the female vote. 
Let P(A) denote the probability that a random person voted for A, but let P(A I W) denote the prob­
ability that a random woman voted for A. Then 

P(A) = 0.52 but P(A I W) = 0.46 

P(A I W) is called the condition probability of A given W; note that P(A I W) only looks at the 
reduced sample space consisting of women. The fact that P(A) el P(A I W) is called the "gender 
gap" in politics. On the other hand, suppose P(A) = P(A IW) ;  then we say that voting for A is 
independent of the gender of the voter. 

Insurance Rafes 

Auto insurance rates usually depend on the probability that a random person will be involved in an 
accident. It is well known that male drivers under 25 years old get into more accidents than the general 
publico That is, letting P(A) denote the probability of an accident and letting E denote male drivers 
under 25 years old, the data tells us that 

P(A) < P(A IE) 

Again we use the notation P(A IE) to denote the probability of an accident A given that the driver E is 
male and under 25 years old. 

This chapter formally defines conditional probability and independence. We also cover finite 
stochastic processes, Bayes' Theorem, and independent repeated trials. 

4.2 CONDITlONAL PROBABILlTY 

Suppose E is an event in a sample space S with P(E) > O. The probability that an event A occurs 
once E has occurred or, specifically, the conditional probability olA given E, written P(A IE) , is defined as 
follows: 

P(A IE) = P(A n E) 
P(E) 

As pictured in the Venn diagram in Fig. 4-1 ,  P(A IE) measures, in a certain sense, the relative probability 
of A with respect to the reduced space E. 

109 
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s 

Now supposc S is an cquiprobablc spacc. [lod we [el n(A) denote ¡he numbcr of clcmcnts in ¡he 
cvcnt A. Thcn 

P( E) � 
n(A n E) A n n(S) , P(E) � 

n(E) 
• n(S) , so P(AIE) � peA n E) � n(A n E) 

P(E) n(E) 

Wc sta te this rcsult formally. 

Theorem 4.1: Supposc S is an cquiprobablc spacc aod A aod B are cvents. Then 

EXAMPlE 4.1 

( 
1 )  numbcr of c\emcnts in A n E 

P A E = =='i-'�""==-CC:C�:: 
numbcr of elements in E 

l/CA Íl E) 
n(E) 

(a) A paír of rair dice is tosscd. Thc samplc space S consisls of¡hc 36 ordcriXI pairs «(J. b), where (f and b can be 
any of¡hc intcgcrs from 1 10 6  (sce Fig. 3-3). Thus Ihe probability ofany poinl is 1/36. Find Ihe probabiJity 
Iha\ one of Ihe die is 2 ir lhe Sllm is 6. Thal is, find P(AIE} where 

E =  {sum is 6) and A = {2 appcars 011 al leas! Dile die} 
Also fmd P(A). 

No\\! E consists of five elc!llcnts, spedlkaJly 

E � {[ 1, 5), (2,4), (J, J), (4, 2), (5, 1» 

Two of them, (2,4) and (4,2), belong lo A; Ihal is, A n E = {(2,4), (4,2)}. By Theorem 4.1, P(AIE) = 2/5. 
On the olher hand. A consists of 1 I  elcmenls, specifically. 

A � {(2, 1), (2, 2), (2, J), (2, 4), (2, 5), (2,6), [1 ,2), (J, 2), (4,2), (5,2), (6,2» 

and S consists of 36 elemcnts; hcnce P(A) = 1 [ /36. 

(h) A couple has Iwo childrcn; Ihe samplc space is S = {dtl,bg,gb,gg} with probability 1/4 for cach poin\. Find 
the probabililY p that both childrcn are boys ifit is known that: (i) at [east one 01' Ihe children is a boy, (ji) the 
older child is a boyo 
(i) Here the re<.1uce<.1 sampk space consists of three elcments, {bb,bg,gb}; hence p = 1/3. 

(ii) Hcrc the rcduccd sample spacc consists of IwO clcmcnts, {bb,bg}; hcncc p = 1/2. 

Multiplkation Theorem for Condi lional Probabi lit}' 

$upposc A and B are cvcnts in a samplc �pacc S with P(A) > O. By dcfinition of conditional 
probability, 

P(BIA) � 
peA n B) 

peA)  

Multiplying both sides by P(A) gives us  the fo[]owing useful resull: 

Theorem 4.2 (multiplication thoorem for conditional probability): 

peA n B) � P(A)P(BIA) 
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The multiplication theorem gives us a formula for the probability that events A and B both 
occur. It can be extended to three or more events . For three events, we get: 

Corollary 4.3: P(A n B n C) = P(A)P(BIA)P( qA n B) 
That is, the probability that A, B, and e occur is equal to the product of (i) the probability that A 

occurs, (ii) the probability that B occurs, assuming that A occurred, and (iii) the probability that e 
occurs, assuming that A and B have occurred. 

EXAMPLE 4.2 A lot contains 12 items, of which 4 are defective. Three items are drawn at random from the lot, 
one after the other. Find the probability p that all three are nondefective. 

The probability that the first item is nondefective is -&' since eight of 12 items are nondefective. If the first item 
is nondefective, then the probability that the next item is nondefective is ir, since only seven of the remaining 1 1  
items are nondefective. If the first two items are nondefective, then the probability that the last item is nondefective 
is fa, since only 6 of the remaining 10 items are now nondefective. Thus by the multiplication theorem, 

8 7 6 14 p = 12 · 11 · 10 = 55 "" 0.25 

4.3 FINITE STOCHASTlC PROCESSES AND TREE DIAGRAMS 

Consider a (finite) stochastic process, that is, a finite sequence of experiments where each experiment 
has a finite number of outcomes with given probabilities. A convenient way of describing such a process 
is by means of a labeled tree diagram, as illustrated below. The multiplication theorem (Theorem 4.2) 
can then be used to compute the probability of an event which is represented by a given path of the tree. 

EXAMPLE 4.3 

(a) Suppose the following three boxes are given: 
Box X has 10 light bulbs, of which four are defective. 
Box Y has 6 light bulbs, of which one is defective. 
Box Z has 8 light bulbs, of which three are defective. 

A box is chosen at random, and then a bulb is randomly selected from the chosen box. Find the probability p 
that the bulb is nondefective. 

Here we perform a sequence of two experiments: 

(i) Select one of the three boxes. 
(ii) Select a bulb which is either defective (D) or nondefective (N) . 
The tree diagram in Fig. 4-2 describes this process and gives the probability of each branch of the tree. The 
multiplication theorem tells us that the probability of a given path of the tree is the product of the probabilities 

Fig. 4-2 
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of cac.h brallch of Ihe path. ror cxamplc. ¡he probabiJity of sc1ccling box X and thcn a nOlldcfcctivc bulb N 
from box X is 

1 J � 
J 5 5 

Sincc ¡hefe are ¡hree disjoim palhs which lcad 10 a nondcrcctivc bulb N, ¡he sum of ¡he probabilitics of ¡hese 
paths gives liS ¡he required probability. Namely, 

1 3 1 5 1 5 247 
P = P(N) = _ . _+_ . _ +_ . - = - ::::; 0.686 3 5 ] 6 3 8 360 

(h) Considcr ¡he slochastic proccss in part (a). Ir a nondcfccti'lc bulb N is choscn. find ¡he probability Iha! the 
bulk camc from box Z. In othcr words. find P(ZjN), ¡he conditional probability of box Z givcn a non-
dcfcctivc bulb N. 

No\\! hox Z and a nondcfcctivc bulb N can only occur on ¡he botlom path, which has probability 
1 5 5 .  5 247 ') . '8 = 24' ¡hal IS, P(Z n N) = 24" Furthennore, by (ti) we have P(N) = 360. ThllS, by the definition of 
conditional probability, 

PIZIN) � 
I'IZ n N) 

P(N) 
5/24 75 

247/360 = 247 = 0.304 

In olher words, we divide Ihe probabilily of Ihe slleeessflll palh by the probabilily of Ihe redllced samplc spaee 
consisting of alJ ¡he paths leading lo N. 

4.4 TOTAL I�ROHABI.LITY ANO HA Y":S' fORMULA 

Suppose a sel S is tite un ion of mutually disjoilll subsets A ¡ ,  A2, . . .  ,A,,, and suppose E is any subset 
of S. Then, as illustrated in Fig. 4-3 for the case 11 = 3, 

E �  E n S �  E n  (A, U A2 U . .  · U  A,,) � (E n A , )  U (E n A,) U · · ·  u (E n A,,) 

Moreovcr, the 11 subsets on the right in the above equation are a[so mutually disjoint. 

.<, 

( 

.<, 

E 

S 
"-ig. 4-3 

.<, 

Now suppose S is a samp[e space and the aboye subsets A l ,  A2, . . .  , An, E are events. Since the 
E n  Ak are disjoint, we gel 

PIE) � p(En A,)  + PIE n A2) + . . .  + PIE n A,,) 

Using the multip[ication theorem for conditiona[ probability, we a[so get 

PIE n A,) � P(A, n E) � P(A,)P(EIA,) 

Tltus we arrive at the fo[[owing tlteorcm. 

Tlteorem 4.4 (total probahility): let E be an event in a sample space S, Hnd [el A l )  A2 , . . .  , A" be 
mutually disjoint events whose un ion is S. Then 

PIE) � P(A,)P(EIA,) + P(A,)P(EIA2) + . . .  + P(A,,)P(EIA,,) 
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The equation in Theorem 4.4 is called the law of total probability. Note that the sets Al , A2 , . . .  , An 
are pairwise disjoint and their union is all of S. That is, the As form a partition of S. 

EXAMPLE 4.4 A factory uses three machines X, Y, Z to produce certain items. Suppose: 

(1) Machine X produces 50 percent of the items, of which 3 percent are defective. 
(2) Machine Y produces 30 percent of the items, of which 4 percent are defective. 
(3) Machine Z produces 20 percent of the items, of which 5 percent are defective. 

Find the probability p that a randomly selected item is defective. 
Let D denote the event that an item is defective. Then, by the law of total probability, 

P(D) = P(X)P(DIX) + P( Y)P(DI Y) + P(Z)P(DIZ) 
= (0. 50) (0.03) + (0.30) (0.04) + (0.20) (0.05) = 0.037 = 3.7 percent 

Bayes' Theorem 

Suppose the events Al , A2 , . . .  , An do form a partition of the sample space S, and E is any event. 
Then, for k = 1 , 2, . . .  , n, the multiplication theorem for conditional probability tells us that 
P(Ak n E) = P(Ak)P(EIAk) . Therefore, 

P(A lE) = P(Ak n E) = P(Ak)P(EIAk) k P(E) P(E) 
Using the law of total probability (Theorem 4.4) for the denominator P(E) , we arrive at the next 
theorem. 

Theorem 4.5 (Bayes' formula): Let E be an event in a sample space S, and let Al , A2 , . . .  , An be disjoint 
events whose union is S. Then, for k = 1 , 2, . . .  , n, 

The aboye equation is called Bayes' rule or Bayes' formula, after the English mathematician Thomas 
Bayes (1702-61). Ifwe think of the events Al , A2 , . . .  , An as possible causes of the event E, then Bayes' 
formula enables us to determine the probability that a particular one of the As occurred, given that E 
occurred. 

EXAMPLE 4.5 Consider the factory in Example 4.4. Suppose a defective item is found among the output. Find 
the probability that it carne from each of the machines, that is, find P(XID), P( YID), and P(ZID). 

Recall that P(D) = P(X)P(DIX) + P( Y)P(DI Y) + P(Z)P(DIZ) = 0.037. Therefore, by Bayes' formula, 

P(XID) = P(X)P(DIX) = (0. 50) (0.03) = .!2 = 40.5  percent P(D) 0.037 37 

( I ) - P( Y)P(DI Y) _ (0.30) (0.04) _ 12 _ P Y D - P(D) - 0.037 - 37 - 32.5 percent 

P(ZID) = P(Z)P(DIZ) = (0.20) (0.05) = � = 27.0 percent P(D) 0.037 37 

Stochastic Interpretation of Total Probability and Bayes' Formula 

Frequently, problems involving the total probability law and Bayes' formula can be interpreted as a 
two-step stochastic process. Figure 4-4 gives the stochastic tree corresponding to Fig. 4-3, where the 
first step in the tree involves the events Al , A2 , A3 , which partition S, and the second step involves the 
arbitrary event E. 
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Fig. 4-4 

Suppose we want P(E) . Using the tree diagram, we obtain 

Furthermore, for k = 1 , 2, 3 , 

P(A lE) = P(Ak n E) = P(Ak)P(EIAk) k P(E) P(E) 
P(Ak)P(EIAk) 

[CHAP. 4 

Observe that the aboye two formulas are simply the total probability law and Bayes' formula, for the 
case n = 3. The stochastic approach also applies to any positive integer n. (See Problem 4. 12.) 

4.5 INDEPENDENT EVENTS 

Events A and B in probability space S are said to be independent if the occurrence of one of them 
does not infiuence the occurrence of the other. More specifically, B is independent of A if P(B) is the 
same as P(BIA). Now, substituting P(B) for P(BIA) in the multiplication Theorem 4.2, that is, 
P(A n B) = P(A)P(BIA) , yields: 

I P(A n B) = P(A)P(B) I 
We formally use the aboye equation as our definition of independence. 

Definition: Events A and B are independent if P(A n B) = P(A)P(B) ; otherwise they are dependent. 
We emphasize that independence is a symmetric relation. In particular: 

P(A n B) = P(A)P(B) implies both P(BIA) = P(B) and P(A IB) = P(A) 

Note also that disjoint (mutually exclusive) events are not independent unless one of them has zero 
probability. That is, suppose A n B = 0 and A and B are independent. Then 

P(A)P(B) = P(A n B) = O and so P(A) = O or P(B) = O 
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EXAMPLE 4.6 A fair coin is tos sed three times, yielding the equiprobable space 

Consider the events: 
S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} 

A = {first toss is heads} = {HHH, HHT, HTH, HTT} 
B = {second toss is heads} = {HHH, HHT, THH, THT} 
C = {exactly two heads in a row} = {HHT, THH} 

1 1 5  

Clearly A and B are independent events; this fact is verified below. On the other hand, the relationship between A 
and C and between B and C is not obvious. We claim that A and C are independent, but that B and C are 
dependent. Note that: 

Also, 

4 1 peA) = "8 = 2 ' 4 1 P(B) = "8 = 2 ' 
2 1 P(C) = - = -8 4 

peA n B) = P( {HHH, HHT}) = � , p(A n C) = P({HHT}) = � , P(B n C) = P( {HHT, THH}) = � 
Accordingly, 

1 1 1 P(A)P(B) = 2 · 2  = 4" = peA n B) , 

1 1 1 P(A)P( C) = 2 · 4"  = "8 = peA n C) , 

1 1 1 P(B)P(C) = 2 · 4"  = "8 # p(B n C) , 

so A and B are independent 

so A and C are independent 

so B and C are dependent 

Frequently, we will postulate that two events are independent, or the experiment itself will imply 
that two events are independent. 

EXAMPLE 4.7 The probability that A hits a target is i, and the probability that B hits the target is �. Both shoot 
at the target. Find the probability that at least one of them hits the target, i.e. that A or B (or both) hit the target. 

Here peA) = ! and P(B) = �, and we seek peA U B) . Furthermore, we assume that A and B are independent 
events; that is, that the probability that A or B hit s the target is not influenced by what the other does. Therefore: 

1 2 1 peA n B) = P(A)P(B) = 4" . "5 = 10 
Accordingly, by the addition rule, Theorem 3.6, 

1 2 1 1 1  peA U B) = peA) + P(B) - peA n B) = - + - - - = -
4 5 10 20 

Independence of Three or More Evenfs 

Three events A, B, e are independent if the following two conditions hold: 

(1) They are pairwise independent; that is, 

P(A n B) = P(A)P(B) , 
(2) P(A n B n C) = P(A)P(B)P( C) 

P(A n C) = P(A)P(C) , P(B n C) = P(B)P( C) 

Problem 4. 17 shows that pairwise independence does not imply independence, that is, (1) does not imply 
(2); and Problem 4. 1 8  shows that (2) does not imply (1). 

Independence of more than three events is defined analogously. Namely, the events A¡ , A2 , . . .  , An 
are independent if any proper subset of them is independent and 

Observe that induction is used in this definition. 
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4.6 INDEPENDENT REPEATED TRIALS 

Previously we discussed probability spaces which were associated with an experiment repeated 
a finite number of times, such as the tossing of a coin three times. This concept of repetition is 
formalized as foHows: 

Definition: Let S be a finite probability space. By the space of n independent repeated trials, we 
mean the probability space Sn consisting of ordered n-tuples of elements of S, with the 
probability of an n-tuple defined to be the product of the probabilities of its components: 

P( (s¡ , S2 , . . .  , sn) ) = P(s¡ )P(S2) . . .  P(sn) 

EXAMPLE 4.8 Suppose that whenever three horses a, b, e race together, their respective probabilities of winning 
are 1/2, 1 /3, and 1 /6. In other words: 

s = {a, b, e}, with 1 
pea) = 2 ' and 

If the horses race twice, then the sample space S2 of the two repeated trials follows: 
S2 = {aa, ab, ae, ba, bb, be, ca, eb, ce} 

1 P(e) = "6 

For notational convenience, we have written ae for the ordered pair (a, e). The probability of each point in S2 
follows: 

1 ( 1 ) 1 P(aa) = P(a)P(a) = 2 2 = 4 
1 ( 1 ) 1 P(ab) = P(a)P(b) = 2 "3 = "6 
1 ( 1 ) 1 P(ae) = P(a)P(e) = 2 "6 = 12 

1 P(ba) = "6 

P(bb) = � 
1 P(be) = 18 

1 P(ea) = 12 
1 P(eb) = 18 

1 P(ee) = 36 
Thus the probability that e wins the first race and a wins the second race is P(ea) = n:. 
Repeated Trials as a Stochastic Process 

A repeated-trials process may also be viewed as a stochastic process whose tree diagram has the 
foHowing properties: 

(i) Each branch point has the same outcomes. 
(ii) AH branches leading to the same outcome have the same probability. 

For example, the tree diagram for the repeated-trials process in Example 4.8 appears In Fig. 4-5. 
Observe that: 

(i) Each branch point has outcomes a, b, c .  

(ii) AH branches leading to outcome a have probability !' to outcome b have probability t, 
and to outcome c have probability i-

These two properties are expected, as noted aboye. 

a �----"-

e <tE:-----''-

Fig. 4-5 



CHAP. 4] CONDITIONAL PROBABILITY AND INDEPENDENCE 1 1 7 

Solved Problems 

CONDITlONAL PROBABILlTY 

4.1. Three fair coins, a penny, a nickel, and a dime, are tossed. Find the probability p that they are 
all heads if: (a) the penny is heads, (b) at least one of the coins is heads, (e) the dime is tails. 

The sample space has eight elements: 

s = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} 

(a) If the penny is heads, the reduced sample space is A = {HHH, HHT, HTH, HTT}. Since the coins 
are aH heads in 1 of 4 cases, p = 1 /4. 

(b) If one or more of the coins is heads, the reduced sample space is 

B = {HHH, HHT, HTH, HTT, THH, THT, TTH} 

Since the coins are aH heads in 1 of 7 cases, p = 1/7. 
(e) If the dime is tails, the reduced sample space is C = {HTH, HTT, TTH, TTT}. None contains aH 

heads; hence p = o.  

4.2. A pair of fair dice is thrown. Find the probability p that the sum is 10 or greater if: (a) 5 appears 
on the first die, (b) 5 appears on at least one die. 

Figure 3-3 shows the 36 ways the pair of dice can be thrown. 

(a) If a 5 appears on the first die, then the reduced sample space has six elements: 

A = { (  5, 1 ) ,  (5, 2) ,  (5, 3) ,  (5, 4), (5, 5) , (5, 6)} 

The sum is 10 or greater on two of the six outcomes: (5, 5) , (5, 6) . Hence p = � = !. 
(b) If a 5 appears on at least one of the dice, then the reduced sample space has eleven elements: 

B = { (  5, 1 ) ,  (5, 2), (5, 3) ,  (5 , 4) ,  (5 , 5) , (5, 6) , ( 1 ,  5) , (2, 5) , (3, 5) , (4, 5) , (6, 5)} 
The sum is 10 or greater on three of the eleven outcomes: (5, 5) , (5 , 6) , (6, 5) . Hence p = k 

4.3. In a certain college town, 25 percent of the students failed mathematics, 1 5  percent failed 
chemistry, and 10 percent failed both mathematics and chemistry. A student is selected at 
random. 

(a) If the student failed chemistry, what is the probability that he or she failed mathematics? 
(b) If the student failed mathematics, what is the probability that he or she failed chemistry? 
(e) What is the probability that the student failed mathematics or chemistry? 
(d) What is the probability that the student failed neither mathematics nor chemistry? 

(a) The probability that a student failed mathematics, given that he or she failed chemistry, is 

( I ) - P(M n C) _ 0 . 10 _ � P M C - P( C) - 0. 1 5  - 3 

(b) The probability that a student failed chemistry, given that he or she failed mathematics is 

P( ClM) = P( C n M) = 0 . 10 = � 
P(M) 0.25 5 

(e) By the addition rule (Theorem 3 .6), 

P(M U C) = P(M) + P(C) - p(M n C) = 0.25 + 0 . 1 5  - 0 . 10 = 0.30 
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(d) Students who failed neither mathematics nor chemistry form the complement of the set M U e; that is, 
form the set (M U ej" .  Hence 

P((M u ej") = 1 - P(M U e) = 1 - 0.30 = 0.70 

4.4. Let A and B be events with P(A) = 0.6, P(B) = 0.3, and P(A n B) = 0.2. Find: 
(a) P(A IB) and P(BIA) , (b) P(A U B) , (e) P(AC) and P(BC) .  
(a) By definition of conditional probability, 

P(A IB) = peA n B) = 0.2 = � 
P(B) 0.3 3 ' 

P(BIA) = peA n B) = 0.2 = � 
peA) 0.6 3 

(b) By the addition rule, Theorem 3.6, 

peA U B) = peA) + P(B) - peA n B) = 0.6 + 0.3 - 0.2 = 0.7 

(e) By the complement rule, 

P(AC) = 1 - peA) = 1 - 0.6 = 0.4 and P(BC) = 1 - P(B) = 1 - 0.3 = 0.7 

4.5. Consider the data in Problem 4.4. Find: (a) P(AC IBC) , (b) P(ff IAC). 
First compute P(AC n BC) .  By De Morgan's law, (A U Bj" = AC n ff. Hence, by the complement 

rule, 
P(AC n BC) = pecA U Bj") = 1 - peA U B) = 1 - 0.7 = 0.3 

(a) P(AC IBC) = P(AC n BC) = 0.3 = � 
P(B") 0.7 7 

(b) (ffl C) = P(AC n BC) = 0.3 = � P A P(AC) 0.4 4 

4.6. A class has 12 boys and 4 girls. Suppose three students are selected at random [rom the 
class. Find the probability p that they are all boys. 

The probability that the first student selected is a boy is 12/ 16  since there are 12 boys out of 1 6  
students. If the first student i s  a boy, then the probability that the second i s  a boy i s  1 1 / 1 5, since there 
are 1 1  boys left out of 1 5  students. Finally, if the first two students selected were boys, then the probability 
that the third student is a boy is 10/14, since there are 10 boys left out of 14 students. Thus, by the 
multiplication theorem, the probability that all three are boys is 

Another Method 

12 1 1  10 1 1  p = 16 · 15 · 14 = 28 

There are C(16 ,  3) = 560 ways to select 3 students out of the 1 6  students, and C(12, 3) = 220 ways to select 3 
boys out of 12 boys; hence 

Another Method 

220 1 1  p = 560 = 28 

If the students are selected one after the other, then there are 16 . 1 5  . 14 ways to select three students, and 
12 · 1 1 . 10 ways to select three boys; hence 

12 · 1 1 · 10 1 1  p = 16 · 1 5 · 14  = 28 



CHAP. 4] CONDITIONAL PROBABILITY AND INDEPENDENCE 1 1 9 

4.7. Find P(BIA) if: (a) A is a subset of B, (b) A and B are mutually exclusive (disjoint). (As sume 
P(A) > O.) 
(a) If A is a subset of B (as pictured in Fig. 4-6(a)), then whenever A occurs B must occur; hence 

P(BIA) = 1 .  Alternatively, if A is a subset of B, then A n B = A; hence 

P(BIA) = peA n B) = peA) = 1 peA) peA) 

(b) If A and B are mutually exclusive, i.e. disjoint (as pictured in Fig. 4-6(b)), then whenever A occurs B 
cannot occur; hence P(BIA) = O. Alternatively, if A and B are disjoint, then A n B = 0; hence 

peA n B) P(0) O P(BIA) = peA) = peA) = peA) = O 

(a) A � B (b) A n B 0 

Fig. 4-6 

FINITE STOCHASTlC PROCESSES 

4.8. Let X, Y, Z be three coins in a box. Suppose X is a fair coin, Y is two-headed, and Z is 
weighted so that the probability of heads is 1/3. A coin is selected at random and is tossed. 
(a) Find the probability that heads appears, that is, find P(H). 
(b) If heads appears, find the probability that it is the fair coin X, that is, find P(Xlh). 
(e) If tails appears, find the probability it is the coin Z, that is, find P(ZI T) .  

Construct the corresponding two-step stochastic tree diagram in Fig. 4-7(a). 

(a) Heads appears along three of the paths; hence 

1 1 1 1 1 1 1  P(H) = 3 . 2 + 3 . 1 + 3 · 3 = 18 
(b) Note X and heads H appear only along the top path m Fig. 4-7(a); hence p(X n H) = 

( 1 /3 ) ( 1/2) = 1/6. Thus 

p(x n H) 1/6 3 P(XIH) = P(H) = 1 1/ 1 8  = 11 

(e) P(T) = 1 - P(H) = 1 - 1 1 /18  = 7/18 . Alternatively, tails appears along two of the paths and so 

1 1 1 2 7 P( T) = 3 . 2 + 3 . 3 = 18 
Note that Z and tails T appear only along the bot1om path in Fig. 4-7(a); accordingly, we have 
peZ n T) = ( 1/3) (2/3) = 2/9. Thus 

( I ) - pez n T) _ 2/9 _ � P Z T - P(T) - 7/18 - 7 
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R 

w 

R 

w 

R 

w 

(a) (b) 

Fig. 4-7 

4.9. Suppose the following three boxes are given: 

Box A contains 3 red and 5 white marbles. 
Box B contains 2 red and 1 white marbles. 
Box e contains 2 red and 3 white marbles. 

A box is selected at random, and a marble is randomly drawn from the box. If the marble is red, 
find the probability that it came from box A. 

Construct the corresponding stochastic tree diagram as in Fig. 4-7(b). We seek P(A IR) ,  the probability 
that A was selected, given that the marble is red. Thus it is necessary to find P(A n R) and P(R) . Note 
that A and R only occur on the top path; hence P(A n R) = ( 1 /3) (3/8) = 1 /8. There are three paths 
leading to a red marble R; hence 

Thus 

1 3 1 2 1 2 1 73 P(R) = - . -+ - . -+ - . - = - "" 0.48 3 8 3 3 3 5 360 

P(A IR) = P(A n R) = 1/8 = � "" 0.26 
P(R) 1 73/360 173 

4.10. Suppose the following two boxes are given: 

Box A contains 3 red and 2 white marbles. 
Box B contains 2 red and 5 white marbles. 

Fig. 4-8 
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A box is  selected at random; a marble is  drawn and put into the other box; then a marble is 
drawn from the second box. Find the probability p that both marbles drawn are of the same 
color. 

Construct the corresponding stochastic tree diagram as in Fig. 4-8 . Note that this is a three-step 
stochastic process: (1) choosing a box, (2) choosing a marble, (3) choosing a second marble. Note that 
if box A is selected and a red marble R is drawn and put into box B, then box B will have 3 red marbles 
and 5 white marbles. 

There are four paths which lead to two marbles of the same color; hence 
1 3 3 1 2 3 1 2 2 1 5 1 901 p = "2 . "5 . "8 + "2 . "5 . 4" + "2 . "7 . "3 + "2 . "7 . "2 = 1 680

"" 0.536 

LAW OF TOTAL PROBABILlTY, BAYES' RULE 

4.11. In a certain city, 40 percent of the people consider themselves Conservatives (e), 35 percent 
consider themselves to be Liberals (L), and 25 percent consider themselves to be Independents 
(l). During a particular election, 45 percent of the Conservatives voted, 40 percent of the 
Liberals voted, and 60 percent of the Independents voted. If a randomly selected person 
voted, find the probability that the voter is (a) Conservative, (b) Liberal, (e) Independent. 

Let V denote the event that a person voted. We need P( V) .  By the law of total probability, 

P( V) = P(C)P( VIC) + P(L)P( VIL) + P(I)P( VII) 
= (0.40) (0.45) + (0.35) (0.40) + (0.25)(0.60) = 0.47 

By Bayes' rule: 

(CI ) = P(C)P( VIC) = (0.40) (0.45) = � "" 38 30;' (a) P V P( V) 0.47 47 . 
° 

(b) P(LI V) = P(L)P( VIL) = (0.35) (0.40) = 14 "" 29.8% P( V) 0.47 47 

(e) P(II V) = P(I)P( VII) = (0.25) (0.60) = .!2 "" 3 1 .9% P( V) 0.47 47 

4.12. Suppose a student dormitory in a college consists of the following: 

(1) 30 percent are freshmen of whom 10 percent own a car 
(2) 40 percent are sophomores of whom 20 percent own a car 
(3) 20 percent are juniors of whom 40 percent own a car 
(4) 10 percent are seniors of whom 60 percent own a car 

A student is randomly selected from the dormitory. 

(a) Find the probability that the student owns a car. 
(b) If the student owns a car, find the probability that the student is a junior. 

Let A, B, C, D denote, respectively, the sets of freshmen, sophomores, juniors, and seniors, and let E 
denote the set of students who own a car. Figure 4-9 is a stochastic tree describing the given data. 
(a) We seek P(E) .  By the law of total probability 

P(E) = (0.30) (0. 10) + (0.40) (0.20) + (0.20) (0.40) + (0.10) (0.60) 
= 0.03 + 0.08 + 0.08 + 0.06 = 0.25 = 25% 

(Alternatively, using Fig. 4-9, add the four paths to E to obtain P(E) = 0.25 = 25%.) 
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(b) We seek P(ClE) .  By  Bayes' formula: 

Fig. 4-9 

P(ClE) = P(C)P(EIC) = (0.20)(0.40) = � = 320;' 
P(E) 0.25 25 ° 

[CHAP. 4 

Alternatively, using Fig. 4-9, divide the successful path containing C and E with probability 

(20%) (40%) = 8% 

by  the sum of  the paths to E with probability 2 5  percent to obtain P (  ClE) = 32  percent. 

4.13. In a certain college, 4 percent of the men and 1 percent of the women are taller than 6 feet. 
Furthermore, 60 percent of the students are women. Suppose a randomly selected student is 
taller than 6 feet. Find the probability that the student is a woman. 

Let A = {students taller than 6 feet} .  We seek P( WIA), the probability that a student i s  a woman 
given that the student is taller than 6 feet. By Bayes' formula, 

P(A I W)P( W) P( WIA) = -=-P(-;-A=I W=)C-::p-7-:( W=):-+
-'--

P="(--:-A:':-IM=)P-=-(;-:-M=) 

INDEPENDENT EVENTS 

1 % · 60% 3 
1 % · 60% + 4% . 40% = TI "" 0.27 

4.14. The probability that A hit s a target is t and the probability that B hits a target is !. They both 
fire at the target. Find the probability that: 

(a) A does not hit the target 
(b) Both hit the target 

(e) One of them hit s the target 
(d) Neither hit s the target 

We are given peA) = t and P(B) = � (and we assume the events are independent). 

(a) P(not A) = P(AC) = 1 - peA) = 1 - t = �. 
(b) Since the events are independent, 

1 1 1 peA and B) = peA n B) = peA) . P(B) = "3 . "5  = 15 

(e) By the addition rule, Theorem 3.6, 

1 1 1 7 peA or B) = peA U B) = peA) + P(B) - peA n B) = "3 + "5 - 15  = 15 

(d) By De Morgan's law, "Neither A nor B" is the complement of A U B. Hence 

P(neither A nor B) = pecA U Bn = 1 - peA U B) = 1 - 1
7
5 = 1

8
5 
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4.15. Consider the following events for a family with children: 

A = (children of both sexes} ,  B = {at most one boy} 

(a) Show that A and B are independent events if a family has three children. 
(b) Show that A and B are dependent events if a family has only two children. 

(a) We have the equiprobable space S = {bbb, bbg, bgb, bgg,gbb, gbg,ggb, ggg}. Here 

A = {bbg, bgb, bgg, gbb,gbg,ggb} 

B = {bgg,gbg,ggb, ggg} 
A n B  = {bgg,gbg,ggb} 

so 
so 
so 

peA) = i = i 
P(B) = � = !  

p(A n B) = i 
Since P(A)P(B) = i · ! = i = peA n B), A and B are independent. 

(b) We have the equiprobable space S = {bb, bg,gb ,gg} . Here 

A = {bg,gb} 
B = {bg,gb, gg} 

A n B = {bg,gb} 

Since P(A)P(B) el peA n B), A and B are dependent. 

so 
so 
so 

peA) = ! 
P(B) = i 

p(A n B) = ! 

123 

4.16. Box A contains 5 red marbles and 3 blue marbles, and Box B contains 3 red and 2 blue. A 
marble is drawn at random from each box. 

(a) Find the probability p that both marbles are red. 
(b) Find the probability p that one is red and one is blue. 

(a) The probability of choosing a red marble from A is i and from B is l Since the events are inde­
pendent, 

5 3 3 
P = S · S = S 

(b) The probability of choosing a red marble from A and a blue marble from B is PI = i ·  � = *" The 
probability of choosing a blue marble from A and a red marble from B is P2 = i · � = Ici. Hence 

4.17. Consider an equiprobable space S = {a, b, c, d}; hence each elementary event has the same 
probability p = �. Consider the events A = {a, d}, B = {b, d}, e = {c, d}. 
(a) Show that A, B, e are pairwise independent. (b) Show that A, B, e are not independent. 

(a) Here peA) = P(B) = P( C) = !. Since A n B = {d}, 

peA n B) = P( {d}) = � = P(A)P(B) 

Hence A and B are independent. Similarly, A and C are independent; and B and C are independent. 
(b) Here A n B n C = {d}, so peA n B n C) = *. Therefore, 

P(A)P(B)P( C) = � el peA n B n C) 

Accordingly, A, B, C are not independent. 
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4.18. Consider an equiprobable space S = { 1 ,  2, 3, 4, 5 , 6 , 7 ,  8} ;  hence each elementary event has prob­
ability 1/8. Consider the events: 

A = { 1 , 2, 3 , 4} ,  B = {2, 3 , 4, 5} , 

(a) Show that P(A n B n C) = P(A)P(B)P( C) . 
(b) Show that: 

(i) P(A n B) =1= P(A)P(B) 
(ii) P(A n e) =1= P(A)P( C) 
(iii) P(B n e) =1= P(B)P( C) 

(a) Here peA) = P(B) = P( e) = � = l Since A n B n e = {4}, 

e = {4, 6, 7, 8} 

peA n B n e) = k = P(A)P(B)P( e) 

(b) (i) A n B = {3 , 4, 5}, so peA n B) = l But P(A)P(B) = �; hence peA n B) =1= P(A)P(B) . 
(ii) A n e = {4}, so peA n e) = k- But P(A)P( e) = �; hence peA n e) =1= P(A)P( e) . 
(iii) B n e = {4}, so P(B n e) = k- But p(B)p(e) = �; hence P(B n e) =1= p(B)p(e) .  

4.19. Prove: If A and B are independent events, then AC and ff are independent events. 

Let peA) = x and P(B) = y. Then P(AC) = 1 - x and P(BC) = 1 - y. Since A and B are inde­
pendent, peA n B) = P(A)P(B) = xy. Furthermore, 

peA U B) = peA) + P(B) - peA n B) = x + y - xy 
By De Morgan's law, (A U B)" = AC n BC; hence 

On the other hand, 

P(AC n BC) = pecA U Bn = 1 - peA U B) = 1 - x - y + xy 

P(AC)P(BC) = (1 - x) ( 1 - y) = 1 - x - y + xy 
Thus P(AC n BC) = P(AC)P(BC), and so AC and BC are independent. 

In similar fashion, we can show that A and Be, as well as AC and B, are independent. 

REPEATED TRIALS 

4.20. A fair coin is tossed three times. Find the probability that there will appear: (a) three heads, (b) 
exactly two heads, (e) exactly one head, (d) no heads. 

Let H denote a head and T a tail on any toss. The three tosses can be modeled as an equiprobable 
space in which there are eight possible outcomes: 

s = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} 

However, since the result on any one tos s does not depend on the result of any other toss, the three tosses 
may be modeled as three independent trials in which P(H) = ! and P(T) = ! on any one tria!. Then: 

(a) P(three heads) = P(HHH) = ! . ! . ! = k-
(b) P(exactly two heads) = P(HHT or HTH or THH) 

= !+ ! + !+ !+ !+ ! = i 
(e) As in (b), P(exactly one head) = P(exactly two tails) = i. 
(d) As in (a) , peno heads) = P(TTT) = k-
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4.21. Whenever horses a, b, e, d race together, their respective probabilities ofwinning are 0.2, 0.5, 0. 1 ,  
0.2. That is, S = {a, b ,  e ,  d}, where P(a) = 0.2, P(b) = 0.5, P(e) = 0 . 1 ,  and P(d) = 0.2. They 
race three times. 

(a) Describe and find the number of elements in the product probability space S3 . 
(b) Find the probability that the same horse wins aH three races. 
(e) Find the probability that a, b, e each win one race. 
(a) By definition, S3 = S X S x S = { (x,y, z) : x, y, z E S} and 

P((x,y, z)) = P(x)P(y)P(z) 
Thus, in particular, S3 contains 43 = 64 elements. 

(b) Writing xyz for (x, y, z) , we seek the probability of the event 

A = {aaa, bbb, cee, ddd} 
By definition 

P(aaa) = (0.2)3 = 0.008, 

P(bbb) = (0.5)3 = 0 . 125, 

Thus peA) = 0.0008 + 0 . 125 + 0.001 + 0.008 = 0 . 142. 
(e) We seek the probability of the event 

P(eee) = (0. 1 )3 = 0.001 

P(ddd) = (0.2) 3 = 0.008 

B =  {abe, aeb, bae, bea, eab, eba} 
Every element in B has the same probability 

p = (0.2) (0.5 ) (0 . 1 )  = 0.0 1 .  Hence P(B) = 6 (0.0 1 )  = 0.06. 

4.22. A certain soccer team wins (W) with probability 0.6, loses (L) with probability 0.3, and ties 
(T) with probability 0. 1 .  The team plays three games over the weekend. (a) Determine 
the elements of the event A that the team wins at least twice and does not lose; and find 
P(A) . (b) Determine the elements of the event B that the team wins, loses, and ties in some 
order; and find P(B) . 
(a) A consists of aH ordered triples with at least two Ws and no Ls. Thus 

A = {WWW, WWT, WTW, TWW} 
Furthermore, 

peA) = P(WWW) + P(WWT) + P(WTW) + P(TWW) 
= (0.6) (0.6) (0.6) + (0.6) (0.6) (0. 1 )  + (0.6) (0. 1 ) (0.6) + (0. 1 ) (0.6) (0.6) 
= 0.216 + 0.036 + 0.036 + 0.036 = 0.324 

(b) Here B = {WLT, WTL, LWT, LTW, TWL, TLW}. Every element in B has probability 

p = (0.6) (0.3) (0. 1 )  = 0 .018 ;  hence P(B) = 6 (0.0 18) = 0 . 108 

4.23. A certain type ofmissile hits its target with probability p = 0.3. Find the number ofmissiles that 
should be fired so that there is at least an 80 percent probability of hitting the target. 

The probability ofmissing the target is q = 1 - p = 0.7. Hence the probability that n missiles miss the 
target is (0.7r. Thus we seek the smaHest n for which 

1 - (0.7r > 0.8 or equivalently (0.7r < 0.2 
Compute: 

(0.7) 1 = 0.7, (0.7)2 = 0.49, (0.7)3 = 0.343, (0.7)4 = 0.2401 ,  (0.7) 5 = 0 . 1 68 07 

Thus at least five missiles should be fired. 
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4.24. The probability that a man hit s a target is 1/3. He fires at the target n = 6 times. (a) Describe 
and find the number of elements in the sample space S. (b) Let E be the event that he hit s 
the target exactly k = 2 times. List the elements of E and find the number n(E) of elements 
in E. (e) Find P(E) . 
(a) S consists of aH 6-element sequences consisting of S's (successes) and F's (failures); hence S contains 

26 = 64 elements. 
(b) E consists of aH sequences with two S's and four F's; hence E consists of the foHowing elements: 

SSFFFF, SFSFFF, SFFSFF, SFFFSF, SFFFFS, FSSFFF, FSFSFF, FSFFSF, 
FSFFFS, FFSSFF, FFSFSF, FFSFFS, FFFSSF, FFFSFS, FFFFSS 

Observe that the list contains 1 5  elements. (This is expected since we are distributing k = 2 let1ers S 
among the n = 6 positions in the sequence, and C(6, 2) = 1 5 .) Thus n(E) = 15 .  

(e) Here peS) = 1 /3, so P(F) = 1 - peS) = 2/3. Thus each of the aboye sequences occurs with the same 
probability 

p = ( 1 /3)2 (2/3)4 = 1 6/729 
Hence P(E) = 1 5 ( 1 6/729) = 80/243 "" 33%. 

Supplementary Problems 

CONDITIONAL PROBABILITY 

4.25. A fair die is tossed. Consider events A = {2, 4, 6}, B = { 1 ,  2}, e = { 1 ,  2, 3, 4}. Find: 
(a) peA and B) and peA or e) (e) p(A le) and P(qA) 
(b) P(AIB) and P(BIA) (d) p(Bl e) and P(qB) 

4.26. A pair of fair dice is tos sed. If the faces appearing are different, find the probability that: 
(a) The sum is even, (b) The sum exceeds 9. 

4.27. Let A and B be events with peA) = 0.6, P(B) = 0.3, peA n B) = 0.2. Find: 
(a) peA U B), (b) P(A IB), (e) P(BIA). 

4.28. Let A and B be events with peA) = t, P(B) = .j¡, and peA U B) = l 
(a) Find P(A IB) and P(BIA) .  (b) Are A and B independent? 

4.29. Two marbles are selected one after the other without replacement from a box containing 3 white marbles and 
2 red marbles. Find: 
(a) P(2 white), (b) P(2 white I first is white), (e) P(2 red), (d) P(2 red I second is red). 

4.30. Two marbles are selected one after the other with replacement from a box containing 3 white marbles and 2 
red marbles. Find: 
(a) P(2 white), (e) P(2 white I first is white), (b) P(2 red), 

4.31. Two different digits are selected at random from the digits 1 through 5. 

(d) P(2 red I second is red). 

(a) If the sum is odd, what is the probability that 2 is one of the numbers selected? 
(b) If 2 is one of the digits, what is the probability that the sum is odd? 
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4.32. Three cards are drawn in succession (without replacement) from a 52-card deck. Find: 

(a) P(3 aces I first card is an ace), (b) P(3 aces I first two cards are aces) 

4.33. A die is weighted to yield the following probability distribution: 

Number 1 2 3 

Probability 0.2 0 . 1  0 . 1  

Let A = { 1 , 2, 3}, B = {2, 3, 5}, C = {2, 4, 6}. Find: 

(a) P(A), P(B), P( C) (b) P(Ae), P(Be), P( Ce) 
(e) P(AIB), P(BIA) (d) P(A IC), P(qA) 
(e) P(BIC) , P(qB) 

4 

0.3 

5 6 

0 . 1  0.2 
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4.34. In a country club, 65 percent of the members play tennis, 40 percent play golf, and 20 percent play both 
tennis and golf. A member is chosen at random. 

(a) Find the probability that he play s neither tennis nor golf. 
(b) If he plays tennis, find the probability that he plays golf. 
(e) If he plays golf, find the probability that he plays tennis. 

4.35. In a certain college town, 25 percent of the boys and 10 percent of the girls are studying mathematics. The 
girls constitute 60 percent of the student body. If a student is chosen at random and is studying math­
ematics, determine the probability that the student is a girl. 

FINITE STOCHASTIC PROCESSES 

4.36. Two boxes are given as follows: 

Box A contains 5 red marbles, 3 white marbles, and 8 blue marbles. 
Box B contains 3 red marbles, and 5 white marbles. 

A box is selected at random and a marble is randomly chosen. Find the probability that the marble is: 
(a) red, (b) white, (e) blue. 

4.37. Refer to Problem 4.36. Find the probability that box A was selected if the marble is: 
(a) red, (b) white, (e) blue. 

4.38. Two boxes are given as follows: 

Box A contains 5 red marbles, 3 white marbles, and 8 blue marbles. 
Box B contains 3 red marbles and 5 white marbles. 

A fair die is tossed; if a 3 or 6 appears, a marble is randomly chosen from A, otherwise a marble is chosen 
from B. Find the probability that the marble is: (a) red, (b) white, (e) blue. 

4.39. Refer to Problem 4.38. Find the probability that box A was selected if the marble is: 
(a) red, (b) white, (e) blue. 

4.40. A box contains three coins, two of them fair and one two-headed. A coin is randomly selected and tossed 
twice. If heads appear both times, what is the probability that the coin is two-headed? 
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4.41. Two boxes are given as follows: 
Box A contains 5 red marbles, and 3 white marbles. 
Box B contains 1 red marble, and 2 white marbles. 

A fair die is tossed; if a 3 or 6 appears, a marble is randomly chosen from B and put into A and a marble is 
drawn from A, otherwise a marble is chosen from A and put into B and a marble is drawn from B. Find the 
probability that both marbles are: (a) red, (b) white. 

TOTAL PROBABILITY AND BAYES' FORMULA 

4.42. A city is partitioned into districts A, B, C having 20 percent, 40 percent, and 40 percent of the registered 
voters, respectively. The registered voters listed as Democrats are 50 percent in A, 25 percent in B, and 75 
percent in C. 
(a) If a registered voter is chosen randomly in the city, find the probability that the voter is listed as a 

Democrat. 
(b) A registered voter from the city is chosen at random and found to be listed as a Democrat. Find the 

probability that the voter carne from district B. 

4.43. Refer to Problem 4.42. Suppose a district is chosen at random, and then a registered voter is randomly 
chosen from the district. 
(a) Find the probability that the voter is listed as a Democrat. 
(b) If the voter is listed as a Democrat, what is the probability that the voter carne from district A? 

4.44. Women in City College constitute 60 percent of the freshmen, 40 percent of the sophomores, 40 percent of 
the juniors, and 45 percent of the seniors. The school population is 30 percent freshmen, 25 percent 
sophomores, 25 percent juniors, and 20 percent seniors. 
(a) If a student from City College is chosen at random, find the probability that the student is a woman. 
(b) If a student is a woman, what is the probability that she is a sophomore? 

4.45. Refer to Problem 4.44. Suppose one of the classes is chosen, and then a student is randomly chosen from 
the class. 
(a) Find the probability that the student is a woman. 
(b) If the student is a woman, what is the probability that she is a sophomore? 

4.46. A company produces light bulbs at three factories A, B, C. 
Factory A produces 40 percent of the total number of bulbs, of which 2 percent are defective. 
Factory B produces 35 percent of the toal number of bulbs, of which 4 percent are defective. 
Factory C produces 25 percent of the total number of bulbs, of which 3 percent are defective. 

If a defective bulb is found among the total output, find the probability that it carne from: 
(a) factory A, (b) factory B, (e) factory C. 

4.47. Refer to Problem 4.46. Suppose a factory is chosen at random, and one of its bulbs lS randomly 
selected. If the bulb is defective, find the probability that it carne from: 
(a) factory A, (b) factory B, (e) factory C. 

4.48. A test for Alzheimer's disease is 95 percent effective in detecting the disease when it is present, but also gives 
a positive result 10 percent of the time when it is not present (false positive). Suppose 4 percent of the 
population over 65 years have Alzheimer's disease. 
(a) What is the probability that a person over 65 years chosen at random will test positively for the disease? 
(b) Suppose a person over 65 tests positively. What is the probability that the person has the di seas e? 
(e) Suppose a person over 65 tests negatively. What is the probability that the person has the disease? 
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INDEPENDENT EVENTS 

4.49. Let A and B be independent events with P(A) = 0.3 and P(B) = 0.4. Find: (a) P(A n B) and P(A U B), 
(b) P(A IB) and P(BIA) .  

4.50. Box A contains 5 red marbles and 3 blue marbles, and Box B contains 2 red and 3 blue. A marble is drawn 
at random from each box. 
(a) Find the probability p that both marbles are red. 
(b) Find the probability p that one is red and one is blue. 

4.51. Let A and B be events with P(A) = 0.3, P(A U B) = 0.5, and P(B) = p. Find p if: 
(a) A and B are disjoint, (b) A and B are independent, (e) A is a subset of B. 

4.52. The probability that A hits a target is i and the probability that B hits a target is !. They each tire once at 
the target. (a) Find the probability that they both hit the target. (b) Find the probability that the target is 
hit exactly once. (e) If the target is hit only once, what is the probability that A hit the target? 

4.53. The probability that A hit s a target is i and the probability that B hits a target is l They each tire twice. 
Find the probability that the target will be hit at least once? 

4.54. The probabilities that three men hit a target are respectively 0.3, 0.5, and 0.4. Each tires once at the 
target. (As usual, assume that the three events that each hit s the target are independent.) 
(a) Find the probability that they all hit the target. 
(b) Find the probability that exactly one of them hits the target. 
(e) If only one hits the target, what is the probability that it was the tirst man? 

4.55. Three fair coins are tossed. Consider the events: 
A = {all heads or all tails}, B = {at least two heads}, 

Of the pairs (A, B) , (A, C) , and (B, C) , which are independent? 

C = {at most two heads} 

4.56. Suppose A and B are independent events. Show that A and Be are independent, and that Ae and B are 
independent. 

4.57. Suppose A, B, C are independent events. Show that: 
(a) A", B, C are independent; (b) A", B", C are independent; (e) A", B", Ce are independent. 

4.58. Suppose A, B, C are independent events. Show that A and B U  C are independent. 

REPEATED TRIALS 

4.59. Whenever horses a, b, and e race together, their respective probabilities of winning are 0.3, 0 .5, and 
0.2. They race three times. 
(a) Find the probability that the same horse wins all three races. 
(b) Find the probability that a, b, e each win one race. 

4.60. A team wins (W) with probability 0.5, loses (L) with probability 0.3, and ties (T) with probability 0.2. The 
team plays twice. (a) Determine the sample space S and the probability of each elementary event. 
(b) Find the probability that the team wins at least once. 
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4.61. A certain type ofmissile hits its target with probability p = l (a) If 3 missiles are fired, find the probability 
that the target is hit at least once. (b) Find the number of missiles that should be fired so that there is at 
least a 90 percent probability of hitting the target. 

4.62. In any game, the probability that the Hornets (H) will defect the Rockets (R) is 0.6 . Find the probability 
that the Hornets will win a best-out-of-three series. (As sume no ties.) 

4.63. The batting average of a baseball player is .300. He comes to bat 4 times. Find the probability that he will 
get: (a) exactly two hits, (b) at least one hit. 

Ánswers to Supplementary Problems 

4.25. (a) i, t; (b) �, t; (e) �, ¡; (d) �, 1 
4.26. (a) �, (b) ro 
4.27. (a) 0.7, (b) ¡, (eH 
4.28. (a) t, �; (b) No 

4.29. (a) fa, (b) �, (e) fa, (d) � 
4.30. (a) ?S' (b) �, (e) rs, (dn 
4.31. (a) t, (bn 
4.32. (a) 1 / 1275 = 0.08 percent, (b) l /50 = 2 percent 

4.33. (a) 0.4, 0.3, 0.6, (b) 0.6, 0.7, 0.4, (e) ¡, �, (d) i, �, (e) i, t 
4.34. (a) 1 5  percent, (b) 20/65 "" 30. 1 percent, (e) � = 50 percent 

4.35. 6/16 = 37.5 percent 

4.36. (a) 1 1 /32, (b) 1 3/32, (e) 8/32 

4.37. (a) 5/1 1 ,  (b) 3/13, (e) 1 
4.38. (a) 1 7/48 "" 35.4 percent, (b) 23/48 "" 47.9 percent, (e) 8/48 "" 1 6.7 percent 

4.39. (a) 5/17 "" 29.4 percent, (b) 3/23 "" 1 3 .0 percent, (e) 1 
4.40. 2/3 

4.41. (a) 6 1/216 "" 28.2 percent, (b) 499/1296 "" 38 .5 percent 

4.42. (a) 50 percent, (b) 20 percent 

4.43. (a) 50 percent, (b) t 
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4.44. (a) 47 percent, (b) 10/47 "" 21 .3 percent 

4.45. (a) 46.25 percent, (b) 2l .6  percent 

4.46. (a) 80/295 "" 27. 1  percent, (b) 140/295 "" 47.5 percent, (e) 75/295 "" 25.574 percent 

4.47. (a) �, (b) �, (e) � 
4.48. (a) 13 .4 percent, (b) 28 .36 percent, (e) 0.23 percent 

4.49. (a) 0 . 12, 0 .58, (b) 0.3, 0.4 

4.50. (a) i, (b) � 
4.51. (a) 0.2, (b) �, (e) 0.5 

4.52. (a) i2, (b) fi, (en 
4.53. l - i = i 

4.54. (a) 6 percent, (b) 44 percent, (e) 9/44 "" 20.45 percent 

4.55. Only A and B are independent. 

4.59. (a) P(aaa or bbb or eee) = 0.26, (b) 6 (0.03) = 0. 18  

1 3 1  

4.60. (a) S = {WW, WL, WT, LW, LL, LT, TW, TL, TT}; 0.25, 0. 1 5, 0 . 10, 0 . 1 5, 0.09, 0.06, 0 . 10, 0.06, 0.04 

(b) 1 - 0.25 = 0.75 

4.61. (a) 1 - (2/3)3 = 19/27, (b) (2/3r < 10 percent so n > 6 

4.62. P(HH or HRH or RHH) = 64.8 percent 

4.63. (a) 6(0.44) = 26.5  percent, (b) 1 - P(MMMM) "" 76 percent 



Chapter 5 
Random Variables 

5.1 INTRODUCTlON 

The topic of random variables is fundamental to probability and statistics. This chapter formally 
defines a random variable and presents its basic properties. We end the chapter with the Law of Large 
Numbers, on which much of probability and statistics is based. 

A random variable is a special kind of function, so we recall some notation and definitions about 
functions. Let S and T be sets. Suppose to each s E S there is assigned a unique element of T; the 
collection f of such assignments is called a function from S into T, and is written f : S ----t T. We 
write f(s) for the element of T that f assigns to s E S, and call f(s) the image of s under f or the 
value off at s. The imagef(A) of any subset A of S, and the preimagef-1 (B) of any subset B of T are 
defined by: 

f(A) = {f(s) : s E A} and f-l (B) = {s : f(s) E B} 
In words, f(A) consists of the images of points in A, andf-l (B) consists of those points whose images 
belong to B. In particular, the set f(S) of all the image points is called the range (or image) of the 
function f· 

5.2 RANDOM VARIABLES 

Let S be the sample space of an experiment. Frequently, we wish to assign a specific number to 
each outcome of the experiment, e.g. the sum of the numbers on a tos s of a pair of dice, the number of 
aces in a bridge hand, or the time (in hours) it takes for a light bulb to bum out. Such an assignment of 
numerical values is called a random variable. Namely: 

Definition: A random variable X on a sample space S is a rule that assigns a numerical value to each 
outcome of S or, in other words, a function from S into the set R of real numbers. 

Remark: If S is uncountable, then certain real-valued functions on S are not random variables. 
Specifically, X is a random variable if the preimage of every interval of R is an event of S. On the other 
hand, if S is a sample space in which every subset is an event, then every real-valued function on S is a 
random variable. 

The notation Rx will be used to denote the set of numbers assigned by a random variable X, and we 
refer to Rx as the range space. This chapter will mainly investigate discrete random variables, where the 
range space Rx is finite or countable. Continuous random variables, where the range space is a con­
tinuum of numbers, such as an interval or a union of intervals, and which sometimes requires calculus, 
will be treated near the end of the chapter. 

EXAMPLE 5.1 

(a) A fair coin is tossed three times and the sequence of heads (H) and tails (T) is observed. The sample space S 
consists of the following eight elements: 

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} 

132 
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Let X assign to each point in S the largest number of successive heads that occurs. Thus: 

X(TTT) = 0, X(HTH) = X(HTT) = X(THT) = X(TTH) = 1 
X(HHT) = X(THH) = 2, X(HHH) = 3 

Then X is a random variable with range space 
Rx = {O, 1 , 2, 3} 

(b) A pair of fair dice is tossed. The sample space S (pictured in Fig. 3-3) consists of the 36 ordered pairs (a, b), 
where a and b can be any integers between 1 and 6; that is, 

S = { ( I , I ) ,  ( 1 , 2) ,  . . .  , (6, 6)} 
Let X assign to each point (a, b) in S the maximum of the numbers, that is, X(a, b) = max(a, b) . For example, 

X(I ,  1 )  = 1 ,  X(2, 3) = 3 ,  X(4, 4) = 4, X(6, 5) = 6, 
Then X is a random variable and any number between 1 and 6 can occur. Therefore, 

Rx = { 1 , 2, 3 , 4, 5, 6} 

X(6, 6) = 6 

Now let Y assign to each point (a, b) in S the sum of the numbers, that is, Y(a, b) = a + b. For example, 

Y( I ,  1 )  = 2, Y(2, 3) = 5, Y(4, 4) = 8 , Y(6, 5) = 1 1 ,  Y(6, 6) = 12 

Then Y i s  a random variable with range space 
Ry = {2, 3, . . .  , 12} 

That is, no sum can be less than 2 and no sum can exceed 12. 
(e) A point is chosen at random in a circle e with radius r. Let X denote the distance of the point from the center 

of the circle. Then X is a random variable and its range space is the closed interval with endpoints ° and r, 
that is, 

Rx = [O , r] 
Here X is a continuous random variable. 

Sums and Producís of Random Variables 

Let X and Y be random variables on the same sample space S. Then X + Y, X + k, kX, and XY 
are the functions on S defined by 

(X + Y) (s) = X(s) + Y(s) , 
(X + k) (s) = X(s) + k, 

(kX) (s) = kX(s) 
(XY) (s) = X(s) Y(s) 

More generally, for any polynomial or exponential function h(x) , we define h(X) to be the function on S 
defined by 

[h(X)] (s) = h [X(s)] 
It can be shown that these are also random variables. (This is trivial in the case that every subset of S is 
an event.) 

The short notation P(X = a) and P(a :::; X :::; b) will be used, respectively, for the probability that 
"X maps into a" and "X maps into the interval [a, b]" ,  that is: 

and 

P(X = a) == P( {s E S : X(s) = a} 
P(a :::; X :::; b) == P({s E S :  a :::; X(s) :::; b} 

Analogous meanings are given to 

P(X :::; a) , P(X = a, Y = b) ,  
and s o  on. 
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5.3 PROBABILlTY DISTRIBUTlON OF A FINITE RANDOM VARIABLE 

[CHAPo S 

Suppose a random variable X assigns only a finite number of values to a sample space S, say 

(We assume X¡ < X2 < . . .  < xn -) Then X induces a functionf which assigns probabilities to the points 
in Rx by 

The set of ordered pairs [Xi, f(Xi)] is usually given by means of a table as follows: 

X Xl Xl . . .  Xn 
f(x) f(XI ) f(Xl) . . .  f(xn) 

This functionf is called the probability distribution or, simply, the distribution of the random variable X; 
it has the following two properties: 

(ii) ¿ Xk = 1 
k 

Thus Rx with the aboye assignment of probabilities is a probability space. 
Suppose S is a finite equiprobable space. Then the following theorem (proved in Problem 5.23) 

applies. 

Theorem 5.1: Let S be a finite equiprobable space, and letf be the distribution of a random variable 
X on S with range space Rx = {X¡ , X2 , . . .  , xn}. Then: 

f( ) = number of points in S whose image is Xk Xk b f . . num er o pomts m S 

Remark: It is convenient sometimes to extend a probability distribution f to all real numbers by 
defining 

f(x) == P(X = x) 
For x = Xb this reduces to the aboye, whereas for other values of x we getf(x) = O. Furthermore, we 
can now write 

(i) f(x) � 0, (ii) ¿ f(x) = 1 
x 

where the sum in (ii) may be viewed as taking place over all values of x. A graph of f(x) is called a 
probability graph. 

Notation: Sometimes we will use the pair [Xi , Pi] or [Xi , P(Xi)] or [X, P(X = X)] to denote a 
probability distribution instead of using the functional notation [x, f(x) ] .  

EXAMPLE 5.2 A coin is tossed three times yielding the sample space 
S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} 

Let X be the random variable which assigns to each point in S its largest number of successive heads as discussed in 
Example S . l (a). Then the range space is Rx = {O, 1 , 2, 3}. In particular, there exist: 

(i) one point TTT, where X = 0, 
(ii) four points, HTH, HTT, THT, TTH, where X = 1 , 

(iii) two points HHT and THH, where X = 2, 
(iv) one point HHH, where X = 3 . 



CHAPo 5] RANDDM VARIABLES 135 

(a) Suppose the coin is  rair. Thcn S i s  un 8+clcmcnt equiprobablc spac�. Hence W� can use Theorelll 5.1 to 
obtain thc following distribution f of X: 

x O 1 , 3 

J(x) 1 ¡ 1 1 , " , 

There are two ways to present the probablHty graph of X. One is by the bar charl shown in Fig. 5-I(a). 
and the other is by the IlislOgram shown in Fig. 5-1 (b). Observe that the SUlll of the Icngths of the bars in th� 
bar chart is 1 ,  whereas the sum of the arcas of the rectangles in the histogram is 1 .  Dne may vie\\! the 
histogram as making the random variable continuous. whefe X = I means X lies b�tween 0.5 and 1.5. 

, 
, 

¡ 

, , 
(,,) Barchan 

Fig. 5-1 

, 
, 

¡ 

, , , 
(b) Histogram 

(h) Suppose the coin is weighted so thal P(H) = 2/3 and P(H) = 1/3. Th�n S is nOI an equiprobable spacc. 
Spccifically, the probabilities of the poinls in S are as follows: 

? 2 2 8 P(HHH) = j 3 3 = 27 
2 2 I 4 I'(HHT) = ") . ) . ") 27 
2 I 2 4 P(HTH) = ") . ) . ") = 27 
2 1 1 2 P(HIT) = ") ' ) ' ") = 27 

P(THH) = .!. . � 2 = 4 
3 3 3 27 
1 ?  2 '>(THT) = _ . =  -3 3 3 27 
I I 2 2 P(TTH) = ) . ) . )= 27 
I I I I P(TIT) = ) ' ) ' )= 27 

Since S is not an equiprobable space. we cannot use Theorem 5.1 to find the distribution f of X. Thus we 
fmd f din::ctly: 

J(O) � P(TIT) � �7 
4 ? ? ? 10 

f( I ) = P({HTH, HIT, THT, TTH }) = ::;- + ,- + ,- +; = -, _7 _7 _7 _7 7 

f(2) = I'({HHT, THH}) = 2� + 2
� = 2

8
7 

f(3) = I'(HHH) = 2
8
7 

Accordingly, the following is lhe distribution f of X: 

x O 1 , 3 

J(x) 1/27 10/27 8/27 8/27 
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EXAMPLE 5.3 Let S be the sample space when a pair of fair dice is tossed, and let X and Y be the random variable 
on S in Example 5 . 1 (b); namely, X denotes the maximum of the numbers appearing, i.e. X(a, b) = max(a, b), and Y 
denotes the sum of the numbers, i.e. Y(a, b) = a + b. Find the distribution f of X and the distribution g of 
Y. AIso exhibit their probability graphs. 

Here S is an equiprobable space with 36 points, so we can use Theorem 5 .1  and simply count the number of 
points with the given numerical value. 

First we compute the distribution f of X: 

(1) One point (1 , 1) has maximum value 1; hence f(l )  = �. 
(2) Three points, (1 ,  2), (2, 2), (2, 1), have maximum value 2; hence F(2) = k 
(3) Five points, (1 ,  3), (2, 3), (3, 3), (3, 2), (3, 1), have maximum value 3; hence f(3) = �. 
Similarly, 

f(4) = � , f(6) = H 
Accordingly, the following is the distribution f of X: 

x 1 

f(x) I 
36 

Now we compute the distribution g of Y: 
(1) One point (1 ,  1) has sum 2; hence g(2) = �. 

2 
3 36 

3 
5 

36 

(2) Two points, (1 ,  2), (2, 1), have sum 3; hence g(3) = �. 

4 
7 36 

(3) Three points, (1 ,  3), (2, 2), (3, 1), have sum 4; hence g( 4) = k 

5 
9 36 

6 
1 1  36 

Similarly, g(5) = � , g(6) = � , g(7) = � , . . .  , g( 12) = � 
Accordingly, the following is the distribution g of Y: 

y 2 3 4 5 6 7 
g(y) I 2 3 4 5 6 36 36 36 36 36 36 

The probability bar charts of X and Y are pictured in Fig. 5-2. 

10 36 

5 36 

1 2 3 4 5 6 
Distribution of X 

6 36 
4 36 
2 36 

Fig. 5-2 

8 
5 

36 

5.4 EXPECTATlON OF A FINITE RANDOM VARIABLE 

9 10  
4 3 36 36 

Suppose X is a random variable whose distribution f is as follows: 

X XI X2 X3 . . .  Xn 

f(x) f(xI ) f(X2) f(X3 ) . . .  f(xn) 

1 1  
2 36 

12 
I 

36 
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Then the mathematical expectation or expected value or, simply, the expectation of X, denoted by E(X) 
or simply E, is defined by 

E = E(X) = xI f(xI ) + Xd(X2 ) + . . .  + xnf(xn) = ¿xJ(x;) 

Equivalently, when the notation [Xi , Pi] is used instead of [X, f(x)] , 

E = E(X) = xI PI + x2P2 + . . .  + xnPn = L XiPi 

Roughly speaking, if the Xi are numerical outcomes of an experiment, then E is the expected value 
of the experiment. 

EXAMPLE 5.4 A coin is tos sed three times. Let X denote the largest number of successive heads. 

(a) Suppose the coin is fair. The distribution of X appears in Example 5.2(a). Using this distribution we get 

is the expected maximum number of successive heads. 
(b) Suppose the coin is weighted so that P(H) = ¡ and P(T) = t. The distribution of X appears m 

Example 5.2(b). Using this distribution we get 

is the expected maximum number of successive heads. 

EXAMPLE 5.5 A pair of fair dice is tossed. Let X denote the maximum of the numbers appearing, i.e. 
X(a, b) = max(a, b), and let Y denote the sum of the numbers appearing, i.e. Y(a, b) = a + b. The distribution 
f of X is given in Example 5.3 . Using the distribution of X, the expectation of X is computed as follows: 

The distribution g of Y is also given in Example 5.3 . Using the distribution of Y, the expectation of Y is computed 
as follows: 

E( Y) = L y g(y ) = 2 (�) + 3 (�) + 4 (�) + . . .  + 12 (�) = 252 = 7 " 36 36 36 36 36 

EXAMPLE 5.6 A fair coin is tossed 6 times. Let X denote the number of heads occurring. One can show that 
the distribution of X is as follows: 

x O 1 2 3 4 5 6 

f(x) I 6 15 20 15 6 I 
64 64 64 64 64 64 64 

Then the expected number of heads is 

This agrees with our intuition that, when a fair coin is repeatedly tossed, about half of them should be heads. 
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EXAMPLE 5.7 A sample of size 3 is selected at random from a box containing 12 items, of which 3 are defective. 
Let X denote the number of defective items in the sample. Find the expected number E(X) of defective items. 

The sample space S consists of C(12, 3) = 220 distinct equally likely samples of size 3. We note that there are: 

C(9, 3) = 84 samples with O defective items, 
3 ·  C(9, 2) = 108 samples with 1 defective item, 
C(3, 2) · 9  = 27 samples with 2 defective items, 

C(3 , 3) = 1 sample with 3 defective items. 

Since S is an equiprobable space, we can use Theorem 5 .1  to obtain the following distributionf of X: 

x O 1 2 3 

f(x) 84 108 27 1 220 220 220 220 

Accordingly, the expected number of defective items in a sample is 

E = O (�) 1 (108) 2 (l2) 3 (_1_) = 165 = O 75 220 + 220 + 220 + 220 220 . 

The following theorems and corollary (proved in Problems 5.26-5.28) relate the notion of expecta­
tion to operations on random variables defined in Section 5.2. 

Theorem 5.2: Let X be a random variable and let k be a real number. Then: 

(i) E(kX) = kE(X) , (ii) E(X + k) = E(X) + k 

Theorem 5.3: Let X and Y be random variables on the same sample space S. Then 
E(X + Y) = E(X) + E( Y) .  

A simple induction argument yields: 

Corollary 5.4: Let X¡ , X2, . . .  , Xn be random variables on S. Then: 

Expectation and Games of Chance 

Consider a game of chance with n outcomes al , a2 , . . .  , an with corresponding probabilities 
P¡ , P2 , . . .  , Pm and suppose the payoff to the player for outcome ai is Wi (where a positive Wi is a win 
for the player, and a negative Wi a loss). Recall from Section 3.7 that the expectation of the player was 
the quantity 

The assignment of the number Wi to ai may be viewed as a random variable X, and the expected value 
E(X) of X is the expectation E of the game. The game is fair if E = OJavorable to the player if E is 
positive, and unfavorable to the player if E is negative. 
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EXAMPLE 5 .8 A player tosses a fair die. If  a prime number, 2 ,  3, or  5, occurs the player wins that number of 
dollars, but if a nonprime number occurs the pI ayer loses that number of dollars. The distribution of the game 
follows: 

x 2 3 5 - 1  -4 -6 
f(x) I I I I I I 

"6 "6 "6 "6 "6 "6 

The negative numbers -1 ,  -4, and -6 correspond to the fact that the player loses if a non prime number 
occurs. The expected value of the game is 

Thus the game is unfavorable to the player, since the expected value E is negative. 

Mean and Expected Value 

Suppose X is a random variable on an equiprobable space S = {al , a2 , . . .  , an} ,  where X assigns 
the value Xi to ai and all the x;' s  are distinct. Then each Xi occurs with the same probability 
Pi = l/no Thus 

E(x) = Xl G) + X2 G) + . . .  + Xn G) = Xl + X2 : . . .  + Xn 

which is the average or mean value of the numbers X¡ , X2 , . . .  , Xn- In general, E(X) is the weighted 
average of the possible values of X, where each value is weighted by its probability. For this reason 
E(X) is also called the mean of the random variable X. Recall the mean was denoted by the Greek 
letter JL. Thus we use the following notation for the expectation of X: 

JL = JLx = E(X) 

The mean is an important parameter for a probability distribution, and in Section 5.5 we introduce 
another important parameter, called the standard deviation of X. 

5.5 VARIANCE AND STANDARD DEVIATION 

The mean of a random variable X measures, in a certain sense, the "average" value of X. The 
concepts in this section, variance and standard deviation, measure the "spread" or "dispersion" of X. 

Consider a random variable X with mean JL = E(X) and probability distribution 

X XI Xl X3 . . .  Xn 
f(x) f(xI ) f(Xl) f(X3 ) . . .  f(xn) 

The variance of X, denoted by Var(X), is defined by: 

Var(X) = (Xl - JL)2 f(Xl) + (X2 - JL)2 f(X2) + . . .  + (Xn - JL)2 f(xn) 

= ¿ (Xi - JL)2 f(Xi) = E((X - JL)2) 

The standard deviation of X, denoted by o"x or simply 0", is the nonnegative square root ofVar(X); that is 

o"x = JVar(X) 

Accordingly, Var(X) = O"i . Both Var(X) and O"i or simply 0"2 are used to denote the variance of a 
random variable X. 
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The next theorem gives us an alternate formula for calculating the variance of X. 

Theorem 5.5: Var(X) = xi!(x¡ ) + XU(X2) + . . .  + x�f(xn) - ¡i 
= ¿ xT f(Xi) - ¡i = E(X2) - ¡i 

Proof: Using ¿ Xi f(Xi) = ¡L and ¿ f(Xi) = 1 ,  we have 

¿ (Xi - ¡L)2f(Xi) = ¿ (XT - 2¡LXi + ¡i)f(Xi) 

which proves the theorem. 

= ¿ xT f(Xi) - 2¡L ¿ XJ(Xi) + ¡i ¿ f(Xi) 
= ¿ xT f(Xi) - 2¡i + ¡i = ¿ xT f(Xi) - ¡i 

[CHAP. 5 

Remark: Both the variance Var(X) = 172 and the standard deviation 17 measure the weighted 
spread of the values Xi about the mean ¡L; however, the standard deviation 17 has the same units as ¡L. 

EXAMPLE 5.9 
(a) Let X denote the number of times heads occurs when a fair coin is tossed six times. The distribution of X 

appears in Example 5.6, where its mean /-L = 3 is computed. The variance of X is computed as follows: 

2 1 2 6 2 1 5 1 Var(X) = (O - 3) 64 + ( 1 - 3) 64 + (2 - 3) 64 + . . .  + (6 - 3) 64 = 1 . 5 

Alternatively : 

Thus the standard deviation is a = vrs "" 1 .225 (heads). 
(b) Consider the random variable X in Example 5.7 where its mean /-L = 0.75 is computed. The variance of X is 

computed as follows: 

2 84 2 108 2 27 2 1 2 Var(X) = O 220 + 1 220 + 2 220 + 3 220 - (0.75) = 0.46 
Thus the standard deviation is 

a = vVar(X) = V0.46 = 0.66 

EXAMPLE 5.1 0 A pair of fair dice is tossed. Let X denote the maximum of the numbers appearing, i.e. 
X(a, b) = max(a, b), and let Y denote the sum of the numbers appearing, i.e. Y(a, b) = a + b. The distributions 
of X and Y appear in Example 5.3, and their expectations were computed in Example 5.5, yielding 

/-Lx = E(X) = 4.5 
Find the variance and standard deviation of (a) X, (b) Y. 

(a) First we compute E(X2) as follows: 

and /-Ly = 7 

E(X2) = L xfj(x;) = 1 2G6) + 22G6) + 32 (356) + 42 (376) + 52 (:6) + 62G!) 
791 = 36 = 21 .97 

Hence Var(X) = E(X2) - /-L� = 21 .97 - 19.98 = 1 .99 
(b) First we compute E( y2) as follows: 

and ax = Vf.99 = 1 .4 

E(y2) = L yfg(y;) = 22 G6) + 32 (326) + . . .  + 122 G6) = 1��4 = 54.8 

Hence Var( Y) = E(y2) - /-L� = 54.8 - 49 = 5.8 and ay = v'5.8 = 2.4 
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Remark: There are physical interpretations of the mean and variance. Suppose the x-axis i s  a thin 
wire and at each point Xi there is a unit with mas s Pi. Then, if a fulcrum or pivot is placed at the point JL 
(Fig. 5-3(a)), the system will balance. Hence, JL is called the center 01 mass of the system of points 
Xi. On the other hand, if the system were rotating about an axis through the mean JL (Fig. 5-3(b )), then 
the variance 172 is a measure of the system's resistance to stopping. In technical terms, 172 is called the 
moment 01 inertia of the system. 

Ca) (h) 

Fig. 5-3 

A basic property of the variance and standard deviation is given in the following theorem (proved in 
Problem 5.29). 

Theorem 5.6: Let X be a random variable, and let a and b be constants. Then: 

Var(aX + b) = a2 Var(X) and 

In particular, we have the following special cases, where k is a real number: 

(i) Var(X + k) = Var(X) and hence (JX+k = (Jx. 
(ii) Var(kX) = k2 Var(X) and hence (JkX = Ik l(Jx. 

Standardized Random Variable 

Let X be a random variable with mean JL and standard deviation 17 > O. Then the standardized 
random variable Z is defined by 

Important properties of Z are contained in the next theorem (proved in Problem 5.31) . 

Theorem 5.7: The standardized random variable Z has mean JLz = O and standard deviation (Jz = 1 .  

EXAMPLE 5.11 Suppose a random variable X has the following distribution: 

x 2 4 

¡(x) 0 . 1  0.2 

(a) Compute the mean p, and standard deviation a of X. 

6 8 

0.3 0.4 

(b) Find the probability distribution of Z = (X - p,)/a, and show that p'z = O and az = 1 ,  as predicted by 
Theorem 5.7. 

(a) First construct a data table as in Fig. 5-4(a). The total in the third column is the expected value of X; that is, 
p, = E(X) = L XJ (Xi) = 6. Similarly, the total in the fifth column is the expected value of X2 ; that is 
E(X2) = L x¡ ¡(x;) = 40. Thus, by Theorem 5.5, 

and a = 2  
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(b) Using z = (x - 6)/2 and fez) = f(x) , construct a data table for the random variable Z = (X - 6)/2 as in 
Fig. 5-4(b). The first two columns of the table form the distribution of Z. The total in the third column is 
the expected value of Z; hence J-Lz = O. The total in the fifth column is the expected value of Z2 ; hence 
E(Z2) = l .0 . Thus, by Theorem 5.5, 

O"� = E(Z2 ) - J-L� = 1 - 02 = 1 

x 

2 0. 1 0.2 4 0.4 -2 0.1 

4 0.2 0.8 1 6  3.2 - 1  0.2 

6 0.3 1 .8 36 1 0.8 O 0.3 

8 0.4 3.2 64 25.6 0.4 

Totals 6.0 40.0 Totals 

Fig. 5-4 

5.6 JOINT DISTRIBUTlON OF RANDOM VARIABLES 

and o"z = 1 

-0.2 4 0.4 

-0.2 0.2 

O O O 

0.4 0.4 

O 1 .0 

Let X and Y be random variables on the same sample space S with respective range spaces 

and 

The joint distribution or joint probability function of X and Y is the function h on the product space 
Rx x Ry defined by 

h(Xi ' Yi) == P(X = Xi , Y = Yi) == P( {s E S : X(s) = Xi , Y(s) = Yi}) 

The function h is usually given in the form of a table as in Fig. 5-5. The function h has the properties: 

Thus h defines a probability space on the product Rx x Ry. 

Fig. 5-5 

The functions f and g on the right side and the bottom side, respectively, of the joint distribution 
table in Fig. 5-5 are defined by 

f(Xi) = Lh(Xi ' Yi) 
i 

and 

That is, f(Xi) is the sum of the entries in the ith row and g(Yi) is the sum of the entries in the jth 
column. They are called the marginal distributions, and are, in fact, the (individual) distributions of X 
and Y respectively (Problem 5 . 1 3). 
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Now if X and Y are random variables with the aboye joint distribution (and respective means JLx 
and JLy), then the covariance of X and Y, denoted by Cov(X, Y), is defined by 

Cov(X, Y) = ¿)x; - JLx) (Yj - JLy)h(x; ' Yj) = E[(X - JLx) ( Y  - JLy)] 
i,j 

or equivalently (see Problem 5.30) by 

Cov(X, Y) = Lx; yjh(x; , Yj) - JLxJLY = E(XY) - JLxJLY 
i,j 

The correlation of X and Y, denoted by p(X, Y) , is defined by 

( ) Cov(X, Y) 
p X, Y = ----'-----'­

O"xO"y 
The correlation p is dimensionless and has the following properties: 

(iii) p(X, X) = 1 ,  p(X, -X) = -1 (i) p(X, Y) = p( Y , X) 
(ii) -1 :::; p :::; 1 (iv) p(aX + b, cY  + d) = p(X, Y) , if a, e el O 

We show below (Example 5. 13) that pairs of random variables with identical (individual) distributions 
can have distinct covariances and correlations. Thus Cov(X, Y) and p(X, Y) are measurements of the 
way that X and Y are interrelated. 

EXAMPLE 5.12 Let S be the sample space when a pair of fair dice is tossed, and let X and Y be the random 
variables on S in Example 5. 1 (b); namely, X assigns the maximum of the numbers and Y assigns the sum of the 
numbers to each point in S. The joint distribution of X and Y appear in Fig. 5-6. The entry h(3 , 5) = f¡; comes 
from the fact that (3, 2) and (2, 3) are the only points in S whose maximum number is 3 and whose sum is 5; that is, 

h(3 , 5) == P(X = 3 , Y = 5) = P( { (3 , 2), (2, 3)}) = 2/36 
The other entries are obtained in a similar manner. 

IX 2 3 4 5 6 7 8 9 1 0  1 1  1 2  Sum 

1 I O O O O O O O O O O I 
36 36 

2 O 2 I O O O O O O O O 3 
36 36 36 

3 O O 2 2 I O O O O O O 5 
36 36 36 36 

4 O O O 2 2 2 I O O O O 7 
36 36 36 36 36 

5 O O O O 2 2 2 2 1 O O 9 
36 36 36 36 36 36 

6 O O O O O 2 2 2 2 2 1 1 1  
36 36 36 36 36 36 36 

Sum 1 2 3 4 5 6 5 4 3 2 1 
36 36 36 36 36 36 36 36 36 36 36 

Fig. 5-6 

Observe that the right side sum column does give the distribution f of X and the bot1om sum row does give 
the distribution of Y in Example 5 .3 .  

We compute the covariance and correlation of X and Y. First we compute E(XY) as follows: 

E(XY) = L x;yjh(x;, Yj) 
= 1 (2) G6) + 2(3) (326) + 2(4) G6) + . . .  + 6( 12) G6) = 1��2 

RO 34.2 
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By Example 5.5, /-Lx = 4.47 and /-Ly = 7, and by Example 5 . 10, ax = 1 .4 and ay = 2.4; hence 
Cov(X, Y) = E(XY) - /-Lx/-LY = 34.2 - (4.47) (7) = 2.9 

and p(X Y) = Cov(X, Y) = 2.9 = O 86 , aXay ( 1 .4) (2.4) . 

[CHAP. 5 

EXAMPLE 5.1 3 Let X and Y be random variables with joint distribution in Fig. 5-7(a), and let X' and y' be 
random variables with joint distribution in Fig. 5-7(b). Observe that X and X' have the same (individual) dis­
tribution, and Y and y' have the same distribution as follows: 

x 
f(x) 1 "2 

3 
1 "2 

y 

g(y) 

4 
1 "2 

10  
1 "2 

Distribution of X and X' Distribution of Y and y' 

Note /-Lx = /-LX' = 2 and /-Ly = /-Ly' = 7. 

(a) (h) 

Fig. 5-7 

We show that Cov(X, Y) el Cov(X', Y') and hence p(X, Y) el p(X', Y ') .  We first compute E(XY) and 
E(X' Y') as follows: 

E (XY) = 1 . 4 . .Jr + 1 . 10 . .Jr + 3 . 4 . .Jr + 3 . 10 . .Jr = 14 
E(X' Y') = 1 · 4 ·  0 + 1 · 10 ·  � + 3 · 4 ·  � + 3 · 10 ·  O = 1 1  

Since /-Lx = /-Lx' = 2 and /-L y  = /-Ly' = 7, 

Cov(X, Y) = E(XY) - /-Lx/-LY = O and Cov(X', Y') = E(X' Y') - /-Lx'/-Ly' = -3 

Remark: The notion of a joint distribution h is extended to any finite number of random variables 
X, Y, . . .  , Z in the obvious way; that is, h is a function on the product set Rx x Ry x . . .  x Rz defined by 

h(Xi ' Yi ' · · ·  , Zk) == P(X = Xi , Y = Yi ' . . .  ' Z = Zk) 

5.7 INDEPENDENT RANDOM VARIABLES 

A finite number of random variables X, Y, . . .  , Z on a sample space S are said to be independent if 

for any values Xi, Yi' . . .  , Zk . In particular, X and Y are independent if 

P(X = Xi , Y = Yi) == P(X = x;)P( Y = Yi) 
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Now if X and Y have respective distributionsf and g, and joint distribution h, then the aboye equation 
can be written as 

In other words, X and Y are independent if each entry h(x; , Yj) is the product of its marginal entries. 

EXAMPLE 5.14 Let X and Y be random variables with joint distribution in Fig. 5-8. Then X and Y are 
independent random variables since each entry in the joint distribution can be obtained by multiplying its marginal 
entries. For example, 

and so on. 

P( I , 2) = P(X = I )P( Y = 2) = (0.30) (0.20) = 0.06 
P( I , 3) = P(X = I )P( Y = 3) = (0.30) (0. 50) = 0. 1 5  
P( I , 4) = P(X = I )P( Y = 4) = (0.30) (0.30) = 0.09 

Fig. 5-8 

EXAMPLE 5.15 A fair coin is tossed twice giving the equiprobable sample space S = {HH, HT, TH, TT} .  Let X 
and Y be random variables on S as follows. 

(a) Let X = 1 if the first toss is a head, X = O otherwise; let Y = 1 if both tosses are heads, Y = O otherwise. The 
joint distribution of X and Y appear in Fig. 5-9(a). X and Y are not independent. For example, 
P(X = O) = !  and P( Y = O) = i, but P(O, O) = !  el P(X = O)P( Y = O) . 

(b) Again let X = 1 if the first toss is a head, X = O otherwise; but now let Y = 1 if the second toss is a head, 
y = O otherwise. The joint distribution of X and Y appear in Fig. 5-9(b). Now X and Y are independent. 
S pecifically, 

P(X = x, Y = y) = P(X = x)P(Y = y) 
for all four entries. 

x O 1 Sum x O 1 Sum 

O 
1 

O 
1 

:2 2: O 
1 1 1 
;¡ ¡¡ "2 

1 1 1 1 
4 4 2: 1 1 1 1 

4 4 2: 

Sum 
3 1 
4 4 Sum 

1 1 
2: 2: 

Fig. 5-9 

The following theorems (proved in Problems 5.32-5.33) give important properties of independent 
random variables which do not hold in general. 
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Theorem 5.8: Let X and Y be independent random variables. Then: 
(i) E(XY) = E(X)E( Y) 
(ii) Var(X + Y) = Var(X) + Var( Y) 
(iii) Cov(X, Y) = O 

Part (ii) in the aboye theorem generalizes as follows. 

Theorem 5.9: Let Xl , X2 , . . .  , Xn be independent random variables. Then: 
Var(X¡ + . . .  + Xn) = Var(X¡ ) + . . .  + Var(Xn) 

5.8 FUNCTlONS OF A RANDOM VARIABLE 

Let X and Y be random variables on the same sample space S. Then Y is said to be a function of X 
if Y can be represented Y = <I>(X) for some real-valued function <1> of a real variable; that is, if 
Y(s) = <I> [X(s)] for every s E S. For example, kX, X2, X + k, and (X + k)2 are all functions of X 
with <I>(x) = kx, x2 , X + k, and (x + k)2, respectively. We have the following fundamental result 
(proved in Problem 5.25). 

Theorem 5.10: Let X and Y be random variables on the same sample space S with Y = <I>(X) . Then 
n 

E(Y) = L <I>(x;)f(x;) 
;=¡ 

where f is the distribution function of X. 
Similarly, a random variable Z is said to be a function of X and Y if Z can be represented 

Z = <1> (X, Y) , where <1> is a real-valued function of two real variables; that is, if 
Z(s) = <1> [X(s) , Y(s)] 

for every s E S. For example, X + Y is a function of X and Y with <I>(x, y) = x + y. 
Corresponding to the aboye theorem we have the following analogous result. 

Theorem 5.11: Let X, Y, Z be random variables on the same sample space S with Z = <1> (X, Y) . Then 

E(Z) = L <I>(x; ' Yj)h(x; ' Yj) i,j 
where h is the joint distribution of X and Y. 

We note that the aboye two theorems have been used implicitly in the preceding discussion and 
theorems. The proof of Theorem 5. 1 1  will be given as a supplementary problem; it generalizes to a 
function of n random variables in the obvious way. 

EXAMPLE 5.1 6 
(a) Consider the random variables X and Y in Example 5 . 1 5(a). Let Z = X + Y. Show that 

E(Z) = E(X) + E( Y). Also, show that Var(Z) el Var(X) + Var( Y). (Thus Theorem 5.8 need not hold 
for dependent random variables.) 

Use the right marginal distribution in Fig. 5-9(a) for the distribution of X to obtain: 

/Lx = E(X) = OG) + l G) = G) and E(X2) = 02 G) + 12G) = � 
2 2 1 1 1 Var(X) = E(X ) - /Lx = "2 - 4 = 4 
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Use the left marginal distribution in Figo 5-9(a) for the distribution of Y to obtain: 

and 

2 2 1 1 3 Var( Y) = E( Y ) - J-Ly = 4 - 16" = 16" 

The random variable Z = X + Y assumes the values O, 1, 2 with respective probabilities �, i, io Thus 

Therefore, 

but 

and 

2 2 5 9 1 1  Var(Z) = E(Z ) - J-Lz = 4 - 16" = 16" 

1 1 3 E (X) + E ( Y) = 2" + 4 = 4 = E (Z) 

1 3 7 1 1  Var(X) + Var( Y) = 4 + 16" = 16" el 16" = Var(Z) 
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(b) Consider the random variables X and Y in Example 5 0 1 5(b)o Let Z = X + Yo Show that 
E(Z) = E(X) + E( Y)o Also, show that Var(Z) = Var(X) + Var( Y) , which is expected since X and Y are 
independent. 

The marginal distributions in Figo 5-9(b) give the distributions of X and Y and they are identical. Thus 

J-Lx = J-Ly = E(X) = E( Y) = 0G) + 1 G) = � 
E(X2) = E( y2) = 02G) + 12G) = � 

2 2 1 1 1 Var(X) = Var( Y) = E(X ) - J-Lx = 2" - 4 = 4 
The random variable Z = X + Y assumes the values O, 1 , 2 but now with respective probabilities i, �, io Thus 

J-Lz = E(Z) = O (�) + 1 (�) + 2 (�) = 1 and 

Therefore, 

and 

2 2 3 1 Var(Z) = E(Z ) - J-Lz = - - 1 = -3 2 

1 1 E (X) + E ( Y) = 2" + 2" = 1 = E (Z) 

1 1 1 Var(X) + Var (Y) = 4 + 4 = 2" = Var(Z) 

5.9 DISCRETE RANDOM VARIABLES IN GENERAL 

Now suppose X is a random variable on a sample space S with a countable infinite range space, say 
Rs = {Xl , X2 , o o o } o As in the finite case, X induces a function f on Rx, called the distribution of X, 
defined by 

f(Xi) == P(X = Xi) 
The distribution is frequently presented in a table as follows: 

X Xl X2 X3 
f(x) f(XI) f(X2) f(X3 ) 

0 0  o 

0 0  o 
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The distribution f has the following two properties: 

(i) f(x;) � O 

Thus Rx with the above assignment of probabilities is a probability space. 
The expectation E(X) and variance Var(X) of the above random variable X are defined by 

00 
E(X) = x¡J(x¡ ) + x2f(X2) + . . .  + ¿xJ(x;) 

;= ¡ 
00 

Var(X) = (x¡ - JL)2 f(x¡ ) + (X2 - JL)2 f(X2) + . . .  = ¿(x; - JL)2 f(x;) 
;=¡ 

when the relevant series converge absolutely. It can be shown that Var(X) exists if and only if 
JL = E(X) and E(X2) both exist and that in this case the formula 

Var(X) = E(X2) - l 
is valid just as in the finite case. When Var( X) exists, the standard deviation o"x is defined as in the finite 
case by 

O"x = JVar(X) 
The notions of joint distribution, independent random variables, and functions of random variables 

carry over directly to the general case. It can be shown that if X and Y are defined on the same sample 
space S and if Var( X) and Var( Y) both exist, then the series 

Cov(X, Y) = ¿ (x; - JLx ) (Yj - JLy )h(x; , Yj) 
i,} 

converges absolutely and the relation 

Cov(X, Y) = ¿ x; yjh(x; , Yj) - JLxJL Y  = E(XY) - JLxJLY 
i,j 

holds just as in the finite case. 

Remark: To avoid technicalities we will establish many theorems in this chapter only for finite 
random variables. 

5.10 CONTlNUOUS RANDOM VARIABLES 

Suppose that X is a random variable on a sample space S whose range space Rx is a continuum of 
numbers, such as an interval. Recall from the definition of a random variable that the set {a :::; X :::; b} 
is an event in S and therefore the probability P(a :::; X :::; b) is well defined. We assume there is a 
piecewise continuous function f: R ----t R such that P( a :::; X :::; b) is equal to the are a under the graph 
off between x = a and x = b, as shown in Fig. 5-10. In the language of calculus 

P(a :::; X :::; b) = ff(X) dX 

In this case X is said to be a continuous random variable. The functionf is called the distribution or the 
continuous probability function (or: density function) of X; it satisfies the conditions 

(i) f(x) � O and (ii) J�oo f(x) dx == L f(x) dx = 1 

That is, f is nonnegative and the total are a under its graph is 1 .  



CHAPo 5] RANDOM VARIABLES 

" b 
Pea .s x.s b) '" atea ofsbaded regían 

�ig_ 5-10 

The expeclalion E(X) ror a continuous randorn variable X is defined by 

E(X) � L xf(x) dx 
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when it exi�ts. Functions or random variables are defined juSt as in the discrete case; and it can be 
shown that ir y = (P(X). Then 

E( Y) � L �(x)f(x) dx 

whcn lhe right side exists. The variance Var(X) i� defined by 

whcn it exisls. JUSI as in Ihe discrele case, il can be shown Ihat Var(X) exisls ir and only ir J1, = E(X) 
and E(X2) both exist, and then 

Var(X) = E(X2) - ,/ = L x2 f(x) dx - ,t2 

The standard de¡tialion (1.\, is defined by (1,\, = JVar(X) when Var(X) cxisls. 
We have already remarked Ihat we will eSlablish many results ror finitc randorn variables and take 

them ror granted in Ihe general discrele case and in Ihe continuous case. 

EXAMPLE 5.17 Lct X be a random variable wilh Ihe following dislriblllion fllnclionf: 

f(x) � W if 0 :0:;  x :O:;  2 
clsewhcre 

The graph off appears in Fig. 5-1 [ .  Thcn 

P( [ :o:; X :o:; [.5) = area of shadcd region in diagram = [
5
6 

; , 4 
2 

, , , 
Grapb off 

�ig. 5-11 
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Using calculus we are able to compute the expectation, variance, and standard deviation of X as follows: 

2 1 [x3] 2 4 E(X) = t x/ex) dx = fa 2"x2 dx = 6 0= "3 
2 J 2 J

2 1 3 E(X ) = R X ¡(x) dx = o 2"x dx = 
2 2 16 2 Var(X) = E(X ) - p, = 2 --= -

9 9 
and 

Independent Continuous Random Variables 

A finite number of continuous random variables, say X, Y, . . .  , Z, are said to be independent if for 
any intervals [a, a'] ,  lb ,  b '] ,  . . .  , [e, e '] ,  

P(a :::; X :::; a ' , b :::; y :::; b ' , . . .  , e :::; z :::; e ') = P(a :::; X :::; a ')P(b :::; y :::; b ') . . .  P(e :::; z :::; e ') 

Observe that intervals play the same role in the continuous case as points did in the discrete case. 

5.11 CUMULATlVE DISTRIBUTlON FUNCTlON 

Let X be a random variable (discrete or continuous). The eumulative distributionfunetion F of X is 
the function F: R ----t R defined by 

F(a) = P(X :::; a) 

If X is a discrete random variable with distribution f, then F is the "step function" defined by 

F(x) = L f(Xi) 
Xl :SX 

If X is a continuous random variable with distribution f, then 

F(x) = roo f(t) dt 

In either case, F is monotonic increasing, that is, 

F(a) :::; F(b) whenever 

and the limit of F to the left is O and to the right is 1 ,  that is, 

Lim F(x) = O and Lim F(x) = 1 x-----¡.-oo x-----¡.-oo 
On the other hand, suppose X is a continuous random variable with cumulative distribution function 
F(x) . Then the Fundamental Theorem of Calculus tells us that the probability density functionf(x) of 
X can be obtained from F(x) by differentiation, that is, 

wherever the derivative exists. 

d I f(x) = dx F(x) = F (X) 
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EXAMPLE 5.18 
(a) Let X be a di serete random variable with the following distribution funetionf: 

x -2 1 2 4 

f(x) I I I I 
"4 "8 2 "8 

1 5 1  

The graph of the eumulative distribution funetion F of X appears in Fig. 5-12. Observe that F is a "step 
funetion" with a step at Xi with heightf(Xi) .  

-3 -2 -1 

I 
2 

o I 2 

Graph ofF 

Fig. 5-12 

4 

(b) Let X be a eontinuous random variable with the following distribution funetionf: { I X f(x) = 20 
if O <::: X <::: 2 
elsewhere 

The eumulative distribution funetion F of X follows: 

Here we use the faet that, for O <::: X <::: 2, 

if x < O 
if O <::: x <::: 2 
if x > 2 

Jx 1 1 
F(x) = o "2 t dt = ¡Xl 

The graphs off and F appear in Fig. 5-13(a) and (b), respeetively. 

(a) Graph off (b) Graph ofF 

Fig. 5-13 

5.12 CHEBYSHEV'S INEQUALlTY AND THE LA W OF LARGE NUMBERS 

The standard deviation IJ of a random variable X measures the weighted spread of the values of X 
about the mean ¡L. Therefore, for smaller IJ, we would expect that X will be closer to ¡L. A more 
precise statement of this expectation is given by the following inequality, named after the Russian 
mathematician P. L. Chebyshev (1821-94). 



1 52 RANDOM VARIABLES [CHAP. 5 

Theorem 5.12 (Chebyshev's inequality): Let X be a random variable with mean JL and standard 
deviation a. Then for any positive number k, the probability that a value of X lies 
in the interval [ JL  - ka, JL + ka] is at least 1 - 1/ k2. That is, 

1 P( JL - ka :::; X :::; JL + ka) � 1 - k2 
A proof of this important theorem is given in Problem 5.34. We illustrate the use of the inequality 

in the next example. 

EXAMPLE 5.1 9 Suppose X is a random variable with mean p, = 75 and standard deviation a = 5. 

(a) What conclusion about X can be drawn from Chebyshev's inequality for k = 2 and k = 37 
Setting k = 2, we get 

p, - ka = 75 - 2(5) = 65 and p, + ka = 75 + 2(5) = 85 
Thus we can conclude from Chebyshev's inequality that the probability that a value of X lies between 65 and 85 
i s  at  least 1 _ !2 = 3/4; that is, 

P(65 <::: X <::: 85) ::> � 
By letting k = 3, we find that the probability that X lies between 60 and 90 is at least 1 - �2 = 8/9. 

(b) Estimate the probability that X lies between 75 - 20 = 55 and 75 + 20 = 95. 
Set ka = 20 and solve for k. Since a = 5, we get k ·  5 = 20 and hence k = 4. Thus, by Chebyshev's 

inequality, 
1 1 5  P(55 < X < 95) > 1 - -2 = - "" 0.94 - - - 4 16 

That is, the probability that X lies between 55 and 95 i s  at  least 94 percent. 
(e) Determine an interval [a, b] about the mean for which the probability that X lies in the interval is at least 99 

percent. 
Set 1 - l/k2 = 0.99 and solve for k. We get 

1 - 0.99 = l /k2 or k2 = 1/0.01 = 100 

Thus the interval is [75 - 10(5), 75 + 10 (5)] = [25, 125] . 

Sample Mean and the Law of Large Numbers 

or k = 10  

The notion of n independent tri al s of a probability experiment was defined in Section 4.6 .  If X i s a 
random variable with mean JL, then we can consider the numerical outcome of each particular tri al to be 
a random variable with the same mean as X. The random variable corresponding to the ith outcome 
will be denoted by Xi (i = 1 , 2, . . .  , n). The average value of all n outcomes is also a random variable, 
which we will denote by Xn and call the sample mean. That is, 

X = Xl + X2 + . . .  + Xn n n 
The law of large numbers says that, as n increases, the probability that the value of the sample mean 
Xn is close to JL approaches 1 .  

EXAMPLE 5.20 Suppose a die were tos sed 5 times with outcomes 
Xl = 3, 

Then the corresponding value of the sample mean 1'5 is 
3 + 4 + 6 + 1 + 4 X5 = 5 = 3 .6 

X5 = 4 

For a fair die, the mean p, = 3 .5 .  The law of large numbers tells us that, as n gets larger, there is  a greater likelihood 
that 1'n will get close to 3 .5 .  
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A more technical statement of the law of large numbers follows. 

Theorem 5.13 (law of large numbers) For any positive number a, no matter how small, the probability 
that the sample mean Xn has a value in the interval [ JL  - a, JL + al approaches 1 as n 
approaches infinity. That is, 

as n ----t CXJ 

A proof ofTheorem 5 . 1 3, based on Chebyshev's inequality, is sketched in Problem 5.35. A stronger 
version of the law of large numbers is given in more advanced treatments of probability theory. 

The (strong) law of large numbers can also be used to show that if an event A occurs with prob­
ability p in a given model, then the average number of occurrences of A approaches p as the number of 
(independent) tri al s increases. 

Solved Problems 

RANDOM VARIABLES AND EXPECTED V ALUE 

5.1. Suppose a random variable X takes on the values -3, -1 , 2, and 5 with respective probabilities 
2k - 3 

10 
Determine the distribution of X. 

k + 1 k - 1 k - 2 
10 ' 10 ' 10 

Set the sum of the probabilities equal to 1 ,  and solve for k ,  obtaining k = 3 .  Then put k = 3 into the 
aboye probabilities, yielding 0.3, 0.4, 0.2, 0. 1 .  Thus the distribution of X follows: 

x -3 - 1  2 5 

P(X = x) 0.3 0.4 0.2 0 . 1  

5.2. A fair coin is tos sed four times. Let X denote the number of heads occurring. Find: 
(a) the distributionf of X, (b) E(X) , (e) the probability graph of X. 

The sample space S is an equiprobable space consisting of 24 = 16 sequences with H's and T's. 

(a) Since X is the number of heads, and each sequence consists of four elements, X takes on the values 
of O, 1 , 2, 3, 4; that is, Rx = {O, 1 , 2, 3 , 4} .  
(i) One point, TTTT, has no heads; hence feO) = -h. 

(ii) Four points, HTTT, THTT, TTHT, TTTH, have one head; hence f(l )  = �. 
(iii) Six points, HHTT, HTHT, HTTH, THHT, THTH, TTHH, have two heads; hence f(2) = f¡;. 
(iv) Four points, HHHT, HHTH, HTHH, THHH, have one head; hence f(l )  = �. 
(v) One point, HHHH, has four heads; hence f(4) = -h. 

The distributionf of X follows: 

x O 1 2 3 

f(x) 1 4 6 4 16 16 16 16 

4 
1 16 
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(b) Thc cxpectcd valuc E(X) is obtaincd by multiplying cach valuc of X by ils probabiJity and taking Ihe 
SUIll. Hencc 

E(X) = 0(/6) + 1 e:) + 2C6
6) + 3C:) + 4(/6) = 2 

This agrccs wjlh OUT ¡ntuilíon Ihal, whcn a fair coin is rcpcatcdly toss..-xI, about halr of them should be 
hcads. 

(e) Thc probabilily bar chart of X appcars in Fig. S.l4(a), and Ihe probability histogrum appcars in Fig. 
5-14(b). Olle may vicw Ihe histogram as making ¡he random variable continuous wherc X = 1 
means X líes bctween 0.5 and 1.5. 

, 
, 

• , , , 
(a) Bar chart 

• 

Fig. 5-14 

, 
• 

• , , 
(b) Histogram 

• 

5.3. A fair coin is tosscd until a hcad or five tails oecurs. Find lhe cxpcClcd numbcr E of I05SCS 01' 
lhe coin. 

The sample sracc S consists of Ihe six poinls 

H, TH, TTH, TTTH, TTTTH, TTTTH, TTTTT 

wjlh respective probabililies (independenl Irials) 

2'  (,)'�, 
2 4'  (,)'�, 2 8 '  (,)"� -'-2 1 6 '  (,)' �-'-2 32 

The random variable X of inlercsl is Ihe nllmber of losses in cach olltcomc. Thlls 

X(H) � 1 ,  
X(TH) � 2, 

X(nH) � 3, 
X(TTIH) � 4, 

These X values are assigned Ihe following probabililies: 

X(TITIH) � 5 
X(TTITT) � 5 

P(I ) = P(H) = � , P(2) = P(TH) =� , 1'(3) := P(TTH) =i , 
1 1 1 1 1'(4) == I'(TITH) = 16 ' 1'(5) := P({TrTTH, TTITT}) = 32 + 32 = 16 

Accordingly 
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5.4. A random sample with replacement of size n = 2 is chosen from the set { 1 ,  2, 3} , yielding the 
9-element equiprobable space 

s = { ( 1 ,  1 ) ,  ( 1 , 2) ,  ( 1 , 3) ,  (2, 1 ) ,  (2, 2) , (2, 3) ,  (3, 1 ) ,  (3, 2), (3, 3)} 

(a) Let X denote the sum of the two numbers. Find the distribution f of X, and find the 
expected value E(X) . 

(b) Let Y denote the minimum of the two numbers. Find the distribution g of Y, and find the 
expected value E(Y) .  

(a) The random variable X assumes the values 2 ,  3 ,  4 ,  5 ,  6 ;  that is, Rx = {2, 3 ,  4, 5, 6}. We compute the 
distributionf of X: 
(i) One point (1 , 1) has sum 2; hence f(2) = �. 

(ii) Two points, (1 , 2), (2, 1), have sum 3; hence f(3) = �. 

(iii) Three points, ( 1 ,  3), (2, 2), (1 ,  3), have sum 4; hence f( 4) = �. 

(iv) Two points, (2, 3), (3, 2), have sum 5; hencef(5) = �. 

(v) One point (3, 3) has sum 6; hence f( 6) = �. 
Thus the following is the distributionf of X: 

x 2 3 4 

f(x) 1 2 3 
"9 "9 "9 

5 6 

2 1 "9 "9 

The expected value E(X) is obtained by multiplying each value of x by its probability and taking the 
sumo Hence 

(b) The random variable Y only as sumes the values 1 , 2, 3; that is, Ry = { 1 , 2, 3} .  We compute the 
distribution g of X: 
(i) Five points, (1 ,  1), (1 ,  2), (1 ,  3), (2, 1), (3, 1), have minimum 1 ;  hence g( l )  = �. 

(ii) Three points, (2, 2), (2, 3), (3, 2), have minimum 2; hence g(2) = l 
(iii) One point (3, 3) has minimum 3; hence g(3) = �. 
Thus the following is the distribution g of Y: 

y 1 2 

g(y) 5 3 
"9 "9 

3 
1 
"9 

The expected value E( Y) is obtained by multiplying each value of y by its probability and taking the 
sumo Hence 

5.5. A player tos ses two fair coins. The pI ayer wins $2 if 2 heads occur, and $1 if 1 head occurs. On 
the other hand, the player loses $3 if no heads occur. Find the expected value E of the game. Is 
the game fair? (The game is fair, favorable, or unfavorable to the pI ayer according as E = 0, 
E >  ° or E < O.) 

The sample space is S = {HH, HT, TH, TT} and each sample point has probability .)¡. Letting X 
denote the player's gain, we have 

X(HH) = $2, X(HT) = X(TH) = $ 1 ,  X(TT) = -$3 
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Thus the distribution of X and its expectation E are as follows: 

x 
P(X = x) 

2 
1 4" 2 4" 

-3 
1 4" 

E = E(X) = 2G) + 1 G) - 3 G) = � = $0.25 

Since E(X) > O, the game is favorable to the player. 

[CHAP. 5 

5.6. A box contains eight light bulbs of which three are defective. A bulb is selected from the box 
and tested. If it is defective, another bulb is selected and tested, until a nondefective bulb is 
chosen. Find the expected number E of bulbs chosen. 

Writing D for defective and N for nondefective, the sample space S has the four elements 

N, 
with respective probabilities 

5 
8 '  

3 5 1 5  
8 7 56 ' 

DN, DDN, 

3 2 5 5 
8 7 6 56 ' 

The number X of bulbs chosen has the values 

DDDN 

3 2 1 5 
8 7 6 5 56 

X(N) = 1 ,  X(DN) = 2, X(DDN) = 3, X(DDDN) = 4  

with the above respective probabilities . Hence: 

5.7. Concentric circles of radius 1 and 3 inches are drawn on a circular target of radius 5, as pictured 
in Fig. 5- 1 5. A man receives 10, 5, or 3 points according to whether he hit s the target inside 
the smaller circle, inside the middle annular regio n or inside the outer annular region, respect­
ively. Suppose the man hit s the target with probability ! and then is just as likely to hit one point 
of the target as the other. Find the expected number E of points he scores each time he fires. 

The probability of scoring 10, 5, 3 or O points follows: 

f( 10) = � . area of 10 points = � . 1f( 1 )2 = � 
2 area of target 2 1f( 5) 2 50 

f(5) = � . area of 5 points = � . 1f(3)2 - 1f(1 )2 8 
2 area of target 2 1f( 5) 2 50 

f (3) = � . area of 3 points = � . 1f(5)2 - 1f(3)2 = � 
2 area of target 2 1f( 5) 2 50 

f(O) = � Fig. 5-15 
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MEAN, VARIANCE, AND STANDARD DEVIATlON 

5.8. Find the mean JL = E(X) , variance 172 = Var(X) , and standard deviation 17 = (Jx of each distri­
bution: 

(a) x 3 8 12 (b) x 1 3 4 5 

f(x) ¡ ¡ ¡ 
3" 2: "6 f(x) 0.4 0.1 0.2 0.3 

Use the formulas, 

JL = E(X) = x¡J(x¡ ) + x2!(X2) + . . .  + xmf(xm) = L x, f(Xi) 
E(X2) = xi!(x¡ ) + XU(X2) + . . .  + x�f(xm) = L XU(Xi) 

Alternatively, form a data table with columns labeled by x,j(x), xf(x) , x2, x2f(x) . The sum of the third 
column is JL = E(X) and the sum of the fifth column is E(X2) . Then use the formulas 

and a = ax = vVar(X) 
to obtain a2 = Var(X) and a. 
(a) Form the data table in Fig. 5-16(a) to get p, = E(X) = 7 and E(X2) = 59. Alternatively, use the 

formulas directly to obtain 

Then: 

p, = L xJ(x;) = 3 G) + 8G) + 12G) = 7 
E(X2) = L xl f(x;) = 32 G) + 82 G) + 122 G) = 59 

a2 = Var(X) = E(X2) - p,2 = 59 - 72 = 10  

a = )Var(x) = ViO = 3.2 

(b) Form the data table in Fig. 5-16(b) to get p, = E(X) = 3 and E(X2) = 12. Alternatively, use the 
formulas directly to obtain 

Then: 

p, = L xJ(x;) = 1 (0.4) + 3 (0 . 1 ) + 4(0.2) + 5 (0.3) = 3 
E(X2) = L xl f(x;) = 1 (0.4) + 9 (0. 1 ) + 1 6 (0.2) + 25(0.3) = 12 

x 

3 1/3 

8 1/2 

1 2  1/6 

Sums 

a2 = Var(X) = E(X2) - p,2 = 12 - 9 = 3 
a = )Var(x) = v3 = 1 .7 

9 3 1 0.4 0.4 

4 64 32 3 0. 1 0.3 

2 144 24 4 0.2 0.8 

7 59 5 0.3 1 .5 

Sums 3 

(b) 
Fig. 5-16 

1 0.4 

9 0.9 

1 6  3.2 

25 7.5 

1 2  
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5.9. Find the mean JL = E(X) , variance 172 = Var(X) , and standard deviation 17 = (Jx of each distri­
bution: 

(a) Xi -6 -4 3 12 (b) Xi 2 3 5 8 

Pi ¡ ¡ ¡ ¡ 
"4 "8 2: "8 Pi 0.3 0.1 0.4 0.2 

Here the distribution is presented using Xi and Pi instead of X and ¡(X) .  The following are the 
analogous formulas: 

Then, as before, 

(a) 

Then: 

(b) 

Then: 

p, = E(X) = X¡ p¡ + X2P2 + . . .  + XmPm = L XiPi 
E(X2) = xip¡ + X�P2 + . . .  + x�Pm = L X¡ Pi 

(i = Var(X) = E(X2) - p,2 and a = ax = VVar(X) 

p, = E(X) = L XiPi = -6 (�) - 4G) + 3 G) + 12G) = 1 

E(X2) = L X¡ Pi = 36G) + 1 6G) + 9G) + 144G) = 33 .5 

a2 = Var(X) = E(X2) - p,2 = 33 .5 - 12 = 32.5 

a = VVar(X) = v32.5 = 5.7 
p, = E(X) = L XiPi = 2(0.3) + 3 (0 . 1 )  + 5 (0.4) + 8(0.2) = 4.5 

E(X2) = L X¡ Pi = 22 (0.3) + 32 (0. 1 )  + 52 (0.4) + 82 (0.2) = 24.9 

a2 = Var(X) = E(X2) - p,2 = 14.9 - (4.5)2 = 5 .35 

a = VVar(X) = v5.35 = 2.31 

5.10. A fair die is tossed. Let X denote twice the number appearing, and let Y be 1 or 3 according as 
an odd or even number appears. Find the distribution and expectation of: (a) X, (b) Y. 

The sample space is S = { 1 ,  2, 3, 4, 5, 6} and each sample point has probability i. 
(a) The images of the sample points are: 

X(I)  = 2, X(2) = 4, X(3) = 6, 
As these are distinct, the distribution of X is 

Xi 2 

P(Xi) ¡ 
"6 

Thus 

(b) The images of the sample points are: 

4 
¡ 
"6 

X(4) = 8 ,  X(5) = 10 ,  

6 8 10 12 
¡ ¡ ¡ ¡ 
"6 "6 "6 "6 

X(6) = 12 

Y(I )  = 1 ,  Y(2) = 3 ,  Y(3) = 1 ,  Y(4) = 3 ,  Y(5 )  = 1 ,  Y(6) = 3 
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The two Y-values, 1 and 3, are each assumed at three sample points. Hence we have the 
distribution 

Yi 1 3 

P(Yi) 3/6 3/6 

Thus 

1 59 

5.11. Let X and Y be the random variable in Problem 5. 10 .  Recall that Z = X + Y and W = XY are 
random variables defined by 

Z(s) = X(s) + Y(s) and W(s) = X(s) Y(s) 

(a) Find the distribution and expectation of Z = X + Y. Verify that 

E(X + Y) = E(X) + E(Y) 

(b) Find the distribution and expectation of W = XY. 
The sample space is still S = { 1 ,  2, 3, 4, 5, 6} and each sample point still has probability l 

(a) Use Z(s) = (X + Y) (s) = X(s) + Y(s) and the values of X and Y from Problem 5 . 10  to obtain: 

Z(I)  = X(I) + Y(I) = 2 + 1 = 3 
Z(2) = X(2) + Y(2) = 4 + 3 = 7 
Z(3) = X(3) + Y(3) = 6 + 1 = 7 

Z(4) = X(4) + Y(4) = 8 + 3 = 1 1  

Z(5) = X(5) + Y(5) = 1 0  + 1 = 1 1  

Z(6) = X(6) + Y(6) = 1 2  + 3 = 1 5  

The image set is {3, 7 ,  1 1 ,  5} . The values 3 and 1 5  are each assumed at only one sample point and 
hence have probability i; the values 7 and 1 1  are each assumed at two sample points and hence have 
probability l Thus the distribution of Z = X + Y is: 

Thus 

Zi 3 7 1 1  1 5  pez;) 1 2 2 1 "6 "6 "6 "6 

3 14 22 1 5  E(X + Y) = E(Z) = LZi P(Z;) = 6 + 6 + 6 + 6 = 9 

Moreover, E(X + Y) = 9 = 7 + 2 = E(X) + E( Y) . 

(b) Use W(s) = XY(s) = X(s) Y(s) to obtain: 

W(I)  = X(I ) Y( I )  = 2( 1 )  = 2 

W(2) = X(2) Y(2) = 4(3) = 12 

W(3) = X(3) Y(3) = 6(1) = 6 

W(4) = X(4) Y(4) = 8(3) = 24 

W(5) = X(5) Y(5) = 10 ( 1 )  = 10  

W(6) = X(6) Y(6) = 12(3) = 36 

Each value of W = XY is assumed at just one sample point; hence the distribution of W is : 

Wi 2 6 10 12 24 36 

P(w;) 1 1 1 1 1 1 "6 "6 "6 "6 "6 "6 
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Thus 
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2 6 10 12 24 36 E(XY) = E( W) = ""' w·P(w ·) = - + - + - + - + - + - = 1 5  D "  6 6 6 6 6 6  
(Note: E(XY) = 1 5  el (7) (2) = E(X)E( Y) . )  

[CHAP. 5 

5.12. Let X be a random variable with distribution: 

2 3 
0.5 0 .2 

Find the mean, variance, and standard deviation of X. Then find the distribution, mean, 
variance, and standard deviation of the random variable Y = <I>(X) , where: (a) <I>(x) = x3 , 
(b) <I>(x) = 2x, (e) <I>(x) = x2 + 3x + 4. 

The formulas for Px and E(X2) yield: 

Then: 

Px = E(X) = L Xi P(Xi) = 1 (0.3) + 2(0.5) + 3 (0.2) = 1 .9 
E(X2) = L XlP(Xi) = 1 2 (0.3) + 22 (0.5) + 32 (0.2) = 4. 1 

(i = Var (X) = E(X2) - p2 = 4.1 - ( 1 .9)2 = 0.49 

a = VVar(x) = V0.49 = 0.7 

Generally speaking, the distribution of Y = iP(X) is as follows, where P(y) = P(x) : 
y iP(1 ) iP(2) iP(3) 

P(y) 0.3 0.5 0.2 

(a) Using 1 3 = 1, 23 = 8, 33 = 27, the distribution of Y = X3 is as follows: 

y 1 8 27 

P(y) 0.3 0 .5 0 .2 

Therefore: 

Then 

py = E( Y) = L iP(x;)P(x;) = L YiP(y;) = 1 (0.3) + 8 (0.5) + 27(0.2) = 9.7 
E( y2) = L i P(y;) = 1 2 (0.3) + 82 (0.5) + 272 (0.2) = 178 . 1  

a2 = Var ( Y) = E( y2) - p2 = 178 . 1  - (9.7)2 = 84.0 

a = VVar( Y) = V84.0 = 9 . 17  

(b) Using 21 = 2, 22 = 4, 23 = 8, the distribution of Y = 2x is as follows: 

y 2 4 8 

P(y) 0.3 0 .5 0 .2 
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Therefore: 

Then: 

RANDOM VARIABLES 

p,y = E( Y) = LYiP(y;) = 2(0.3) + 4(0.5) + 8 (0.2) = 4.2 
E( y2) = L y¡ P(y;) = 22 (0.3) + 42 (0.5) + 82 (0.2) = 41 .2 

( i  = Var( Y) = E( y2) - p,2 = 41 .2 - (4.2)2 = 23 .6 

a = VVar( Y) = V23.6 = 4.86 

1 6 1  

Ce) Substitute x = 1 ,  2 ,  3 in iP(x) = x2 + 3x + 4 to obtain iP ( l )  = 8, iP(2) = 14, iP(3) = 22. Then the 
distribution of Y = X2 + 3X + 4 is as follows: 

y 8 14 22 

P(y) 0.3 0 .5 0.2 

Therefore: p,y = E( Y) = L YiP(y;) = 8 (0.3) + 14(0.5) + 22(0.2) = 1 3.9 
E( y2) = L iP(Yi) = 82 (0.3) + 142 (0.5) + 222 (0.2) = 214 

Then: 

JOINT DISTRIBUTlONS 

a2 = Var( Y) = E( y2) - p,2 = 214 - ( 13 .9)2 = 20.8 

a = VVar( Y) = V20.8 = 4.56 

5.13. Let X and Y be random variables with the joint distribution in Fig. 5-17 . 
(a) Find the distributions of X and Y. 
(b) Find Cov(X, Y), i.e. the covariance of X and Y. 
(e) Find p(X, Y) , i.e. the correlation of X and Y. 
(d) Are X and Y independent random variables? 

Fig. 5-17 

Ca) The marginal distribution on the right is the distribution of X, and the marginal distribution on the 
bot1om is the distribution of Y. Namely, 

Xi 1 3 Yj -3 2 4 

¡(x;) 0 .5 0 .5 g(Yj) 0.4 0.3 0.3 

Distribution of X Distribution of Y 



1 62 RANDOM VARIABLES 

(b) First compute /-Lx and /-Ly as follows: 

/-Lx = L XJ(Xi) = ( 1 ) (0.5) + (3 ) (0.5) = 2 
/-Ly = L Yjg(Yj) = (-3) (0.4) + (2) (0.3) + (4) (0.3) = 0.6 

Next compute E(XY) as follows: 

E(XY) = L xiyj h(Xi , Yj) 

[CHAP. 5 

= ( 1 ) (-3)(0. 1 )  + ( 1 ) (2) (0.2) + ( 1 ) (4) (0.2) + (3) ( -3) (0.3) + (3) (2) (0. 1 )  + (3) (4) (0 . 1 )  = O 

Then Cov(X, Y) = E(XY) - /-Lx/-Ly = O - (2) (0.6) = -l .2 
(e) First compute ax and ay as follows: 

and 

Then 

E(X2) = L x¡ f(Xi) = ( 1 ) (0.5) + (9) (0.5) = 5 
a� = Var(X) = E(X2) - /-L� = 5 - (2)2 = 1 
ax = vI = 1 

E( y2) = L yJ g(Yj) = (9) (0.4) + (4) (0.3) + ( 1 6) (0.3) = 9.6 

a� = Var (Y) = E( y2) - /-L� = 9.6 - (0.6)2 = 9.24 

ay = V9.24 = 3.0 

p(X Y) = Cov(X, Y) = � = -O 4 , aXay ( 1 ) (3.0) . 

(d) X and Y are not independent, since 

P(X = 1 ,  Y = -3) el P(X = I )P( Y = -3) 

i.e. the entry h( l , -3) = 0.1 is not equal to f( l )g( -3) = (0.5) (0.4) = 0.2, the product of its marginal 
entries . 

5.14. Let X and Y be independent random variables with the following distributions: 

Xi 1 2 Yj 5 10 1 5  

f(Xi) 0.6 0.4 g(Yj) 0.2 0 .5 0.3 

Distribution of X Distribution of Y 

Find the joint distribution h of X and Y. 
Since X and Y are independent, the joint distribution h can be obtained from the marginal distributions 

f and g. Specifically, first construct the joint distribution table with only the marginal distributions, as 
shown in Fig. 5-18(a). Then multiply the marginal entries to obtain the other entries; that is, set 
h(Xi ' Yj) = f(x;)g(Yj) ·  This yields the joint distribution of X and Y appearing in Fig. 5-18(b). 

(a) (h) 
Fig. 5-18 
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5.15. A fair coin is tossed three times. Let X equal O or 1 according as a head or a tail occurs on the 
first toss, and let Y equal the total number of heads that occur. 

(a) Find the distributions of X and Y. 
(b) Find the joint distribution h of X and Y. 
(e) Determine whether X and Y are independent. 
(d) Find Cov(X, Y). 
(a) The sample space S consists of the following eight points, each with probability l 

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} 
We have 

X(HHH) = 0, X(HHT) = 0, X(HTH) = 0, X(HTT) = O; 
X(THH) = 1 ,  X(THT) = 1 ,  X(TTH) = 1 ,  X(TTT) = 1 

and 
Y(HHH) = 3; Y(HHT) = 2, Y(HTH) = 2, Y(THH) = 2; 
Y(HTT) = 1 ,  Y(THT) = 1 ,  Y(TTH) = 1 ;  Y(TTT) = ° 

Thus the distributions of X and Y are as follows: 

Xi ° 1 Yj ° 1 2 3 
¡(Xi) 1 1 2: 2: g(Yj) 1 3 3 1 "8 "8 "8 "8 

Distribution of X Distribution of Y 

(b) The joint distribution h of X and Y appears in Fig. 5-19. We obtain, for example, the entry h(0, 2) 
using 

h(0, 2) == P(X = 0, y = 2) = P({HTH, HHT}) = � 
The other entries are obtained similarly. 

x O 1 2 

O O 1 2 
8 8 

1 1 2 1 
¡¡ ¡¡ ¡¡ 

Sum 1 3 3 
il ¡¡ il 

Fig. 5-19 

(e) From the joint distribution, P(O, O) = O; but 
1 P(X = O) = -2 and 

Since ° el (�) (�) , X and Y are not independent. 

(d) We have: 

3 

1 
8 

O 

1 
¡¡ 

Sum 

1 
2: 

1 
'2 

1 P( Y = O) = -8 

!Lx = L xJ(x;) = 0G) + lG) 2 

!LY = L Yj g(Yj) = 0G) + I G) + 2G) + 3G) 3 
2 
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E(XY) = L xiyj h(Xi, Yj) = 1 ( 1 )  G) + 1 (2) G) + terms with a factor O = � 
1 1 (3) 1 Cov(X Y) = E(XY) - /-Lx/-LY = - - - - = - -, 2 2 2 4 

[CHAP. 5 

5.16. Let X be the random variable with the following distribution, and let Y = X2: 

(a) Find the distribution of Y. 

-2 
1 4" 

(b) Find the joint distribution of X and Y. 
(e) Find Cov(X, Y) and p(X, Y) . 

-1  
1 4" 

(d) Determine whether X and Y are independent. 

1 4" 

2 
1 4" 

(a) Since Y = Xl, the random variable Y can only take on the values 4 and 1 .  Letting g denote the 
distribution of Y, we have: 

1 1 1 g(4) = P( Y = 4) = P(X = 2 or X =  -2) = P(X = 2) + P(X = -2) = -+ - = -4 4 2 
Similarly, g( l ) = !. Thus the distribution g of Y is as follows: 

y 1 4 
g(y) 1 1 2: 2: 

(b) The joint distribution h of X and Y appears in Fig. 5-20. Note that if X = -2, then Y = 4; hence 

h(-2, 1 )  = O and h(-2, 4) =1(-2) = *. The other entries are obtained in a similar way. 

(e) We have: 

X 1 4 Sum 

-2 O 
1 1 
4 4 

-1 
I 

O 
I 

¡¡ ¡¡ 

1 1 O 1 
4 4 

2 O 
1 1 
<1 4 

Sum I 1 
2 2 

Fig. 5-20 

/-Lx = E(X) = LXJ(Xi) = -20) - 1 (�) + 1 (�) + 20) = O 

/-Ly = E( Y) = LYjg(Yj) = 1 G) + 4G) = � 
E(XY) = L xiyjh(Xi , Yj) = -8 (�) - 1 (�) + 1 0) + 8 (�) = O 

5 Cov(X, Y) = E(XY) - /-Lx/-LY = O - O . 2" = O and so p(X, Y) = O 
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(d) From the joint distribution, P(-2, 1) = O; but P(X = -2) = � and P( Y = 1) = �. Since 

O el (�) (�) , X and Y are not independent. 

165 

Remark: Although y i s  a function of X and X and Y are not independent, this example 
shows that it is still possible for the covariance and correlation to be O, as always in the case when 
X and Y are independent. 

CHEBYSHEV'S INEQUALlTY 

5.17. Suppose a random variable X has mean JL = 25 and standard deviation (J = 2. Use Chebyshev's 
inequality to estimate: (a) P(X :::; 35), (b) P(X � 20) . 

(a) Recall Chebyshev's inequality states: 
1 P(p, - ka <::: X <::: p, + ka) ::> 1 -
k2 

Substitute p, = 25, a = 2 in p, + ka and solve the equation 25 + 2k = 35 for k, getting k = 5. Then 
1 1 24 1 - k2 = 1 - 25 = 25 = 0.96 

Since p, - ka = 25 - 10 = 1 5, Chebyshev's inequality gives 

P( 1 5  <::: X <::: 35) ::> 0.96 
The event corresponding to X <::: 35  contains as a subset the event corresponding to 
15 <::: X <::: 35. Therefore, 

P(X <::: 35) ::> P( 1 5  <::: X <::: 35) ::> 0.96 
Thus the probability that X is less than or equal to 35 is at least 96 percent. 

(b) Substitute p, = 25, a = 2 in p, - ka, and solve the equation 25 - 2k = 20 for k, getting k = 2.5. Then 
1 1 1 - k2 = 1 - 6.25 = 0.84 

Since p, + 2a = 25 + 5 = 30, Chebyshev's inequality gives 

P(20 <::: X <::: 30) ::> 0.84 
The event corresponding to X ::>  20 contains as a subset the event corresponding to 
20 <::: X <::: 30. Therefore, 

P(X ::> 20) ::> P(20 <::: X <::: 30) ::> 0.84 
which says that the probability that X is greater than or equal to 20 is at least 84 percent. 

Remark: This problem illustrates that Chebyshev's inequality can be used to estimate 
P(X :::; b) when b � JL, and to estimate P(X � a) when a :::; JL. 

5.18. Let X be a random variable with mean JL = 40 and standard deviation (J = 5. Use Chebyshev's 
inequality to find a value b for which P( 40 - b :::; X :::; 40 + b) � 0.95. 

First solve 1 -�2 = 0.95 for k as follows: 

0.05 = � or k2 = _I_ = 20 k2 0.05 or 

Then, by Chebyshev's inequality, b = ka = 10/5 c:o:: 23.4. Hence, P(16 .6 <::: X <::: 63.6) ::> 0.95. 
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5.19. Lel X be a random variable with mean 11 = 80 and unknown standard deviatioIl a. Use 
Chebyshev's inequality to find a value of a for which P(75 $. X $. 85) 2::: 0.9. 

Firs! salve 1 -..;. = 0.9 for k as follow5: k· 
1 , 1  0.1 = -¡¡r or k� = Q.T= 10 

Now, sincc 75 is 5 uoilS 10 ¡he left of 11 = 80 and 85 is 5 units lo Ibe righl of 1-1, \\le can salve cilhcr 
p - ka = 75 or p + kq = 85 for a. from Ihe lattcr cquatioll, \\le gel 

80 + v'iOO" = 85 0' 5 
(1 = JTO;;::: 1.58 

MISCEttANEOUS I'ROBtl<:MS 

5.20. lCl X be a continuous random variable with distribution: 

(a) Evaluatc k. 

f(x) � { iX + k 

(h) Find P(1 " X "  2). 

if O ::; x ::; 3  

clscwhcrc 

(a) The graph of f is drawn in Hg. 5-21« 1). Sinee f is a continuüus probabililY funclion, the shaded 
regian A muSI have arca l .  Note thal A forms a lrapczoid with pamllcl bases of Icngths k and k +t 
and altitude 3 .  Sctting the arca of A cqllal to 1 yidds: 

• 

� (k+k+D(3) = 1  

Thus f(x) = x/6 + 1/12 for 0 .:5  x .:5  3. 

1 k=-12 

! >+1 , '-1. B 12 A 

, " 
• , • , 

{a)Gn!pb of¡ (b)P(l s X s 2) -- areaofB 

Fig.5-21 

(b) P(I .:5 .Y .:5  2) is equal 10 ¡he area of B, which is llnder Ihe graph of f bClween .\" = 1 and x = 2 as 
shown in Fig. 5-2 1 (b). Using f(x) = .\"/6 + 1/12 for x = 1 and .\" = 2, we gel 

Hence 
and 

1 ( J 5 ) 1 P(I < X < 2) = area of B = - -+- ( l ) � -- - 2 12 12 3 

5.21. Let X be a continuous random variable whose distribulion f is constant 011 an interval, say 
1 =  {a :5 x :5  b}, and O elsewhere; namcly, 

{k ir a :5  x S b 
f(x) � 

O elsewhere 
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(Such a random variable is said tO be IIl1iformly dislribllled on I.) (a) Determine k. (b) Find the 
mean ¡J. or X. (e) Determine the cumulative distribution runction F or x. 
(o) Thc graph of f app.::ars in Fig. 5.22(0). Thc region shaded A muSI have arca 1 ;  hencc 

k(b -a) = I oc 1 k = -­
b - a  

(b) If we view prohabililY as weighl or mass, and Ihe mean as Ihe ccnlcr of gravily, Ihen il is inluitively 
clcar Ihal 

a + b  
11 = --2 

Ihe poinl midway belwccn (1 and b. \Ve verify Ihis malhemalically llsing calculllS: 

k 
Is O 

f f' x [ x' ] ' J1 = E(X) = 
R 

xf(x) dx = 
a b _ a 

dx = 2(b a) a 

Is lc 
, , 

A : , , 
1+- b-a --+: 

b 

(a) Graph ofl 

a + b  
2(b a) 2(b a) 2 

IsO 

(a) Graph of F 

Fig. 5·22 

F _ \  

(e) Rccall Ihal Ihe cllrnulativc dislribulion funclion F is dcfincd by F(k) = P(X :5 k). Hencc F(k) gives 
Ihe area under Ihe graph of! 10 Ihe lefl of x = k. Sincc X is unifonnly diSlribulcd on Ihe inlerval 
J = {a :5 x :5 b}, il is inluilive Ihal Ihe graph of F should bc as shown in Fig. S·22(b) i.c. F == O before 
Ihe poinl a, F == I ancr Ihe poi nI b, and F is linear belween a and b. \Ve verify Ihis malhemalieally 
using calculus: 
(i) For x < a, 

f' f·' F(x) =  
_oo

!(t) dt = -00 O dt = O  

(ii) For ti :5 x :5 b, 

f' l' \ F(x) = f(t) dt = -b - dt = 
-00 a a 

(iii) For x > b, 

[ ' ] � X - tI 
b - a a = b - o 

F(x) = P(.\' :5 x) � P(X :5 b) = F(b) = I and also I � P(X :5 x) = F(x) 
ThllS F(x) � I and F(x) :5 1, and hencc F(x) = l .  

5.22. Let X be a random variable with distribution J. The rth I/JO/1/elll /11, or X is dcfincd by 

M, � E(X') � ¿; x; f(x,) 

Find the firsl fjvc moments or X if X has the following distribution: 

-2 3 

¡Ix) j ¡ 
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(Note that MI is the mean of X, and M2 is used in computing the variance and standard deviation 
of X.) 

Use the formula for Mr to obtain: 

MI = L xJ(x;) = -2 G) + 1 (�) + 3 (�) = O 

M2 = L Xl/(Xi) = 4G) + 1 (�) + 90) = 4. 5 

M3 = L x� ¡(x;) = -8 (�) + 1 (�) + 27 ( �) = 3 
M4 = L xi ¡(Xi) = 16 (�) + 1 (�) + 81 ( �) = 28 .5  

Ms = L x; ¡(x;) = -32 (�) + 1 (�) + 243 (�) = 45 

PROOFS OF THEOREMS 

Remark: In aH proofs, X and Y are random variables with distributions f and g respectively and 
joint distribution h. 

5.23. Prove Theorem 5 . 1 :  Let S be an equiprobable space, and let X be a random variable on S with 
range space Rx = {Xi ' X2 , · · · , Xl} .  Then 

. = f( .) = number of points in S whose image is Xi P, X, b f . . S num er o pomts m 

Let S have n points and let SI , S2 , . . .  , Sr be the points in S with image Xi. We wish to show that 
Pi = ¡(x;) = r/n. By definition, 

Pi = ¡(x;) = sum of the probabilities of the points in S whose image is Xi 
= P(SI )  + P(S2) + . . .  + P(sr) 

Since S is an equiprobable space, each of the n points in S has probability l/n. Hence 
r times 

,-"-------.. 
1 1 1 r Pi = ¡(Xi) = - + - + . . .  + - = -n n n n 

5.24. Show that f(Xi) = ¿j h(Xi ' Yj) and g(Yj) = ¿i h(Xi ' Yj) ,  i.e. that the marginal distributions are the 
(individual) distributions of X and Y. 

Let Ai = {X = x;} and Bj = { Y  = Yj}; that is, let Ai = X-I (x;) and Bj = y-I (Yj) .  Thus the Bj are 
disjoint and S = Uj Bj. Hence 

Ai = Ai n S = Ai n (Uj bj) = Uj(Ai n Bj) 
where the Ai n Bj are also disjoint. Accordingly, 

The proof for g is similar. 

¡(x;) = P(X = x;) = peA;) = ¿P(Ai n Bj) j 
= ¿P(X = Xi, Y = Yj) = ¿h(Xi' Yj) j j 
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5.25. Prove Theorem 5 . 10 :  Let X and Y be random variables on S with Y = <I>(X) . Then 
E( Y) = ¿; <I>(x;)!(x;) , where ! is the distribution of X. 

(Proof is given for the case X is discrete and finite.) 
Suppose X takes on the values x;, . . .  , Xn and that iP(x;) takes on the values YI , . . .  , Ym as i runs from 1 

to n. Then clearly the possible values of Y = iP(X) are YI , . . .  , Ym and the distribution g of Y is given by 

Therefore 

g(Yj) = L f(x;) 
{;:<I>(x')=Yj} 

m m 
E( Y) = L Yjg(Yj) = L Yj L f(x;) 

j=1 j=1 {;: O(x')=Yj} 
n n 

= Lf(x;) L Yj = Lf(x;)iP(x;) 
;=1 {j:<I>(x,)=Yj} ;=1 

which proves the theorem. 

5.26. Prove Theorem 5.2: Let X be a random variable and let k be a real number. Then: 
(i) E(kX) = kE(X) ,  (ii) E(X + k) = E(X) + k. 

(Proof is given for the general discrete case and the assumption that E(X) exists.) 

(i) Now kX = iP(X) where iP(x) = kx. Therefore, by Theorem 5 . 10 (Problem 5.25) 

E(kX) = L kxJ(x;) = k L xJ(x;) = kE(X) i i 
(ii) Here X + k = iP(X) where iP(x) = x + k. Therefore, using L; f(x;) = 1 ,  

E(X + k) = L(x; + k)f(x;) = L xJ(x;) + L kf(x;) = E(X) + k i i i 

5.27. Prove Theorem 5.3: Let X and Y be random variables on S. Then E(X + Y) = E(X) + E( Y) .  
(Proof i s  given for the general discrete case and the assumption that E(X) and E( Y)  both exist.) 
Now X + Y = iP(X, Y) where iP(x,y) = x + y. Therefore, by Theorem 5 . 10  (Problem 5.25), 

E(X + Y) = L L (x; + Yj)h(x;, Yj) = L L x;h(x;, Yj) + L L yjh(x;, Yj) j j j 
Applying Problem 5.24 that f(x;) = Lj h(x; ' Yj) and g(Yj) = L; h(x; ' Yj) ' we get 

E(X + Y) = L xJ(x;) + L Yjg(Yj) = E(X) + E( Y) ; j 

5.28. Prove Corollary 5.4: Let XI , X2 , . . .  , Xn be random variables on S. Then 

E(XI + X2 + . . .  + Xn) = E(XI ) + E(X2) + . . .  E(Xn) 
(Proof is given for the general discrete case and the assumption that E(XI ) , . . .  , E(Xn) all exist.) 
The proof is by induction on n. The case n = 1 is trivial and the case n = 2 is Theorem 5.3 

(Problem 5.27). For n > 2, we apply the case n = 2 to get 
E(XI + . . .  + Xn_1 + Xn) = E(XI + . . .  + Xn_l ) + E(Xn) 

By the inductive hypothesis, this becomes E(XI ) + . . .  + E(Xn_l ) + E(Xn) . 
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5.29. Prove Theorem 5.6: Var(aX + b) = a2 Var(X) . 

We prove separately that (i) Var(X + k) = Var(X) and (ii) Var(kX) = � Var(x), from which the 
theorem follows. By Theorem 5.2, PX+k = Px + k and PkX = kpx· AIso 'L XJ(Xi) = Px and 
'L f(x;) = l .  Hence 

Var(X + k) = 'L(Xi + k)2f(x;) - p� + k 

= 'L x¡ f(Xi) + 2k 'L XJ(Xi) + k2 'L f(Xi) - (Px + k)2 

= 'L x¡ f(Xi) + 2kpx + k2 - (p� + 2kpx + k2) 

= 'L XJ(Xi) - p� = Var(X) 

and Var(kX) = 'L(kxi)2f(Xi) - p�x = k2 'L XU(Xi) - (kpX)2 

= k2 'L xU(x;) - k2p� = k2 ('L xU(x;) - p�) = k2 Var(X) 

5.30. Show that: 

i,j i,} 
(Proof is given for the case that X and Y are discrete and finite.) 
We have: 

L yjh(Xi, Yj) = L Yjg(Yj) = Py, 
i,j j 

Therefore: 

i,j 

i,j 

i,j i,j 

i,j 
= L xiyjh(Xi, Yj) - PXpy 

i,j 

L Xih(Xi , Yj) = L XJ(Xi) = Px, 
i,j 

i,j i,j 

L h(Xi ' Yj) = 1 
i,j 

5.31. Prove Theorem 5.7: The standardized random variable Z has mean JLz = O and standard devia­
tion (Jz = 1 .  

By definition Z = X - P where X has mean P and standard deviation (J >  Ü.  Using E(X) = P and 
Theorem 5.2, we get (J 

pz = E  -- = E  - - - = - E(X) - - = - - - = ü (X - p ) (X p ) 1 P P P 
(J (J (J (J (J (J (J 

AIso, using Theorem 5.6, we get 

(X - p ) (X p) 1 (i Var(Z) = Var -- = Var - - - = - Var(X) = - = l  a a a  a2 a2 

Therefore, az = vVar(Z) = VI = l .  
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5.32. Prove Theorem 5.8: Let X and Y be  independent random variables on  S .  Then: 
(i) E(XY) = E(X)E( Y) ,  (ii) Var(X + Y) = Var(X) + Var (Y) ,  (iii) Cov(X, Y) = O. 

and 

(Proof is given for the case when X and Y are discrete and finite.) 
Since X and Y are independent, h(Xi ' Yj) = f(Xi)g(Yj) . Thus 

E(XY) = L xiyjh(Xi, Yj) = L XiyJ(X;)g(Yj) i,j i,j 
= L XJ(Xi) L Yjg(Yj) = E(X)E( Y) j 

Cov(X, Y) = E(XY) - PXpy = E(X)E( Y) - PXpy = O 

In order to prove (ii) we also need 

L X¡h(Xi ' Yj) = L xU(x;) ,  i,j i,j j 
Hence 

i,j 

i,j i,j i,j 
= L x¡ f(Xi) + 2 L XJ(Xi) L Yjg(Yj) + L yJg(Yj) - p� - 2pxpy - p� j j 
= L x¡ f(Xi) - p� + L yJg(Yj) - p� = Var(X) + Vare Y) i j 

5.33. Prove Theorem 5.9: Let X¡ , X2 , . . .  , Xn be independent random variables on S. Then 

Var(X¡ + X2 + . . .  + Xn) = Var(X¡ ) + Var(X2) + . . .  + Var(Xn) 

(Proof is given for the case when Xi' . . .  , Xn are all discrete and finite.) 
We take for granted the analogs of Problem 5.32 and Theorem 5. 1 1  for n random variables. Then: 

Var(X¡ + . . .  + Xn ) = E( (X¡ + . . .  + Xn - px¡+o+xY) 
= L(x¡ + . . .  + Xn - Px¡+o+xJ2h(x¡ , . . .  , xn) 
= L(x¡ + . . .  + Xn - PX¡ - . . .  - PxJ2h(x¡ , . . .  , xn) 
= L { L L XiXj + L L PX,PY0 - 2 L L PX,Xj }h(X¡ , . . .  , xn) 

' J  ' J  , } 

where h is the joint distribution of X¡ , . . .  , Xn, and pX¡+o+xn = PX¡ + . . .  + Pxn . Since the Xi are pairwise 
independent, L xixjh(x¡ , . . .  , xn) = Px,PY0 for i el j. Hence 

n 
Var(X¡ + . . .  + Xn) = L Px,PY0 + L E(X¡) + L L Px,PY0 - 2 L L Px,PY0 

as required. 

ioh i=¡ i j i j 
n n n 

= L E(X¡) -L (Px/ = L Var(X;) i=¡ i=¡ i=¡ 

5.34. Prove Theorem 5. 12 (Chebyshev's inequality): For any k > 0, 

1 P(JL - kIJ :::; X :::; JL + kIJ) � 1 - k2 
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By definition 

Delete all terms from the summation for which Xi is in the interval [IL - ka, IL + ka] ; that is, delete all terms 
for which IXi - ILI <::: ka. Denote the summation of the remaining terms by L *(Xi - 1L)2p¡. Then 

a2 ::> L*(Xi - 1L)2pi ::> L*k2a2Pi = k2a2 L *Pi = k2a2 P( IX - ILI > ka) 

= �a2 [1 - P( IX - ILI <::: ka)] = k2a2 [1 - P(IL - ka <::: X <::: IL + ka)] 
If a >  O, then dividing by k2a2 gives 

1 
k2 ::> 1 - P(IL - ka <::: X <::: IL + ka) or 1 P(IL - ka <::: X <::: IL + ka) ::> 1 - k2 

which proves Chebyshev's inequality for a > O. If a = O, then Xi = IL for all Pi > O, and 

1 P(IL - k · O <::: X <::: IL + k · O) = P(X = IL) = 1 > 1 - k2 

which completes the proof. 

5.35. Let Xl , X2 , . . .  , Xn be n independent and identically distributed random variables, each with mean 
JL and variance 172, and let Xn be the sample mean, that is, 

X- = Xl + X2 + . . .  + Xn n --------------

n 
(a) Prove the mean of Xn is JL and the variance is (J2/n. 
(b) Prove Theorem 5. 13 (weak law of large numbers): For any a >  O, 

(a) Using Theorems 5.2 and 5.3, we get 

as n ----t CXJ 

- (X¡ + X2 + . . .  + Xn) ) 1 ILx = E(Xn) = E = - E(X¡ + X2 + . . .  + Xn) n n n 
1 nlL = - [E(X¡ ) + E(X2) + . . .  + E(Xn)] = -- = IL n n 

Now using Theorems 5.3 and 5.9, we get 
- (X¡ + X2 + . . .  + Xn ) 1 Var(Xn) = Var n = n2 Var(X¡ + X2 + . . .  + Xn) 

1 na2 a2 = 2" [Var(X¡ ) + Var(X2) + . . .  + Var(Xn)] = --2 =-n n n 
(b) The proof is based on an application of Chebyshev's inequality to the random variable Xn - First note 

that by making the substitution ka = a, Chebyshev's inequality can be written as 

Applying Chebyshev's inequality in the form aboye, we get 

2 - a P(IL - a <::: Xn <::: IL + a) ::> 1 - -2 na 
from which the desired result follows. 
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Supplementary Problems 

RANDOM VARIABLES AND EXPECTED V ALUE 

5.36. Suppose a random variable X takes on the values -3, 2, 4, 7 with respective probabilities 
k + 1  

10 ' 
2k - 2  

10 
Find the distribution and expected value of X. 

3k - 5 
10 

k + 2  
10 
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5.37. A pair of dice is thrown. Let X denote the minimum of the two numbers which occur. Find the distribu­
tion and expectation of X. 

5.38. A fair coin is tossed four times. Let Y denote the longest string of heads. Find the distribution and 
expectation of Y. Also draw a probability bar chart and histogram of the distribution. (Compare with 
the random variables X in Problem 5.2.) 

5.39. A coin, weighted so that P(H) = � and P(T) = �, is tossed three times. Let X denote the number of heads 
that appear. (a) Find the distribution of X. (b) Find E(X) . 

5.40. A coin, weighted so that P(H) = t and P(T) = ¡, is tossed until a head or five tails occur. Find the expected 
number E of tos ses of the coin. 

5.41. The probability of team A winning any game is !. Suppose A plays B in a tournament (and there are no 
ties). The first team to win two games in a row or three games wins the tournament. Find the expected 
number E of games in the tournament. 

5.42. A box contains 10 transistors of which two are defective. A transistor is selected from the box and tested 
until a nondefective one is chosen. Find the expected number E of transistors to be chosen. 

5.43. Solve the preceding Problem 5.42 in the case that three of the 10 items are defective. 

5.44. Five cards are numbered 1 to 5. Two cards are drawn at random (without replacement). Let X denote the 
sum of the numbers drawn. (a) Find the distribution of X. (b) Find E(X) . 

5.45. A lottery with 500 tickets gives one prize of $100, three prizes of $50 each, and five prizes of $25 each. 
(a) Find the expected winnings of a ticket. (b) If a ticket costs $1 ,  what is the expected value of the game? 

5.46. A player tosses three fair coins. He wins $5 if 3 heads occur, $3 if two heads occur, and $1 if only one 1 
head occurs. On the other hand, he loses $ 15  if three tails occur. Find the value of the game to the player. 

5.47. A player tos ses two fair coins. The pI ayer wins $3 if 2 heads occur, and $1 if 1 heads occurs. For the game 
to be fair how much should the player lose if no heads occur? 

5.48. A coi n is weighted so that P(H) = P and hence P(T) = q = 1 -p. The com is tossed until a head 
appears. Let E denote the expected number of tosses. Pro ve E = l/p. (This is an example of an infinite 
discrete random variable, and sorne knowledge of series is required.) 
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MEAN, VARIANCE, AND STANDARD DEVIATION 

5.49. Find the mean j-L, variance a2, and standard deviation a of each distribution: 

(a) x 2 3 8 (b) x -2 - 1  7 

f(x) 1 1 1 
"4 2: "4 f(x) 1 1 1 

"3 2: "6 

5.50. Find the mean j-L, variance a2, and standard deviation a of each distribution: 

(a) x -1  O 1 2 3 (b) 

f(x) 0.3 0.1 0 . 1  0.3 0.2 

5.51. Let X be a random variable with the following distribution: 

x 1 3 4 

f(x) 0.4 0.1 0.2 

(a) Find the mean, variance, and standard deviation of X. 

x 1 

f(x) 0.2 

5 

0.3 

2 

0 . 1  

(b) Find the distribution, mean, variance, and standard deviation of Y = X2 + 2. 

[CHAP. 5 

3 6 7 

0.3 0.1 0.3 

5.52. Find the mean j-L, variance a2, and standard deviation a of following two-point distribution where p + q = 1 :  

x a b 

f(x) p q 

5.53. Let X be a random variable with the following distribution: 

- 1  

0.2 0.5 

(a) Find the mean, variance, and standard deviation of X. 

2 

0.3 

(b) Find the distribution, mean, variance, and standard deviation of the random variable Y = iP(X), 
where: (i) cjJ(x) = x4, (ii) cjJ(x) = 3x, (iii) cjJ(x) = 2x+1 . 

5.54. Two cards are selected from a box which contains five cards numbered 1 ,  1 , 2, 2, and 3. Let X denote the 
sum and Y the maximum of the two numbers drawn. Find the distribution, mean, variance, and standard 
deviation of the random variables: (a) X, (b) Y, (e) Z = X + Y, (d) W = XY. 

JOINT DISTRIBUTIONS, INDEPENDENT RANDOM VARIABLES 

5.55. Consider the joint distribution of X and Y in Fig. 5-23(a) . Find: (a) E(X) and E( Y), (b) Cov(X, Y), 
(e) aX, ay, and p(X, Y) . 

5.56. Consider the joint distribution of X and Y in Fig. 5-23(b). Find: (a) E(X) and E( Y), (b) Cov(X, Y), 
(e) aX, ay, and p(X, Y) . 
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X -4 2 7 Sum IX -2 -1 4 5 Sum 

1 1 1 1 1 
il 4 il 2: 1 0.1 0.2 O 0.3 0.6 

5 1 1 1 1 
<1 il 8 '2 2 0.2 0.1 0.1 O 0.4 

Sum 3 3 1 
il ¡¡ 4 Sum 0.3 0.3 0.1 0.3 

(a) (h) 

Fig. 5-23 

5.57. Suppose X and Y are independent random variables with the following respective distributions: 

x 1 2 y -2 5 

f(x) 0.7 0.3 g(y) 0.3 0 .5 

Find the joint distribution of X and Y, and verify that Cov(X, Y) = O.  

5.58. Consider the joint distribution of X and Y in Fig. 5-24(a). 

8 

0.2 

(a) Find E(X) and E( Y) .  (b) Determine whether X and Y are independent. (e) Find Cov(X, Y). 

175 

5.59. Consider the joint distribution of X and Y in Fig. 5-24(b). (a) Find E(X) and E( Y) .  (b) Determine 
whether X and Y are independent. (e) Find the distribution, mean, and standard deviation of the random 
variable Z = X + Y. 

X - 2  - 1  O 1 2 3 Sum 

O 0.05 0.05 0.10 O 0.05 0.05 0.30 

1 0.10 0.05 0.05 0.10 O 0.05 0.35 

2 0.03 0.12 0.07 0.06 0.03 0.04 0.35 

Sum 0. 18 0.22 0.22 0.16 0.08 0.14 

(a) (h) 

Fig. 5-24 

5.60. A fair coi n is tossed four times. Let X denote the number of heads occurring, and let Y denote the longest 
string of heads occurring. (See Problems 5.2 and 5.38.) 
(a) Determine the joint distribution of X and Y. 
(b) Find Cov(X, Y) and p(X, Y). 

5.61. Two cards are selected at random from a box which contains five cards numbered 1, 1 , 2, 2, and 3. Let X 
denote the sum and Y the maximum of the two numbers drawn. (See Problem 5.54.) (a) Determine the 
joint distribution of X and Y. (b) Find Cov(X, Y) and p(X, Y). 

5.62. A random sample with replacement of size n = 2 is chosen from the set { 1 ,  2, 3, 4, 5} .  Let X = O if the 
first number is even, and X = 1 otherwise; and let Y = 1 if the second number is odd, and Y = O 
otherwise. (a) Show that the distributions for X and Y are identical. (b) Find the joint distribution of X 
and Y. (e) Are X and Y independent? 

Remark: It is always possible to find the distributions of X and Y from the joint distribution of X and 
Y; but, in general, it is not possible to find the joint distribution from the individual distributions of X 
and Y. Sorne other information, such as knowing that X and Y are independent, is needed to obtain the 
joint distribution from the individual distributions. 
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CHEBYSHEV'S INEQUALITY 

5.63. Let X be a random variable with mean p, and standard deviation a. Use Chebyshev's inequality to estimate 
P(p, - 3a <; X <; P, + 3a) . 

5.64. If Z is the standard normal random variable with mean O and standard deviation 1 ,  use Chebyshev's 
inequality to find a value b for which P( -b <; X <; b) ::> 0.9. 

5.65. Let X be a random variable with mean O and standard deviation 1 . 5 . Use Chebyshev's inequality to 
estimate P( -3 <; X <; 3) .  

5.66. X is a random variable with mean p, = 70. For what value of a will Chebyshev's inequality give 
P( 65 <; X <; 75) ::> 0.957 

5.67. X is a random variable with mean p, = 100 and standard deviation a = 10. Use Chebyshev's inequality to 
estimate (a) P(X ::> 120), (b) P(X <; 75) . 

MISCELLANEOUS PROBLEMS 

5.68. Let X be a continuous random variable with the following distribution: 

f(x) = { �  if O <; x <; 8  
elsewhere 

(a) Find: (i) P(2 <; X <; 5), (ii) P(3 <; X <; 7), (iii) P(X ::> 6) . 
(b) Determine and plot the graph of the cumulative distribution function F of X. 

5.69. Let X be a continuous random variable with the following distribution: 

f(x) = { �x if O <; x <; 5  
elsewhere 

(a) Evaluate k. (b) Find: (i) P( 1  <; X <; 3) , (ii) P(2 <; X <; 4), (iii) P(X <; 3) .  

5.70. Plot the graph of the cumulative distribution function F of the random variable X with the distribution: 

x -3 2 6 

f(x) 1 1 1 
4" 2: 4" 

5.71. Find the distribution function f(x) of the continuous random variable X with the cumulative distribution 
function: 

if x < O 
if O <; x <; 1 
if x >  1 

{ O if x < O  
(b) F(x) = sin x if O <; x <; 1r/2 

1 if x > 1r/2 

(Hint: f(x) = F'(x), the derivative of F(x), wherever it exists.) 
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5.72. Show that ax = ° if and only if X is a constant function, that is, X(s) = k for every s E S, or simply 
X = k. 

5.73. Suppose ax el O. Show that p(X, X) = 1 and p(X, -X) = -1 .  

5.74. Pro ve Theorem 5. 1 1 :  Let X, Y, Z be random variables on S with Z = iP(X, Y) . Then 

E(Z) = L iP(xi, Yj)h(Xi , Yj) 
i,j 

where h is the joint distribution of X and Y. 

Ánswers to Supplementary Problems 

The following notation will be used: 

[Xl , · · · , Xn; f(XI ) , · · ·  , j(Xn)] for the distribution f = { (Xi, j(Xi) }  

[Xi; Yj; row by  row] for the joint distribution h = { [(Xi , Yj) , h(Xi, Yj) ]} 

5.36. k = 2; [-3 , 2, 4, 7; 0 .3 , 0.2, 0 . 1 , 0.4] ,  E(X) = 2.7 

5.37. [1 , 2, 3, 4, 5, 6; * ,  /¡; , ?t; ,  ft; ,  fg ,  -f¡;] , E(X) = 91 /36 ;:::; 2.5 

5.38. [0, 1 , 2, 3, 4; f¡; , it; , f¡; , f¡; ,f¡;] ,  E(X) = 27/ 16 ;:::; 1 .7 

5.39. (a) [0, 1 , 2, 3; th- , 14 , � , �] ,  (b) E(x) = 2.25 

5.40. E = 2 1 1 /81 ;:::; 2.6 

5.41. E = 23/8 ;:::; 2.9 

5.42. E = 1 1/9 ;:::; 1 .2 

5.43. E =  1 1/8 ;:::; 1 .4 

5.44. (a) [3, 4, 5, . . .  , 9; 0. 1 , 0 . 1 , 0.2, 0.2, 0.2, 0. 1 , 0 . 1 ] ,  (b) E(X) = 6 

5.45. (a) 0.75, (b) -0.25 

5.46. 0.25 

5.47. $5 

5.48. Hint: Let y = L cf = 1/ ( 1  - q), so dy/dq = L nqn-l = 1/ ( 1  _ q)2 

5.49. (a) /-L = 4, a2 = 5.5, a = 2.3 

5.50. (a) /-L = 1, a2 = 2.4, a = 1 . 5  

(b) /-L = O, a2 = 10, a = 3.2 

(b) /-L = 4.0, a2 = 5.6, a = 2.37 

5.51. (a) /-Lx = 3, a� = 3, ax = J3 ;:::; 1 . 7 
(b) [3, 1 1 , 1 8 , 22; 0.4, 0 . 1 , 0.2, 0.3] , /-Ly = 12.5, a� = 69. 5, ay ;:::; 8 .3 
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5.52. J-L = ap + bq, a2 = pq(a - b)2 , a = la - b lVJX¡ 

5.53. J-Lx = 0.9, a� = 1 .09, ax = 1 .04 
(a) [ 1 ,  1 ,  1 6; 0.2, 0 .5, 0.3], J-Ly = 5.5, a� = 47.25, ay = 6.87 
(b) [t, 3, 9; 0.2, 0.5, 0.3], J-Ly = 4.67, a� = 5.21 ,  ay = 2.28 
(e) [ 1 , 2, 8; 0.2, 0 .5, 0.3], J-Ly = 3.6, a� = 8 .44, ay = 2.91 

5.54. (a) [2, 3, 4, 5; 0 . 1 ,  0.4, 0.3, 0.2], J-Lx = 3.6, a� = 0.84, ax = 0.9 
(b) [ 1 , 2, 3; 0 . 1 ,  0.5, 0.4], J-Ly = 2.3, a� = 0.41, ay = 0.64 
(e) [3, 5, 6, 7, 8; 0 . 1 ,  0.4, 0 . 1 ,  0.2, 0.2], J-Lz = 5.9, a� = 2.3, az = 1 . 5  
(d) [2, 6, 8, 12, 1 5; 0 . 1 ,  0.4, 0 . 1 ,  0.2, 0.2], J-Lw = 8.8, aiv = 17.6, aw = 4.2 

5.55. (a) E(X) = 3, E(Y) = 1 ,  (b) Cov(X, Y) = 1 . 5, (e) ax = 2, ay = 4.3, p(X, Y) = 0 . 17  

5.56. (a) E(X) = 1 .4, E( Y) = 1 ,  (b) Cov(X, Y) = -0.5, (e) ax = 0.49, ay = 3 . 1 ,  p(X, Y) = -0.3 

5.57. [ 1 , 2; -2, 5, 8; 0.2 1 ,  0 .35, 0 . 14; 0.09, 0. 1 5, 0.06] 

5.58. (a) E(X) = 1 .7, E( Y) = 3 . 1 ;  (b) Yes; (e) Must equal O since X and Y are independent 

5.59. (a) E(X) = 1 .05, E(Y) = 0. 16; (b) No; 
(e) [-2, - 1 ,  0, 1 , 2, 3, 4, 5; 0.05, 0 . 1 5, 0 . 1 8, 0 . 17, 0.22, 0. 1 1 ,  0.08, 0.041] , 

J-Lz = 1 .21 , az = J3.2f "" 1 .79 

5.60. (a) [O, 1, 2, 3, 4; O, 1 , 2, 3, 4; -k, O, O, O, O; O, �, O, O, O; O, �, �, O, O; O, O, ft, ft; O, O, O, O, -k] 
(b) Cov(X, Y) = 0.85, p(X, Y) = 0.89 

5.61. (a) [2, 3, 4, 5; 1 , 2, 3; 0 . 1 ,  O, O; O, 0.4, O; O, 0 . 1 ,  0.2; O, O, 0.21] 
(b) Cov(X, Y) = 0.52, p(X, Y) = 0.9 

5.62. (a) [O, 1; �, �] 

5.63. 

5.64. 

5.65. 

5.66. 

1 P > 1 - - "" 0.89 - 32 

b = vTO ",, 3 . 1 6  

P ::>  0.75 

a = 5/V20 "" 1 . 1 2  

(b) [O, 1 ;  O, 1 ;  fs, fs;  fs, ?s] (e) Yes 

5.67. (a) P ::>  0.75, (b) P ::>  0.84 

5.68. 
if x < O 
if O <::: x <::: 8 .  See Fig. 5-25(a) 
if x >  8 

[CHAP. 5 
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5.69. (a) k = fs, (b) (i) fs, (ii) *, (iii) ?s 

5.70. See Fig. 5-25(b) 

5.71. (a) f(x) = 3x2 if O <::: x <::: 1, O elsewhere 
(b) f(x) = cos x if O <::: x <::: 1r/2, O elsewhere 

(a) 

Fig. 5-25 

1 79 

(h) 



Chapter 6 
Binomial and Normal Distributions 

6.1 INTRODUCTlON 

This chapter will define and discuss several distributions which are widely used in many applications 
of probability and statistics. Specifically, we investigate the binomial and normal distributions in 
depth, and briefiy discuss the Poisson and multinomial distributions. Furthermore, we indicate how 
each distribution might be an appropriate probability model for some application. 

The Central Limit Theorem, which plays a major role in probability and statistics, will also be 
discussed in this chapter. We will see how this theorem is a generalization of the approximation of the 
discrete binomial distribution by the continuous normal distribution. 

6.2 BERNOULLI TRIALS, BINOMIAL DISTRIBUTlON 

Consider an experiment with only two outcomes, one called success (S) and the other called failure 
(F). Independent repeated tri al s of such an experiment are called Bernoulli trials, named after the Swiss 
mathematician J akob Bernoulli (1 654-1705). (We emphasize that the term "independent trials" means 
that the outcome of any tri al does not depend on the previous outcomes, such as tossing a coin.) 

Let p denote the probability of success in a Bernoulli trial, and so q = 1 -p is the probability of 
failure. A binomial experiment consists of a fixed number of Bernoulli trials. The notation 

B(n,p) 
will be used to denote a binomial experiment with n trials and probability p of success. 

Frequently, we are interested in the number of successes in a binomial experiment and not in the 
order in which they occur. The following theorem (proved in Problem 6.8) applies. 

Theorem 6.1: The probability of exactly k success in a binomial experiment B(n,p) is given by 

P(k) = P(k successes) = ( � )lqn-k 
The probability of one or more successes is 1 _ qn. 

Here ( � ) is the binomial coefficient, which is defined and discussed in Chapter 2. 

Observe that the probability of getting at least k successes, that is, k or more successes, is given by 

P(k) + P(k + 1 )  + P(k + 2) + . . .  + P(n) 
This follows from the fact that the events of getting k and k' successes are disjoint for k el k'. 

EXAMPLE 6.1 
(a) A fair coin is tossed 6 times; call heads a success. This is a binomial experiment with n = 6 and p = q = !. 

(i) The probability that exactly two heads occurs (i.e. k = 2) is: 

P(2) = G) GY GY = !� � 0.23 

180 
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(ii) The probability of getting at least four heads (i.e. k = 4, 5, or 6) is: 

P( 4) + P(5) + P(6) = ( �) G r G r + G) G r G) + ( � ) G r = .!2 � � = .!..!. � O 34 64 + 64 + 64 32 . 

1 8 1  

(iii) The probability of getting no heads (i.e. all failures) is l = (!)6 = ¡/;¡, so the probability of one or more 
heads is 1 - ( = 1 - ¡/;¡ = � � 0.98. 

(b) The probability that Ann hits a target is p = t; hence she misses with probability q = 1 -p = ¡. She tires seven 
times. Find the probability that she hits the target: (i) exactly 3 times, (ii) at least one time. 
(i) Here k = 3; hence the probability that she hits the target three times is: 

P(3) = ( 7 ) (�) 3 (�) 4 = � � 0.26 3 3 3 2187 

(ii) The probability that she never hit s the target, that is, all failures, is q7 = (¡)7 = 128/2187 � 0.06. Thus 
the probability that she hits the target at least once is 1 - q7 = 2059 /21 87 � 0.94 = 94 percent. 

Binomial Distribution 

Consider a binomial experiment B(n, p) . That is, B(n, p) consists of n independent repeated tri al s 
with two outcomes, success or failure, and p is the probability of success and q = 1 - p is the probability 
of failure. The number X of k successes is a random variable with the following distribution: 

k O 1 2 . . .  n 
P(k) qn C)qn-lp ( ; )(-2/ . . .  pn 

This distribution for a binomial experiment B(n,p) is called the binomial distribution since it corresponds 
to the successive terms of the binomial expansion: 

(q +pr = cf' + ( �) cf'-
l
p + ( ;) qn-2/ + . . .  +p

n 

Thus B( n, p) will also be used to denote the binomial distribution. 
Properties of this distribution follow: 

Theorem 6.2: 
Binomial distribution B( n, p) 

Mean or expected number of successes p, = np 
Variance a 2 = npq 
Standard deviation a = vfniX¡ 

EXAMPLE 6.2 
(a) The probability that Bill hits a target is p = l He tires 100 times. Find the expected number p, of times he 

will hit the target and the standard deviation a. 
Here p = � and so q = �. Hence 

1 p, = np = 100 . - = 20 5 and 
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(b) A fair die is tossed 1 80 times. Find the expected number p, of times a six appears and the standard deviation a. 
Here p = i and so q = �. Hence 

p, = np = 180(i) = 30 

6.3 NORMAL DISTRIBUTlON 

and 

The most important example of a continuous random variable X is the normal random variable, 
whose density function has a bell-shaped graph. More precisely, there is a normal random variable X 
for each pair of parameters a >  O and p" where the corresponding density function is 

f(x) = _1 exp [ _ � [ x - p, ] 2] 
6a 2 a 

Such a normal distribution with parameters p, and a will be denoted by 

N(p" (2) 

If X is such a continuous random variable, then we say X is normally distributed or that X is N(p" (2) .  
Figure 6 . 1 (a) shows how the bell-shaped normal curves change as p, varies and a remains fixed; and 

Figure 6- 1 (b) shows how the curves change as a varies and p, remains fixed. Note that each curve 
reaches its highest point at x = p, and is symmetric about p,. The infiection points, where the direction 
of the bend of the curve changes, occur for x = p, + a and x = p, - a. 

y 

y 

¡.t = -2 ¡.t = 0  ¡.t = 2  y =f(x) 

-2 o 2 x -2 o 2 x 
Ca) Nonnal distributions with a fixed (a = 1)  (h) Nonnal rustributions with¡.t fixed (p, = O) 

Fig. 6-1 

Properties of the normal distribution follow: 

Theorem 6.3: 
Normal distribution N(p" (2) 

Mean or expected value p, 

Variance 2 a 

Standard deviation a 

That is, the mean, variance, and standard deviation of the normal distribution N(p" (i) are p" (J2 , 
and (J, respectively. This is the reason that p, and (J are used as the parameters in the definition of the 
above density function f(x) . 
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Sfandardized Normal lJistribution 

Suppose X is any normal distribulion N(p., c?). Recall Ihat the standardized random variable 
corresponding to X is 

z = X - p. 
a 

In this case Z is also a normal distribution and ¡t = O and o- = 1, that is, Z is N(O, 1) .  The density 
function for Z is 

whose graph is shown in Fig. 6-2. 

2.15% 

y 
,.< 

, , <U , , , , , 
13.6% : 34.1% , 

, , , , , , , 
34.1% : 13.6% , 

-2 -1 o 1 2 

Normal distribution N(O,I) 

Fig. 6-2 

2.15% 

, , 

Figure 6-2 also tells us Ihat the pereentage of the arca under the standardized normal curve (j¡(z) and 
hence also under the corresponding density curve for the normal distribution X is as follows: 

68.2 percent 

95.4 percent 

99.7 percent 

This gives rise to the so-called: 

foe 

for 

fo, 

- 1 $. .1 $. 1  and for 

- 2 $. = $. 2 and for 

- 3 $. z $. 3  and for 

68-95-99.7 Rule 

¡t - (j $. x $. ¡t + o­

/1. - 20" $. x $. /./. + 20-

¡t - 30" $. x $. p. + 30" 

This rule says thal in a normally distributed population, 68 percent (approximalely) of the population 
falls within one standard deviation of the mean, 95 percent falls within two standard deviations of the 
mean, and 99.7 percent falls within three standard deviations of the mean. 

6.4 EVAL.UATING NORMAL. I)R08ABIUTIE'S 

Consider any continuous random variable X on a sample space S wilh densilY function 
f(x). Rccall that {a $. X :S  b} is an event in S and that Ihe probability P(a $. X $. b) is equal to the 
arca under Ihe curve f betwccn x = a and x = b. In the language of calculus, 

P(o S X S b) � J: ¡(x) dx 
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Howcvcr, ir x is a normal distribution, lhen \Ve are ablc lo evaluale such areas withouI calculus. Wc 
show haw lo do Ihis in Ihis section in 1\V0 stcps: first with the standard normal distribution Z, and Ihen 
with any normal distribution X. 

b'alualing Standard Normal I'robabilities 

Tablc A·] (scc Appcndix) gives lhe area undcr the standard normal curve 1> bctwccn O aod :. whcre 
O :S  z < 4 aod = is givcn in stcps orO.OI .  This arca is dcnoted by <I>(z), as indicatcd by the picturc in the 
t¡¡blc. 

EXAMPlE 6.3 FinJ: (a) <1>(1 .26), (h) <l>(O.34), (e) <1>(1.8), (d) 1>(4.2). 

(a) To fllld 1>(1 .26), look 011 the left for Ihe row lalx:lcd 1.2, and then look 011 the lap for the column labclcd 
6. The cntry in Ihe tabk corrcsponding lo row 1.2 and col11mll 6 is .3962. ThllS <li(1 .26) = 0.3962. 

(h) To fmd <li(O.34), look 011 thc left for thc row labc1cd 0.3. alld thcll look on ¡he top for ¡he column labeled 
4. The entry in the tab1c corresponding to row 0.3 and colllmn 4 is .1331. ThllS <li(0.34) = 0.1 331 .  

(e) To find <fi(1 .8), 100k on the left for ¡he row labcled 1.8. Thc ¡¡rst entry .4641 in ¡he row corrcsponds to 
1.8 = 1 .80. Thus <fi(1.8) = 0.464l . 

(ti) The valuc of <li(:) for any : :::-: 3.9 is 0.5000. Thus <li(4.2) = 0.5000, even though 4.2 ¡s no¡ in the tahle. 

Using Table A-l (see Appcndix) and the symmetry of ¡he curve, we can fllld P(=t ::::; Z .:5  Z2), ¡he 
arca under ¡hc curve belween any ¡wo values =¡ and =2, as follows: 

Thesc cases are piclured in Fig. 6-3. 

(b) OSzI Sz,. 

¡¡"ig. 6-3 

if Z¡ ::; O :5 =2 
if O 5 =1 ::; =2 
if =1 ::; =2 ::::; O 

Furthermorc, using thc fact that thc total arca undcr thc normal curve is 1 and hence half the arca 
is !, we can also find ¡hc ··tail end" of a one-sidcd probability as folJows: 

{ 0.5000+ '1'(',) P(Z " ,, ) � 0.5000 _ '1'(1', 1) 
if O ::::; zl 
if zl :5 0  

Thesc t\Vo cases are pictured in Fig. 6-4(a). Thc complcments of thcse cases givc thc othcr onc-sidcd 
probability, pictured in Fig. 6-4(b). Namcly, 

{ 0.5000 - ,p(,,) 
p Z > z  = ( - ,) 0.5000 + '1'( 1', 1) 

The aboye cover all onc-sidcd probabilities. 

if 0 :5 =1 
if =I :5 0  
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'. ' 
% l :S;  o 

Fig. 6-4 

EXAMPlE 6.4 Find Ihe following probabililies for Ihe slandard nonllal dislriblllion Z: 

(a) P(-0.5 :5 Z :5 1 . 1 )  
(b) 1'(-0.38 :5 Z :5  1.12) 

(a) Referring to Fig. 6-3«(1), 

(e) 1'(0.2 :5 Z :5  1.4) 
(d) 1'(-1.5 :5 Z :5  -0.7) 

(e) P(Z 2:: 1.6) 
(f) P(Z $ - 1.8) 

1'(-0.5 :5 Z :5 1 . 1 )  = <1>(1.1) + <t>(0.5) = 0.3643 + 0.1915 = 0.5558 

(b) Rcferring lo Pig. 6-3«(1), 

'. ' 
%1:S; O 

1'( -0.38 :5 Z :5 1.12) = <1>( l .  72) + <1>(0.38) = 0.4573 + 0.1480 = 0.6053 

(e) Rcferring to Fig. 6-3(b). 

1'(0.2 :5 Z :5  1 .4) = 1'(1.4) - <t>(0.2) = 0.4192 - 0.0793 = 0.3399 

(d) Refcrring 10 Pig. 6.3(e), 

1'(-1.5 :5 Z :5  -0.7) = <1>(1.5) - 1'(0.7) = 0.4332 - 0.2580 = 0.1752 

(e) Rcfcrring lo Fig. 6-4(b), 

(f) Rcfcrring lo Pig. 6.4{a), 

peZ 2:: 1.6) = 0.5 - <1>( 1 .6) = 0.5000 - 0.4452 = 0.0548 

1>(Z :5 -1.8) = 0.5 - <1>(1.8) = 0.5000 - 0.4641 = 0.0359 

Evaluating Arbitrary Normal I)robabilities 

185 

Suppose X is a normal distribution, say X is N(j.t,a2) .  To evaluate P(a :5 X :5  b), \Ve usually 
changc a and b into the standard units as follo\Vs: 

Thcn 

a - /1.  :::1 = --
" 

and 

P(a :5 X :5  b) = 1'(:1 :5 Z :5  =2) 
which is the arca undcr ¡he standard normal curve bctwccn =1 and Z2' 

EXAMPlE 6.5 Sllppose X is the nonnal distribution N(70,4). Thus X has mean JI = 70 and standard deviation 
(j = J4 = 2. Find: «(1) 1'(68 :5 .Y :5  74), (b) 1'(72 :5 .Y :5  75), (e) 1'(63 :5 X :5  68), (i/) P(X 2:: 73). 

With refcrence to Figs. 6-3 and 6-4. we makc the following complltations. 

(a) Trallsform a = 68, b = 74 ¡nto standard llnils as follows: 

Thcrcforc (Hg. 6-3(0» , 

68 - J.l 68 - 70 =1 = -- � --,- = - I , 
q -

74 - J.l 74 - 70 =1 = -- � --,- = 2 
q -

P(68 :-S: .Y :5  74) = 1'(-1 :-s: Z :-S:  2) = «>(2) +1'(1) = 0.4772+ 0.3413 = 0.8184 
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(b) Transform a = 72, b = 75 into standard units: 
72 - 70 ZI = --2- = 1 ,  

Therefore (Fig. 6-3(b)), 

75 - 70 Z2 = --2- = 2. 5 

P(72 <::: X <::: 75) = P(1 <::: Z <::: 2.5) = iP(2.5) - iP( l )  = 0.4938 - 0.341 3 = 0 . 1 525 

(e) Transform a = 63, b = 68 into standard units: 

Accordingly (Fig. 6-3(e)), 
ZI = 63 - 70 = _ 3 5 2 . , Z2 = 68 - 70 = -1 2 

P(63 <::: X <::: 68) = P( -3.5 <::: Z <::: -1 )  = iP(3 .5) - iP( l )  = 0.4998 - 0.3413 = 0 . 1 585 

(d) Transform a = 73 into the standard unit z = (73 - 70)/2 = 1 . 5 . Thus (Fig. 6.4(b)), 
P(X ::> 73) = peZ ::> 1 . 5) = 0.5 - iP( 1 . 5) = 0.5000 - 0.4332 = 0.0668 

[CHAP. 6 

Remark: Any continuous random variable X, including the normal random variable, has the 
property that 

P(X = a) == P(a <:::; X <:::; a) = O 
Accordingly, for continuous data, such as heights, weights , and temperatures (whose measurements are 
really approximations), we usually do not ask for the probability that X is "exactly a" but ask for the 
probability that X lies in some interval [a, b] or some interval [a - E, a + E] centered at a. This is 
illustrated in the next example. 

EXAMPLE 6.6 Suppose the heights of American men are (approximately) normally distributed with mean p, = 68 
and standard deviation a = 2.5. Find the percentage of American men who are: 

(a) between a = 66 and b = 71 inches tall, 
(b) between a = 69.5 and b = 70.5 inches tall (that is, "approximately 70 inches" tall), 
(e) at least 6 feet (72 inches) tallo 
(a) Transform a and b into standard units, obtaining: 

66 - 68 

Here ZI < O < Z2 . Hence 

ZI =�= -0.80 and 

P(66 <::: X <::: 71 )  = P( -0.8 <::: Z <::: 1 .2) = iP(1 .2) + iP(0.8) 
= 0.3849 + 0.2881  = 0.6730 

That is, approximately 67.3 percent of American men are between 66 and 71 inches tallo 
(b) Transform a and b into standard units, obtaining: 

_ 69.5 - 68 _ O 6 ZI - - . 2.5 
Here O < ZI < Z2 . Therefore, 

and Z2 = 70.5 - 68 = 1 2. 5 

P(69 .5 <::: X <::: 70.5) = P(0.6 <::: Z <::: 1) = iP(l )  - iP(0.6) 
= 0.3413 - 0.2258 = 0. 1 1 55 

That is, approximately 1 1 .6 percent of American men are between 69.5  and 70.5  inches tallo 
(e) Transform a = 72 into standard units, obtaining ZI = (72 - 68)/2. 5 = 1 .6. Here O < ZI . Therefore, 

P(X ::> 72) = peZ ::> 1 .6) = 0.5 - iP( 1 .6) = 0.5 - 0.4452 = 0.0548 

That is, approximately 5 .5 percent of American men are at least 6 feet tallo 
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6.5 NORMAL.. AJ'PROXIMATlON OF TI·IE BlNOM.IAL.. IJISTRI8UTlON 

187 

The binomial probabilities P(k) = (�) ¡lq"-/; become increasingly difficult to compute as 11 gets 

larger. Howevcr, thcre is a way to approximate P(k) by means ofa normal distribution when an exaet 
eomputation is impraclical. This is Ihe topie of Ihis section. 

I)robabilil)' I-listogram for Bfp, p) 

The probability histograms for B( lO, 0.1), 8(10, 0.5), 8(10, 0.7) are pielured in Fig. 6-5. (Reclan­
gles whose heighls are less Iban 0.01 have been omiued.) Generally speaking, the hislOgram of a 
binomial dislribution 8(II,p) rises as k approaehes the mean p. = IIp and falls olr as k moves away 
from p.. Furthcrmore: 

(1) For p = 0.5, Ihe histogram is symmetrie about the mean p.. as in Fig. 6-5(b). 
(2) For p < 0.5, the graph is skewed lO Ihe right, as in Fig. 6-5(a). 
(3) For p > 0.5, Ihe graph is skewed tO Ihe len, as in Fig. 6-5(c). 

o .• o .• 

o., 03 

o., 

�l U �I 

o 
o 1 2 3 � , 6 7 I 9 lO 

o 
o 1 2 3 4 , 6 7 S 9 10 O o 1 2 3 4 , 6 7 S 9 10 

(a) B(IO, 0.1) (b) 8(10, 0.5) (e) 8(10, 0.7) 

Fig. 6-5 

Consider now the fo[[owing distribution for 8(20, 0.7) where an aSlerisk (>lo) indicales Ibal P(k) is 
\css than 0.0 1: 

k O I 8 9 10 1 1  1 2  13 14 IS 16 17 18 19 20 

I'(k) • • . . • 0.01 0.03 0.07 0. 1 1  0.16 0.19 

The probabilily histogram for 8(20, 0.7) appears in Fig. 6-6. 

0.18 0.13 0.07 0.03 0.01 • 

Although p f. 0.5, observe Ihal Ihe hislogram for 8(20,0.7) is still nearly symmelric about 
/J. = 20(0.7) = 14 for k between 8 and 20, and for k outside that range, P(k) is practically O. Further­
more, the standard deviation for 8(20,0.7) is approximatcly 0" = 2, and hcnce the intcrval 
[8, 201 = [/J. - )0", p. + )0"1. These rcsults are typical for binomial distributions 8(11:1') in which both 
111' and IIq are at Icast 5. Wc statc these results more formally: 

Basic Properfy of Ihe Binomial l'robabililY I-lislogram 

For IIp 2: 5 and IIq 2: 5, tbe probability histogram for 8(n,p) is nearly symmctric about 
p. = IIp over the interval [p. - )0-, P. + 30"], where o- = .,¡npq, and outside Ibis interval P(k) :::: O. 
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Histognun of B(20, 0.7) 

Distribution of N(l4, 4.2) 

t·ig. 6-6 

biDomial distribution 

[CHAPo 6 

Normal Approximation, Cenlral Limil Theorem 

The densilY curve for the normal dislribulion N(l4, 4.2) is superimposed on lhe probabilily histo­
gram for Ihe binomial distribution 8(20, 0.7) in Fig. 6-6. I-Iere 11 = 14 and /j = J4.2, for bOlh dis­
tributions. The fundamental relationship between the ¡WD distributions is as follows: 

For any intcger value of k belwcen /1- - 30- and 11 + 30-, Ihe arca under the 
normal curve bctwccn k - 0.5 and k -1- 0.5 is approximatcly cqual 10 P(k), 
Ihe arca of the rcclangle al k. 

1 n othcr \Vords: 

The binomial probability P(k) for B(II, p) can be approximatcd by ¡he normal 
probability P(k - O.5 ::; X ':::; k + O.5) for N(l1p,lIpq), provided I1p ?:: 5 and 
IIq ?:: 5. 

A theoretical juslification fOI" lhe approximation of B(I1,p) by N(l1p, I1pq) is the fundamental Central 
Limil Theorem which rollows: 

Central Umil Theorem 6.4: Let XI' X2, Xj, • . .  be a sequencc of independent random variables with the 
same distribution and wilh mean ¡.t and varianee cJ. Lel 

2 = %,, - 1.1-
�" crlfo 

where XII = (XI + X2 + . . .  + Xn)/lI. Then for large 11 and any inlcrval 
{a :5 x :5 b}, 

P(a :5 211 :5 b) � P(a :5 rf :5  b) 

where rf is the slandard normal distribulion. 

Rccall that XII was called the sample mean of lhe random variables XI, . . .  , XI!" Thus 2" in lhe 
above theorem i5 the standardized samplc mean. Roughly spcaking, the Central Limit Theorem says 
that in any sequencc of rcpcated trials the distribution of the standardized sample mean approaches the 
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standard normal distribution as the number of trials increases. Other statements of the Central Limit 
Theorem are given in Chapter 7. 

Calculations Using the Normal Approximation 

Let BP denote the binomial probability for B(n, p) and let NP denote the normal probability for 
N(np, npq) , where np � 5 and nq � 5. As noted aboye, for any integer value of k between JL - 30" and 
JL + 30", we have: 

BP(k) � NP(k - 0.5 :::; X :::; k + 0.5) 

Accordingly, for nonnegative integers nI and n2, 
BP(nl :::; k :::; n2) � NP(nl - 0.5 :::; X :::; n2 + 0.5) 

Analogous formulas are used for one-sided probabilities. That is, 

BP(k :::; nI ) � NP(X :::; nI + 0.5) and BP(k � nI ) � NP(X � nI - 0.5) 

Remark: For the binomial distribution B(n, p) , the binomial variable k lies between O and n. Thus 
we should actually replace BP(k :::; nI )  and BP(k � nI )  by BP(O :::; k :::; nI )  and BP(nl :::; k :::; n) , respec­
tively, which yields the approximations 

BP(O :::; k :::; nI ) � NP( -0.5 :::; X :::; nI + 0.5) = NP(X :::; nI + 0.5) - NP(X :::; - 0.5) 
and 

BP(nl :::; k :::; n) � NP(nl - 0.5 :::; X :::; n + 0.5) = NP(X � nI - 0.5) - NP(X � n + 0.5) 

However, NP(X :::; -0.5) and NP(X � n + 0.5) are very, very small and can be neglected. This is the 
reason for the aboye one-sided approximations. 

EXAMPLE 6.7 A fair coin is tossed 100 times. Find the probability P that heads occurs: (a) exactly 60 times, 
(b) between 48 and 53 times inclusive, (e) less than 45 times. 

This is a binomial experiment B(n,p) with n = 100, p = 0.5, and q = 1 -p = 0.5 . First we find 

p, = np = 100(0 .5) = 50, (i = npq = 100(0.5) (0.5) = 25, so a = 5  
(a) We can use the normal distribution to approximate the binomial probability P(60) since np = 50 > 5 and 

nq = 50 > 5. We have 
BP(60) c:o:: NP(59.5 <::: X <::: 60.5) 

Transform a = 59.5 and b = 60.5 into standard units as follows: 
59.5 - 50 ZI = 5 = 1 .9 

Here O < ZI < Z2 . Therefore (Fig. 6-3(b)), 
and 60.5  - 50 Z2 = 5 = 2.1 

P = BP(60) c:o:: NP(59.5 <::: X <::: 60.5) = NP( 1 .9 <::: Z <::: 2. 1 )  
= iP(2. 1 )  - iP(1 .9) = 0.4821 - 0.4713 = 0.0 108 

Remark: This result agrees with the exact value of BP(60) to four decimal places. That is, to four 
decimal places, 

BP(60) = ( 1�� ) (0.5)6° (0 .5)40 = 0.0108 

(b) We seek BP(48 <::: k <::: 53) or, assuming the data is continuous, NP(47.5  <::: X <::: 53 .5) .  Transforming a = 47.5 
and b = 53.5 into standard units yields: 

47.5  - 50 ZI = 5 = -0. 5 and 53.5 - 50 Z2 = 5 = 0.7 
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Here, ZI < O < Z2 . Accordingly (Fig. 6-3(a)), 

P = BP(48 <::: k <::: 53) "" NP(47.5  <::: X <::: 53.5) = NP( -0.5 <::: Z <::: 0.7) 
= iP(0.7) + iP(0.5) = 0.2580 + 0. 19 15  = 0.4495 

[CHAP. 6 

(e) We seek BP(k < 45) = BP(k <::: 44) or, approximately, NP(X <::: 44.5) .  Transforming a = 44.5 into standard 
units yields 

ZI = (44. 5 - 50)/5 = - 1 . 1  

Here ZI < O. Accordingly (Fig. 6-4(a)), 

P = BP(k <::: 44) "" NP(X <::: 44.5) = NP(Z <::: -1 . 1 )  
= 0 . 5  - iP( 1 . 1 )  = 0 . 5  - 0.3643 = 0. 1357 

6.6 POISSON DISTRIBUTlON 

A discrete random variable X is said to have the Poisson distribution with parameter A > O if X takes 
on nonnegative integer values k = O, 1 , 2, . . .  with respective probabilities 

Ake-A 
P(k) = j(k; A) = � 

Such a distribution will be denoted by POlCA). (This distribution is named after Siméon Poisson (1781-
1840) who discovered it in the early part of the 1 9th century.) 

The values ofj(k; A) can be obtained using Table 6- 1 ,  which gives values of e-A for various values of 
A, or by using logarithms. 

Table 6-1 

Values of e-), 

,\ 0.0 0 . 1  0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

e-), 1 .000 .905 . 8 19 .741 .670 .607 . 549 .497 .449 .407 

,\ 1 2 3 4 5 6 7 8 9 10 

e-), .368 . 1 3 5  .0498 .0183 .006 74 .002 48 .000 912 .000 335 .000 123 .000 045 

The Poisson distribution appears in many natural phenomena, such as the number of telephone calls 
per minute at some switchboard, the number of misprints per page in a large text, and the number of a 
particles emitted by a radio active substance. Bar charts of the Poisson distribution for various values 
of A appear in Fig. 6-7. 

OA 

0.3 

0.2 

0.1 

o 

'\' = 1 '\' = 2 '\' = 5  ,\, =  10 

Poisson distribution for selected values of ,\, 

Fig. 6-7 



CHAP. 6] BINOMIAL AND NORMAL DISTRIBUTIONS 1 9 1  

Properties of  the Poisson distribution follow: 

Theorem 6.5: 
Poisson distribution with parameter ,\ 

Mean or expected value p, = '\  

Variance a2 = ,\  

Standard deviation a =  J>.. 

Although the Poisson distribution is of independent interest, it also provides us with a close approxi­
mation of the binomial distribution for small k provided P is small and A = np; more specifically, if 
n � 50 and np < 5 (Problem 6.34). This property is indicated in Table 6-2, which compares the bino­
mial and Poisson distributions for small values of k with n = 100, P = 1 / 100, and A = np = 1 .  

Table 6-2 Comparison oC binomial and Poisson distributions with n = 100, 

p = ljlOO, and A = np = 1. 

k O 1 2 3 4 5 

Binomial 0.366 0.370 0. 1 8 5  0.0610 0.0149 0.0029 

Poisson 0.368 0.368 0. 1 84 0.061 3  0.0 1 53 0.003 07 

EXAMPLE 6.8 Suppose 2 percent of the items made by a factory are defective. Find the probability P that there 
are 3 defective items in a sample of 100 items. 

The binomial distribution with n = 100 and p = 0.2 applies. However, since p is small, we can use the Poisson 
approximation with ,\ = np = 2. Thus 

23 -2 
P = 1(3, 2) = _

e
,_ = 8 (0. 135)/6 = 0 . 180 3 .  

6.7 MULTlNOMIAL DISTRIBUTlON 

The binomial distribution is generalized as follows. Suppose the sample space S of an experiment 
rff is partitioned into, say, s mutually exclusive events Al , A2 , . . .  , As with respective probabilities 
PI , P2 , · · · , Ps· (Hence PI + P2 + . . .  + Ps = 1 .) Then: 

Theorem 6.6: In n repeated trials, the probability that Al occurs kl times, A2 occurs k2 times, . . .  , and 
As occurs ks times is equal to 

where kl + k2 + . . .  + ks = n. 

n! k¡ k2 ks 
k 'k , . . .  k , PI P2 . . .  Ps l · 2 ·  s · 

The above numbers form the so-called multinomial distribution, since they are precisely the terms in 
the expansion of (PI + P2 + . . .  + psr. Observe that if s = 2 then we obtain the binomial distribution, 
discussed at the beginning of the chapter. 

We note that implicitly there are s random variables XI , X2 , . . .  , Xs connected with the repeated tri al s 
of the above experiment rff. Specifically, for i = 1 , 2 , . . .  , s, we define Xi to be the number of times Ai 
occurs when rff is repeated n times. (Observe that the random variables are not independent, since 
knowledge of any s - 1 of them gives the remaining one.) 
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EXAMPLE 6.9 A fair die is tossed 8 times. Find the probability p of obtaining 5 and 6 exactly twice and the other 
numbers exactly once. 

Here we use the multinomial distribution to obtain: 

8! ( 1 ) 2 ( 1 ) 2 ( 1 ) ( 1 ) ( 1 ) ( 1 ) 35 p = 2!2! 1 ! 1 ! 1 ! 1 ! "6 "6 "6 "6 "6 "6 = 5832 "" 0.006 

Solved Problems 

BINOMIAL DISTRIBUTlON 

6.1. Compute P(k) for the binomial distribution B(n,p) where: 

1 (a) n = 5, P = 4' k = 2 1 (b) n = 10, p = 2' k = 7 
2 (e) n = 8, p = 3' k = 5 

Use Theorem 6 . 1 , that P(k) = ( �)pkcf-k where q = 1 -p. 
(a) Here q = �, so P(2) = G) (�r (�r = 1 0C16 ) G:) "" 0.264. 

(b) Here q = �, so P(7) = ( \0) GY Gr = 120C�8 ) G) ",, 0 . 1 17 . 
(e) Here q = �, so P(5) = (D GY G r = 56 (�¡3) (;7 ) "" 0.273. 

6.2. The probability that John hit s a target is p = �. He fires n = 6 times. Find the probability that 
he hits the target: (a) exactly 2 times, (b) more than 4 times, (e) at least once. 

This is a binomial experiment with n = 6, p = �, and q = 1 -p = *; hence use Theorem 6 . 1 . 

(b) John hits the target more than 4 times if he hits it 5 or  6 times. Hence 

P(X > 4) = P(5) + P(6) = G) ( 1 /4)5 (3/4)1 + ( 1 /4)6 

= 1 8/46 + 1/46 = 19/46 = 19/4096 "" 0.0046 

(e) Here l = (3/4)6 = 729/4096 is the probability that John misses all six times; hence 

P( one or more) = 1 - 729/4096 = 3367/4096 "" 0.82 

6.3. Suppose 20 percent of the items produced by a factory are defective. Suppose 4 items are chosen 
at random. Find the probability that: (a) 2 are defective, (b) 3 are defective, (e) none are 
defective. 

This is a binomial experiment with n = 4, p = 0.2 and q = 1 -p = 0.8; that is, B(4, 0.2) . Hence use 
Theorem 6. 1 .  
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6.4. 

(a) Here k = 2 and P(2) = ( � ) (0.2)2 (0.8)2 "" 0 .1 536. 

(b) Here k = 3 and P(3) = ( �) (0.2)3 (0.8) "" 0.0256. 

(e) Here P(O) = l = (0.8)4 = 0.4095. Hence P(X > O) = 1 - P(O) = 1 - 0.4095 = 0.5904 

A family has six children. 
(b) fewer boys than girls. 

Find the probability P that there are: (a) three boys and three girls, 
Assume that the probability of any particular child being a boy is !. 

Here n = 6 and p = q = l 
(a) P = P(3 boys) = G) GY GY 20 

64 
5 
1 6  

(b) There are fewer boys than girls if there are zero, one o r  two boys. Hence: 

P =  P(O boys) + P( 1 boy) + P(2 boys) = GY + G) G) GY + G) GY GY 1 1  
32 

6.5. A certain type ofmissile hits its target with probability p = 0.3. Find the number ofmissiles that 
should be fired so that there is at least a 90 percent probability of hitting the target. 

The probability ofmissing the target is q = 1 -p = 0.7. Hence the probability that n missiles miss the 
target is (O. 7r . Thus we seek the smallest n for which 

1 - (0.7r > 0.9 or equivalently (0.7r < 0.1 
Compute: 

(0.7) 1 = 0.7, (0.7)2 = 0.49, (0.7)3 = 0.343, (0.7)4 = 0.240, 
(0.7)5 = 0 . 1 68 ,  (0.7)8 = 0 . 1 18 ,  (0.7)9 = 0.0823 

Thus at least nine missiles should be fired. 

6.6. The mathematics department has eight graduate assistants who are assigned the same office. 
Each assistant is just as likely to study at home as in the office. Find the minimum number 
m of desks that should be put in the office so that each assistant has a desk at least 90 percent of 
the time. 

This problem can be modeled as a binomial experiment where: 
n = 8 = number of assistants assigned to the office 
p = � = probability that an assistant will study in the office 
X = number of assistants studying in the office 

Suppose there are k desks in the office, where k <::: 8. Then a graduate assistant will not have a desk if 
X >  k. Note that 

P(X > k) = P(k + 1 )  + P(k + 2) + . . .  + P(8) 

We want the smallest value of k for which P(X > k) < 0 . 10. 
Compute P(8), P(7), P(6), . . .  until the sum exceeds 10 percent. Using Theorem 6. 1 ,  with n = 8 and 

p = q = �, we obtain: 
P(8) = ( 1 /2) 8 = 1 /256 

P(7) = 8 ( 1 /2)7 ( 1 /2) = 8/256 

P(6) = 28 ( 1 /2)6 ( 1 /2)2 = 28/256 

Now P(8) + P(7) + P(6) = 37/256 > 10% but P(7) + P(8) < 10%. Thus m = 6 desks are needed. 
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6.7. A man fires at a target n = 6 times and hits it k = 2 times. (a) List the different ways that this 
can happen. (b) How many ways are there? 

(a) List all sequences with two Ss (successes) and four Fs (failures): 

SSFFFF, SFSFFF, SFFSFF, SFFFSF, SFFFFS, FSSFFF, FSFSFF, FSFFSF, 
FSFFFS, FFSSFF, FFSFSF, FFSFFS, FFFSSF, FFFSFS, FFFFSS 

(b) There are 1 5  different ways as indicated by the listo Observe that this is equal to ( � ) ,  since we are 
distributing k = 2 let1ers S among the n = 6 positions in the sequence. 

6.8. Prove Theorem 6. 1 .  The probability of exactly k successes in a binomial experiment B(n,p) is 

given
n 
by P(k) = P(k successes) = ( � )lqn-k. The probability of one or more successes is 

1 - q . 
The sample space of the n repeated trials consists of all n-tuples (i.e. n-element sequences) whose 

components are either S (success) or F (failure). Let A be the event of exactly k successes. Then A consists 
of all n-tuples of which k components are S and n - k  components are F. The number of such n-tuples in 
the event A is equal to the number of ways that k let1ers S can be distributed among the n components of an 

n-tuple; hence A consists of C(n, k) = ( �) sample points. The probability of each point in A is l qn-\ 
hence 

In particular, the probability of no successes is 

Thus the probability of one or more successes is 1 _ qn . 

EXPECTED VALUE AND STANDARD DEVIATlON 

6.9. Four fair coins are tossed. Let X denote the number of heads occurring. Calculate the 
expected value of X directly, and compare with Theorem 6.2. 

X is binomially distributed with n = 4 and p = q = !. We have: 

1 P(O) = 16 '  

Thus the expected value is: 

P(2) = 1
6
6 ' P(3) = 1: ' P(4) = /6 

E(X) = O ( 116) + 1 ( 1:) + 2 ( 166 ) + 3 ( 1:) + 4 ( /6 ) = �� = 2 

This agrees with Theorem 6.2, which states that E(X) = np = 4 (�) = 2. 
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6.10. A family has eight children. 
children are equally probable. 
occur. 

(a) Determine the expected number of girls if male and female 
(b) Find the probability P that the expected number of girls does 

(a) The number of girls is binomially distributed with n = 8 and p = q = 0.5 . By Theorem 6.2, 

p, = np = 8 (0.5) = 4 

(b) We seek the probability of 4 girls. By Theorem 6 . 1 ,  with k = 4, 

P = P(4 girls) = ( ! )  (0.5)4 (0.5)4 "" 0.27 = 27% 

6.11. The probability that a man hits a target is p = 0 . 1 .  He fires n = 100 times. Find the expected 
number E of times he will hit the target, and the standard deviation (J. 

This is a binomial experiment B(n,p) where n = 100, p = 0 . 1 ,  and q = 1 - p = 0.9. Thus apply 
Theorem 6.2 to obtain 

E = np = 100(0 . 1 )  = 10 and a = yíiji(j = VIOO(0 . 1 ) (0.9) = 3 

6.12. A fair die is tossed 300 times. Find the expected number E and the standard deviation (J of the 
number of 2's. 

6.13. 

The number of 2's is binomially distributed with n = 300 and p = i. Hence q = 1 -p = i. By 
Theorem 6.2, 

E = np = 300 (D = 50 and 

A student takes an 1 8  question multiple-choice exam, with four choices per question. 
one of the choices is obviously incorrect, and the student makes an "educated" 
the remaining choices. Find the expected number E of correct answers, and the 
deviation (J. 

This is a binomial experiment B(n,p) where n = 18 ,  p = t, and q = 1 -p = ¡. Hence 

and 

Suppose 
guess of 
standard 

6.14. Prove Theorem 6.2: Let X be the binomial random variable B(n,p) . Then: (i) JL = E(X) = np, 
(ii) Var(X) = npq. 

On the sample space of n Bernoulli trials, let Xi (for i = 1 , 2, . . .  , n) be the random variable which has the 
value 1 or O according as the ith trial is a success or a failure. Then each Xi has the distribution 

x O 

P(x) q p 

and the total number of successes is X = Xl + Xl + . . .  + Xn­
(i) For each i, we have 

E(X;) = O(q) + l (p) = p 
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Using the linearity property of E (Theorem 5.4 and Corollary 5 .5), we have 

(ii) For each i, we have 

and 

E(X) = E(X¡ + X2 + . . .  + Xn) 
= E(X¡ ) + E(X2) + . . .  + E(Xn) 
= p + P + . . .  + P = np 

Var(Xi) = E(X¡) - [E(X);]2 = p - l  = p(1 -p) = pq 
The n random variables Xi are independent. Therefore, by Theorem 5.9, 

Var(X) = Var(X¡ + X2 + . . .  + Xn) 
= Var(X¡ ) + Var(X2) + . . .  + Var(Xn) 
= pq + pq + . . .  + pq = npq 

[CHAP. 6 

6.15. Give a direct proof of Theorem 6.2: Let X be the binomial random variable B(n,p) .  Then: 
(i) JL = E(X) = np, (ii) Var(X) = npq. 

(i) Using the notation b(k; n,p) = P(k) = ( �)pk(-\ we obtain: 
n n 1 

E(X) = (; k · b(k; n,p) = (; k k! (n
n __ k) ! pkqn-k 

� (n - l ) ! k-¡ -k = np � (k _ 1 ) ! (n - k) ! P ( 
(we drop the term k = O since its value is zero, and we factor out np from each term). We let 
s = k - 1 in the aboye sumo As k runs through the values 1 to n, s runs through the values O to 
n - 1. Thus 

n-¡ ( _ 1) 1 n-¡ E(X) = nP L  I ( 
n_ l _· ) I P

S(-¡-s = nP L b(s; n - l ,p) = np s=o s. n s . s=o 
since, by the binomial theorem, 

n-¡ 
L b(s; n - l ,p) = (p + qr-¡ = ln-¡ = 1 S=o 

(ii) We first compute E(X2) as follows: 

2 n 2 n 2 n! k -k E(X ) = (; k b(k; n,p) = (; k k! (n _ k) ! P ( 
� k (n - l ) ! k-¡ n-k = np � (k _ 1 ) ! (n - k) ! P q 

Again we let s = k - 1 and obtain 

But 

2 n- ¡ (n - 1 ) ! ¡ n-¡ 
E(X ) = np � (s + 1 ) si en _ 1 _ s) ! pS(- -s = np � (s + l)b(s; n - l ,p) 

n-¡ n-¡ n-¡ 
L (s +  l)b(s; n - 1 ,p) = L s · b(s; n - 1 ,p) + L b(s; n - 1 ,p) S=o s=o S=o 

= (n - 1) p + 1 = np + 1 -p = np + q 
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where we usc (i) to oblain (11 - 1 )p. Accordingly. 

E(.\:"1) = np(lIp + q) = (lIp)! + IIpq 
and Var(X) = E(X2) - JI; = (/lp)! + /lpq - (/lp)! = /l1X¡ 
Thus Ihe Iheorem is proved. 

NORMAl. DlSTRIBUTION 
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6.16. The mean and standard deviation on an examinution are 11- = 74 und CJ" = 12, respcctive\y. Find 
the seores in standard units ol" students receiving: (a) 65, (h) 74, (e) 86, (d) 92. 

X - /l 65 - 74 (a) : = -- � -
1
-,- = -0.75 a _ 

X - ¡.t 74 - 74 
(b) ; = -a- � -1-2- � 0 

X - /t 86 - 74 (e) ; = -- � -1-'- = 1.0 a _ 

X - li 92 - 74 (ll) : = -- � -1-'- = 1.5 
a _ 

6.17. The mean and standard deviation on an examination are I� = 74 and CJ" = 12, respectivcJy. Find 
the grades corresponding to standard scores: (a) -1, (h) 0.5, (e) 1 .25, (rI) 1.75. 

Solving ; = x -/1 for x yie1ds x = 0-: + 11. Thus: a 
(a) x = 0-: + II = ( 12)(-I) + 74 = 62 (e) x = 0-: + I/ = ( 12)( 1.25) + 74 = 89 

(ti) x = CJ": + I/ = (12)(\ .75) + 74 = 95 (b) x = 0-: + l' = ( 12)(0.5) + 74 = 80 

6.18. Table A-1 (see Appendix) uses \"(z) 10 denote the area under Ihe slandard normal curve cP 
between O and :. Find: (a) <11( 1 .47), (h) <11(0.52), (e) 111( 1 . 1 ), (d) Q'(4.1). 

Usc Table A-I as folJows: 

(a) To find <1>( 1 .47), look on the len for the row labelcd 1.4. and then look on the top for the eolumn labcled 
7. The entry in the table eorresponding lo row 1.4 and colullln 7 is 0.4292. Henec <li( 1.47) = 0.4292. 

(b) To find <li(0.52), look on the len for the row labclcd 0.5, and then look on the top for Ihe eolullln labc1cd 
2. Thc cntry in Ihe table eorresponding 10 fOW 0.5 and column 2 is 0.1985. Hcnce <1>(0.52) = 0.1985. 

(e) To ¡¡nd 1'(\.1), look on Ihe lefl for Ihe row labelcd I . J .  Thc ¡¡rsl enlry in Ihis row is 0.3643 which 
corresponds 10 1 . 1  = 1.10. Hcnce 1'( 1 . 1 )  = 0.3643. 

(ti) Thc value of 1'(:) for any : 2': 3.9 is 0.5000. Thus iJ>(4.1) = 0.5000 cven Ihough 4.1 is nOI in Ihe labk:. 

6.19. Let Z Ix: the random variable with standard normal distribution 1>. Determine the value of = if: 
(a) P(O '; Z ';  e) � 0.4236, (b) P(Z '; e) � 0.7967, (e) PCe '; Z ';  2) � 0.1000. 

(a) Hcre = > O. Thus draw a picture of: and p(a :s z ::; z) as in Fig. 6-8(0). Hcre TabJc 6-1 can be uscd 
dircctJy. The enlry 0.4236 appcars to Ihc righl of row 1.4 and undcr eolullln 3. Thus : = 1.43. 

A z A z A z , , , , , , , 
(,) (b) (e) 

Fig.6-R 
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(b) Note z must be positive since the probability is greater than 0.5 . Thus draw z and peZ <::: z) as in 
Fig. 6-8(b). We have 

iP(z) = P(O <::: Z <::: z) = peZ <::: z) - 0.5 = 0.7967 - 0. 5000 = 0.2967 
Since 0.2967 appears in row 0.8 and column 3 in Table 6-1 , we have z = 0.83. 

(e) Since iP(2) = 0.4772 > 0. 1000, z must lie between O and 2. Thus draw z and pez <::: Z <::: 2) as in 
Fig. 6-8(e). We have 

iP(z) = iP(2) - pez <::: Z <::: 2) = 0.4772 - 0.1000 = 0.3772 
From Table 6- 1 ,  we get z = 1 . 1 6 . 

6.20. Let Z be the random variable with standard normal distribution cp. Find: 
(a) P(O :::; Z :::; 1 .28) ,  (b) P(  -0.73 :::; Z :::; O ) ,  (e) P(Z = 1 . 1 ) .  
(a) By definition iP(z) i s  the area under the curve cp between O and z. Therefore, using Table A-l ,  

P(O <::: Z <::: 1 .28) = iP( 1 .28) = 0.3997 

(b) By symmetry and Table A-l ,  

P (  -0.73 <::: Z <::: O )  = P(O <::: Z <::: 0.73) = iP(0.73) = 0.2673 

(e) The area under a single point a = 1 . 1  is O; hence peZ = 1 . 1 )  = O. 

6.21. Let Z be the random variable with standard normal distribution cp. Find: 
(a) P( - 1 .37 :::; Z :::; 0.82) , (b) P(0.65 :::; Z :::; 1 .26) ,  (e) P( - 1 .04 :::; Z :::; -0.12) . 

Use the following formula (pictured in Fig. 6-3): 

(a) Since - 1 .37 < O < 0.82, 

if ZI <::: O <::: Z2 
if 0 <::: ZI <::: Z2 
if ZI <::: Z2 <::: O 

P( - 1 .37 <::: Z <::: 0.82) = iP(0.82) + iP( 1 .37) 

(b) Since O < 0.65 < 1 .26, 

(e) Since - 1 .04 < -0.12 < O, 

= 0.2939 + 0.4147 = 0.7086 

P(0.65 <::: Z <::: 1 .26) = iP(1 .26) - iP(0.65) 
= 0.3962 - 0.2422 = 0. 1 540 

P(-1 .04 <::: Z <::: -0. 12) = iP(1 .04) - iP(0. 12) 
= 0.3508 - 0.0478 = 0.3030 

6.22. Let Z be the random variable with standard normal distribution cp. Find the following one­
sided probabilities: (a) P(Z :::; -0.7), (b) P(Z :::; 1 .03) ,  (e) P(Z � 0.36), (el) P(Z � -1 . 1 ) .  

Figure 6-4 shows how to compute the one-sided probabilities. 

(a) peZ <::: -0.7) = 0.5 - iP(0.7) = 0.5 - 0.2580 = 0.2420 
(b) pez <::: 1 .03) = 0.5 + iP(1 .03) = 0.5 + 0.3485 = 0.8485 



CHAPo 6] BINOMIAL Af\'D NORMAL DISTRIBUTIONS 

(e) P(Z:?: 0.36) == 0.5 - <"1>(0.36) = 0.5 - 0.1406 = 0.3594 

(ll) P(Z :?: -1. 1 ) = 0.5 + <p(-I . I) = 0.5 + 0.3643 = 0.8643 
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6.23. Suppose that the student IQ seores fonu a normal distribution with mean ¡J. = 100 and standard 
deviation a = 20. Find the perccntage of students whose seores fall betwccn: 
(a) 80 and 120, (h) 60 and 140, (e) 40 and 160, (d) 100 and 120, (e) over 1 60. 

AII thc scores arc units of thc standard dcviation q = 20 from thc mcan 11 = 100; henec wc can usc thc 
68-95-99.7 rule or Fig. 6.2 to obtain: 

(a) 68 pereenl, (b) 95 pereenl, (e) 97.7 pcrcent 
(d) t(68 perccnl) = 34 perecnl, (e) t (0.3 percent) = 0.15 percent 

6.24. Suppose the temperature T during May is normally distributcd with mean /), = 68 o and standard 
deviation a = 6°.  Find Ihe probabilily p thal Ihe temperature during May is: 
(a) between 70 ° and 80 °, (h) less than 60 °. 

First eOllvert the T values into Z values in standard u11iIS, then usc Tablc A-I (see Appclldix). 
(a) \Ve have: 

70 " in slandard units = (70 - 68)/6 = 0.33 
80 " in s tandard units = (80 - 68)/6 = 2.00 

Here O < 0.33 < 2.00. Therefore (Fig. 6-9(a) . 

p = 1'(70 � T � 80) = 1'(0.33 � Z � 2.00) 

= <"1>(2.00) - <"1>(0.33) = 0.4772 - 0.1293 = 0.3479 
(b) \Ve have: 

60° in standard units = (60 - 68)/6 = -1.33 

This is a one-sided probability with -1.33 < O. Using Fig. 6-9(b), symmclry, and that half Ihe arca 
under the curvc is 0.5000, wc obtain 

p = P('/' � 60) = P(Z � -1.33) = P(Z :?: 1.33) 

= 0.5 - if>(1.33) = 0.5000 - 0.4082 = 0.0918 

(a) P (0.33 S Z S 2.(0) (b) P(Zs-1.33) 

Fig. 6-9 

6.25. Suppose the wcighls IV of 800 male studenls are normally dislributed wilh mean ¡J. = 140 pounds 
and standard deviation a = 10 pounds. Find Ihe number N of students with weights: 
(a) bctwecn 138 and 148 pounds, (b) more Ihan 152 pounds. 

FirSI converl the IV valucs in lo Z valllcs in standard units. thcn use Table 1\-1 (see Appendix). 
(a) \Ve havc: 

138 in slandard unils = (138 - 140)/10 = -0.2 
148 in standard units = (148 - 140)/10 = 0.8 
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Hcrc - 0.2 < O < 0.8. Thercforc (Hg. 6-10(0)). 

1'(138 S IV S [48) = P(-Q.2 S Z S 0.8) 

Thus N = 800(0.3674) ;::; 294. 

(b) \Ve ha ... c: 

= 1>(0.8) + <1>( -0.2) = 0.2881 + 0.0793 = 0.3674 

152 in standard units = (152 - 140)/10 = 1.20 

[CHAPo 6 

This is a onc-sidcd probability wilh O < 1 .20. Using Fig. 6-10(b) and Ihal halfthc arca undcr ¡he curve 
is 0.5000. we gel 

P(IV 2:: 152) = peZ 2:: 1.2) = 0.5 - <1>( 1.2) = 0.5000 - 0.3849 = 0.1151  

Thus N = 800(0. 1 1 51) ;::; 92. 

(a) P(-O.2 �Zs O.8) (b) P (Z S 1.2) 

""ig. 6-1O 

NORMAL API)RQXIi\1ATION 1'0 TI·n: BINOMIAl. DlSTRIBUTION 

This scction of problcms uses BP to denote lhe binomial probability and NP to denote lhe normal 
probability. 

6.26. A fair coin is tossed 12 times. Determine Ihe probability P ¡hal Ihe number of heads occurring is 
betwccn 4 and 7 inclusive by using: (a) the binomial distribution, (h) the normal approximation to 
the binomial distribution. 

(a) Lct heads denote a Sllccess. By Theorem 6.1. \Vith 11 = 12 and p = q = !: 

( 12) ( 1 )' ( 1 )' 495 
BP(4) = 

4 
2" "2 = 4096 ' 

( 12) ( ' )'( ' )' 792 
81'(5) = 

5 2" 2: = 
4096 ' 

( 12) ( 1) '( 1 )' 924 
BP(6) = 

6 2" 2" = 
4096 ( ") ( ' ) '( ' )' 79' 

81'(7) = 
7
-

:2 2" = 
40

9
6 

) _ 495 792 924 792 _ 3003 _ ? 
Hence I - 4096 + 4096 + 4096 + 4096 - 4096 -

0.733- . 

(b) Here 11 = "p = 1:2( �) = 6 and (T = .jIifiij = 12
( �) (�) = 1 .73. '-et X denote the nllmbcr or 

hcads occurring. \Ve scck 81'(4 S X S 7), which corresponds \O the shaded arca in Fig. 6-11(a). On 
Ihe olhcr hand, ir we assume Ihal Ihc dal:l is conlinuous. in order to apply the binomial approximalion, 
we muSI find NP(3.5 S X S 7.5), as indicaled in Fig. 6-11(a). \Ve have: 

3.5 in standard units = (3.5 - 6)/1.73 = -1.45 
7.5 in standard units = (7.5 - 6)/1.73 = 0.87 
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BP(4 s X s 7) 

(.) 
Fig. 6-11 

~ -us o lU1 Z 
NP(-I.4S s Z s 0.87) 

(b) 

Thcn. as indicatcd by Fig. 6-1 I (b), 

P =  NP(3.S S X S 1.S) = NP(-1.45 S Z S 0.81) 

= .p(0.81) + <1>( 1.45) = 0.3081 + 0.4265 = 0.1343 

(Note that the rdatlve error e = 1(0.1332 -0.1343)/0.13321 = 0.0015 is lcss than 0.2 pcreent.) 

6.27. A fair die is tosscd 180 times. Detennine the probability P that the facc 6 will appear: 
(a) between 29 and 32 times inclusive, (b) belwccn 31 and 35 times inclusive, 
(e) less than 22 times. 

This is a binomial experimcnl H(II,p) with 11 =  180, p= -t and q =  I -p=i. Thcn 

¡t= lIp = 180(i) = 30 'nd 

Let X denote the number of times the face 6 appcars. 
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(a) \Ve seek 81'(29 S X S 32) oro assuming the data is colltlnuous. NP(28.5 S X S 32.5). \Ve have: 

28.5 in standard units = (28.5 - 30)/5 = -0.3 
32.5 in standard llnits = (32.5 - 30)/5 = 0.5 

(This is the casc =1 S O S =2') Therefore (Fig. 6-3(0)). 
P= NI'(28.5 S X S 32.5) = NP(-0.3 S Z S 0.5) 

= <1>(0.5) + <1>(0.3) = 0.1915 + 0.1119 = 0.3094 

(h) \Ve seek BP(31 S X S 35) oro assuming the data is continilolls. NP(30.5 S X � 35.5). \Ve have: 
30.5 in standard units = (30.5 - 30)/5 = 0.1 

35.5 in standard units = (35.5 - 30)/5 = 1 I 

(This is ¡he case O S ZI S =2') Therefore (rig. 6-3(b)). 

P =  NP(30.5 S X S 35.5) = NP(O.I S Z S i l) 

= <1>(1.1) -«>(0.1) = 0.3643 -0.0398 = 0.3245 

(e) \Ve scck BP(X < 22) or, approximatcly, NP(X S 21.5). (See remark in Scction 6.5 on the onc-sided 
normal approximation.) \Ve have: 

21.5 in standard units = (21.5 - 30)/5 = -1.1 
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Therefore, using symmetry and that half the area under the normal curve is 0. 5000, we get 

P = NP(X <::: 2l . 5) = NP(Z <::: -l .7) 
= 0.5000 - iP(l .7) = 0.5000 - 0.4554 = 0.0446 

6.28. Assume that 4 percent of the population over 65 years old has Alzheimer's disease. Suppose a 
random sample of 9600 people over 65 is taken. Find the probability P that fewer than 400 of 
them have the disease. 

This is a binomial experiment B(n,p) with n = 9600, p = 0.04, and q = 1 -p = 0.96. Then 

p, = np = (9600) (0.04) = 384 and a = ynpq = V(9600)(0.04) (0.96) = 19.2 
Let X denote the number of people with Alzheimer's disease. 

We seek BP(X < 400) or, approximately, NP(X <::: 399. 5) . (See remark in Section 6.5 on the one-sided 
normal approximation.) We have: 

399 .5 in standard units = (399 .5 - 384)/19.2 = 0 .81 
Therefore, 

P = NP(X <::: 399.5) = NP(Z <::: 0 .81 )  
= 0.5000 + iP(0.8 1 )  = 0.5000 + 0.2897 = 0.7897 

POISSON DISTRIBUTlON 

6.29. Find: (a) e-u , (b) e-2 5 . 

Use Table 6-1 and the law of exponents. 
(a) e-u = (e-I ) (e-0 3 ) = (0.368) (0.741) = 0.273. 
(b) e-2 5  = (e-2) (e-0 5) = (0. 1 3 5) (0.607) = 0.0819. 

)...k -,\ 
6.30. For the Poisson distribution f(k; >...) = T' find: (a) f(2; 1 ) ,  (b) f(3 ; !) , (e) f(2; 0.7) . 

Use Table 6-1 to obtain e-A . 

1 2e-1 e-I 0.368 (a) f(2; 1) = � = 2 = -2- = 0 . 184. 

( 1)3 e -0.5 -0.5 O 607 (b) f(3· 1) = 2: = _e - = _._ = 0.01 3 .  , 2 3! 48 48 

f( ' ) _ (0.7)2e-0 7 _ (0.49) (0.497) _ (e) 2, 0.7 - 2! - 2 - 0.12. 

6.31. Suppose 300 misprints are distributed randomly throughout a book of 500 pages. Find the 
probability P that a given page contains (a) exactly 2 misprints, (b) 2 or more misprints. 

We view the number of misprints on one page as the number of successes in a sequence of Bernoulli 
trials. Here n = 300 since there are 300 misprints, and P = 1/500, the probability that a mi sprint appears 
on the given page. Since p is small, we use the Poisson approximation to the binomial distribution with 
,\ = np = 0.6. 

(0.6)2e-0 6 (a) P = f(2; 0.6) = 2! = (0.36)(0.549)/2 = 0.0988 "" O . l .  
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(b) We have: 
. .  (0.6)oe-0 6 

P(O mlspnnts) = = e-0 6 = O 549 O! . 

(O 6)e-0 6 
P(1 mi sprint) = . 

1 !  = (0.6) (0. 549) = 0.329 

Then P = 1 - P(O or 1 mi sprint) = 1 - (0.549 + 0.329) = 0 . 122. 

6.32. Show that the Poisson distribution f(k; A) is a probability distribution, that is, 
00 
L f(k; A) = 1 
k=O 

00 

By known results of analysis, eA = L )..k jk! . Hence 
k=O 
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6.33. Prove Theorem 6.5: Let X be a random variable with the Poisson distribution f(k; A) . Then: 
(i) E(X) = A, (ii) Var(X) = A. Hence O"x = J:\. 
(i) Using f(k; )") = )..ke-A jk!, we obtain 

(we drop the tenn k = O since its value is zero, and we factor out ).. from each tenn). Let s = k - 1 in 
the aboye sumo As k runs through the values 1 to 00, s runs through the values O to oo . Thus 

00 

00 )..se-A 00 

E(X) = ).. L-, = ).. L f(s; )..) = ).. 
k=O s. k=O 

since Lf(s; )..) = 1 ,  by Problem 6.36. 
k=O 

(ii) We first compute E(X2) . We have 

Again we let s = k - 1 and obtain 

But 

00 )..se-A 00 

E(X2 ) = ).. L (s + 1) -, = ).. L (s + l )f(s; )..) 
s=o s. s=o 

00 00 00 

L (s + l )f(s; )..) = L sf(s; )..) = Lf(s; )..) = ).. + 1 
s=O s=O s=O 

where we use (i) to obtain ).. and Problem 6.36 to obtain 1 .  Accordingly, 

E(X2) = ).. ().. + 1 )  = )..2 + ).. 
and Var(X) = E(x2) _ p,� = )..2 + ).. _ )..2 = ).. 
Thus the theorem is proved. 
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6.34. Show that if p is small and n is large, then the binomial distribution B( n, p) is approximated by the 
Poisson distribution PO/(>"') where >... = np, that is, using 

BP(k) = ( �)pkqn-k and f(k; )") = )..ke-A /k! 
then BP(k) � f(k; >...) where np = >.... 

We have BP(O) = (1 -pr = (1 - )..jnr . Taking the natural logarithm of both sides, 
In BP(O) = n In( 1  - )..jn) 

The Taylor expansion of the natural logarithm is 

so 

Therefore, if n is large 

and hence BP(O) "" e-A . 

( ).. ) )..2 )..3 In BP(O) = n ln 1 - - = -).. -- --"" -).. n 2n 3n2 

Furthermore, if p is very small and hence q "" 1 , we have 
BP(k) (n - k + l)p )" - (k - l )p ).. 

BP(k - l ) = kq = kq "" k  
).. That is, BP(k) "" k BP(k - 1 ) . Thus, using BP(O) "" e->-, we obtain BP(I )  "" )..e->-, BP(2) "" )..2e-A /2 and, 

by induction, BP(k) "" )..ke-A /k! = f(k; )..) .  

MISCELLANEOUS PROBLEMS 

6.35. The painted light bulbs produced by a company are 50 percent red, 30 percent green, and 
20 percent blue. In a sample of 5 bulbs, find the probability P that 2 are red, 1 is green, and 
2 are blue. 

By Theorem 6.6 on the multinomial distribution, 

6.36. Show that the normal distribution 

5! 2 2 P = 2! 1 !2! (0. 5) (0.3) (0.2) = 0.09 

f(x) = _
1_ e-1/2(x-I')'/<5' 

aV2ir 

is a continuous probability distribution, i.e. J�oo f(x) dx = 1 .  

Substituting t = ( x  - p,)/a in J�oo f(x) dx, we obtain the integral 

1 = -- e -1 /2 dt 1 Joo , 
V2ir -00 
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It suffices to show that 12 = l .  We haye 

12 = _ e-t /2 dt e-s /2 ds = _ e-(s -t )/2 ds dt l JOO ,  JOO ,  1 Joo Joo " 
2n -00 -00 2n -00 -00 
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We introduce polar coordinates in the aboye double integral. Let s = r cos e and t = r sin e. Then 
ds dt = r dr de, o <::: e <::: 2n, and o <::: r <::: oo. That is, 

But 

12 = _ re-r /2 dr de 1 J21r Joo , 
2n o o 

JOO ,  [ '  ] 00 

o 
re-r /2 dr = _e-r /2 

o = 1 

1 J21r Hence 12 = 2n o 
de = 1 and the theorem is proyed. 

6.37. Prove Theorem 6.3: Let X be a random variable with the normal distribution 

f(x) = _1_ e-1/2(x-pl/,i 
ayf2ir 

Then (i) E(X) = JL and (ii) Var(X) = a2 . Hence ax = a. 

(i) By definition, E(X) = � Joo x e-1/2(x-p)'/<5' dx. Setting t = (x - p,)/a, we obtain 
av 2n -00 

E(X) = re (at + p,) e-t /2 dt = re t e-t /2 dt + p, re e-t /2 dt l JOO , a Joo , l JOO ,  
v 2n -00 v 2n -00 v 2n -00 

But g(t) = t e-t'/2 is an odd function, i.e. g( -t) = -g(t); hence J�
oo 

t e-t'/2 dt = O. Furthermore, 

� Joo e-t' /2 dt = 1, by the preceding problem. Accordingly, E(X) = �.  O + p, . 1 = p, as claimed. 
v � � v �  

(ii) By definition, E(X2) = _1_ Joo x2 e-1/2(x-p)'/<5' dx. Again setting t = (x - p,)/a, we obtain 
aV2n -00 

= a2 __ t2 e-t /2 dt + 2p,a -- t e-t /2 dt + l -- e-t /2 dt l JOO ,  l JOO ,  l JOO ,  
� -00 � -00 � -00 

which reduces as aboye to E(X2) = a2 � Joo t2 e-t' /2 dt + p,2 . 
V 2n -00 

We integrate the aboye integral by parts. Let u = t and dv = te-t'/2 dt. Then v = _e-t'/2 and 
du = dt. Thus 

__ t2 e-t /2 dt = __ _ t e-t /2 +-- e-t /2 dt = O + I = 1  1 Joo , 1 [ ' ]  00 1 Joo , 
� -00 � -00 � -00 

Consequently, E(X2) = a2 . 1 + l = a2 + l and 

Thus the theorem is proyed. 
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Supplementary Problems 

BINOMIAL DISTRIBUTION 

6.38. Find P(k) for the binomial distribution B(n,p), where: 

1 (a) n = 5, p = 3' k = 1 ;  1 (b) n = 7, P = 2' k = 2; 1 (e) n = 4, p = 4' k = 2 

[CHAP. 6 

6.39. A card is drawn and replaced three times from an ordinary 52-card deck. Find the probability that: 
(a) two hearts were drawn, (b) three hearts were drawn, (e) at least one heart was drawn. 

6.40. A box contains three red marbles and two white marbles. A marble is drawn and replaced three times from 
the box. Find the probability that: 
(a) one red marble was drawn, (b) two red marbles were drawn, (e) at least one red marble was drawn. 

6.41. A baseball player's batting average is .300. (That is, the probability that he gets a hit is 0.300.) He comes 
to bat four times. Find the probability that he will get: (a) two hits, (b) at least one hit. 

6.42. A geology quiz consists of 10 multiple-choice questions, there being four choices for each question. Bob is 
unprepared and decides to guess the answer to every question. Assuming 70 percent is a passing grade, find 
the probability that Bob will pass the quiz. 

6.43. Team A has probability 0.4 of winning whenever it plays (and there are no ties). Suppose A plays four 
games. Find the probability that A wins: 
(a) two games, (b) at least one game, (e) more than half of the games. 

6.44. The probability of Ann hitting a target is k. (a) If she fires five times, what is the probability that she hit s the 
target at least twice? (b) How many times must she fire so that the probability of hitting the target at least 
once is more than 90 percent? 

6.45. A card is drawn and replaced in an ordinary 52-card deck. Find the number of times a card must be drawn 
so that: (a) there is an even chance of drawing a heart, (b) the probability of drawing a heart exceeds 0.75. 

EXPECTED VALUE AND STANDARD DEVIATION 

6.46. Team A has probability 0.4 ofwinning whenever it plays (and there are no ties). Let X denote the number 
of times A wins in four games. (a) Find the distribution of X. (b) Find the mean, variance and standard 
deviation of X. 

6.47. Suppose 2 percent of the bolts produced by a factory are defective. In a shipment of 3600 bolts from the 
factory, find the expected number E of defective bolts and the standard deviation a. 

6.48. A fair die is tos sed 1 620 times. Find the expected number E of times the face 6 occurs and the standard 
deviation a. 

6.49. Let X be a binomially distributed random variable with E(X) = 2 and Var(X) = 1. Find n and p. 
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6.50. Consider the binomial distribution B(n,p) . Show that: 

P(k) (a) P(k _ 1 )  
(n - k + l )p 

kq 
(b) P(k - 1 )  < P(k) for k < (n + l )p; 

P(k - 1 )  > P(k) for k > (n + l )p 

NORMAL DISTRIBUTION 

6.51. Let Z be the standard normal random variable. Find: 

(a) P(-0.81 <::: Z <::: 1 . 13 ) ,  
(e) P(Z <::: 0.73) , 

(b) P(0.53 <::: Z <::: 2.03) 
(d) P( IZ I <::: 0.25) 

6.52. Let X be normally distributed with mean p, = 8 and standard deviation a = 4. Find: 
(a) P(5 <::: X <::: 10) , (b) P(10 <::: X <::: 1 5) , (e) P(X ::> 1 5) , (d) P(X <::: 5) . 
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6.53. Suppose the weights of 2000 male students are normally distributed with mean p, = 1 55 pounds and standard 
deviation a = 20 pounds. Find the number of students with weights: 
(a) less than or equal to 100 pounds, (e) between 1 50 and 175 pounds inclusive, 
(b) between 120 and 1 30 pounds inclusive, (d) greater than or equal to 200 pounds. 

6.54. Suppose the diameters d of bolts manufactured by a company are normally distributed with mean p, = 0.25 
inches and standard deviation a = 0.02 inches. A bolt is considered defective if d <::: 0.20 inches or d ::> 0.28 
inches. Find the percentage of defective bolts manufactured by the company. 

6.55. Suppose the scores on an examination are normally distributed with mean p, = 76 and standard deviation 
a = 1 5. The top 1 5  percent of the students receive As and the bot1om 10 percent receive Fs. Find: 
(a) the minimum score to receive an A, (b) the minimum score to pass (not to receive an F). 

6.56. A fair coin is tossed 10 times. Find the probability of obtaining between 4 and 7 heads inclusive by using: 
(a) the binomial distribution, (b) the normal approximation to the binomial distribution. 

6.57. A fair coin is tossed 400 times. Find the probability that the number of heads which occur differs from 200 
by: (a) more than 10, (b) more than 25 times. 

6.58. A fair die is tos sed 720 times. Find the probability that the face 6 will occur: 
(a) between 100 and 125 times inclusive, (b) more than 1 50 times. 

6.59. Among 625 random digits, find the probability that the digit 7 appears: 
(a) between 50 and 60 times inclusive, (b) between 60 and 70 times inclusive. 

POISSON DISTRIBUTION 

6.60. Find: (a) e-L6, (b) e-2 3 . 

6.61. For the Poisson distribution f(k, '\) = ,\ke-A jk!, find: (a) f(2; 1 . 5), (b) f(3; 1), (e) f(2; 0.6). 
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6.62. Suppose 220 misprints are distributed randomly throughout a book of 200 pages. Find the probability that 
a given page contains: (a) no misprints, (b) 1 mi sprint, (e) 2 misprints, (d) 2 or more misprints. 

6.63. Suppose 1 percent of the items made by a machine are defective. Find the probability that 3 or more items 
are defective in a sample of 100 items. 

6.64. Suppose 2 percent of people on the average are left-handed. Find the probability of finding 3 or more left­
handed among 100 people. 

6.65. Suppose there is an average of 2 suicides per year per 50,000 population. In a city of 100,000, find the 
probability that in a given year there are: (a) O, (b) 1 ,  (e) 2, (d) 2 or more suicides. 

MULTINOMIAL DISTRIBUTION 

6.66. A die is loaded so that the faces 1 , 2, 3, 4, 5, 6 occur with respective probabilities 0 . 1 ,  0. 1 5, 0 . 1 5, 0. 1 5, 0 . 1 5, 
0 .3 .  The die is tossed 6 times. Find the probability that: 
(a) each face appears once, (b) the faces 4, 5, 6 each appear twice. 

6.67. A box contains 5 red, 3 white, and 2 blue marbles. A sample of six marbles is drawn with replacement; that 
is, each marble is replaced before the next marble is drawn. Find the probability that: 
(a) 3 are red, 2 are white, 1 is blue, (b) 2 are red, 3 are white, 1 is blue, (e) 2 of each color appear. 

Ánswers to Supplementary Problems 

6.38. (a) 80/243, (b) 21/ 128, (e) 27/128 

6.39. (a) 9/64, (b) 1 /64, (e) 37/64 

6.40. (a) 36/125, (b) 54/ 125, (e) 1 17/125 

6.41. (a) 0.2646, (b) 0.7599 

6.42. 0.0035 

6.43. (a) 21 6/625, (b) 544/625, (e) 1 12/625 

6.44. (a) 1 3 1/243, (b) 6 

6.45. (a) 3, (b) 5 

6.46. (a) [O, 1, 2, 3, 4; 0. 1296, 0.3456, 0.3456, 0 . 1 536, 0.0256] 
(b) p, = 1 .6, (i = 0.96, a = 0.9798 

6.47. p, = 72, a = 8.4 

6.48. p, = 270, a = 1 5  
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6.49. n = 6, p = 1 /3 

BINOMIAL AND NORMAL DISTRIBUTIONS 

6.51. (a) 0.2910 + 0.3708 = 0.6618 , (b) 0.4788 - 0.2019 = 0.2769, 
(e) 0.5000 + 0.2673 = 0.7673, (d) 2(0.0987) = 0 . 1974 

6.52. (a) 0.4649, (b) 0.2684, (e) 0.040 1 ,  (d) 0.2266 

6.53. (a) 6, (b) 1 3 1 ,  (e) 880, (d) 24 

6.54. 7.3 percent 

6.55. (a) 92, (b) 57 

6.56. (a) 0.7734, (b) 0.7718 

6.57. (a) 0.2938, (b) 0.0108 

6.58. (a) 0.6886, (b) 0.00 1 1  

6.59. (a) 0.3518, (b) 0 .5131 

6.60. (a) 0.202, (b) 0. 100 

6.61. (a) 0.251 ,  (b) 0.06 13, (e) 0.0988 

6.62. (a) 0.333, (b) 0.366, (e) 0.20 1 ,  (d) 0.301 

6.63. 0.080 

6.64. 0.325 

6.65. (a) 0.01 83, (b) 0.0732, (e) 0 . 1464, (d) 0.909 

6.66. (a) 0.0109, (b) 0.00103 

6.67. (a) 0. 1 35, (b) 0.08 10, (e) 0.08 10 
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PART 1/: Inferential Statistics 

Chapter 7 
Sampling Distributions 

7.1 INTRODUCTlON: SAMPLlNG WITH AND WITHOUT REPLACEMENT 

Inferential statistics is used to draw conclusions about a population, based on a probability model of 
random samples of the population. F or example, a pollster may want to estimate the proportion of all 
eligible voters favoring a particular presidential candidate by polling a random sample of eligible 
voters. Or, a statistician may want to use the mean starting income of a random sample of recent 
college graduates to estimate the mean starting income of all college graduates. Since difIerent random 
samples will most likely give difIerent estimates, sorne knowledge 01 the variability 01 al! possible estimates 
derived Irom random samples is needed to arrive at reasonable conclusions. Before investigating this 
variability, some technical terminology is needed. 

In general, a population is any finite set of objects being investigated. A sample of objects drawn 
from a population is a random sample if it is selected by a process in which every member of the 
population has essentially the same chance of being chosen. We consider two types of random sample: 
those drawn with replacement and those drawn without replacement. The probability distribution of a 
random variable defined on a space of random samples is called a sampling distribution. Sampling 
distributions are discussed in this chapter and their application to inferential statistics in the following 
chapters. 

EXAMPLE 7.1 Suppose it is desired to determine the average age of students graduating from colleges in the U.S. 
in a given year. Here the population is the set of all college graduates in the U.S. for the given year. The age X of 
each graduate is a random variable defined on the population. The average age X of the students in a random 
sample of n graduates is a random variable defined on the space of all random samples of n graduates. The 
probability distribution of X is a sampling distribution. 

Sampling With Replacement 

In sampling with replacement, each object chosen is returned to the population before the next 
object is drawn. We define a random sample of size n, drawn with replacement, as an ordered n-tuple of 
objects from the population, repetitions allowed. 

EXAMPLE 7.2 A population consists of the set S = {4, 7, 10} .  The space of all random samples of size 2, drawn 
with replacement, consists of all ordered pairs (a, b), including repetitions, of numbers in S. There are nine such 
pairs, which are 

(4, 4) , (4, 7) , (4, 10) ,  (7, 4), (7, 7) , (7, 10) ,  ( 10, 4) ,  ( 10, 7) ,  ( 10, 10) 

The Space of Random Samples Drawn With Replacement 

In general, if samples of size n are drawn with replacement from a population of size N, then the 
fundamental principIe of counting says there are 

N · N ·  . . .  · N = Nn 

such samples. In any survey involving samples of size n, each of these should have the same probability 
of being chosen. This is equivalent to making the collection of all Nn samples a probability space in 
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which each sample has probability �n of being chosen. Hence, in Example 7.2, there are 32 = 9 
random samples of size 2, and each of the nine random samples has probability � of being 
chosen. 

Sampling Without Replacement 

In sampling without replacement, an object chosen is not returned to the population before the next 
object is drawn. We define a random sample of size n, drawn without replacement, as an unordered 
subset of n objects from the population. 

EXAMPLE 7.3 When sampling without replacement from the population S = {4, 7, lO} , there are only three 
random samples of size 2, which are the three subsets of S containing two elements, namely 

{4, 7} , {4, lO} , {7, lO} .  

The Space of Random Samples Drawn Without Replacement 

If samples of size n are drawn without replacement from a population of size N, then there are (N ) N! 
n - n! (N - n) ! 

such samples, which is the number of subsets of the population containing n elements. For instance, in 
Example 7 .3 , there are ( 3 ) _ � _ 3 2 2! . 1 !  
random samples of size 2. As in the case of sampling with replacement, the collection of all random 
samples drawn without replacement can be made into a probability space in which any two samples have 
the same chance of being selected. In Example 7.3 , each of the three random samples has probability t 
of being chosen. 

EXAMPLE 7.4 Suppose 75 out of the 100 seniors in a high-school senior class prefer candidate A over candidate B 
for class president. If 20 different seniors, chosen randomly, are polled about their preference, what is the 
probability that exactly 1 5  of them favor candidate A? To answer this question, first note that the 20 different 
seniors can be interpreted as a sample of size 20, drawn without replacement, from a population of size 

1(0�5 )T(�e;e) are
h 
( 1

2
0
0
0 ) such samples. The number of these samples in which 1 5  seniors favor candidate A is 

1 5  5 , w ere 

( �� ) = the number of ways 1 5  seniors can be chosen from the 75 that favor A, and 

( 2: ) = the number of ways the remaining 5 seniors of the sample can be chosen from 
the 25 that do not favor candidate A 

Therefore, the probability that exactly 1 5  seniors in the sample with favor A is 

P( 1 5) = CD e:) � O 226 C;OO ) . 
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Comparing Sampling With and Wifhonf Replacemenf 

We saw in Example 7.4 ¡hat ir 20 scniors, choscn withoU! replacemcnt, were pollcd, lhen ¡he 
probability lhat exactly 1 5  of ¡bcm would favor candidate A is approximatcly 0.226. Ir ¡he 20 seniors 
were chosen wilh replacemcnt, lhen their selcction would be a binomial experiment, b(20, 1�)' and ¡he 
probability of cxactly 1 5  in the samplc favoring candidate A is 

(20) ( 75 )" ( 25 ) 5 
P(15) � 15  lOO lOO � 0.202 

Figure 7-1 shows lhe complete probability hislograms for ¡he numbcr of seniors favoring candidale 
A when samplcs DI' size 20 are drawn wilh or withoU! replaccment, respectivcly. For k = 0, 1 , 2, . . .  , 9, 
and 20, lhe probability lhal k scniors favor candidatc A is O 10 t\Vo decimal placc� in both typ?s of 
sampling. 

� 
o, 
o., 
o ,  
o., 

o. 

o.� 

o.� 
o.� 
o.m 

• 
• 
• 
, 
, 

o � 
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T 

10 11 12 13 1. U 16 17 18 19 :ro 
Sampling with rcplaccmcnt 

O" 

o� 

� 
0.18 

0.16 
0.1. 

0.12 
o., 

o.� 

::I--r 1-
0.02 F=r-j F o 

10 11 12 13 14 IS 16 11 1! 19 20 
Samp ling withoul rcplaccmcnt 

Fig. 7-1 

The main difference betwccn the two types of sampling i� that when �ampHng with replaccmcnt, the 
individual outcomcs in each sample are independenl, whereas when sampHng without replacement, the 
outcomes are not indepcndcnt. For examplc, ir two coins are drawn at random from threc dimes 
and lWO quarters, then the probability or gening two quarters is � .  � = 0.16 ir the coins are drawn 
with replacement, and � . !  = 0.1 without replacemenl. I-lowever, when the population is large in com­
parison with the sample size, results obtained by sampling are very similar whethcr the sampling is with 
or without replacemenl. Therefore, whell Ihe poplllalioll si=c is m/leh larger Ihall ,hc sample 
size. a probabilily mor/el Ihm aSSllll1CS Ihe il/dividual ollleomcs ill caeh samplc are illdepclldclII eall 
be applicd 10 Ihe samplillg process regardlcss 01 whelher fhe samplcs are oblained wilh 01' wilholll replace­
melll. 

EXAMPlE 7.5 Suppose Ihat 55 pereent of all eligible voters in a Slale favor candidate B ror governor. Ir a 
random sample of 1000 eligible vOlers is chosen, find the probability thal bctwcen 52 percenl and 58 percenl or 
the voters in the sample will favor eandidate B. 

A samplc of 1000 voters is small in eomparison with the number of digiblc voters in any sta te, so \Ve may usc 
sampling with replaeemcnt as a probability made!. The samplc sclcction is then a binomial cxperiment b(lI,p), 
wherc 11 = 1000 and p = 0.55. The probablHly Ihal between 52 percenl and 58 perccnl of the vOlers sampled will 
favor candidate B is the probabililY that there will be hetwecn 520 and 580 succcsses in Ihe experimenl. This 
probability is equal lo 

'" ( 1000) 
L r 

(0.55)'(0.45)100:1-' � 0.95 
,=520 
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The result was determined by using the normal approximation of the binomial (see Problem 7.8) . Hence, approxi­
mately 95 percent of the time the random sample will be within 3 percentage points of the true percentage of the 
population favoring candidate B. Also, the result does not depend on the actual size of the total voting population, 
only that the sample is small by comparison. 

7.2 SAMPLE MEAN 

Sampling With Replacement 

Suppose X is a random variable with mean JL and standard deviation !J, defined on some popula­
tion. A random sample of size n, drawn with replacement, yields n values, Xl , X2 , . . .  , Xm for X. Since 
the sample is drawn with replacement, these values are independent of one another. They can therefore 
be considered to be values of n independent random variables Xl , X2 , . . .  , Xm each with mean JL and 
standard deviation !J. For example, if X is the age of college graduates in a given year, then Xi would be 
the age of the ith graduate (i = 1 , 2, . . .  , n) in a random sample from this population. The random 
variable 

x = 
Xl + X2 + . . .  + Xn 

n 
is called the sample mean of Xl , X2 , . . .  , Xn- As a random variable, X also has a mean, JLx, and a 
standard deviation, !Jx. It can be shown that these sample parameters are related to the corresponding 
population parameters JL and !J, as stated in Theorem 7 . 1  below. 

Theorem 7.1 (Mean and Standard Deviation of X: Sampling With Replacement): Suppose a population 
random variable X has mean JL and standard deviation !J. Then the sample mean X, for 
random samples of size n drawn with replacement, has mean JLx and standard deviation !Jx 
given by 

and 
!J 

!Jx = -vn 
Furthermore, if X is approximately normally distributed, then so is X. 

EXAMPLE 7.6 A population consists of the set S = {4, 7, lO} as an equiprobable space. Random samples of size 
2 are drawn with replacement. 

(a) Compute the population mean, /-L, and standard deviation, rJ. 
(b) Find the sampling distribution (probability distribution) for the sample mean, X. 
(e) Compute the mean, /-Lx, and standard deviation, rJx, of X, and compare with /-L and rJ. 
(a) Since the population is an equiprobable space, the probability of each number in S occurring is t. Therefore, 

the mean and standard deviation of the population are 
1 1 1 21 /-L = 'L xP(x) = 4 . "3 + 7 . "3  + 10 . "3  = 3 = 7 

and rJ = /'L(x - /-L)2p(x) = 1(4 _ 7)2 . � + (7 _ 7)2 . � + (10 _ 7)2 . � = (l8 = vI6 V V 3 3 3 V3 
(b) Table 7-1 lists the mean value (a ; b) for every possible sample pair, and Table 7-2 gives the sampling 

distribution for the sample mean, X. 
(e) From Table 7-2, 

- 1 2 3 2 1 63 /-Lx = E(X) = 4 . 9" + 5 .5 . 9" + 7 . 9" + 8 .5  . 9" + 10 . 9" = 9 = 7 
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Table 7-1. Samples of size 2, 

sampling with replacement. 

Table 7-2. Sampling distribution 

for X, sampling with replace­

mento 

(a, b) x 

(4, 4) 4 
x P(x) 

(4, 7) 5.5 
4 1 "9 

(4, 10) 7 
5 .5 2 "9 

(7, 4) 5.5 
7 3 

"9 

(7, 7) 7 
8 . 5  2 "9 

(7, 10) 8 .5 
10 1 "9 

(lO, 4) 7 

(lO, 7) 8 .5 

(lO, 10) 10 

ax = V'E'(x - /-LX)2 P(x) 

2 1 2 2 2 3 2 2 2 1 (4 - 7) · - + (5 . 5 - 7) . - + (7 - 7) · - + (8 . 5 - 7) · - + ( 10 - 7) . -9 9 9 9 9 = fi=  V3 

Therefore, /-Lx = 7 = /-L, and ax = V3 = � = �, which agree with the formulas of Theorem 7. 1 ,  where n = 2. 

Sampling Without Replacement 

If samples are drawn without replacement, then the sample values, Xl , X2 , . . .  , Xm of a random 
variable X are not independent. Nevertheless, the average of the values, namely 

Xl + X2 + . . .  + xn 
n 

defines a sample random variable which will also be denoted by X and will also be called the sample 
mean. In this case, the mean and standard deviation of X are given by Theorem 7.2 below. 

Theorem 7.2 (Mean and Standard Deviation of X: Sampling Without Replacement): Suppose a popula­
tion random variable X has mean JL and standard deviation a. Then the sample mean X, 
for random sample of size n drawn without replacement, has mean JLx and standard 
deviation ax given by 

and 

where N is the size of the population and n < N. Furthermore, if X is approximately 
normally distributed, so is X. 
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EXAMPLE 7.7 Assume that random samples of size 2 are drawn without replacement from the population 
S = {4, 7, lO} as an equiprobable space. 

(a) Find the sampling distribution for the sample mean, X. 
(b) Compute the mean /-Lx and standard deviation ax of X, and compare with the population mean /-L and standard 

deviation a. 

(a) Table 7-3 lists the mean value (a; b) for every possible sample pair, and Table 7-4 gives the sampling 

distribution for the sample mean, X. 

Table 7-3. Samples of size 2, 

sampling without replace­

mento 

{a, b} x 
{4, 7} 5.5 

{4, lO} 7 

{7, lO} 8.5 

(b) From Table 7-4, 

and 

Table 7-4. Sampling distri­

bution for X, sampling 

without replacement. 

x P(x) 
5 .5 1 "3 
7 1 "3 

8 .5  1 "3 

v - 2 - V 2 1 2 1 2 1 ax = L(x - /-Lx) P(X) = (5 .5 - 7) . - + (7 - 7) · - + (8 .5 - 7) . -3 3 3 

= j4.5 = Vf5 V3 . 
From Example 7 .5, the population mean and standard deviation are /-L = 7 and a = V6. Hence, /-Lx = 7 = /-L; 

f12 a VN - n V6 � ¡;:; (l f12 also, ax = V 1 . 5  and v2 . N _ 1 = v2 . V "3=l  = V 3 . V "2 = V 1 . 5 . These equations agree with the 

formulas of Theorem 7.2. 

The Sampling Distribution of X 
The second parts of Theorems 7 . 1  and 7.2 say that if X is approximately normally distributed, then 

X is also approximately normally distributed. Since we are assuming that the population is finite, X 
cannot be exactly normal, but many random variables for large populations can, for most practical 
purposes, be considered to be normally distributed. F or example, the national SA T scores in a given 
year are approximately normally distributed with mean 500 and standard deviation 100. The mean 
SAT scores for random samples of size n will also be approximatey normal with mean 500 and standard 

deviation �. (Since the population size, N, of students taking the SAT is large in comparison to a 

typical sample size, n, we may assume J� = � � 1 ;  equivalently, we may as sume that the scores in each 

sample are independent.) The following remarkable theorem says that if the sample size is large, then 
the sample mean X is approximately normally distributed regardless of the distribution of X. 

Theorem 7.3 (Central Limit Theorem): Supose X is a random variable with mean JL and standard 
deviation (J > O, defined on some population. If n is large, then the sample mean X is 
approximately normally distributed. 
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As a rule of thumb, the central limit theorem applies when n � 30. Note that Theorems 7 . 1  and 7.2 
still apply when n is large. That is, X has mean JL and standard deviation ::n if the samples are drawn 

w�th replacement, whereas X has mean JL and standard deviation ::n J� = � if the samples are drawn 
wlthout replacement and n < N. 

Sampling From a Large Population 

As noted earlier, when a random sample is drawn from a large population, it can be assumed that 
the values Xl , X2 , . . .  , Xn of the sample are independent. The assumption of independence is key to 
much of the probability theory used as a model for statistical inference. In the following sections, 
phrases such as "the population is much larger than the sample size" or "the population is large in 
comparison to the sample size" are meant to convey that the X values obtained in samples are essentially 

independent. In practice, if the assumption J� = � � 1 is reasonable in a given context, then inde­

pendence may be assumed. Hence the Central Limit Theorem can be rephrased as follows. 

Theorem 7.3 ' (Central Limit Theorem): Suppose X is a random variable with mean JL and standard 
deviation (J > O, defined on some population. If n is large (n � 30) and the population 
size is large in comparison to n, then the sample mean X is approximately normally 

distributed with mean JLx = JL and standard deviation (Jx = ::n0 
EXAMPLE 7.8 Suppose that the number of customers entering Dee's Grocery each day over a five-year period is a 
random variable with mean 100 and standard deviation 10. Then the average number of customers computed over 
randomly selected 30-day periods can be modeled as a normal random variable with mean 100 and standard 
deviation � "" 1 .8 .  To see this, first note that the sample size is 30, which is large enough to assume that the 

y 30 
sample average is a normal random variable. Also, the population size is the number of days in a 5-year period, 
which is at least 1 826 and sufficiently large compared with the sample size to enable us to as sume that the numbers of 

customers in the days of a sample are independent; equivalently, V� = � ::> 1 826 - 30 
1 826 _ 1 "" 0.9920 "" 1 .  

EXAMPLE 7.9 With reference to Example 7.8, what is the probability that the average number of customers 
entering Dee's Grocery daily over a 30-day period is between 95 and lOS? 

As indicated in Example 7.8, the average number of customers, or sample mean X, can be modeled as a normal 
random variable with mean 100 and standard deviation 1 .8 . Then 

X - lOO z = ---1 .8 
is a normal random variable with mean O and standard deviation 1 ,  that is, a standard normal random variable. 
U sing the standard normal table, 

P(95 <::: X <::: 105) = pes �8
100 

<::: 
X �.;OO 

<::: 
1O\�8 100 ) = P( -2.78 <::: Z <::: 2.78) = 0.9946 

Hence, it is almost certain that the average number of customers entering the store daily over a 30-day period is 
between 95 and 105. 

7.3 SAMPLE PROPORTION 

Suppose a proportion p of a population favor candidate A for president. In a random sample of 
size n drawn from the population, a certain proportion p of the sample will favor candidate A, and the 
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collection of all such proportions defines a random variable P ,  called the sample proportion. The mean 
and standard deviation of P are given in the next two theorems. 

Theorem 7.4 (Mean and Standard Deviation of P: Sampling With Replacement): Suppose the popula­
tion proportion is p, and random samples of size n are drawn with replacement. Then the 
sample proportion P has mean p and standard deviation Vp( 1  : p) . 

Theorem 7.5 (Mean and Standard Deviation of P: Sampling Without Replacement): Suppose the popu­
lation size is N, the population proportion is p, and random samples of size n are drawn 
without replacement. Then the sample proportion P has mean p and standard deviation 
VP( 1 - P) · VN - n. n N - l  

If the population is much larger than the sample size, then V N - n  
� 1 ,  and if the sample size itself N - 1 

is also large (n � 30), then the central limit theorem (Theorem 7.3 ') can be used to obtain the following 
result. 

Theorem 7.6 (Central Limit Theorem for Sample Proportions): Suppose the sample size n is large 
(n � 30), and the population size is large in comparison to n. Then the sample proportion 
P is approximately normally distributed with mean p and standard deviation Vp( 1  : p) . 

Theorems 7.4 and 7.5 follow from Theorems 7 . 1  and 7.2, respectively, and Theorem 7.6 follows from 
theorem 7.3 ' (see Problems 7.63-7.65) .  

EXAMPLE 7 . 10 Suppose 25 percent of all U.S . workers belong to a labor union. What is the probability that in a random sample of 100 U.S. workers, at least 20 percent will be long to a labor union? The sample size, n = 100, is greater than 30, and the total number of U.S. workers is much larger than 100. Therefore, the sample proportion P of workers that be long to a labor union can be modeled as a normal 
VP( l - p) 0 .25 x 0 .75 random variable with mean p = 0.25 and standard deviation n = 100 "" 0.0433 . Then 

P - 0.25 z = ---0.0433 is a standard normal random variable. Using the standard normal table, 
A (P - 0.25 0.2 - 0.25) P(P ::> 0.2) = P 0.0433 ::> 0.0433 

"" P(Z ::> - 1 . 1 5) 
= peZ � 1 . 1 5) 
= 0.8749 

Hence, it is very likely that there will be at least 20 percent union workers in a random sample of 100 workers. 
7.4 SAMPLE V ARIANCE 

Let X be a population random variable with mean JL and standard deviation (J. We assume that 
random samples of size n are taken with replacement, or if they are taken without replacement, we 
assume that the population size is much larger than n. Then the values Xl , X2 , . . .  , Xn of X in a random 
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sample are, in effect, values of n independent random variables Xl , X2 , . . .  , Xm each with mean JL and 
standard deviation (J. The random variable 

S2 = (Xl - xl + (X2 - xl + . . .  + (Xn - xl 
n - 1 

where X is the sample mean, is called the sample variance. 
Since S2 is intended to be an average of the square deviations from X, it may seem more natural to 

divide by n rather than n - 1. In fact, some statisticians do define S2 with n as the denominator, and 
there are pros and cons for each choice. A reason in favor of dividing by n - 1 ,  as aboye, is that the 
expected value of S2 is then equal to (J2, the variance of X (see Problem 7.31) .  In technical terms, the 
aboye S2 is an unbiased estimator of (J2 . Before discussing a sampling distribution related to S2, we 
must introduce the chi-square random variable. 

The Chi-Square Distribution 

Because of the central limit theorem, the normal distribution plays a major role in inferential 
statIstIcs. Another continuous probability distribution that plays an important role in inferential 
statistics is the chi-square distribution, which can be defined as follows. 
Definition: Let Zl , Z2 , . . .  , Zk be k independent normal random variables, each with mean O and 

standard deviation 1 .  Then, the random variable 
X2 = zi + Z� + . . .  + Z� 

is called a chi-square random variable with k degrees ollreedom. 

Properties of the Chi-Square Distribution 

A chi-square random variable X2 with k degrees of freedom is often denoted by X2(k) to emphasize 
its dependence on the parameter k, which can be any positive integer, including 1 .  There is a density 
curve for each value of k, several ofwhich are illustrated in Fig. 7-2. Note that X2 (k) assumes only non­
negative values (since it is a sum of squares). AIso, as k increases, the corresponding density curve 
becomes less skewed to the right and more symmetric about the mode, which is k - 2; X2 (k) has mean k 
and standard deviation yf2l. 

20 

Fig. 7-2 Chi-square distribution for k degrees of freedom 

EXAMPLE 7.1 1 Suppose Xl , X2, and X3 are independent normal random variables, each with mean 100 and 
standard deviation 1 5, and let Zi = (Xi - 100) / 1 5  for i = 1 , 2, 3 . Then Z¡ , Z2, and Z3 are independent normal 
random variables, each with mean O and standard deviation 1 .  Therefore, zi, zi, and Z� are each X2 ( 1 ) , with 
mean 1 and standard deviation V2; and zi + zi + Z� is X2 (3), with mean 3 and standard deviation V6. 
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The Sampling Distribution of  (n - 1)S2¡(J2 

We are now in a position to determine a sampling distribution related to the sample variance 
S2. Note that if Xl , X2 , . . .  , Xn are n random variables, each with mean JL and standard deviation 
a >  0, then (see Problem 7.30) 

Dividing both sides by a2 gives 

If the X;s are independent random variables, the left side of the aboye equation is (n - 1 )S2 j a2 ; and if 
the X;s are also normally distributed, the right side is the difference of a x2 (n) random variable (by 
definition) and a x2 ( 1 )  random variable (by the Central Limit Theorem 7.3 '). The following result can 
then be established. 

Theorem 7.7: Suppose random samples of size n corresponding to some random variable X are drawn 
from a population whose size is much larger than n. Suppose also that X is (approxi­
mately) a normal random variable with mean JL and standard deviation a > O. Then 
(n - I )S2 ja2 is (approximately) a chi-square random variable with n - 1 degrees of 
freedom. 

Mean and Standard Deviation of S2 

As stated aboye, the expected value of S2 is a2, the variance of X. That is, the mean of S2 is 
a2 . Also, since (n - I )S2 ja2 is a chi-square random variable with n - 1 degrees of freedom, the stan­
dard deviation of (n - I )S2 ja2 is J2(n - 1 ) .  Therefore, the standard deviation of S2 is 
[J2(n - 1) ]a2 j (n - 1 ) ,  which is equal to [J2j(n - 1) ]a2 . 

EXAMPLE 7.12 The annual college SAT scores are (approximately) normally distributed with mean J-L = 500 and 
standard deviation a = 100. If S2 is the sample variance on the space of all random samples of 50 SAT scores, then 
49S2/a2 is (approximately) a X2 (49) random variable, which has mean 49 and standard deviation 
V2.49 = 7v2 "" 9.9. S2 itself has mean J-Ls' = a2 = 10,000 and standard deviation as, = h/2/49] . 1002 "" 2020. 

BASIC ASSUMPTION REGARDING FUTURE SAMPLING 

In Chapters 8, 9, 10, and 1 1 ,  unless otherwise stated, we will assume, for simplicity, that either 
sampling is done with replacement or that the population size N is much larger than the sample size 
n. This will ensure that the individual outcomes of a random sample are essentially independent, and 
make the correction factor J� = � for the sample variance unnecessary. 

Solved Problems 
SAMPLING WITH AND WITHOUT REPLACEMENT 

7.1. Let S = { 1 ,  5 ,  6 ,  8} .  
(a) List all samples of size 3, with replacement. 
(b) How many samples, with replacement, are there of size 4, size 5, size n? 
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(a) A sample with replacement is a 3-tuple of numbers from S, repetitions allowed. By the fundamental 
counting principIe, there are 4 x 4 x 4 = 64 such samples: 

(1 ,  1, 1), (1 ,  1, 5), (1 ,  1, 6), (1 ,  1, 8) (1 ,  5, 1), (1 ,  5, 5,), (1 ,  5, 6), (1 ,  5, 8) 
(1 ,  6, 1), (1 ,  6, 5), (1 ,  6, 6), (1 ,  6, 8), (1 ,  8, 1), (1 ,  8, 5), (1 ,  8, 6), (1 ,  8, 8) 
(5, 1 ,  1), (5, 1 ,  5), (5, 1 ,  6), (5, 1 ,  8), (5, 5, 1), (5, 5, 5), (5, 5, 6), (5, 5, 8) 
(5, 6, 1), (5, 6, 5), (5, 6, 6), (5, 6, 8), (5, 8, 1), (5, 8, 5), (5, 8, 6), (5, 8, 8) 
(6, 1 ,  1), (6, 1 ,  5), (6, 1 ,  6), (6, 1 ,  8), (6, 5, 1), (6, 5, 5), (6, 5, 6), (6, 5, 8) 
(6, 6, 1), (6, 6, 5), (6, 6, 6), (6, 6, 8), (6, 8, 1), (6, 8, 5), (6, 8, 6), (6, 8, 8) 
(8, 1 ,  1), (8, 1 ,  5), (8, 1 ,  6), (8, 1 ,  8), (8, 5, 1), (8, 5, 5), (8, 5, 6), (8, 5, 8) 
(8, 6, 1), (8, 6, 5), (8, 6, 6), (8, 6, 8), (8, 8, 1), (8, 8, 5), (8, 8, 6), (8, 8, 8) 

(b) There are 44 = 256 samples of size 4, 45 = 1024 samples of size 5, and, in general, 4n samples of size n 
for any positive integer n. 

7.2. Let S = { 1 ,  5, 6, 8} .  
(a) List aH samples of size 3 , without replacement. 
(b) How many samples, without replacement, are there of size 4, size n? 
(a) A sample of size 3, without replacement, is a subset of S containing 3 elements. There are ( � ) = 4 

subsets: { 1 ,  5, 6}, { 1 ,  5, 8}, { 1 ,  6, 8}, {5, 6, 8} .  

(b) For n = 1 ,  2, 3, 4, there are ( � ) samples of size n; for n > 4, there are no samples of size n. 

7.3. Five different banks draw a name at random from the same list of 100 names to send a credit-card 
application. How many random samples of five applications, one application for each bank, are 
possible? How many of the samples contain the same name more than once? 

Let the banks be denoted by A, B, e, D, E. Each sample of five applications can be considered as a 5-
tuple of names, where the first name is chosen by bank A, the second by bank B, and so on. Since 
repetitions are allowed, the sampling is with replacement, and there are 1005 = 10,000,000,000, or 10 billion, 
possible samples. By the fundamental counting principIe, the number of samples with five different names 
is 100 x 99 x 98 x 97 x 96 = 9,034,502,400. Subtracting this number from 10 billion, we find that there are 
965,497,600 applications with the same name appearing more than once. 

7.4. How many committees of 5 people can be randomly selected from a group of 10 women and 1 5  
meno How many of  the committees will have aH men? How many will have aH women? How 
many have three women and two men? 

The number of 5-person committees is the number of ways that 5 people can be chosen from a group of 
25 people, or the number of samples of size 5 that can be chosen, without replacement, from a population 

of size 25, which is ( 2: ) = 53, 1 30. The number that have all men is e:) = 3003, and the number 

that have all women is ( 1
5
0 ) = 252. The number that have three women and two men is ( 1

3
0 ) ( 1�) = 12,600. 

7.5. What is the most likely breakdown of men and women in a committee of five randomly chosen 
from 1 5  men and 10 women? 
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Since the ratio of 1 5  men to 10 women is 3 to 2, it seems reasonable that a committee of 3 men and 2 
women would be the most likely to occur at random. This expectation can be checked by simply counting 
the number of each type of committee. From Problem 7.4 we have the following counts. 

Similarly, we get the following counts. 

5 men 3003 
5 women : 252 
3 women, 2 men : 12,600 

1 man, 4 women : ( \5 ) ( 14° ) = 3 1 50 

3 men, 2 women : e:) e;) = 20,475 

4 men, 1 woman : e:) ( \0 ) = 1 3 ,650 

As expected, a committee with 3 men and 2 women is the most likely to occur. 

7.6. A professor asks her class to determine the number of random samples of size 3 that can be 
selected, without replacement, from a population of three Democrats and two Republicans. 
James answers that there are three random samples, one consisting of 3 Democrats, one con­
sisting of 2 Democrats and 1 Republican, and 1 consisting of 1 Democrat and 2 Republicans. Is 
James right? If not, how many are there? 

All random samples of size 3 should have the same chance of occurring. However, since there are 
more Democrats than Republicans, a Democrat is more likely to be selected than a Republican. Therefore, 
a sample consisting of 2 Democrats and 1 Republican is more likely than a sample consisting of 1 Democrat 
and 2 Republicans. So James's answer is incorrecto To arrive at the correct answer, label the Democrats 
as D¡ ,  D2, D3 and the Republicans as R¡, R2 . Then, there are ( � )  = 10 random samples of size 3, without 
replacement, namely: 

{D¡ , D2 ,D3 } , {D¡ ,D2 , R¡ }, {D¡ ,D2 , R2} , {D¡ , D3 , R¡ } , {D¡ ,D3 , R2}, 
{D2 , D3 , R¡ } , {D2 ,D3 , R2} '  {D¡ , R¡ , R2} , {D2 , R¡ , R2} , {D3 , R¡ , R2} 

Note that the probability that a random sample of size 3 will have 2 Democrats and 1 Republican i s  fa, 
whereas the probability that the sample will have 1 Democrat and 2 Republicans is only fc¡. 

7.7. How many random samples of size 3, with replacement, are there for the population in Problem 
7.6? How many are there in each of the categories: 3 Democrats; 2 Democrats, 1 Republican; 1 
Democrat, 2 Republicans; 3 Republicans? 

There are 53 = 125 such random samples, broken down as follows. 
3 Democrats: 27 random samples. They are: (D¡ ,  D¡ ,  D¡), (D2, D2, D2), (D3 ,  D3 ,  D3); 3 permuta­

tions each of (D¡ ,  D¡ ,  D2), (D¡ ,  D¡ ,  D3), (D2, D2, D¡), (D2, D2, D3), (D3 ,  D3 ,  D¡), (D3 ,  D3 ,  D2); and 6 
permutations of (D¡ ,  D2 , D3). 

2 Democrats, 1 Republican: 54 random samples. They are: 3 permutations each of (D¡ ,  D¡ ,  R¡), 
(D¡ ,  D¡ ,  R2), (D2, D2, R¡), (D2 , D2, R2), (D3 ,  D3 ,  R¡), (D3 ,  D3 ,  R2); and 6 permutations each of 
(D¡ ,  D2, R¡), (D¡ ,  D2, R2), (D¡ ,  D3 , R¡), (D¡ ,  D3 , R2), (D2, D3 , R¡), (D2, D3 , R2). 

1 Democrat, 2 Republicans: 36 random samples. They are: 6 permutations each of (D¡ ,  R¡, R2), 
(D2, R¡ , R2), (D3 ,  R¡ , R2); and 3 permutations each of (D¡ ,  R¡ , R¡), (D¡ ,  R2, R2), (D2 , R¡ , R¡), 
(D2, R2, R2), (D3 , R¡, R¡), (D3, R2, R2). 

3 Republicans: 8 random samples. They are: (R¡ ,  R¡ , R¡), (R2, R2, R2); and 3 permutations each of 
(R¡ ,  R¡ , R2), (R¡ , R2, R2). 
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7.8. In Example 7.5 it was stated that f ( 10
,
00 ) (0.55)' (0.45) 1000-r � 0.95. Show that this is 

true. r=520 
The result says that P(520 <::: X <::: 580) "" 0.95, where X is a binomial random variable with mean 

np = 1000(0.55) = 550, and standard deviation Vnp(1 -p) = Vl000(0.55) (0.45) "" 1 5.73. By approxi­
mating X by a normal random variable with the same mean and standard deviation, and using the continuity 
correction, we get 

( ) ( 519. 5 - 550 X - 550 580.5 - 550 ) P 520 <::: X <::: 1000 = P 1 5.73 <::: 1 5 .73 <::: 1 5.73 
"" P(-1 .94 <::: Z <::: 1 .94) 

where Z is the standard normal random variable. Then, from the standard normal table, 

SAMPLE MEAN 

P( - 1 .94 <::: Z <::: 1 .94) = 2P(0 <::: Z <::: 1 .94) 
"" 2(0.4738) 
"" 0.95 

7.9. A population random variable X has mean 100 and standard deviation 16 .  What are the mean 
and standard deviation of the sample mean X for random samples of size 4 drawn with replace­
ment? 

For the population, /-L = 100 and a = 16 .  By Theorem 7 . 1  the mean /-Lx and standard deviation ax of 
X are: 

/-Lx = /-L = 100 and a 1 6  ax = - = - = 8 yíi J4 

7.10. With reference to Problem 7.9, what are the mean and standard deviation of X if the population 
size is 250, and the samples of size 4 are drawn without replacement? 

By Theorem 7.2, where N = 250 and n = 4, 

/-Lx = /-L = 100 and ax = .!!....- VN - n = � fi46 "" 7.95 yíi N - l  J4 V 249 

7.11. Suppose the random variable X in Problem 7.9 is approximately normally distributed. What is 
P(95 <:::; X <:::; 105) for samples of size 4 drawn with replacement? 

By Problem 7.9, the mean and standard deviation of X are /-Lx = 100 and ax = 8 .  By Theorem 7 . 1 ,  X 
is approximately normally distributed. Therefore, 

P(95 < X < 105) = p ( 95 - 100 < X - lOO < 105 - 100 ) - - 8 - 8 - 8 
= P( -0.625 <::: Z <::: 0.625) , 

where Z is the standard normal random variable. Using a standard normal table, 

P( -0.625 <::: Z <::: 0.625) = 2P(0 <::: Z <::: 0.625) 
"" 2(0.2324) 
"" 0.46 
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7.12. Suppose the random variable X in Problem 7.9 is approximately normally distributed. What is 
P(95 :::; X :::; 105) for samples of size 4 drawn without replacement? 

By Problem 7. 10, the mean and standard deviation of X are /-Lx = 100 and ax "" 7.95. By Theorem 
7.2, X is approximately normally distributed. Therefore, 

P(95 < X < 105) = p( 95 - 100 
< 

X - lOO 
< 

105 - 100 ) - - 7.95 - 7.95 - 7.95 
"" P( -0.63 <::: Z <::: 0.63) 

where Z is the standard normal random variable. Using a standard normal table, 

P( -0.63 <::: Z <::: 0.63) = 2P(0 <::: Z <::: 0.63) 
"" 2(0.2357) 
"" 0.47 

7.13. Let S = { l ,  5, 6, 8}. Find the probability distribution of the sample mean X for random 
samples of size 2 drawn with replacement. 

Since S has 4 elements, there are 42 = 1 6  random samples of size 2 drawn with replacement. These 
pairs and their average values are given in the following tableo 

Sample x Sample x Sample x Sample x 

(1 ,  1) 1 (1 ,  5) 3 ( 1 ,  6) 3 . 5  (1 ,  8) 4. 5 
(5, 1) 3 (5, 5) 5 (5, 6) 5 .5 (5 , 8) 6 .5 
(6, 1) 3 . 5  (6, 5) 5.5 (6, 6) 6 (6, 8) 7 
(8, 1) 4.5 (8, 5) 6.5 (8, 6) 7 (8, 8) 8 

The probability distribution of X is given in the following table: 

x 1 3 3 . 5  4 .5  5 5 .5 6 6 .5 7 8 

p(x) 1 2 2 2 1 2 1 2 2 1 
16 16 16 16 16 16 16 16 16 16 

7.14. Let S = { l ,  5, 6, 8}. Find the probability distribution of the sample mean X for random 
samples of size 2 drawn without replacement. 

Since S has 4 elements, there are ( �) = 6 random samples of size 2 drawn without replacement. 

These, their average value, and the probability distribution of X are given in the following two tables: 

Sample x x p(x) 

{ 1 ,  5} 3 
{ 1 ,  6} 3 . 5  
{ 1 ,  8} 4.5 
{5, 6} 5 .5 
{5, 8} 6 .5 
{6 , 8} 7 

3 1 
"6 

3 .5  1 
"6 

4.5 1 
"6 

5 .5 1 
"6 

6 .5 1 
"6 

7 1 
"6 
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7.15. Let S = { l ,  5, 6, 8}. Compute the population mean JL and standard deviation a. Also, com­
pute the mean JLx and standard deviation ax of the sample mean X for random samples of size 2 
drawn with replacement. Verify that JLx = JL and ax = a/vÍ2, as stated in Theorem 7. 1 .  

The population, taken as an equiprobable space, has mean /-L = 1 + 5 : 5 + 8 = 5, and standard devia-

tl.on � __ 
/( 1  - 5)2 + (5 - 5)2 + (6 - 5)2 + (8 - 5)2 

__ 
f26 __ 

v26. 
v V 4 V 4"  2 Using the probability distribution 

table in Problem 7 . 13 ,  the mean of X is 

1 2 2 2 1 2 1 /-Lx = 1 x 16 + 3 x 16 + 3.5 x 16 + 4.5 x 16 + 5 x 16 + 5.5 x 16 + 6 x 16 
2 2 1  

+ 6 .5 x 16 + 7 x 16 + 8 x 16 

= 80 = 5 16 
which i s  the same as the population mean. The variance of X is 

2 2 1 2 2 2 2 2 2 2 1 a = ( 1 - 5) - + (3 - 5) - + (3 .5 - 5) - + (4.5 - 5) - + (5 - 5) -x 16 1 6  16 1 6  1 6  
2 2 2 1 2 2 2 2 2 1 

+ (5 .5 - 5) - + (6 - 5) - + (6.5 - 5) - + (7 - 5) - + (8 - 5) -16 16 1 6  16 1 6  
1 = 16 ( 1 6  + 8 + 4.5 + 0 .5 + O + 0.5 + 1 + 4.5 + 8 + 9) 

52 1 3  
16 4 

Therefore, the standard deviation of X is ax = �. 
a v26 V13 . 

v26 Since a = -- and n = 2, it follows that 2 
yíi = 

2y2 
= -2- = ax, as stated m Theorem 7 . 1 .  

7.16. Let S = { l ,  5, 6, 8}. Compute the mean JLx and standard deviation ax of X for random samples 
of size 2 drawn without replacement. Verify that JLx = JL and ax = � J� = �, as stated in 
Theorem 7.2. v fl 

As computed in Problem 7. 1 5, the population mean and standard deviation are /-L = 5 and 
v26 a = -2-. Using the probability distribution table in Problem 7. 14, the mean of X is 

1 1 1 1 1 1 /-Lx = 3 x � + 3 .5 x � + 4.5 x � + 5.5 x � + 6.5 x � + 7 x � 

= 30 = 5 6 

as stated in Theorem 7.2. The standard deviation of X is 

2 1 2 1 2 1 2 1 2 1 2 1 (3 - 5) - + (3 .5 - 5) - + (4.5 - 5) - + (5 .5 - 5) - + (6.5 - 5) - + (7 - 5) -6 6 6 6 6 6 

= f: 
. a VN - n  v26 fi V13 y2 V13 (f3 . .  Smce N � 4 and n = 2, we have In N _ 1 = FO V 3  = -2- M = FO M = V 6' WhlCh IS equal to ax, 

as stated m Theorem 7.2. V" 2v 2 v 3  v 2v 3  
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7.17. Let S = { l ,  5, 6, 8}.  Find the probability distribution of the sample mean X for random 
samples of size 3 drawn (a) with replacement, (b) without replacement. 
(a) There are 43 = 64 random samples of size 3 drawn with replacement. These are shown in Problem 

7 . l .  By finding the average of the three entries in each triple, we arrive at the following probability 
distribution. 

x p(x) x p(x) x p(x) 

1 1 /64 13/3 3/64 19/3 6/64 
7/3 3/64 14/3 6/64 20/3 3/64 
8/3 3/64 5 7/64 7 3/64 
10/3 3/64 16/3 3/64 22/3 3/64 
1 1 /3 3/64 17/3 6/64 24/3 1/64 
4 6/64 6 4/64 

(b) There are ( � ) = 4 random samples of size 4 drawn without replacement. They are { 1 ,  5, 6}, { 1 ,  5, 8}, 

{ 1 ,  6, 8}, {5, 6, 8} .  Computing the average of the entries in each of these, we arrive at the following 
probability distribution tableo 

x 4 14/3 5 19/3 

p(x) 1/4 1 /4 1/4 1/4 

7.18. Find P(4 :::; X :::; 6), where X is the sample mean for random samples of size 3 drawn with 
replacement from the population { l ,  5, 6, 8} .  

Using the probability distribution table in Problem 7 . 17(a), we find that 

P(4 <; X <; 6) = p(4) + p
( 1

3
3 ) 

+ p
( 1

3
4) 

+ p(5) + p
( 1

3
6 ) 

+ p
( 1

3
7) 

+ p(6) 

6 3 6 7 3 6 4 = 64 + 64 + 64 + 64 + 64 + 64 + 64 

= 35 "" 0.55 64 

7.19. Find P(4 :::; X :::; 6), where X is the sample mean for random samples of size 3 drawn without 
replacement from the population { l ,  5, 6, 8} .  

Using the probability distribution table in Problem 7 . 17(b), we find that 
- ( 14) P(4 <; X <; 6) = p(4) +p 3 +p(5) 

1 1 1 3 = 4 + 4 + 4 = 4 

7.20. Does the Central Limit Theorem (Theorem 7.3) apply to the sample mean X for random samples 
of size 36 drawn with replacement from the population { l ,  5, 6, 8}? If so, use the theorem to 
compute P(4 :::; X :::; 6) . 

Since the sample size 36 is larger than 30, Theorem 7.3 does apply. Hence, we may assume that X is 
approximately normally distributed. Also, by Theorem 7 . 1 ,  X has mean /-Lx = 5 and standard deviation 
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a � . ax = -- where a = -- IS the population standard deviation (as computed m Problem 7 . 1 5). y!36' 2 
� � Therefore, ax = 2y!36 = 12"" "" 0.4249. Then - ( 4 - 5 1' - 5 6 - 5 ) P(4 < X < 6) = P -- < -- < --- - 0.4249 - 0.4249 - 0.4249 "" P( -2.35 <::: Z <::: 2.35) 

where Z is the standard normal random variable. Using a standard normal table, we find that P( -2.35 <::: Z <::: 2.35) = 2P(0 <::: Z <::: 2.35) "" 2(0.4906) "" 0.98. 

7.21. Does the Central Limit Theorem (Theorem 7.3 ') apply to the sample mean X for random samples 
drawn without replacement from the population { 1 ,  5, 6, 8}? 

No, only samples of size 4 or less can be drawn without replacement. Furthermore, the population 
size, 4, can never be much larger than the sample size. 

SAMPLE PROPORTlON 

7.22. The proportion of unmarried men between ages 21 and 30 years in a town is �. Suppose 
random samples of size 16 are drawn with replacement from aH men in the town between 
ages 21 and 30. What are the mean and standard deviation of the proportion P for aH such 
samples? 

By Theorem 7.4, the mean of P is �, and the standard deviation of P is 

l ( l - l) Jl x 1 J2 
_
3 

__ 
3
_ = L---.l = _ "" 0 . 1 179 16 16 12 

7.23. Suppose the town in Problem 7.22 has 225 men between ages 21 and 30 years, and the sampling is 
without replacement. Then what are the mean and standard deviation of P? 

By Theorem 7.5, the mean of P is still �, but the standard deviation is the standard deviation without 
replacement, 0 . 1 1 79, multiplied by 225 - 16 fi09 225 - 1 = V 224 "" 0.9659 

Hence, the new standard deviation is approximately 0. 1 1 79 x 0.9659 "" 0. 1 1 39. 

7.24. The proportion of Democrats in a population consisting of three Democrats, D¡ ,  D2, D3 , and 
two Republicans, R¡ , R2 is P = �. There are 125 random samples of size n = 3 that can be 
drawn with replacement from the population. Find the probability distribution for the sample 
proportion P of Democrats defined by the coHection of aH 125 such samples (see also Problem 
7.60). 

Let ft denote the proportion of Democrats in a given sample; ft can as sume the values: 1 (three 
Democrats), � (two Democrats, one Republican), t (one Democrat, two Republicans), O (three Republi­
cans). Problem 7.7 gives the breakdown of the samples into these categories, which results in the following 
probability distribution tableo 
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Category ft Frequency P(ft) 
3 Democrats 1 27 27 125 
2 Democrats, 1 Republican 2 54 54 

3" 125 
1 Democrat, 2 Republicans I 36 36 3" 125 
3 Republicans O 8 8 125 

7.25. Verify that the sample proportion P in Problem 7.24 has mean p = � and standard deviation 
VP(1 -p) 

n ' as stated in Theorem 7.4. 

From the probability distribution table in Problem 7.24, the mean of P is 
A A 27 2 54 1 36 8 75 3 

LPP(P) = 1 x 125 + "3 x 125 +"3 x 125 + O x 125 = 125 = "5 
The variance of P is ( 3 ) 2 27 ( 2 3 ) 2 54 ( 1 3 ) 2 36 ( 3 ) 2 8 L(ft -p)2 P(ft) = 1 - "5 125 + "3 - "5 125 + "3 - "5 125 + 0 - "5 125 

4 27 1 54 1 6  36 9 8 = 25 . 125 + 225 . 125 + 225 · 125 + 25 · 125 
4 27 1 6 16 4 9 8 = 25 . 125 + 25 . 125 + 25 · 125 + 25 · 125 

250 
25 x 125 
2 
25 

Therefore, the standard deviation of P is V;. Also, 

7.26. There are only ( � )  = 10 random samples of size n = 3 that can be drawn without replacement 
from the population D¡ ,  D2 , D3 , RI , R2 . Find the probability distribution for the sample 
proportion P of Democrats defined by the collection of all 10 random samples. 

The ten random samples of size n = 3, drawn without replacement are: 

{DI , D2, D3} ,  {DI , D2, RI }, {DI , D2, R2}, {DI ,  D3 ,  RI} ,  {DI ,  D3 ,  R2}, 
{D2, D3 ,  RI } ,  {D2 , D3 ,  R2}, {DI ,  RI ,  R3}, {D2, RI ,  R2} ,  {D3 ,  RI ,  R3} 

Let ft denote the proportion of Democrats in a given sample; ft can as sume the values: 1 (three Democrats), ¡ 
(two Democrats, one Republican), or t (one Democrat, two Republicans). We obtain the following prob­
ability distribution tableo 

Category ft Frequency P(ft) 
3 Democrats 1 1 I 

10 
2 Democrats, 1 Republican 2 6 6 3" 10 
1 Democrat, 2 Republicans I 3 3 

3" 10 
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7.27. Verify that the sample proportion P in Problem 7.26 has mean p = � and standard deviation 

Jp(1 -p) . JN - n, as stated in Theorem 7.5. 
n N - l 

From the probability distribution table in Problem 7.26, the mean of P is 

The standard deviation is 

'" A ( A) ] ] 2 6 ] 3 6 3 L-PP P = x ]0 + "3 x 20 + "3 x W = W =
S 

(] _ � ) 2 /0 + (� _ � ) 2 ]60 + (� _ � ) 2 ]30 = ( � ) 2 /0 + ( /5 ) 
2 

]
6
0 + ( t5 ) 

2 
]
3
0 

= ) 2��0 = fFs = � 
Furthermore, 

SAMPLE VARIANCE 

)P(] -P) . )N - n = J� ( ] - �) . )5 - 3 
n n - ] 3 5 - ] 

= V; . � = � 
7.28. Suppose Z¡ , Z2, Z3 are three independent standard normal random variables. Use these to 

generate three chi-square random variables, each with 2 degrees of freedom. What are the mean 
and variance of each of the three chi-square random variables? 

zi + zi, zi + z�, and zi + z� are each chi-square random variables with k = 2 degrees of freedom. 
Each one has mean 2 and variance 2k = 4. 

7.29. Suppose Z is a standard normal random variable. Is Z2 + Z2 a chi-square random variable with 
2 degrees of freedom? 

No. If Z2 + Z2 were x2 (2) , it would have variance 4, as in Problem 7.28, but Z2 + Z2 = 2Z2, and 
Var(2Z2) = 22 Var(Z2) = 4 x 2 = 8 .  

7.30. Let Xl , X2 be two random variables, each with mean ¡L .  Show that 
L:¡=¡ (Xi - xl = L:¡=¡ (Xi - ¡L)2 - 2(1' - ¡L)2 , where X is the sample mean. 

2 
¿)Xi - xi = (XI - 1')2 + (X2 _ 1')2 i=1 

= [(XI - p,) + (p, - 1')]2 + [(X2 - p,) + (p, - 1')]2 

= (XI - p,)2 + 2(XI _ p,) (p, _ X) + (p, _ 1')2 

+ (X2 - p,)2 + 2(X2 _ p,)(p, _ X) + (p, _ 1')2 

2 
= ¿)Xi - p,)2 + (p, - X) (2XI - 2p, + p, - 1' + 2X2 - 2p, + p, - X) 

i=1 
2 

= ¿)Xi - p,)2 + (p, - 1') (21' - 2p,) 
i=1 
2 

= ¿)Xi - p,)2 _ 2(1' _ p,)2 
i=1 
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The same procedure can be used to show that, for any positive integer n, L7=1 (Xi - 1')2 = 
L7=1 (Xi - Ji/ - n(1' - Ji/. 

7.31. Let XI , X2 , . . .  , Xn be n independent random variables, each with mean JL and standard 
deviation (J. Show that the expected value of the sample variance, 

S2 = (XI - xl + (X2 - xl + . . .  + (Xn - xl 
n - l 

is equal to (J2. 
First note that ol = E(Xi - Ji/ = (i and ai = E(1' - Ji/ = a2 In by Theorem 7 . l .  Then 

2 (L(Xi - 1')2 ) 1 2 - 2 E(S ) = E n _ 1 = n _ 1 
E(L(Xi - p) - n(X - p) ) 

1 2 n - 2 = n - 1 L E(Xi - p) - n _ 1 E(X - p) 

1 2 n a2 = -- L a - -- . -n - l  n - l  n 
na2 a2 
n - l  n - l  

= a2 

7.32. Let S = { l ,  5, 6, 8}. Find the probability distribution of the sample variance S2 for random 
samples of size 3 drawn without replacement. 

There are four random samples of size 3 drawn without replacement: { 1 ,  5, 6}, { 1 ,  5, 8}, { 1 ,  6, 8}, 
{5, 6, 8} .  There are four corresponding values of 

S2 = (XI - 1')2 + (X2 - 1')2 + (X3 - 1')2 
2 

and each has probability !, as indicated in the following tableo 

Sample XI X2 X3 X 

{1 ,  5, 6} 1 5 6 4 
{ 1 ,  5, 8} 1 5 8 14 

3 
{ 1 ,  6, 8} 1 6 8 5 
{5, 6, 8} 5 6 8 19 3 

S2 P 
7 I 

"4 37 I 
3 "4 
1 3  I 

"4 7 I 
3" "4 

7.33. Use the probability distribution determined in Problem 7.32 to compute the mean JLs2 and the 
standard deviation (JS2 of the sample variance S2 for random samples of size 3 drawn without 
replacement from the population { l ,  5, 6, 8} .  

. 1 37 1 1 7 1 104 26 . . The mean of S2 IS PS2 = 7 x 4 + 3 x 4 + 1 3  x 4 + "3 x 4 = 12 = 3; and the vanance of S2 IS 

a22 = (7 _ 
26 ) 2 x � + ( 37 

_ 
26 ) 2 x � + (1 3  _ 

26 ) 2 x � + (2 _ 
26 ) 2 x � s 3 4 3 3 4 3 4 3 3 4  

676 
36 
169 
9 
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Therefore, the standard deviation of S2 is aS' = /T!¡J- = 1: . 

7.34. It can be shown that when sampling without replacement, the mean of the corresponding 
sample variance is JLs2 = �l a2, where a2 is the population variance, taken as an equiprobable N -
space, and N is the population size. Use Problem 7.33 to verify this result for the population 
{ l ,  5, 6, 8} ,  when samples of size 3 are drawn without replacement. 

In Problem 7 . 1 5  it was determined that the population variance for { 1 ,  5, 6, 8}, taken as an equiprobable 
. 2 26 bl h 26 . N 2 4 26 26 space, IS a = 4· From Pro em 7.33, we ave J-Ls' = 3· Smce N = 4, we get N _ 1 a = "3 · 4 = 3' as 

was to be shown. 

7.35. Suppose samples of size 10 corresponding to a population random variable X are drawn without 
replacement. Suppose also that X is normal, with mean 75 and standard deviation 5. What are 
the mean JLs2 and standard deviation aS2 of the sample variance S2? 

The mean J-Ls' of S2 is equal to the variance of X regardless of the sample size. Therefore, 
J-Ls' = 52 = 25. Also, by Theorem 7.7, 9i /25 is chi-square with 9 degrees of freedom. Therefore, the 
standard deviation of 9i /25 is v'2X9 = 3V2; and the standard deviation of S2 is as, = 2: x 3V2 = 25;. 

Supplementary Problems 

INTRODUCTION: SAMPLING WITH AND WITHOUT REPLACEMENT 

7.36. How many samples of size 3 can be drawn from S = {2, 4, 8, 10, 12}, (a) with replacement, (b) without 
replacement? 

7.37. In Problem 7.36, how many of the samples drawn with replacement have three different numbers? 

7.38. If a population has size 10, what is the sample size n for which there are the most samples drawn (a) with 
replacement, (b) without replacement? 

7.39. Repeat Problem 7.38 for a population of size N. 

7.40. If a student guesses each answer in a 5-question True-False test, what is the most likely number of correct 
answers the student will get? What is the least likely number of correct answers the student will get? 

7.41. Suppose there are 20 business majors in a statistics class of 32 students. If a random sample of 4 students is 
chosen without replacement, what is the probability that at least 2 of them will be business majors? 

7.42. Repeat Problem 7.41 if the samples are chosen with replacement. 

SAMPLE MEAN 

7.43. A population random variable X has mean 75 and standard deviation 8. Find the mean and standard 
deviation of X, based on random samples of size 25 taken with replacement. 
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7.44. Repeat Problem 7.43 if the random samples are taken without replacement. 

23 1 

7.45. Suppose the random variable X m Problem 7.43 lS approximately normally distributed. Find 
P(72 <::: X <::: 78) . 

7.46. Repeat Problem 7.45 if the samples are taken without replacement, and the population has size 400. 

7.47. SAT scores are approximately normally distributed with mean 500 and standard deviation 100. If a 
random sample of size 50 is taken, what is P(X ::> 525)? 

7.48. With reference to Problem 7.47, how large must the sample size be so that P(475 <::: X <::: 525) = 0.95? 

7.49. A population random variable X has mean 250 and standard deviation 75. Suppose X has standard 
deviation 13 . 5, based on random samples of size 25 taken without replacement. How large is the popula­
tion? 

7.50. Let S = {2, 4, 8, 1 6, 32}. Find the probability distribution of the sample mean X for samples of size 2 
drawn without replacement. 

7.51. Find the mean and standard deviation of X in Problem 7.50. 

7.52. Repeat Problem 7.51 if the samples are drawn with replacement. 

7.53. A population random variable X has mean 25 and standard deviation 5. Samples of size 40 are drawn with 
replacement. Find P(24 <::: X <::: 26) .  

7.54. Suppose the waiting time for a bus is a random variable with mean 8 minutes and standard deviation 4 
minutes. In a given month, what is the probability that the average waiting time is less than 6 minutes? 

7.55. Let X be a 4-place decimal number drawn at random from the interval [O, 10] . X has mean 5 and standard 
deviation 2.89. Suppose 100 numbers are drawn at random from the interval. What is the probability 
that the average of the numbers is between 4.8 and 5.2? 

SAMPLE PROPORTION 

7.56. Thirty-three percent of the first-year students at an urban university live in university housing. What are 
the mean and standard deviation of the proportion P of first-year students in university housing for all 
samples of size 50, drawn with replacement, from the population of first-year students? 

7.57. With reference to Problem 7.56, suppose there are a total of 3970 first-year students. What are the mean 
and standard deviation of the proportion P if the samples are drawn without replacement? 

7.58. With reference to Problem 7.56, what is the probability that between 1 5  and 18 of first-year students in a 
random sample of 50 live in university housing? 

7.59. Show that if the random variable P is the sample proportion, with mean p and variance p( 1  - p), n 
corresponding to random samples of size n, then nP is a binomial random variable with mean np and 
variance np( 1 - p) . 
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7.60. In Problem 7.24, the probability distribution of the sample proportion P ofDemocrats in random samples of 
size 3, drawn with replacement from a population of three Democrats and two Republicans, was obtained by 
listing the frequency of all possible proportions in samples of size 3. Use the fact that nP is a binomial 
random variable (see Problem 7.59) to obtain the probability distribution P without listing all possible 
frequencies. 

7.61. A population is broken down into two categories, A and B. Suppose the proportion of the population in 
category A is 0.7, and let P be the proportion in category A in random samples of size 5 drawn with 
replacement from the population. Use the fact that nP is a binomial random variable (Problem 7.59) to 
find the probability distribution of P. 

7.62. A population is broken down into two categories A and B, and p is the proportion in category A. Selecting 
a single individual from the population can be modeled as a Bernoulli random variable X, where X = 1 if the 
individual is in category A, and X = O if the individual is in category B. Show that the sample mean X, 
corresponding to random samples of size n, is the proportion P of individuals in the sample that are in 
category A.  

7.63. Since the random variable X in Problem 7.62 is a Bernoulli random variable, X has mean p, = p and 
standard deviation a = Vp( 1  -p). Use these equations and the fact that X = P t o  show that Theorem 
7.4 follows from Theorem 7 . 1 .  

7.64. Use the equations in Problem 7.63 and the fact that X = P (Problem 7.62) to show that Theorem 7.5 follows 
from Theorem 7.2. 

7.65. Use the results of the previous two problems to show that Theorem 7.6 follows from Theorem 7 .3 ' .  

SAMPLE V ARIANCE 

7.66. Let X¡ ) X2 ) . . .  ) Xn be n independent normal random variables, each with mean 20 and variance 4. Explain 
(X¡ - 20)2 (X2 - 20)2 (Xn - 20)2 . .  . .  why 4 + 4 + . . .  + 4 ¡S a ch¡-square random vanable wJth n degrees of freedom. 

7.67. Let Xl , X2, X3 be three random variables, each with mean 25 and variance 7, and let X be the sample 
mean. Show that 

(X - 25)2 
7/3 

7.68. As stated in Example 7. 12, the annual SAT scores are approximately normally distributed with mean 
p, = 500 and standard deviation a = 100. Let S2 be the sample variance defined for random samples of 
25 SAT scores. Find the mean and standard deviation of S2 . 

7.69. With reference to Problem 7.68, for what value f;2 of S2 is P(S2 <::: 82) = 0.957 

7.70. With reference to Problem 7.68, for what value 82 of S2 is P(S2 ::> 82) = 0.957 
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Ánswers to Supplementary Problems 

7.36. (a) 53 = 125; (b) G) = 10 

7.37. 5 · 4 · 3 = 60 
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7.38. (a) There is no such n since the number of samples drawn with replacement, which is IOn ,  increases as n 

increases. (b) ( 1
5
0 ) = 252. 

7.39. (a) There is no sample size n which gives the most samples drawn with replacement; the number of such 
samples, Nn, increases as n increases. 

(b) If N is even, then the maximum number of samples of size n, drawn without replacement, occurs when 
n = N/2. If N is odd, then the maximum number occurs when n = (N - 1)/2 and when 
n =  (N + l)/2. 

7.40. The probability of exactly n correct answers is P(n) = ( �) X (0.5)5 , which is a maximum when n is either 2 

or 3, and is a minimum when n is either O or 5. Hence the most likely number of correct answers is 2 or 3, 
and the least likely is O or 5. 

7.41. 

7.42. 

7.43. 

7.44. 

7.45. 

7.46. 

7.47. 

7.48. 

7.49. 

[ (  12) 4 20 ( 12) 3] 1 - [P(O) + P(I) ] = I - 32 + 4 x 32 x 32 RO 0.85 

/-Lx = 75; ax = 8/v25 = 1 .6 

8 iN - 25 iN - 25 h . h . f h l · /-Lx = 75; ax = M2 --- = 1 .6 --, w ere N lS t e Slze o t e popu ahon. 
v25 N - 1  N - l 

- ( 72 - 75 X - 75 78 - 75 ) P(72 < X < 78) = P -- < -- < -- RO P(-1 .875 < Z < 1 .875) RO 0.94 - - 1 .6 - 1 .6 - 1 .6 - -

- ( 72 - 75 X - 75 78 - 75 ) P(72 < X < 78) = P -- < -- < -- RO P(-1 .935 < Z < 1 .935) RO 0.95 - - 1 .55 - 1 . 55 - 1 . 55 - -

- ( X - 500 525 - 500 ) P(X > 525) = P 1m > 1m RO P(Z > 1 .77) RO 0.04 - IOO/v 50 - 100/v 50 -

P(475 <; X <; 525) = p(4��0/ �O <; �O�/� <; 5��0/ �O ) RO p ( -v: <; Z <; v:) = 0.95 for v: = 1 .96, 

or n = 6 1 . 5; round up to n = 62. 

75 iN - 25 iN - 25 13 . 5  
M2 -- =  13 .5; -- = - = 0.9; N =  128 

v 25 N - 1 N - 1 1 5  



234 

7.50. 

7.51. 

7.52. 

7.53. 

7.54. 

7.55. 

7.56. 

7.57. 

7.58. 

SAMPLING DISTRIBUTIONS 

x 3 5 6 9 10 12 l7 18 20 

P(x) 0 . 1  0 . 1  0 . 1  0 . 1 0 . 1  0 . 1 0 . 1  0 . 1 0 . 1  

/-Lx = 12.4; ax = 6.68 

/-Lx = 12.4; ax = 7.7 1 5  

- (M - � 2 - � � - � ) P(24 < X < 26) = P lA7\ 
< 

lA7\ 
< 

lA7\ :::,; P(-l .26 < Z < l .26) = 0.79 - - 5/v40 - 5/v 40 - 5/v 40 - -

- ( 2 - 8  6 - 8 ) For a 30 day month, P(X < 6) = P MA < MA :::'; P(Z < -2.74) = 0.003 
4/v 30 4/v 30 

24 

0 . 1  

- ( 4.8 - 5 2 - 5 5.2 - 5 ) P(4.8 < X < 5.2) = P ViOO < ViOO < ViOO :::'; P(-0.69) < Z < 0.69) = 0.51 - - 2.89/ 100 - 2.89/ 100 - 2.89/ 100 - -

VO.33 ( 1  - 0.33) /-Li = 0.33; ai = 50 = 0.0665 

. = 0.33 " a = VO.33 ( 1  - 0.33)
. 

3970 - 50 
= 0.0661 /-Lp , p 50 3970 - 1 

P - < P < - = P < < :::,; P - .45 < Z < .45 = . 35 ( 1 5  A 1 8 ) ( 0.3 - 0.33 P - 0.33 0.36 - 0.33 ) 50 - - 50 0.0665 - 0.0665 - 0.0665 ( O  - - O ) O 

[CHAP. 7 

7.59. nP is the number of "successes" in n trials, where p is the probability of success, due to sampling with 
replacement, in each tria!. 

3 A A 3 
7.60. p = "5 = 0.6; P(P = O) = P(3P = O) = (0.4) = 0.064 ( A 1 ) A 2 P P = "3 = P(3P = 1 )  = 3 x 0.6 x (0.4) = 0.288 

p (p = �) = P(3P = 2) = 3 X (0.6)2 x 0.4 = 0.432 

P(P = 1) = P(3P = 3) = (0.6)3 = 0.21 6 

7.61. P(P = O) = P(5P = O) = (0.3)5 = 0.002 43 

p (p = �) = P(5P = 1) = 5 x 0.7 X (0.3)4 = 0.028 35 

p (p = D = P(5P = 2) = 10 X (0.7)2 
X (0.3) 3 = 0 . 1 323 

p (p = �) = P(5P = 3) = 10 X (0.7) 3 X (0.3)2 
= 0.3087 

p (p = ;) = P(5P = 4) = 5 X (0.7)4 x 0.3 = 0.360 1 5  

P(P = 1 )  = P(5P = 5 )  = (0.7)5 = 0. 168 07 
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7.62. 

7.63. 

7.64. 

_ Xl + X2 + . . .  + Xn 
X = ------n number of XiS equal to 1 A --------=---- = P n 

a vP(I -P) /-Li = /-Lx = P by Theorem 7 . 1 ,  and ai = ax = yíi = n ' also by Theorem 7. 1 .  

a VN - n  VP(I -P) VN - n  /-Li - /-Lx = P by Theorem 7.2, and ai = ax = yíi ' N _ 1 = n ' N _ l ' also by Theorem 7.2. 

7.65. P = X, and X is approximately normally distributed with mean p and standard deviation 
a VP( 1 -p) ax = yíi = n = ai by Theorem 7.6. 

7.66. 

7.67. 

7.68. 

7.69. 

7.70. 

(Xl - 20)2 (X2 - 20)2 (Xn - 20)2 . . .  
4 4 ' . . .  , 4 are n mdependent normal random vanables, each wl1h mean O 

and standard deviation 1 .  By definition, their sum i s  a chi-square random variable with n degrees of 
freedom. 

L (Xi - 25)2 
= L (Xi - X + 1' - 25)2 

7 7 

= 
'" [ (Xi - 1')2 2(Xi - 1') (1' - 25) (X - 25)2 ] D 7 + 7 + 7 

_ '" (Xi - 1')2 2(1' - 25) '" ( 
-
)2 '" (X - 25)2 - D 7 + 7 D Xi - X + D 7 

= 
'" (Xi - 1')2 O 3 '" (X - 25)2 
D 7 + + D 7 

2 2 (2 5000 /-LS' = a = 10,000; as, = h/2/(n - 1 )]a = V "24 x 10,000 = J3 

2 A2 
p(S2 <::: 82) = pC���OO <::: 1���00 ) "" P(X2 (24) <::: 0.002482) = 0.95 for 0.002482 = 36.4, or 82 = 1 5 , 1 66.67 

2 A2 2 A2 ( 24S 24S ) 2 A2 P(S ::> S ) = P 10 ,000 ::> 10 ,000 "" P(X (24) ::> 0.0024S ) = 0.95 

P(X2 (24) <::: 0.002482) = 0.05 for 0.002482 = 1 3 .8, or 82 = 5750 



Chapter 8 
Confidence Intervals for a Single Population 

8.1 PARAMETERS AND STATlSTlCS 

The mean JL and standard deviation (J of a population random variable X are called parameters; and 
the mean x and standard deviation s of a random sample are called statistics. In general, any numerical 
characteristic of a population is called a parameter, and any quantity computed from a random sample is 
called a statistic. Statistics are used to estimate parameters. 
EXAMPLE 8.1 In 1994, the median income for aH four-person families in the state of Pennsylvania was 
$49,120. A random sample of 25 four-person families in Pennsylvania had a median income of $48,500. The 
value $49,120 is a parameter, and $48,500 is a statistic. 

A random variable defined for random samples is called a statistic if it does not explicitly depend on 
any unknown population parameters. For instance, the sample mean X and the sample variance S2 are 
statlstlcs. If the value of the parameter (J is known, then S2 / (J2 is a statistic; but if the value of (J is not 
known, then S2 / (J2 is not a statistic. Because their values are used to estimate parameters, random­
variable statistics should not depend on unknown population parameters. 

Note that the word "statistic" can refer to a numerical value, as in x, and also to a random variable, 
as in X. We will know from context which meaning to attach to the word. 

Random-Variable Samples 

As stated at the end of Chapter 7, we will assume from here on that either samples are chosen with 
replacement or that the population is large in comparison with the size of random samples, so that, in 
effect, the values in a random sample are independent. If Xl , X2 , . . .  , Xn are a random sample of values 
of a random variable X, it is often convenient to consider them to be values of n independent random 
variables Xl , X2 , . . .  , Xm each with the same probability distribution as X. Then the collection 
Xl , X2 , . . .  , Xn is called a random-variable sample corresponding to X or, simply, a random sample. 
Hence, just as the term "statistic" can refer to either a numerical value or a random variable, the 
expression "random sample" can refer to a collection of numerical values or a collection of independent 
random variables. We will know from context what meaning to attach to these terms. 

EXAMPLE 8.2 Suppose X is a normal random variable with mean 100 and standard deviation 8. Then a coHec­
tion of three independent normal random variables Xl , X2 , X3 , each with mean 100 and standard deviation 8, is a 
random-variable sample corresponding to X. If the values Xl = 104, x2 = 92, X3 = 100 of X are obtained in a 
random sample, then 104, 92, and 1 1 0  can be considered to be sample values of Xl , X2, and X3 , respectively. 

Point Estimates 

A value of a statistic used to estimate a population parameter is called a point estimate of the 
parameter. In Example 8. 1 ,  the median income $48,500 for a sample of 25 four-person families is a 
point estimate of the median income $49, 120 for all four-person families in Pennsylvania. A different 
sample would most likely yield a different point estimate of the median income for the population. 

Unbiased and Biased Estimators 

A random-variable statlstlc is called an unbiased estimator of a population parameter if the 
expected value of the statistic is equal to the parameter. The sample mean X and sample 

236 
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variance S2 are unbiased estimators of the corresponding population mean JL and variance (J2, respec­
tively. That is, 

E(%) = JL and 
(see Problems 8 .5  and 7.3 1). Also, suppose a population is divided into two groups, and the members 
of one group are designated as "successors". Let p be the proportion of successes in the popula­
tion. The sample proportion P, whose value on a random sample of size n is the proportion of 
successes in the sample (see Section 7.3), has mean p and variance p( 1 -p) . P is an unbiased estimator n 

f d i A ( A) . b· d · fP( 1 - p) h · o p, an --1 P 1 - P lS an un 1ase estlmator o . T at lS, n - n 

E(P) = p and E (_I_p(1 _ p)) = p( 1 - p) n - l n 

(see Problems 8.6 and 8 .7). 
In general, the value of an unbiased estimator obtained from a numerical random sample is called an 

unbiased paint estimate of the corresponding population parameter. 

EXAMPLE 8.3 With referenee to Example 8 .2, find unbiased point estimates of the mean /-L and varianee (i of X, 
based on the sample values XI = 104, X2 = 92, X3 = 1 1  O. 

1 ", 104 + 92 + 1 1 0  306 . b· d · . f h· h · 1 d x = � L- Xi = 3 = -3- = 102 IS an un lase pomt estJmate o /-L, W le IS equa to 100; an 

i = _1_ L (x _ x)2 = ( 104 - 102)2 + (92 - 102)2 + ( 1 10 - 102)2 = 4 + 100 + 64 = 84 n - l ' 2 2 
is an unbiased point estimate of (i, whieh is equal to 64. 

A random-variable statistic used to estimate a population parameter is called a biased estimatar if 
the expected value of the statistic is not equal to the parameter. For example, the statistic 

82 = (Xl - %)2 + (X2 - %)2 + . . .  + (Xn _ %)2 
n 

is a biased estimator of the population variance (J2 since 

and 

It can also be shown that the sample standard deviation S = yfSi is a biased estimator of the population 
standard deviation (J. That is, E(S) el (J. Finally, �P(1 - P) is a biased estimator of P( 1 -p) . n n 

In general, the value of a biased estimator obtained from a numerical random sample is called a 
biased paint estimate of the corresponding population parameter. 

8.2 THE NOTION OF A CONFIDENCE INTERV AL 

In addition to point estimates of a parameter, there are interval estimates which stipulate, with a 
certain degree of confidence, that the parameter lies between two values of the estimating statistic. 
Suppose a population random variable X has mean JL whose value is unknown. From a random sample 
of size n, the value x of the sample mean % can be used to estimate JL at the 95 percent confidence level as 
follows. First, determine the value E (see Example 8 .4) for which 

P(JL - E :::; % :::; JL + E) = 0.95 
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which is equivalent to the equation 
P(X - E "'5. ¡L "'5. X + E) = 0.95 

(see Problem 8 . 10). Then [X - E, X + El is called a random 95 percent confidence interval for ¡L, and E is 
called the margin 01 error. This means that the probability is 0.95 that a random sample will result in a 
value x of X for which the numerical interval [x - E, x + El contains ¡L. In other words, as x ranges 
through all possible values of X, 95 percent of the intervals [x - E, x + El will contain ¡L (see 
Fig. 8-1) .  Each interval [x - E, x + El is called a 95 percent confidence interval for ¡L. 

Do es not ��. 

x - E  x x + E  

Fig. 8-1 Ninety-five percent of aH intervals [x - E, x + x] contain p. 

EXAMPLE 8.4 Suppose X is a normal random variable with mean p, which is unknown, and standard deviation a, 
which is known to be 2. A random sample (with replacement) of 25 values of X results in a sample mean 
x = 10. Determine the margin of error E for a 95 percent confidence interval for p and find the corresponding 
confidence interval. Give an interpretation of the result. 

To determine E, we first convert to standard units. The random variable 

X - p z = --a/vn 
has mean O and standard deviation 1. Also, since X is normal, so is Z. Therefore, Z is a standard 

a 2 X - p normal random variable. Now vn = 5" = 0.4, so Z = ----0:4. The margin of error E satisfies the equation 

P(p - E � X � p + E) = 0.95, 
which, in standard units, is equivalent to 

or P ( _ ..!!.... < Z < ..!!....) = 0.95 0.4 - - 0.4 
From Table A-l in the Appendix, we find that 

P( - 1 .96 � Z � 1 .96) = 0.95; equivalently, P(O � Z � 1 .96) = 0.�5 = 0.475 
That is, 1 .96 is the critical value of Z corresponding to probability 0.95. Therefore, 

..!!.... = 1 .96 0.4 or 

The corresponding 95 percent confidence interval is 

E = 0.4 x 1 .96 = 0.784 

[x - E, x + E] = [10 - 0.784, 10  + 0.784] = [9.21 6, 10.784] 
We are 95 percent confident that the mean p of X is sorne value in this interval, which mean s that, as x ranges 
through aH possible values of X, 95 percent of aH the intervals [x - 0.784, x + 0.784] wiH contain p. Note that 
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although different random samples of size 25 can give different values of x, the value of E is the same for each 
sample. 

Confidence Level 

The confidence level 0.95 is the probability that JL will lie in the random interval [X - E, X + E] ' and 
1 - 0.95 = 0.05 is the probability that JL will not lie in the random interval [X - E, X + El . That is, 5 
percent of the intervals in Figure 8-1  will not contain JL. In general, if 0.95 is replaced by " where 
0 < , < 1 ,  and 

P(X - E � JL � X + E) = ,  
then [X - E, X + El is called a random 100, percent confidence interval for JL; , is called the confidence 
level and is equal to the probability that [X - E, X + El will contain JL; 1 - , is equal to the probability 
that [X - E, X + El will not contain JL. For a given value x of X, the numerical interval [x - E, x + El 
is called a 100, percent confidence interval. 

EXAMPLE 8.5 In Example 8 .3 , the confidence level is 1 = 0.95, and the margin of error is E = 0.784. The 
probability that a random interval [X - 0.784, 1' +  0.784] will contain p, is 0.95, and the probability that 
[X - 0.784, X + 0.784] will not contain p, is 0.05. 

Comment on Terminology and Notation 

The confidence level , is also called the confidence coefficient, and instead of the Greek letter , 
(gamma), the notation 1 - a, where a is the Greek letter alpha, is often used to denote the confidence 
level. For simplicity, we will use the single letter , for the confidence level. 

Finding Margin of Error 

As illustrated in Example 8.4, when the standard deviation a of X is known, the margin of error E is 
given by z*a E =-vn 
where z* is the value of the standard normal random variable Z satisfying 

P( -z* � Z � z*) = ,; equivalently, P(O < Z < z*) = 1. - - 2 
When a is not known, it will be replaced by the sample variance, and Z will be replaced by a t random 
variable, which will be defined in Section 8.3 .  

Sample Size * 
As illustrated in the following example, the formula E = � can also be used to determine the 

sample size needed to obtain a desired margin of error at a given confidence level. 

EXAMPLE 8.6 Suppose X is a normal random variable with mean p, and standard deviation 2, and we wish to 
obtain a 95 percent confidence interval for p, with a margin of error no larger than 0.5 . How large must the sample 
size be? * 

We can solve the equation E = � for yíi in terms of E, z*, and a, obtaining 
z*a 

yíi=]f" 
As E decreases, yíi will increase. We have a = 2, E <::: 0.05, and we saw in Example 8.3 that the critical Z value for 
a 95 percent confidence interval is z* = 1 .96. Therefore, 

1 .96 x 2 
yíi ::> 0.5 = 7.84; equivalently, n ::>  (7.84)2 "" 61 . 5 
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Since n must be a positive integer, a sample size of 62 or larger is needed for a margin of error of 0 .5 
or less. 

In general, the larger the sample size for a given level of confidence, the smaller the margin of 
error. On the other hand, if in Example 8.6,  a value of n as large as 62 is impractical, then a margin of 
error of 0.5 or les s can only be obtained by decreasing the confidence level. For instance, suppose the 
maximum possible sample size is 36, but we still want a margin oferror ofO.5 or less. We then solve the * 
equation E = � for z* in terms of E, IJ, and yn, obtaining 

z* = Eyn IJ 
As E or yn decreases, so does z* . We have E :::; 0 .5 ,  n :::; 36, and IJ = 2. Therefore, 

* 0.5 x 6 z :::; --2- =  1 .5 

From the standard normal table, 
P(O :::; Z :::; 1 .5) = 0.4332; equivalently, P( - 1 .5 :::; Z :::; 1 .5) = 0.8664 

Therefore, the confidence level is 86.64 percent with a margin of error of 0 .5  and a sample size of 36. 
Ideally, we want a small margin of error and a high confidence level. The price for obtaining both 

of these is a large sample size. If a sample size large enough to achieve both objectives is impractical, 
then we must settle for either a higher margin of error or a lower confidence level. 

Models and Reality 

The probability theory for deriving confidence intervals for JL requires that the sample mean X be 
normally distributed. For large samples, the Central Limit Theorem is used to conclude that X is 
approximately normally distributed, and for small samples we will require that X itself is approximately 
normally distributed, which then implies that X is also approximately normal. In applications, X will 
always be a random variable defined on a finite population, so that X and therefore X can never be 
exactly normal. Hence, the confidence intervals obtained in applications are only approximate. The 
theory provides a model for dealing with real populations, but our conclusions will be valid only to the 
extent that the real X approximates a normal distribution. 

8.3 CONFIDENCE INTERV ALS FOR MEANS 

Let X be a random variable defined on some population, and suppose the mean JL of X is 
unknown. Suppose also that x is the value of the sample mean obtained in a random sample of size 
n. Then a confidence interval for JL is 

[x - E, x + E] 
where E is the margin of error. We know how to find E for a given confidence level when the standard 
deviation IJ of X is known by using the formula 

z*IJ E =­
yn 

developed in Section 8.2. We will also show how to find E when IJ is unknown. 
The confidence intervals prescribed for JL require that the sample mean X be approximately normally 

distributed. This condition can be met for small samples (n < 30) if X itself is approximately normally 
distributed. For large samples (n � 30), the Central Limit Theorem enables us to assume that X is 
approximately normally distributed regardless of the distribution of X. 
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I'RESCRJI'TlON 8.1 (Confidence infernll (or JI. ""hen (J is kllown) 

Requiremellts: X has known standard deviation a, and X is approximatcly nonnally dis¡ributed. 
Lct "/ be the spccified conlidence levcl, and suppose that a value.\' of the sample mean X is obtained 

in a random sample of size 11. Complete the following steps. 

( 1)  

(2) 

(J) 

Filld Cri¡ical Z Jlalue: Using a standard normal ¡able (or computer software), fllld the value ='" or 
¡he standard normal random variable Z ror which P(-="' :::; Z .::; .::"') = "f  (equivalently, 
P(O " z "  ,') � 1/2) (soc Fig. 8-2). 

. Z"'(1 
Compllle Margll1 of Error: Compute E = r.;. 

VU 
Determine COl/fidence JI/tena/: An approximate 100,,/ percent confidence interval for ¡he mean I� of 
X is [,v - E, .x + E]. 

The value z* is the cri¡ical l'allle of Z corresponding 10 the confidence level "( (see Fig. 8-2). 

F"ig. 8-2 1)(-:* .:5 Z :5  z*) = 1", or 1'(0 .:5 Z .:5  :*) = 1"/2. 

EXAMPlE 8.7 A population random variable X has unkno\Vn mean ¡J and standard dcvialion q = 20. A 
randotll sample of sizc 100 rcsu]¡s in a samplc mean .\' = 250. Find Ihe eorresponding 90 pcreenl confidcncc 
inlcrval for ¡l. 

Sínce the sample sizc ís greatcr than 30, \Ve may aSSUllle that .\' ís approxilllately nonnally distributcd. The 
confidcncc level is 0.90. From Table A·I in the Appcndix, Ihe critical value :* salísfying P( -:* .:5 Z .:5 :f) = 0.9 
(equivalcntly, P(O .:5 z ::; :*) = 0.45) is :* = 1.65. Thercforc, by Prcscription S . l .  Ihe margin of error is 

E = 1.65 x 20 = 3.3 
JIOo 

The approxilllale 90 pcrccnl confidcncc interval for It is [250 - 3.3,250 + 3.31, or [246.7, 253.3]. 

Confidence Inten·als for JI. When (J is Unknown 

When the standard devialion, a, of X is not known, values of the sample standard deviation 

s � j-I-I L (X, - X)' 
u -

are used in place or (1. Recal1 Ihat (11 - 1)52 /a2 is a chi-square random variable with 11 - l degrees or 
rreedom (see Section 7.4). However, we mus! Grs! introduce Ihe I random variable. 

The t Dislribution 

The standard normal and chi-square distributions combine to produce the I distribution, which is 
dcfincd as follow�. 
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Definition: Let Z be the standard normal random variable, and X2 the chi-square random variable with 
k degrees of freedom. Suppose Z and X2 are independent. Then the random variable 

Z t = ---

JX2jk 

is called the t random variable with k degrees ollreedom. 

Properties of the t distribution 

The random variable t is also denoted by t(k) to emphasize its dependence on the parameter k. The 
density curve of t(k) is a bell-shaped curve, as illustrated in Fig. 8-3. The curve is similar to a normal 
density curve, but fiatter and with thicker tails; t(k) has mean O for k � 2 and standard deviation 
Jkj(k - 2) for k � 3. For k = 1 ,  the mean is not defined, and for k = 1 , 2, the standard deviation is 
not defined. For large values of k (k � 30) , the t distribution closely approximates a standard normal 
distribution. 

Fig. 8-3 t distribution for k degrees of freedom. 

EXAMPLE 8.8 Let X be a normal random variable with mean p, = 10 and standard deviation a = 2. Suppose X 
is the sample mean for random samples of size n = 25, and S2 is the corresponding sample variance. Then - 2 
Z = X2/51O is a standard normal random variable, and X2 = 2� is a chi-square random variable with k = 24 
degrees of freedom (see Section 7.4). Furthermore, these two random variables are independent. Dividing X2 by k 
and taking the square root of the result gives VX2 jk = �. Finally, when Z is divided by VX2 jk the result is - 2 
t = Xs¡;o which, by definition, is a t random variable with 24 degrees of freedom. 

Example 8 .8 can be generalized to obtain the following result (see Problem 8 .26). 

Theorem 8.1: Suppose a random variable X has mean JL. Let X be the sample mean corresponding to 
random samples of size n, and let S be the corresponding sample standard deviation. If 
X is normally distributed, then the random variable 

X - JL  t = --

Sjyn 
has a t distribution with n - 1 degrees of freedom. 

We can now state a prescription for finding a confidence interval for JL when (J is unknown. In it, 
the t random variable takes the place of Z, and the statistic s takes the place of the unknown parameter (J. 

PRESCRIPTION 8.2 (Confidence interval for JI when (J is unknown) 

Requirement: X is approximately normally distributed. 
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Let "'1 be the specified confidence level. Suppose that values Xl, X2, . . .  , x" of X are obtained in a 
random sal1lple of size 1/. First compute the sal1lple statistics S = (XI + X2 + . . . + x,,)/I/ and 

s = 1_'_ L(x; - .�)2. Then complele the following steps. V n - I 

(1) 

(2) 

(3) 

Fil/d Crilica/ 1 Va/l/e: Using a I table (or computer software), find the value 1* of the 1 random 
variable with 11 - 1 degrees of frccdOI1l that satisfies P(-I* � 1 S 1*) = "( (equivalcntly, 
P(O S , S lO) � 1/2) (soc F;g. 84). 

lO, 
Compule Margil/ oJ Error: Compute E = r.;. 

v" 
Determil/e Confidence ¡mena/: An approximate lOO, pereent confidenee interval for the mean 11- of 
X is [.\' - E, .\' + EI. 

The value 1* is called the crilica! l·a!lIe 01' 1 corresponding to the confidence levcl "1 (see Fig. 8-4). 

1(,,-1) 

¡.;oig. 8-4 

EXAMPlE 8.9 The average of a randolll salllple of 10 scores on a college placclllenl exalll is 75. and Ihe sample 
slandard dcviation is S.4. ASSllllling Ihat Ihe colleclion of alt scores is approximalely normally distribllled, find a 95 
percenl confidence interval for Ihe mean score. 

Using Table A-2 in Ihc Appcndix. wilh 10 - I = 9 dcgrecs of frccdom. \vc find Ihat 1'( -t· ::;: 1 .:S 1*) = 0.95 
(cquivalently. P(O ::;: 1 ':s 1*) = 0.475) for f* = 2.26. Thcrcforc, Ihe margin of crror is 

t·� 2.26 x 8.4 E = ,fo. = JfO :::::: 6.00 

and an approximale 95 perccnl confidence inlcrval for Ihe mean score is [75 - 6, 75 + 6] = [69, SI ] .  

Sm:lll S:lmples 

As illustratcd in EX3l1lple 8.9, the 1 distribution can be used when (7 is unknown, providcd X 
is approximalely normally distribuled. Ir the sample size is 30 or greater, Ihen \Ve may assume, 
on the basis of the Central Limit Theorem, Ihal X is approximalely normally distribuled. In faet, 
for large samples, the I distribution is very close 10 the normal distribution, and bOlh have esscntially 
Ihe same critical values, as is illustraled in Example 8.10. The I distribulion is needed maillly 
for smal1 samples, but in Ihis case, X itself 111USt be approximately normal in order 10 guarantee Ihat 
X is. 

EXAMPlE 8.10 Thc crilical Z value al the 95 percenl confidente level is 1 .96. The crilical / vallles al Ihe 95 
pcrcenl confidencc level are: f* = 2.04 for 30 degrecs of freedom. r· = 2.02 for 40 degrces of freooom, /. = 2.00 for 
60 degrees of freedom. and ,. = 1.98 for 120 degrees of freedom. 
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8.4 CONFIDENCE INTERV ALS FOR PROPORTlONS 

[CHAPo 8 

Suppose a population is broken up into two groups. The members of one of these groups will be 
referred to as "successes". Let p be the (unknown) proportion of successes in the population. A 
numerical confidence interval for p is of the form 

[,8 - E, ,8 + E] 
where ,8 is the proportion of successes obtained in a random sample, and E is the margin of error. We 
give a prescription for finding E when the sample size is large. As defined in Sections 7.3 and 8 . 1 ,  the 
sample proportion P is the random variable whose value on a random sample size n is the proportion ,8 
of successes in the sample. P has mean 

JLp = P 
and standard deviation 

and is approximately normal when n � 30. 
Since p is unknown, so is !Jp. However, the approximation of P as normally distributed is usually 

sufficiently robust for y'p( 1 - p)/n to be replaced by y',8(1 - ,8)/n in a confidence interval for p. We 
can then deduce the following prescription. 

PRESCRIPTlON 8.3 (Confidence interval for population proportion p) 

Requirement: The sample size n is large (n � 30). 
Let , be the specified confidence level, and suppose ,8 is the proportion of successes obtained in a 

random sample of size n � 30. Complete the following steps. 
(1) Find Critical Z Value: Using a standard normal table (or computer software), find the value z* of 

the standard normal random variable Z for which P( -z* :::; Z :::; z*) = ,  (equivalently, 
P(O :::; Z :::; z*) = ,/2) (see Fig. 8-2). 

(2) ),8( 1 - ,8) Compute Margin 01 Error: Compute E = z* n . 

(3) Determine Confidence Interval: An approximate 100, percent confidence interval for the proportion 
p of successes in the population is [,8 - E,,8 + E] . 

EXAMPLE 8.1 1 In a random sample of 900 registered voters, 55 percent favored the Democratic candidate for 
President. Find an approximate confidence interval for the proportion of all registered voters that favor the 
Democratic candidate at confidence level (a) 90 percent, (b) 99 percent. 

(a) We have p = 0.55, and from Table A-l in the Appendix, we find that P( -z* <::: z <::: z*) = 0.9 (equivalently, 
P(O <::: Z <::: 0.45) for z* = 1 .65). Therefore, the margin of error is 

E = z*VP( 1  : p) = 1 .65 0.55
9�0°

.45 "" 0.03 
and the corresponding 90 percent confidence interval is [0 .55 - 0.03 , 0 .55 + 0.03] = [0 .52, 0.58] . (b) The critical Z value at the 99 percent level is z* = 2.58, the margin of error is 

E = 2.58 0.55 x 0.45 "" 0.04 900 
and the corresponding 99 percent confidence interval is [0 .5 1 , 0 .59] . 

Sample Size 

From the formula E = z* ),8(1  : ,8) , we see that as the sample size n increases, the margin of error E 
for a given confidence level decreases. We may want to know, before sampling, how large a sample 
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must be to guarantee that the margin of error does not exceed some value for a given confidence 
level. For example, suppose we want the margin of error to be at most 0.03 at a 99 percent confidence 
level. From Example 8 . 1 1 ,  we know that z* = 2.58 for a confidence level of 99 percent. That means n 
must be chosen so that 

2.58VP( 1  : p) :::; 0.03 

However, we won't know what p is until we do the sampling. We can get around this problem by 
considering a worst-case scenario. It can be shown that the product p( 1 - p) is at most 0.25, which 
occurs when p = 0.5.  Therefore, J p(1 - p) is at most JO.25 = 0.5.  If we choose n so that 

2.58; 0.5 :::; 0.03 

then E will be at most 0.03 regardless of the sample value p obtained. The aboye inequality is equiva­
lent to 

r.:. 2.58 x 0.5 
y n � 0.03 = 43 , or n � (43)2 = 1 849 

Hence, a sample size of 1 849 or higher will result in a margin of error of 0.03 or less. Often 
when making such a calculation for n, the result turns out not to be a whole number. In this 
case, we round up to the next integer. For example, if n came out to be 1426.2, we would round up 
to 1427. 

8.5 CONFIDENCE INTERV ALS FOR V ARIANCES 

Suppose a random variable X is approximately normally distributed with mean JL and unknown 
variance 172• A prescription will be given here for finding confidence intervals for 172 when JL is unknown 
(see Problems 8.38 and 8 .64 for the case in which JL is known). The confidence intervals depend on the 
chi-square distribution (see Section 7.4), which is not symmetric, so they do not take the usual form 
i ± E, where i is a value of the sample variance S2 obtained in a random sample. Prescription 8.4 
gives a method for finding the endpoints of the intervals. 

The confidence intervals for means in Section 8.3 require that the sample mean X be approximately 
normally distributed. Here we require that X itself be approximately normally distributed. 

Confidence Infervals for (J2 When JI is Unknown 

Suppose Xl , X2 , . . .  , Xn is a random-variable sample corresponding to a normal random variable X 
(Section 8. 1). X = (Xl + X2 + . . .  + Xn)jn is the sample mean, and S2 = ¿(Xi - 1')2 j (n - 1 )  is the 
sample variance. By Theorem 7.7, the random variable 

(n - 1 )s2 
172 

is a chi-square random variable with n - 1 degrees of freedom, denoted by x2 (n - 1 ) ,  or simply X2 if 
n - 1 understood from context (Section 7.4). 

Let us first consider the case of a 95 percent confidence interval for 172• With reference to 
Table A-3 in the Appendix, choose the constants a and b, corresponding to n - 1 degrees of free­
dom, to satisfy 

2 1 - 0.95 P(x :::; a) = 2 = 0.025 and P(x2 :::; b) = 1 + �.95 = 0.975 
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(Fig. 8-5). Thcn 

0.025 0.025 

b 

t"ig. 8-5 

P(a "  x' " b) � P(X' " b) - P(x' " a) 
� 0.975 - 0.025 

� 0.95 

. � (11 - i)S2 
Replacmg x· by 2 ' \Ve gel 

a 

which is equivalen! 10 ( (U - I)S' , (U - I)S') 
p b ::; � ::; a = 0.95 

[CHAPo 8 

(sce Problcm 8.31). 
for (Y2. 

. .  h e [ (U - I)S' (U - I)S' ] 
1 erClore, b '  a is a randotll 95 perccnl confidence inlerval 

In general, ir a leve! of confidence 'Y is specified, and Ihe cOnstanlS a and b are chosen for 11 - 1 
dcgrces of frecdom 10 satisfy 

then 

� 1 - 1' ' 1 + 1'  
P(X' " a) � �2- and P(X' " b) � �2-

[ (U -
b
I)S'

, 
(U -

a
l)S' ] 

is a random 1001' perccnt confidencc interval for rJ. We therefore arrive al the following prescription. 

I)RESCRII)TlON 8.4 (Confidence inlerml for a2 when p is unknown) 

Req/lircmcm: X is approximately normally distributed. 
Lel 'Y be the specified confidence leve!. Suppose the values XI, X2 , '  . . , X" 01' X are obtained 

in a random sample 01' size /l. Firsl compute Ihe sample values .\' = (XI + x2 + . . . + X,,)/II and 
i = ¿ (Xi _ .\')2/(1/ _ 1) . Then complete the rollowing sleps. 

(1) Fil/d Critica/ X" Va/l/es: Using a chi-square table (or computer software), find values a and b 
01' Ihe chi-square random variable with 11 - 1 degrees or rreedom Ihal satisry P(X

2 .::; a) = 
1 - 1 P( 2 < b) � 1 + 1. 

2 ' X - 2 
(2) Determil/e Confidence [mena!: An approximate 1001' percent confidence interval ror r? is 

[ (U - I Ji' (u - 1),, ] 
b ' a . 
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EXAMPLE 8.12 The values of a normal random variable X obtained in random sample are 
55, 65, 82, 48 , 55, 75, 70, 62 

Find a 90 percent confidence interval for the variance of X. 
The value of the sample mean is 

55 + 65 + 82 + 48 + 55 + 75 + 70 + 62 512 x =  = - = 64 8 8 
and the value of the sample variance is 

(55 - 64)2 + (65 - 64)2 + (82 - 64)2 + (48 - 64)2 + (55 - 64)2 + (75 - 64)2 + (70 - 64)2 + (62 - 64)2 
7 

= 904 "" 129 . 14 7 

247 

From Table A-3 in the Appendix, with 7 degrees of freedom, we find that P(X2 <::: a) = 1 -�.90 = 0.05 for a = 2. 1 7, 

2 1 + 0.90 and P(X <::: b) = 2 = 0.95 for b = 14. 1 .  Therefore, the corresponding 90 percent confidence interval 
for a2 is 

(See also Problem 8 .34.) 

[ 7 x 129 . 14 7 x 129 . 14 ] = [64 .1 41 6.6] 14 .1 ' 2. 1 7  ' 

Confidence Intervals for the Standard Deviation 

Note that the confidence interval obtained for the variance (J2 in Example 8 . 12  is quite large, 
having a left endpoint of 64. 1 and a right endpoint of 416.6. The corresponding confidence interval 

for the standard deviation (J is smaller. By definition, if 
[ (n -

b
l )S2 , (n -a

l)S2 ] is a random [J(n - I)S2 J(n - I)S2] 100, percent confidence interval for (J2, then b '  a is a random 100, percent 

confidence interval for (J, meaning that the probability that (J lies in this interval is ¡. If i is the value of 
the sample variance S2 obtained in a random sample of size n, then the numerical interval [J(n - l )s2 J(n - I )S2] 

b '  a is called a 100, percent confidence interval for (J. In Example 8 . 12, the 

corresponding 90 percent confidence interval for (J is [y'64.T, J416 .6] = [8 .0 1 , 20.41 ] .  

Cornrnent 

The interval given in Prescription 8.4 has the property that the probability in each of the two tails 
of the chi-square distribution for n - 1 degrees of freedom is ( 1  - ,)/2, where , is the level of con­
fidence. This choice of confidence interval is consistent with the confidence intervals for means and 
proportions, in which the probability in each of the two tails of the standard normal or t distribution 
is ( 1  - ,)/2. In the case of the standard normal and t distributions, these intervals are the smallest 
possible 100, percent confidence intervals. Because the chi-square distribution is not symmetric, the 
confidence interval in Prescription 8.4 may not be the smallest possible. 

WARNING 

All confidence intervals obtained in this and previous sections are approximate to the extent that X, 
or X, is normally distributed. The confidence intervals for means, using the normal or the t distribu­
tion, and those for proportions, are robust in the sense that they are very close to the true confidence 
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intervals for bell-shaped distributions, even when the distributions are not very close to being 
normal. (The deviation of a bell-shaped distribution from a normal distribution can be measured 
by E[(X - p/l/o.4, which is called the kurtosis of the distribution; the kurtosis is 3 for a normal 
distribution, less than 3 for a fiatter distribution, and greater than 3 for a steeper bell-shaped 
distribution.) However, confidence intervals obtained for the variance are not robust, and can deviate 
very significantly from true confidence intervals when X is not normally distributed. Therefore, the 
practical use of confidence intervals for variances is limited. 

Solved Problems 

PARAMETERS AND STATlSTlCS 

8.1. Fill in each blank below with the number of each item in the second list that describes the 
expression to the left of the blank. 
(a) Jl __ 

(b) (J 

(d) p __ 

(e) Xl , X2 , . . .  , Xn __ _ 

(1) Xl + X2 + . . .  + Xn 
n - 1 

(g) Xl + X2 + . . .  + Xn 
n 

(1) parameter 
(2) random variable 
(3) numerical statistic 
(4) random-variable statistic 
(5) numerical random sample 
(6) random-variable sample 
(7) unbiased point estimate of Jl 
(a) (b) 1 (e) 2 
(i) 4, 12 (j) 3, 1 3  (k) 4, 14 

n - 1 

(i) (Xl -xl + (X2 -xl + . . .  + (Xn - xl 
n - 1 

(j) (Xl - x)2 + (X2 - x)2 + . . .  + (Xn - x)2 
n 

(k) (Xl -xl + (X2 -xl + . . .  + (Xn -xl 
n 

(l) Xl , X2 , · · ·  , Xn __ _ 

Xl + X2 + · · · + Xn (m) n - 1 

(n) Xl + X2 + · · · + Xn 

(8) 
(9) 

(10) 
(1 1 ) 
(12) 
(13) 
(14) 

(d) 1 
({) 6 

n 
unbiased estimator of Jl 
biased point estimate of Jl 
biased estimator of Jl 
unbiased point estimate of (J2 
unbiased estimator of (J2 
biased point estimate of (J2 
biased estimator of (J2 

(e) 5 
(m) 4, 10 

(j) 3, 9 
(n) 4, 8 

(g) 3, 7 (h) 3, 1 1  

8.2. The values 2, 7, 3, 8 were obtained as a random sample of a random variable X. Give unbiased 
point estimates of the mean Jl and variance (J2 of X. 

2 + 7 + 3 + 8 20 5 · b· d · . f x = 4 = 4 = IS an un las e pomt esl1mate o p. 

2 (2 - 5)2 + (7 - 5)2 + (3 - 5)2 + (8 - 5)2 9 + 4 + 4 + 9 26 . b· d . . s = 3 3 = :3 :::'; 8.67 IS an un lase pomt esl1-

mate of (i . 
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8.3. Show that a value i = _1_ 2:: (x - .xi of the sample variance can be computed by means of n - l 
2 

1 
2 n 2 the formula s = 

--1 2:: x - --1 x . n - n -

1 ( 2 - - -2) = -- L X - 2x · nx + nx n - l  

= -- L X - nx 1 ( 2 -2) 
n - l  

1 2 n _2 = --L x - --x n - l  n - l  

8.4. The formula for the sample variance in Problem 8.3 is convenient for computational purposes, 
especially for large samples. Use the formula to verify the point estimate of 172 obtained in 
Problem 8 .2. 

_1_L x2 _ _  n_x2 = � (4 + 49 + 9 + 64) _ � x 25 = 126 _
100 = 26 

n - l n - l  3 3 3 3 3 
which is the value of i obtained in Problem 8 .2. 

8.5. Show that the sample mean X, for random samples of size n, is an unbiased estimator of the 
population mean ¡L. 

B d ti . . - X¡ + X2 + . . .  + Xn h . d d d . bl h Y e mtlOn, X = , w ere X¡ , X2 , . . .  , Xn are m epen ent ran om vana es, eac n 
with mean p, and standard deviation a. The expected value of a constant times a random variable is that 
constant times the expected value of the random variable, and the expected value of a sum of random 
variables is equal to the sum of the expected values of the random variables. Therefore, ( X¡ + X2 + . . .  + Xn ) 1 E n = -¡;E(X¡ + X2 + · · · + Xn) 

= � (E(X¡ ) + E(X2) + . . .  + E(Xn)) 
1 = - (p, + p, + . . .  + p,) n 
1 = - (np,) n 

= p, 

8.6. Show that the sample proportion P is an unbiased estimator of the population proportion p. 
The parameter p is the proportion of successes in the population. Let X be the random variable whose 

value is 1 for a success, O otherwise. X is a Bernoulli random variable with mean p, = p and variance 
a2 = p(1 - p) . The sample mean X, for random samples of size n, is the number of successes in the sample 
divided by n. Therefore, X = P, the sample proportion. As shown in Problem 8 .5, for any random 
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variable X, the expected value of X is the same as the expected value of X, in this case p. Therefore, p is the 
expected value of P, which makes P an unbiased estimator of p. 

1 , , p(1 - p) Show that --1 P(1 - P) is an unbiased estimator of . n - n 
The Bernoulli random variable X ofProblem 8 .6 has meanp and variance (i = p(1 - p) . AIso, we know 

that for any random variable, the sample variance S2 = n � 1 L (Xi - 1')2 is an unbiased estimator of (i. 
Now Xi is the value of X on the ith member of the sample, and since Xi is either O or 1, it follows that X¡ is 
equal to Xi, which is the key to the following. 

2 1 - 2 S = n _ 1 L (Xi - X) 
1 2 - -2 = --I L (Xi - 2XiX + X )  n -
1 

( 2 - -2) = n _ 1 L Xi - 2X L Xi + L X 

= _1_ (L Xi - 21' . n1' + n1'2) n - l 

= _1 (n1' _ n1'2) n - l 
n - -

= n - 1  X(1 - X) 
n ,  , 

= n _ 1 P(1 - P) 

Now E(S2) = (i. Therefore, E( n : 1 P(1 - P)) = p(1 -p) . Therefore, 

E(_I_p( 1 _ P)) =
p ( 1 -p) 

n - 1 n 

8.8. A random sample of 25 students at Greentree College had 10 males and 1 5 females. Give 
unbiased point estimates for the proportion of male students and for the proportion of female 
students in the college. 

, 10 2 . b· d · . !" h . f l d d ' , 1 5 3 . p = 25 = "5 IS an un lase pomt esl1mate lor t e proporl1on o ma e stu ents, an q = 1 -p = 25 = "5 1S 
an unbiased estimate for the proportion of female students. 

8.9. With reference to Problem 8.8 ,  give an unbiased point estimate of the variance of the sample 
proportion P of males for all random samples of size 25. Also give an unbiased point estimate of 
the variance of the sample proportion Q of females. 

1 ' ( ') 1 2 3 1 . b· d . . f h f ' 
n _ 1 P 1 -p = 24 . "5 . "5 = 100 = 0.01 IS an un lase pomt esl1mate o t e vanance o P; 

1 ' ( 1 ') 1 3 2 1 0 01 · b· d · . f h . f Q' I l P n _ 1 q - q = 24 . "5 . "5 = 100 = .  IS an un lase pomt esl1mate o t e vanance o . n genera , 

and Q = 1 - P have the same variance. 
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THE NOTlON OF A CONFIDENCE INTERV AL 

8.10. Show that, for any value of ! between O and 1 ,  P(JL - E :::; X :::; JL + E) = , is equivalent to 
P(X - E :::; JL :::; X + E) = ¡. 

p - E <; X <; p + E <;c} p - E <; X  
<;c} p <; X + E 

from which the desired result follows. 

and 
and 

8.11. Let X be a normal random variable with mean JL and standard deviation (J = 10. Find the 
margin of error for a 90 percent confidence interval for JL corresponding to a sample size of 12. 

* 
The formula for the margin of error E is E = �. We have a = 10, n = 12, and from Table A-l ,  

we find that P( -z* <; Z <; z*) = 0 .9 for z* = 1 .65. Therefore, the margin of error is 
_ 1 .65 x 10 � 4 6 E - Vf2 � .7 . 

8.12. Interpret the result of Problem 8 . 1 1 .  

The probability is 0.9 that the mean p of X is in the random interval [X - 4.76, 1' + 4.76], where X is 
the sample mean of X; the probability is 0 . 1  that p is not in the random interval [X - 4.76, 1' + 4.76] . 

8.13. With reference to Problem 8. 1 1 ,  find an approximate 90 percent confidence interval for JL if the 12 
sample values of X are as  follows. 

95 

92 

103 

108 

107 

90 

98 

94 

90 

105 

1 10 

100 

The value of the sample mean determined by the sample values is 

x = 95 + 103 + 107 + 98 + 90 + 1 10 + 92 + 108 + 90 + 94 + 105 + 100 = 1 192 "" 99.33 12 12 
From Problem 8 . 1 1 ,  the margin of error is E ""  4.76. The corresponding confidence interval IS 
[x - E, x + E] = [99.33 - 4.76, 99.33 + 4.76] = [94.57, 104.09] . 

8.14. Interpret the result of Problem 8 . 1 3. 

We are 90 percent confident that the interval [94.57, 104.09] contains the mean p of X, meaning that as 
x ranges through all possible values of X, approximately 90 percent of the intervals [x - 4.76, x + 4.76] 
will contain p. That is, as more and more random samples of 12 values of X are taken, approximately 
90 percent of the corresponding confidence intervals [x - 4.76, x + 4.76] will actually contain p. 

8.15. Using the random sample in Problem 8 . 1 3 ,  find an approximate 99 percent confidence interval 
for JL. 

We have x "" 99.33, but must determine the margin of error corresponding to a 99 percent confidence 
interval for p. At a 99 percent level of confidence, the critical Z value z* satisfies P( -z* <; Z <; z*) = 0.99; 
equivalently, P(O <; Z <; z*) = 0�9 = 0.495. From Table A-l ,  we find that z* "" 2.58. Since the random 

variable X in question has standard deviation 10, and the sample size is 12, it follows that the margin of 
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2.58 x 10 error IS E = � :::,; 7.45. Therefore, an approximate 99 percent confidence interval for j-L IS y 12 
[99.33 - 7.45, 99.33 + 7.45] = [9 1 .88 ,  106.78] . 

8.16. Let X be a normal random variable with unknown mean JL and standard deviation (J = 5. Find 
the sample size needed for a 99 percent confidence interval with a margin of error 2.5. 

The critical Z value for a 99 percent confidence interval for j-L, as determined in Problem 8 . 1 5, is 
* h · f h . f z*a h ¡;:; z*a 2.58 x 5 z = 2.58. From t e equal10n or t e margm o error, E = r,;; ' we see t at yn  = - = = 5 . 16 .  yn E 2.5 

Therefore, n must be at least (5 . 1 6)2 :::,; 26.6. The desired value of n, which must be an integer, is 27. 

8.17. Let X be a normal random variable with unknown mean JL and standard deviation (J = 3. It is 
desired to obtain a confidence interval for JL with a margin of error of 1 .5, based on a random 
sample of size 1 6. What is the corresponding confidence level? 

The formula 

z* = 4 x 1 . 5  = 2 

z*a z* x 3 3z* for the margin of error is E = Vii· We therefore have 1 . 5  = Vi6 = 4' so 

3 . From Table A-l ,  we find that P( -2 <::: Z <::: 2) = 2P(0 <::: Z <::: 2) = 2(0.4772) = 0.9544. 

Therefore, the confidence level is 0.9544, or 95.44 percent. 

CONFIDENCE INTERV ALS FOR MEANS 

8.18. A random variable X has unknown mean and standard deviation 25. A random sample of 50 
values of X has mean x = 1 12. Find an approximate 85 percent confidence interval for the mean 
JL of X. 

Since the sample size, 50, is larger than 30, we as sume that X is approximately normally distributed. 
We then apply Prescription 8 . 1 .  Using Table A-l ,  we find that the critical Z value satisfying 

( * *) . * h f h . f . z*a 1 .44 x 25 h P -z <::: Z <::: z = 0.85 IS z = 1 .44. T ere ore, t e margm o error IS E = r,;; = re¡; :::,; 5.09. T e y n y 50 
corresponding approximate 85 percent confidence interval for j-L is [1 12 - 5.09, 1 12 + 5.09] = 
[106.9 1 ,  1 1 7.09] . 

8.19. With reference to Problem 8 . 1 8 ,  how large must the sample size be to obtain an 85 percent 
confidence interval for JL with a margin of error equal to 2.5? 

b . * d . h f l z*a b · 1 .44 x 25 36 Su sl1tute E; 2.5, z = 1 .44, an a = 25 mto t e ormu a E = Vii to o tam 2.5 = Vii Vii· 
Therefore, Vii = - = 14.4, and n = ( 14.4)2 = 207.36. Since n must be an integer, the sample size needed 
is 208. 2.5 

8.20. With reference to Problem 8 . 1 8 ,  suppose that the sample size can be no larger than 100. What is 
the smallest possible margin of error? 

1 .44 x 25 If n < 100, then E > filV¡ = 3.6. Therefore, 3.6 is the smallest possible margin of error. - - y 100 

8.21. Find the values t* in each of the following cases for a t distribution with 10 degrees of freedom. 
(a) P(O <:::; t <:::; t*) = 0.45 (b) P( -t* <:::; t <:::; t*) = 0.90 (e) P(t <:::; t*) = 0.95 

As illustrated in Fig 8-6, Table A-2 in the Appendix gives t* values for various values of P(O <::: t <::: t*) 
corresponding to different degrees of freedom. 



CHAPo 8] CONFIDENCE INTERVALS FOR A SINGLE POPULATION 253 

(a) Prom Table A·2. corrcsponding to 10 degrces of frccdom. \\IC find Ihat 1'(0 ::; ,  S ,*) = 0.45 for 
,* = l.8l.  

(h) By Ihe symmctry of Ihe , distribulion. 1'( -,* ::; , ::; ,*) = 21'(0 S , ::; ,*) = 2 x 0.45 = 0.90. Thcre· 
fore, from pan (a), t* = l .B! .  

Ce) P(t .s ,.) = 0.95 = 0.5 + 0.45 = 1'(1 .s O) + 1'(0 S t S '·). Thercforc. from pan (a). t· = I .SI .  

8.22. The numbers 

24.4, 18.9, 12.8, 20.5, 19 . 1 ,  15.2, 21 .7, 14.6 

fonn a randol1l sample of values of a normally distribuled mndom variable. Find a 98 percent 
confidence inlel"val for lhe mean ¡.t of X. 

Since X is nonnalJy dislributed, so is .Y; Iherefore Prcscriplion S.2 can be uscd. The mean of !he 
sample values is 

f = 24.4 + IS.9 + 12.S + 20.5 + 19.1 + 15.2+ 21.7 + 14.6 = 141.2 = 18.4 " 
8 8 

Thc valuc of the sa11lplc variancc is 

i = [(24.4 - 18.4/ + (18.9 - 18.4)2 + (12.8 - 18.4)1 + (20.5 - 18.4)1 
+ (19.1 - 18.4)2 + (15.2 - 18.4)2 + (21.7 - 18.4)2 + (14.6 - IS.4)2)/7 

108.08 
7 

= 15.44 

Thereforc the sample valuc of Ihe standard dcviation is s = Vi 5.44 � 3.93. By Ihc sym11lClry of Ihc ( 
dislribution. pe- t· S , S tt) = 0.98 is equivalent lo 1'(0 S t S (.) = 0.98/2 = 0.49. Using Table A·2 in 
the Appendix, with S - 1 = 7 dcgrecs of frecdom, we find that 1'(0 S t S '·) = 0.49 for t· = 3.00. By 

" "  8 " r ' ,·s 3.00 x 3.93 
Prescnpllon .2, Ihe 11largm o error ls E =  r.: � lo � 4.l7. VII vS 
for the mean of .Y is [IS.4 - 4.1 7, IS.4 + 4.17] = [14.23, 22.57]. 

The 98 pereenl confidence interval 

8.23. A mndom sample of sizc 10 from a normal population variable X results in the valuc l' = 124 for 
the sample mean and ; = 21 for the sampJc variance. Find an approximatc 90 pcrccnt con· 
fidence inlerva1 fOI" lhe mean ¡.t of X. 

Sinee .Y is nonnally distributed. so is ..r. Therefore. Prescriplion 8.2 applies. The margin of error is 

E = 
t;;, where s = J2T, 11 = 10, and t* is the value of Ihe ( random variablc with 9 degrccs of frc.."'dom 
v" 

salisfying P(-,· S , .s  t·) = 0.90; equivalently, 1'(0 .s ,  S ,·) = 0.45. From Table A·2 in Ihe Appendix, 

• 8 T r J .83J2T 
6 d d" 90 fi "  r "  , = l .  3. here ore, E = r.ñ. ;::;: 2. 5; an Ihe eorrespon mg pereent con ¡denee Illtcrval or IL IS 

viO 
[124 - 2.65, 124 + 2.65] = [121.35 , 126.65]. 
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8.24. A random sample of size 41 of a population random variable X results in a sample mean 
x = 75.82 and a sample variance i = 16 . 1 6. Find an approximate 99 percent confidence inter­
val for the mean JL of X. 

Since the sample size is larger than 30, we may assume, on the basis of the Central Limit Theorem, that the sample mean X is approximately normally distributed. Then, by Prescription 8.2, the margin of error is 
E = �, where s = Vf6.T6, n = 41, and t* is the value of the t random variable with 40 degrees of freedom 
satisfying P( -t* <::: t <::: t*) = 0.99, equivalently, P(O <::: t <::: t*) = 0.495. From Table A-2 in the Appendix, 
* h f 2.70Vf6.T6 d h d· fid · I f  . t = 2.70. T ere ore, E = Al :::,; 1 . 70; an t e correspon mg 99 percent con ence mterva or p, IS 41 [75.82 - 1 . 70, 75.82 + 1 . 70] = [74. 12, 77.52] . 

8.25. Suppose the sample size in Problem 8 .24 was 200. What would be the corresponding 99 percent 
confidence interval? 

Table A-2 does not have a t* value for 199 degrees of freedom. The closest value for t* in the t table is 2.62 for 120 degrees of freedom. Using computer software, we get t* = 2.60. Then 2.60Vf6.T6 O 4 . h d· . 99 fid · I f E = MM :::,; .7 wl1 a correspon mg approxlmate percent con ence mterva o y 200 [75.82 - 0.74, 75.82 + 0.74] = [75.08, 76.56] . If the value 2.62 were used for t*, the corresponding margin of error is 0.74 to two places, which gives the same confidence interval. Furthermore, as the number of degrees of freedom increases, the t distribution approaches the standard normal distribution. The critical value of the standard normal Z at the 99 percent confidence level is 2.58, which gives a margin of error of 0.73, and the slightly smaller confidence interval, [75.09, 76.55]. 
8.26. Prove Theorem 8 . 1 .  That is, suppose X has mean JL and standard deviation IJ, and the sample 

mean X, for random samples of size n, is normally distributed. Let S be the sample standard 
deviation. Show that the random variable t = ;/� has a t distribution with n - 1 degrees of 
freedom. 

- 2 The random variable Z = X/-}; has a standard normal distribution (Theorem 7. 1), and X2 = 
(n - ; )S a yn a has a chi-square distribution with n - 1 degrees of freedom (Theorem 7.7). Therefore, by definition, 

Z has a t distribution with n - 1 degrees of freedom. Now V X2 / (n - 1 ) = S / a, and when Z is 
vx2/(n - l )  _ divided by S/a, the as cancel, leaving �/:fo' as desired. 

CONFIDENCE INTERV ALS FOR PROPORTlONS 

8.27. In a random sample of 100 transistors, 92 were within the specifications stated by the manufac­
turer. Find a 99.5 percent confidence interval for the proportion p of all of the manufacturer's 
transistors that meet the stated specifications. 

Since the sample size is larger than 30, Prescription 8.3 can be used. We have ft = 92/100 = 0.92, and from Table A-l , P( -z* <::: Z <::: z*) = 0.995 (equivalently, P(O <::: Z <::: z*) = 0.995/2 = 0.4975) 
. . Vft(1 -ft) 0.92 x 0.08 . for z* = 2.8 1 .  The margm of error IS E = z* n = 2.81 100 :::,; 0.08; and the correspondmg 

99.5 percent confidence interval for p is [0.92 - 0.08, 0.92 + 0.08] = [0 .84, 1 .00] . 
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8.28. Find a 95 percent confidence interval for the proportion p in Problem 8 .27. 

255 

From Table A-l ,  P( -z* <::: z <::: z*) = 0.95 (equivalently, P(O <::: Z <::: z*) = 0.95/2 = 0.475) for �( 1 - A) 0 92 0 08 z* = 1 .96. The margin of error is E = z* P 
n 

P = 1 .96 . x . "" 0.05 and the corre-100 ' 

sponding 95 percent confidence interval is [0.92 - 0.05, 0.92 + 0.05] = [0.87, 0.97] . 

8.29. Suppose a pollster states that [0.52, 0.57] is a 98 percent confidence interval for the proportion of 
eligible voters favoring candidate A. What percentage of the sample favored candidate A, and 
what is the margin of error? 

The sample proportion p favoring candidate A is the center of the interval, which is the average of the 
d · H A 0.52 + 0.57 1 .09 0 545 Th !" 54 5 f h I !"  d two en pomts. ence, P = 2 = 2 = .  . erelore, . percent o t e samp e lavore 

candidate A.  The interval [0. 52, 0. 57] i s  of the form [p - E, P + E] ' where p is the proportion in the sample 
favoring A, and E is the margin of error. The length of the interval is 0 .57 - 0.52 = 0.05 = 
P + E - (ft - E) = 2E. Therefore, E = 0.05/2 = 0.025, or 2.5 percent. 

8.30. In Problem 8 .29, how many eligible voters responded to the pollster? 
From Table A-l ,  we find that critical Z value at the 98 percent level is z* = 2.33; that is, 

P( -2.33 <::: Z <::: 2.33) = 0.98. We then substitute z* = 2.33, P = 0.545, and E = 0.025 into the 

formula E = z*VP( 1 ; p) to obtain 0.025 = 2.33VO. 545 : 0.455, or 0.025 = 1�. Therefore, 

yíi = 0
1
.�1;5 = 46.4. By squaring 46.4 and rounding up to the next integer we find that 21 53 eligible voters 

responded. 

8.31. A pollster obtained a confidence interval [0. 5 1 ,  0. 55] for the proportion of eligible voters favoring 
candidate B based on a sample of 1200 eligible voters. What is the level of confidence of the 
interval? 

Proceeding as in Problem 8.29, we find that the sample proportion favoring B is p = 0.53, and the 
margin of error is E = 0.02. Substituting these values, along with n = 1200, into the formula 

_ *VP(1 -p) _ * 0.53 x 0 .47 � * * _ 0.02 � E - z n ' we get 0.02 - z 1200 
� 0.0144z . Therefore, z - 0.0 144 

� 1 .39. From 

Table A-l ,  we find that 1 .39 is the critical value of Z at the 83 .54 percent leve!. Hence the level of 
confidence is 83 .54 percent. 

8.32. Suppose a pollster wants to determine a 95 percent confidence interval for the proportion of 
citizens that favor a balanced budget, even if some social programs must be cut. A margin of 
error of no more than two percentage points is desired. How large must the sample size be? 

The margin of error is E = Z*VP( I;P) . Using Table A-l ,  we find that, for a 95 percent 

confidence interval, z* = 1 .96. As stated at the end of Section 8 .4, the most Vp( 1 -p) can 
1 .96 x 0 .5 r.:. 1 .96 x 0 .5 be is 0.5 . We therefore set yíi <::: 0.03 and solve for n. We get v n ::> 0.03 = 32.67. 

Therefore, n ::> (32.67)2 = 1067.33. Since n must be a whole number, we round up to 1068 as the desired 
sample size. 
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CONFIDENCE INTERV ALS FOR V ARIANCES 

8.33. Show that, for any level of confidence " P (a :::; (n 
-

O"
; )S2 

:::; b) = , IS equivalent to 

( (n - l )S2 2 (n - l )S2 ) P < O" < = 'Y. b - - a I 

h · l· (n - 1 )S2 . . l 2 (n - 1 )S2 
d h · l. (n - 1 )S2 . . T e mequa l1y a <::: 2 IS eqmva ent to a <::: , an t e mequa l1y 2 <::: b IS eqmva-a a a 

lent to (n -
b
1 )S2 <::: a2, from which the desired result follows. 

8.34. Suppose that the value i = 129 . 14 obtained in Example 8 . 12  was based on a random sample of 
size 10 1 .  What would be the corresponding 90 percent confidence interval for 0"2? 

With reference to Prescription 8 .4, and using Table A-3 in the Appendix, with 101  - 1 = 100 degrees of 
1 - 0.W 1 + 0.W freedom, we find that p(X2 <::: a) = 2 = 0.05 for a = 77.9, and p(X2 <::: b) = 2 = 0.95 for 

b = 124. The corresponding 90 percent confidence interval for a2 is [ 100 x 129 . 14 100 x 129 . 14 ] = 124 ' 77.9 
[104. 15 ,  165 .78] . Note that this interval is considerably smaller than the interval [64. 1 ,  416.6] obtained in 
Example 8 . 12 for 7 degrees of freedom. 

8.35. What is the corresponding 90 percent confidence interval for the standard deviation O" in Problem 
8 .34? 

[VI04. 1 5, V165.78 = [10.21 , 12.88] 

8.36. A pollster states that 225 is the left endpoint of a 95 percent confidence interval for the variance of 
a normally distributed random variable, based on a random sample of size 3 1 .  If the interval 
was determined using Prescription 8 .4, what was the value of the sample variance obtained in the 
sample, and what is the right endpoint of the interval? 

A d· . . h fid . l · f h f [ 30i 30i ] h . fi ccor mg to PrescnptlOn 8 .4, t e con ence mterva IS o t e onn -
b
- ' ----;;- , w  ere a sal1s es 

( 2 ) 1 - 0.95 ( 2 ) 1 + 0.95 . .  P X <::: a = 2 = 0.025, and P X <::: b = 2 = 0.975. From Table A-3 m the Appendlx, we 

find that a = 1 6.8 and b = 47.0. Since the left endpoint is 225, the sample value i of the sample variance 
. 30i 225 x 47 must sal1sfy 47 = 225. We can therefore conclude that i = 30 = 352.5 . It then follows that the 

. . 30i 30 x 352.5 nght endpomt must be ----;;- = 1 6.8 = 629.46. 

8.37. A random sample of 28 values of a normal random variable X results in a sample standard 
deviation s = 6. Find a 98 percent confidence interval for the standard deviation O" of X. 

We first find a 98 percent confidence interval for the variance a2 of X, using the value i = 62 = 36 for 
the sample variance. Following Prescription 8 .4, we find values a and b for the chi-square 
random variable with 27 degrees of freedom that satisfy p(X2 <::: a) = 

1 -�.98 
= 0.01 and p(X2 <::: b) = 

1 + 0.98 bl A . h A d· . d h fid 2 = 0.99. Ta e -3 m t e ppen IX glves a = 12.9 an b = 47.0. T e 98 percent con ence 
. 2 . [27 X 36 27 X 36 ] mterval for a IS � ' � = [20.68, 75 .35] .  Therefore, the desired 90 percent confidence inter-

val for a is [V20.68, V75.35 = [4.55, 8 .68] . 
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8.38. (Confidence interval for 172 when JL is known) Suppose X is a normal random variable with 
known mean JL and unknown variance 172, and suppose that Xl , X2, . . .  , Xn is a random­
variable sample of size n corresponding to X. Let , be a specified confidence level. Show 
that [¿(Xib- JL)2 , ¿(Xia- JL)2 ] is a 100, percent confidence interval for 172, where the constants 
a and b are chosen to satisfy, with n degrees of freedom, p(X2 :::; a) = 1 ; " 
P( 2 < b) = 1 + '. X - 2 

Each (Xi - p,)/a is a normal random variable with mean O and standard deviation 1 .  Therefore, by 
definition, the random variable L (Xi - p,)2/a2 is chi-square with n degrees of freedom. The desired result 
follows from the reasoning leading to Prescription 8.4 with L(Xi - p,)2 in place of (n - l )i .  

Supplementary Problems 

P ARAMETERS AND STA TISTICS 

8.39. The median age for the total number of first-year students at a university in 1997 was 17.6, and in a sample 
of 20 first-year students, the median age was 1 8 . 1 .  Which number is a parameter, and which is a statistic? 

8.40. How is a random sample Xl , X2 , . . .  , Xn of values of a random variable X related to a random-variable sample 
Xl , X2 , . . .  , Xn corresponding to X? 

8.41. Suppose Xl , X2 , . . .  , Xn is a random-variable sample corresponding to X, which has unknown mean p" and 
let X be the corresponding sample mean. Explain why L (Xi - 1')2 is a statistic and L (Xi - p,)2 is not. 

8.42. Let Xl = 12, X2 = 1 5, X3 = 10, X4 = 1 1  be a random sample of values of a random variable X. Find 
unbiased point estimates of the mean p, and variance a2 of X, respectively. 

8.43. Suppose that p is the proportion of computer users that are connected to the Internet. In a random sample 
of 36 computer users, 20 were connected to the Internet. Give an unbiased point estimate for p and also an 
unbiased estimate for the variance of the proportion of computer users connected to the Internet in all 
random samples of 36 computer users. 

8.44. Explain the difference between an unbiased estimator of a parameter and an unbiased point estimate of the 
parameter. 

THE NOTION OF A CONFIDENCE INTERV AL 

8.45. A normal random variable X has unknown mean p, and standard deviation 5. What is the margin of error 
for a 92 percent confidence interval for p" based on a random sample of size 25? 

8.46. What sample size is needed to have a margin of error equal to one-half the margin of error in Problem 8 .45? 

8.47. Suppose E is the margin of error in a confidence interval for the mean p, of a normal random variable X, 
based on a random sample of size n. If the sample size is doubled, what is the new margin of error? 
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8.48. Suppose 4.5 is the margin of error in a 98 percent confidence interval for the mean j-L of a normal random 
variable X with known standard deviation (5, based on a random sample of size n. What would the margin 
of error be in a 90 percent confidence interval for j-L based on the same random sample7 

8.49. Suppose 2.6 is the margin of error in a confidence interval for the mean j-L of a normal random variable X 
with standard deviation 5.4, based on a random sample of size 1 6. What is the confidence level for the 
confidence interval7 

8.50. Suppose 3.332 is the margin of error in a 95 percent confidence interval for the mean j-L of a normal random 
variable X with standard deviation 8 .5. What is the size of the random sample7 

CONFIDENCE INTERV ALS FOR MEANS 

8.51. A random variable X has unknown mean j-L and standard deviation 12.5 . The sample mean for a random 
sample of size 50 is x = 72.4. Find a 95 percent confidence interval for j-L. 

8.52. A random sample of interest rates charged by area banks for personal loans is: 12.8 percent, 12.2 percent, 
1 3 .4 percent, 1 1 .9 percent, 1 3  percent. Assuming the rates are normally distributed with a standard devia­
tion of 0.9 percent, find a 90 percent confidence interval for the average interest rateo 

8.53. [126.4, 1 32.8] is a 95 percent confidence interval for the mean j-L of a normally distributed random variable 
with known variance. Find a 98 percent confidence interval for j-L, based on the same random sample. 

8.54. A random sample of 25 grade-point average s at a university has a sample mean x = 2.68 and a sample 
standard deviation s = 0.32. Assuming that the grade-point average s are approximately normally distrib­
uted, find a 95 percent confidence interval for the mean grade-point average. 

8.55. A random sample of five gas stations in a certain area gave the following prices in cents for a gallon of 
regular gasoline: 124.9, 127.9, 1 30.9, 128.9, 122.9. Assuming the price per gallon is normally distributed, 
find a 90 percent confidence interval for the average price per gallon. 

8.56. [42.7, 49.3] is a 95 percent confidence interval for the mean j-L of a normally distributed random variable with 
unknown variance, based on a random sample of size 16 .  Find a 90 percent confidence interval for j-L. 

CONFIDENCE INTERV ALS FOR PROPORTIONS 

8.57. In a random sample of 200 first-year students at a large urban university, 35 percent said they planned on 
working from 16 to 20 hours per week to earn money. Give a 95 percent confidence interval for the 
proportion of all first-year students at the university who plan on working between 1 6  and 20 hours per 
week. 

8.58. In the same student sample as in Problem 8 .57, 9 .5 percent of the students said they would be traveling to 
and from campus by train. Find a 90 percent confidence interval for all first-year students at the university 
that will be traveling to and from campus by train. 

8.59. How large must a random sample be to obtain a 95 percent confidence interval for a population proportion 
with a margin of error of at most 0.047 

8.60. Suppose [0.46, 0 .51 ]  is a 99 percent confidence interval for a population proportion p based on a random 
sample of size n. Using the same random sample, find a 95 percent confidence interval for p. 
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CONFIDENCE INTERV ALS FOR V ARIANCES 

8.61. A random sample of 20 values of a normally distributed random variable X results in a sample variance 
i = 48.5 .  Find a 90 percent confidence interval for the variance (i of X. 

8.62. The values of a normally distributed random variable X obtained in a random sample are 25, 28, 26, 25, 22, 
30. Find a 95 percent confidence interval for the variance (i of X. 

8.63. Suppose 127 is the right endpoint of a 90 percent confidence interval for the variance of a normally 
distributed random variable, based on a random sample of size 26. If the interval was determined by 
Prescription 8 .4, what is the value of the sample variance obtained in the sample, and what is the left 
endpoint of the confidence interval? 

8.64. Suppose X is a normally distributed random variable with mean p = 50. The values 46.5, 52. 1 ,  48.6, 50.8 
are a random sample of values of X. U se the result of Problem 8.38 to find a 95 percent confidence interval 
for the standard deviation a of X. 

8.65. Suppose the mean of the random variable X in Problem 8 .64 were not known. What would be the 
corresponding 95 percent confidence interval for a? 

8.39. 

8.40. 

8.41. 

8.42. 

8.43. 

8.44. 

8.45. 

8.46. 

Ánswers to Supplementary Problems 

1 7.6 is a parameter; 1 8 . 1  is a statistic. 

Xi is the value of Xi, i = 1 , 2, . . .  , n, in a random sample of size n. 
L (Xi - 1')2 can be computed in terms of sample values Xi of Xi; it does not depend on any unknown 
population parameters. L (Xi - p)2 cannot be computed in terms of sample values; it depends on the 
unknown parameter p. 

12 + 1 5 + 10 + 1 1  12 · b· d · . f x = 4 = lS an un lase pomt esl1mate o p; 

( 12 - 12)2 + ( 1 5  - 12)2 + (10 - 12)2 + ( 1 1  - 12)2 . . . . i = 3 :::,; 4.67 lS an unblased pomt esl1mate of a2 . 

ft = �� :::,; 0.56 is an unbiased point estimate of p; n � 1 ft(1 -ft) = 3
1
5 x �� (1 -��) :::,; 0.007 is an unbiased 

. p(l -p) esl1mate of 36 . 

An unbiased estimator of a parameter is a random variable whose expected value is equal to the parameter; 
an unbiased point estimate of a parameter is a numerical value obtained from a random sample of an 
unbiased estimator of the parameter. 

E = z*a = 1 .75 x 5 = 1 .75 yíi vTI 
1 .75 x 5 = 1 .75. In = 10· n = 100 

yíi 2 ' V "  , 
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8.47. 

8.48. 

8.49. 

8.50. 

8.51. 

8.52. 

8.53. 

8.54. 

8.55. 

8.56. 

8.57. 

8.58. 

8.59. 
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z*a z*a z*a 1 If a is known, El = yíi; El = 
v2n 

= 
v2yíi 

= 
v2 

El · If a is unknown, 

t�s t�s t� El El = ffn = 
v2yíi 

= tf . v2 

2.33a l .65a l .65 x 4. 5 4.5 = yíi ; E = yíi = 2.33 "" 3 . 19 

z* x 5 .4 4 x 2.6 2.6 = Vi6 ; z* = ---s:4 "" 1 .93; confidence level = 94.64 percent. 

l .96 x 8 .5  r.:; l .96 x 8 .5  3 . 332 = yíi ; y n = 3.332 = 5; n = 25 

[68.94, 75.87] 

[12.00 percent, 13 .32 percent] 

x = 129.6; E = 3 .8 (see Problem 8 .48); [ 125.8, 1 33 .4] 

[2.55, 2 .81 ] 

[ 124.06, 1 30. 14] 

x = 46; E = 2.7 (see Problem 8.48); [43.3, 48 .7] 

[0.28, 0.42] 

[0.06, 0 . 1 3] 

Vft(1 -ft) l .96 x 0.5 1 .96 n <::: yíi <::: 0.04; n ::> 600.25; round up to 601 

8.60. ft = 0.485; E = 0.019 (se e Problem 8.48); [0.466, 0. 504] 

8.61. 

8.62. 

8.63. 

8.64. 

8.65. 

a = 10. 1 ,  b = 30. 1 ;  [30.6, 9l .2] 

i = 7.6, a = 0.83 1 ,  b = 12.8; [2.97, 45.7] 

25i 1 . 25 x 74.2 
a = 14.6, 127 = - , s = 74.2; b = 37.7; left endpomt = = 49.2 14.6 37.7 

L (Xi - Ji/ = 19.26, a = 0.484, b = 1 1 . 1 ;  [1 .32, 6.31] 

i = 6.09, a = 0.216, b = 9.35; [l .40, 9.20] 

[CHAPo 8 



Chapter 9 
Hypotheses Tests for a Single Population 

9.1 INTRODUCTlON: TESTlNG HYPOTHESES ABOUT P ARAMETERS 

In Chapter 8, confidence intervals were prescribed for means, proportions, and variances. Here we 
discuss another type of statistical inference regarding these same parameters. As an illustration, con­
sider the following example. 

EXAMPLE 9.1 A bank institutes a new teller procedure designed to shorten the average customer waiting time 
on busy Friday evenings. The old waiting time was normally distributed with mean p, = 12 minutes and 
standard deviation a = 3 minutes. As a test of the new procedure, a random sample of 36 Friday-evening 
customers was chosen and found to have an average waiting time of 1 1  minutes. Determine the probability 
that such an average waiting time or less would have occurred by chance under the old system, and interpret the 
result. 

Let X denote the random variable representing the old waiting time. Then, for samples of size 36, the 
sample mean X is normally distributed with mean 12 and standard deviation 3/ J36 = 0.5. Therefore, the random 
variable 

1' - 12 z =--0.5 
i s the standard normal random variable with mean ° and standard deviation 1 . Using the standard normal table, - (X - 12 1 1  - 12) P(X <::: 1 1 ) = P ----o:s- <::: ----o:s- = P(Z <::: -2) = 0.0228 

Hence, there are only 228 chances in 10,000, or 2.28 out of 100, that a waiting time of 1 1  minutes or less would 
have occurred at random under the old system. Such a low theoretical probability for what in fact did occur 
under the new system is fairly strong evidence that the new procedure really does reduce the average waiting 
time. 

Null Hypothesis and Alternative Hypothesis 

Example 9 . 1  illustrates a typical situation in which some sort of system is modified and it is desired 
to evaluate the effect of the changes based on sample results of the new system. Specifically, we identify 
some parameter of a random variable associated with the old system, and ask whether the sample results 
indicate that a real change has occurred in the value of the parameter, or can the results be merely 
attributed to chance? 

To address this question, we make two opposing hypotheses concerning the parameter, and then use 
probability to test these hypotheses in light of the sample results. The first hypothesis, called the null 
hypothesis, denoted by Ha, plays devil's advocate and says that the value of the parameter has not really 
changed; the sample results are simply due to chanceo The second hypothesis, called the alternative 
hypothesis, denoted by Ha> maintains that there really has be en a change in the value of the parameter; 
the sample results are not due to chanceo 

EXAMPLE 9.2 In Example 9. 1 ,  the random variable X is the waiting time on Friday evenings, and the parameter is 
the mean p, of X; that is, the mean waiting time. The null and alternative hypotheses are as follows: 

Ha : The waiting time is still normally distributed with mean 12 minutes and standard deviation 3 minutes. 
Ha: The average waiting time is less than 12 minutes. 

26 1 
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Or, more briefiy, letting JL denote the mean waiting time, 
Ha : P, = 12 
Ha : P,  < 12 

[CHAP. 9 

Both hypotheses are concerned only with the mean of X. The standard deviation of X is assumed to be unchanged 
by the new system. 

One-Sided and Two-Sided Alternatives 

The alternative hypothesis in Example 9. 1 could also take on the form Ha: JL > 12 or 
Ha : JL el 12. Each of the hypotheses Ha: JL < 12 and Ha : JL > 12 is called a one-sided alternative, while 
Ha : JL el 12 is called a two-sided alternative. A one-sided alternative hypothesis says that the mean JL has 
changed in a specified direction, namely either "the new mean is les s than the old mean" or "the new 
mean is greater than the old mean". A two-sided alternative hypothesis is bi-directional; it says "the 
new mean is either greater than or less than the old mean" . An hypothesis test with a one-sided 
alternative is called a one-sided test. An hypothesis test with a two-sided alternative is called a two­
sided test. 

Simple and Composite Hypotheses 

The null hypothesis in Example 9. 1 ,  Ha : JL = 12, which says that the mean of X is equal to a specific 
value, is called a simple hypothesis. The alternative hypothesis, Ha : JL < 12, which says that the mean 
can take on a whole range of values, is called a composite hypothesis. A simple hypothesis completely 
determines the distribution of X, whereas a composite hypothesis does not. For example, the simple 
null hypothesis Ha : JL = 12 says that the distribution of X is exactly the same as it was before the change, 
whereas the composite alternative hypothesis Ha : JL < 12 is less specific; it says that the new mean is less 
than 12, but does not specify what the new mean is. In our examples, the null hypothesis will be simple, 
and the alternative hypothesis will usually be composite. 

Test Statistic and P-value of a Test 

After the null and alternative hypotheses have been made, a test statistic is defined that will enable us 
to perform the test. Performing the test means determining the likelihood that the sample results would 
have occurred if the null hypothesis were true. More specifically, the test statistic is a statistic whose 
value can be computed from the sample results; and the P-value of the test is the probability that a value 
of the test statistic in the direction of the alternative hypothesis and as extreme as the one that actually 
did occur would have occurred if Ha were true. 

EXAMPLE 9.3 In Example 9. 1 ,  the underlying random variable X is the Friday evening waiting time, and the test 
statistic is obtained by standardizing the sample mean X. That is, the test statistic is X - 12 z = --0.5 
which, if Ha : p, = 12 i s true, is the standard normal random variable. The value of X obtained in the sample of 36 
customers is x = 11 minutes. The corresponding z-score of x, namely 

1 1  - 12 z = --- = -2 0.5 
i s the test value of the test statistic. Now the alternative hypothesis says that the new average waiting time is less 
than 12 minutes. Hence, assuming Ha: p, = 12 is true, then a sample waiting time in the direction of the alternative 
hypothesis as extreme as 1 1  minutes is a sample waiting time at least one minute less than the sample mean of 12 
minutes, or at least two standard units less than zero. Therefore, the P-value of the test is 

P(Z <::: -2) = 0.0228 
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EXAMPLE 9.4 Suppose the alternative hypothesis in Example 9. 1 were Ha: p, el 12. Then a sample waiting time 
as extreme as 1 1  minutes is a sample waiting time at least one minute less than or one minute greater than 12 
minutes; equivalently, at least two standard units less than or greater than zero. The P-value of the test would be 

P(Z <::: -2) + P(Z ::> 2) = 2P(Z ::> 2) = 2(0.0228) = 0.0456 

Determining the P-value 

In general, the P-value of a test depends on the null hypothesis, the test statistic, the test value of the 
test statistic, and the alternative hypothesis. Suppose the null hypothesis is a simple hypothesis, say 
Ho : JL = JLo, the test statistic, assuming Ho is true, is the standard normal variable Z, and the test value of 
Z is z. Then the P-value is determined as follows: 

For Ha : JL < JLo , the P-value is P(Z :::; z) 
For Ha : JL > JLo , the P-value is P(Z � z) 
For Ha : JL el JLo , the P-value is P(Z :::; - Iz l ) + P(Z � Iz l ) [equivalently, 2P(Z � Iz l )] 

Significance Level and Statistical Significance 

A high P-value is evidence in support of the null hypothesis, Ho, and a low P-value provides 
evidence against Ho. To assess the weight of the evidence, a threshold P-value, called the significance 
level 01 the test, is often selected before conducting the test. The significance level is usually denoted by 
Q, and values of 0.01 and 0.05 have traditionally been used for Q, but other values can be used as 
well. If the P-value of the test is less than or equal to Q, then the corresponding value of the test statistic 
is said to be statistically significant at the level Q. If the P-value is greater than Q, then the value of the 
test statistic is not statistically significant at the level Q .  

EXAMPLE 9.5 In Example 9. 1 ,  the value of the test statistic Z = (X - 12)/0.5 obtained in the sample is -2, whose 
P-value was computed to be 0.0228 in Example 9.3 . Since 0.0228 is less than 0.05, the test value -2 of Z is 
statistically significant at the level 0.05. However, 0.0228 is not less than 0.01 , so -2 is not statistically significant 
at the level 0.0 1 .  

Using Significance Level and P-value for Decision Making 

Suppose now that the sample results of a test are going to be used to decide whether or not to reject 
the null hypothesis, Ho, as being true. A low P-value obtained in a test says that if Ho is true, then a 
rare event has taken place; equivalently, if the event is not so rare, then Ho must be false, and 
should be rejected. The significance level Q, chosen before the test, is used as the measure of rarity. JI 
the P-value 01 the test is less than or equal to Q, then the null hypothesis is rejected at the Q level 01 
significance. If the P-value is greater than Q, then we either accept Ho or hedge a bit and conclude that 
there is insufficient evidence to reject Ho at the Q level of significance. Simply stated, if the P-value 01 the 
test is greater than Q, then the null hypothesis is not rejected. 

EXAMPLE 9.6 The P-value for the average waiting time in Example 9 . 1  was computed to be 0.0228 in Example 
9.3 . Since 0.0228 is less than 0.05, the null hypothesis would be rejected at the 0.05 level of significance. Here we 
are inclined to believe that the average waiting time has been reduced from 12 minutes by the new teller procedure 
rather than maintain that the average waiting time is still 12 minutes and an event whose chances are less than 5 in 20 
did occur. On the other hand, since 0.0228 is not less than 0.01 ,  the null hypothesis would not be rejected at the 
0.01 leve!. At this level, to conclude that the average waiting time has be en reduced from 12 minutes, we require 
that the average waiting time for the sample be so rare as to have only 1 chance out of 100, or less, of occurring. 

The Critical Region 

All values of the test statistic in the direction of the alternative hypothesis with a P-value less than or 
equal to the significance level Q define a set called the critical region of the test statistic. By definition, Q 
is the probability that the test statistic will lie in the critical region. 
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EXAMPlE 9.7 Supposc ¡he tesl statistic. assuming 110: It = IlfJ is truco is ¡he standard nonnal random variable Z. 
and the leve! of significante is a = 0.05. Thcn, as illuslralcd in Fig. 9-1, Ihe critica] regions for onc-sidcd and Iwo­
sided ahernativc hypothcses are as follows: 

For t-I ,,: 1I < IJo. ¡he critical region is all values :; .;; -1.65, sinee P(Z ..,:; - \.65) = 0.05 
For lla:lt > /lQ, ¡he criticnJ region is all valucs :; 2: 1 .65. sincc peZ 2:: 1.65) = 0.05 
For f/,,:¡J =1- ¡J{), the critical region is all valucs :; .'5: -1.96 or:; 2:: 1 .96. since P(Z ..,; -1.96)+1'(2 2:: 1 .96) = 0.05 

lequivalcntly. peZ 2:: 1 .96) = 0.05/2 = 0.025] 

O�2S. 
� � 

t -1.96 1.96 t 
Critica! region 
(e) HQ:p �!lo 

�ig. 9-1 Critica] Z rcgions, 0 = 0.05. 

EXAMPlE 9.8 Suppose ¡he lest stiltistic, assuming Ha: It = JJfJ is true. is the standard nonnal random variable Z, 
and O! = 0.01. Al the 0.01 Ievc1 of significancc, the corresponding critical regions are Ihe fol1owing (see Fig. 9-2): 

For lfa:JI < 11fJ, the critical region is all values = :.:::: -2.33, since P(Z :':::: -2.33) = 0.01 
For llo:JI > JJfJ, Ihe critical region is all values = 2: 2.33, sincc P(Z 2: 2.33) = 0.01 
For /la:Jl f- IIO. Ihc critical region is all values: :,:::: -2.58 or: 2:: 2.58, sincc P(Z :':::: -2.58)+P(Z 2: 2.58) = 0.01 
lequivalently, P(Z 2: 2.58) = 0.01/2 = 0.0051 

Uetermining I.he Critical Region 

In general, the critical region depends on the null hypothesis, the test statistic, the significancc levcl, 
and the alternative hypothesis. Suppose the null hypothesis is the simple hypothesis No: IJ. = IJo, the test 
slatistic, assuming No is true, is the standard normal random variable Z, and the significancc levcl is 
o. Then the critical region is determined as follows: 

For Na: J1 < IJo, the critical region is all VallleS 2 :5 :*, where P(Z :5 :*) = O 
For Na: J1 > 110, the critical region is all vallles z :?: 2*. where P(Z :?: z*) = O 
For H(l : Jl i- l1o, the critical region is all values = :5  -Z* or = :?:  2*, where P(Z :5 -Z*)+ 
P(Z 2: =*) = O [equivalcntly, P(Z :?: =*) = 0/2] 
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�OOI 
/""" -----...,...... .. 

2.33 Critieal regíon 
(b) H.: Il > Ilo 

OOO�OOS. 

� � t -2.58 2.58 t 
Critica1 region 
(e) H.: Il "'Ilo 

Fig. 9-2 Crilical Z regions, u = 0.01. 

Using Significance le,·el and Critical Region for Decision J\!laking 
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The P-value of a test will be less than or equal to the �ignificance level Q" prcciscJy when the test value 
of the test statistic líes in the critical region. Hence, ifrhe resr l'a!l/e lies il/ lhe crilica! regiol/, rhel/ rhe 1/1/11 
hyporhesis is rejecred al rhe O" !el'eI 01 sigl/ifical/ce; if Ihe lesl l'G!ue is 1I0r ill rhe cririca! regiol/, Ihen rhe I/ull 
hyporhesis is 1/01 rejecred. 

EXAMPlE 9.9 The crilical region for the standard normal random variable at thc 0.05 levcl of significance for thc 
alternalivc hypothcsis Ha: 1/ < PfJ is alJ values = :::; -1 .65 (Example 9.1). Suppose Ihe test value ofthe test slatistic is 
-2 (as in Example 9.3). Since -2 is less than - 1 .65, Ihe nul! hYp0lhesis is rcjected at the 0.05 significancc 
levc!' However. the critical region at the 0.01 level of significance is al! values = :::; -2.33 (Example 9.8). Sincc 
-2 is not less than -2.33, Ihe nul! hypothesis is not rejeclcd at thc 0.01 significance leve!' 

Typt' I and Typt' 1.1 Errors 

Thcre are twO importan! types of mistake thal can be made when reaching a decísion on Ihe basis of 
a hypothesis test: rejecling the null hYPolhesis when il is true is called a Type 1 error; not rejecting the 
null hypothesis when the alternative hypolhesis is true is callcd a Type 11 error. Each typc of error 
depcnds on the spccified significance level. 

EXAMPlE 9.10 To illustrate a Type 1 error, suppose Ihc significance level were ehosen 10 be 0.05. and Ihc P-valuc 
of Ihe leSI is 0.02.28 (Example 9.3). Sincc 0.0228 is less Ihan 0.05, /lo would be rcjected at Ihe 0.05 level of 
signifieancc. However, this would be a mistake if No were in fael Irue. 

EXAMPlE 9.11 Suppose Ihe level of signifieancc wcre chosen to be 0.01, and Ihe P-value of Ihe leSI is 
0.0228. Since 0.0228 is nOI less than 0.01, Ihe nul! hypothesis /lo would nOI be rejecled at the 0.01 level of 
significance. This would be a Type 11 error if the ahemative hypothesis Hq were true. 



266 HYPOTHESES TESTS FOR A SINGLE POPULATION [CHAP. 9 

Probability of a Type 1 Error 

If a simple null hypothesis, such as Ha : JL = JLo , is in fact true, then all values of the test statistic 
in the critical regio n will result in a Type I error. Since the significance level a is the probability 
that the test statistic will lie in the critical region, it follows that a is the probability 01 making a Type 1 error. 
EXAMPLE 9.1 2 Suppose the null hypothesis is Ha: P = Po, the alternative hypothesis is Ha: P < Po, and the sig­
nificance level is chosen to be 0.05. Then, as illustrated in Fig. 9-1 , the critical region consists of all values of the 
standard normal random variable less than or equal to - 1 .65. The probability that a test value will lie to the left of 
- 1 .65 is precisely 0.05. 

The significance level chosen for a test depends on how important it is to avoid a Type I error. 
Decreasing a reduces the chances of making a type I error. However, since decreasing a 
reduces the likelihood of rejecting the null hypothesis, it also reduces the likelihood of rejecting 
the null hypothesis when the alternative hypothesis is true, which increases the chances of making 
a Type II error. The only sure way to reduce the chances of both types of error is to increase the 
sample size. 

Probability of a Type II Error 

A Type II error results if we fail to reject the null hypothesis when the alternative hypothesis is 
true. Now a composite alternative hypothesis does not specify a particular value of the parameter that 
forms the basis of the test, and therefore does not uniquely determine the distribution of the underlying 
random variable. Hence, we cannot determine the probability of a Type II error simply by assuming 
the alternative hypothesis is true. We can, however, determine the probability of a Type II error for 
each specific value of the parameter for which the alternative hypothesis is true (see Examples 9 . 1 3 and 
9 . 14). This determination leads to the notion of the power of a test, described below. 

Power of a Test 

Suppose that the null and alternative hypotheses are hypotheses about a parameter, say the 
mean JL, of a random variable X, whose value completely determines the distribution of X. The test 
is to be conducted at a specified level of significance a, which therefore determines a critical regio n 
for the test statistic. Let JL¡ be a specific value of the parameter. Then the power 01 the test 
at JL¡ , denoted by K (JL¡ ) , is defined to be the pro bability that the null hypothesis Ha : JL = JLo will 
be rejected when JL = JL¡ . Therefore, 1 - K(JL¡ ) is the probability of a Type II error, given that 
JL = JL¡ el JLo · 

K(JL¡) is the probability that the test statistic lies in the critical region, given that JL = JL¡ . Recall 

that the critical regio n for the test statistic :/-;0 is determined under the assumption that this statistic is 

the standard normal random variable; but if JL = JL¡ and JL¡ el JLo , then the test statistic is not the 
standard normal random variable, so the probability that it lies in the critical regio n is not equal to 
the level of significance a. 

EXAMPLE 9.1 3 With reference to Example 9 . 1 ,  suppose that the null hypothesis Ho: p  = 12 is to be tested 
against the alternative hypothesis Ha: p < 12 at the 0.05 level of significance, based on a random sample of size 
36. Suppose also that the new teller policy actually results in the average waiting time being reduced from 12 
minutes to 1 1  minutes, and the standard deviation of the waiting time i s  still 3 minutes. What i s  the power K(1 1) of 
the test? 

h . . . X - Po X - 12 X - 12 h . .  l l f h d d I d · bl T e test stal1sl1c IS / r,;; = ML = -O 5 . T e cnl1ca va ue o t e stan ar norma ran om vana e at a yn  3/y 36 . 
the 0.05 percent level for the alternative hypothesis Ha: p < 12 is z* = -1 .65 (se e Example 9.7). We want to 
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compute the probability that 1' - 12 <::: -1 .65, given that 1' - 1 1 is the standard normal random variable. Now 0.5 0 .5 

Powerful Tests 

(X - 12 ) K(l 1 ) = P ----¡)"T <::: -1 .65 

= P(1' <::: -1 .65 x 0.5 + 12) 

= P -- < -----=-=-----
(X - 1 1  - 1 .65 x 0.5 + 12 - 1 1) 

0.5 - 0.5 
"" peZ <::: 0.35) 
"" 0.6368 

If the null hypothesis is Ho : JL = JLo , then K(JLo) = a, which is the probability of a Type 1 error; 
therefore we want K(JLo) to be small. We can achieve this by choosing the level of significance a to be 
small. On the other hand, if JL¡ is a value of JL for which the alternative hypothesis Ha is true, then we 
want K(JL¡ ) to be large. 1 - K(JL¡) is the probability of a Type II error, which will be small when K(JL¡) 
is large. Hence, a powerful test is one in which K(JLo) is small, and K(JL¡ ) is large whenever 
JL¡ el JLo · Increasing sample size increases the power of a test. 

EXAMPLE 9.14 Suppose the sample size in Example 9. 1 3  is increased to 64. Find the power K(l 1) of the test and 
the probability of a Type 11 error at the 0.05 significance level when p, = 1 1  . 

. h l f · h . . . 1' - 12 1' - 12 11 · h h d f l Wl1 a samp e o Slze 64, t e test stal1sl1c IS IZA = --o Fo owmg t e met o o Examp e 9 . 13 ,  we get 
3/v64 0.375 (X - 12 ) K(l 1 )  = P 0.375 <::: -1 .65 

= P(1' <::: -1 .65 x 0.375 + 12) (X - 1 1  - 1 .65 x 0.375 + 12 - 1 1) = P -- < ---------0.375 - 0.375 
"" peZ <::: 1 .02) 
"" 0.8461 

The probability of a Type 11 error when p, = 1 1  is 1 - K(l 1 )  = 0.1 539. 

Using Tables or Computer Software to Find the P-value of a Test 

The test statistic in hypothesis testing is often the standard normal random variable, a chi-square 
random variable, a t random variable, or an F random variable (see Section 10.5). Tables in statistics 
texts are usually adequate to compute the P-value for the test value of a standard normal random 
variable. However, the t and chi-square random variables require a different table for each degree 
of freedom, so most statistics texts include test values for a very limited number of P-values in addition 
to 0.05 and 0.0 1 .  The F random variable depends on a pair of degrees of freedom; and textbook tables 
are often limited to P-values of 0.05 and 0.01 only. More detailed reference tables are available, but the 
simpler procedure is to use a computer software package to determine the P-value when the test statistic 
is not a standard normal random variable. 

Reasonable Doubt 

Hypothesis testing for rejecting or not rejecting the null hypothesis is similar to weighing evidence 
against the defendant in a criminal or civil tri al. If, in the mind of a jury in a criminal trial, there is no 
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reasonable doubt that the defendant has committed the crime, then the jury should find the defendant 
guilty. In a civil trial, only a "preponderance" of evidence is needed to find the defendant liable. In 
hypothesis testing, the null hypothesis is an assumption of innocence, and the evidence against the 
null hypothesis is provided by the sample results. The level of significance a sets the standard 
for reasonable doubt or preponderance of the evidence. If the P-value of the test is less than or 
equal to a, then the criterion for eliminating reasonable doubt or for establishing a preponderance of 
evidence has been achieved, and the null hypothesis is rejected. A very low significance level corre­
sponds to a criminal case that requires a very high degree of certainty of guilt; relatively higher levels of 
significance correspond to civil cases in which a lighter weight of evidence can be used for a finding of 
liability. 

Absolute certainty is rare in tri al s and in hypothesis testing. Committing a Type 1 error in hypoth­
esis testing corresponds to finding an innocent defendant guilty or liable. A Type II error corresponds 
to not reaching a guilty or liable verdict when the defendant is guilty. 

9.2 HYPOTHESES TESTS FOR MEANS 

Let X be a random variable with mean JL, which is unknown, and standard deviation (J, defined on 
some population. We give prescriptions for hypotheses tests regarding JL when (J is known and when (J 
is unknown. As in the case of confidence intervals for JL, hypotheses tests for JL require that the sample 
mean, X, be approximately normally distributed. This condition can be met for small samples (n < 30) 
if X itself is normally distributed. For large samples (n � 30), the Central Limit Theorem allows us to 
assume that X is approximately normally distributed regardless of the distribution of X. We consider 
hypotheses tests for JL where the null hypothesis is 

Ha : JL = JLo 
and the alternative hypothesis is one of the following: 

Ha : JL < JLo , Ha : JL > JLo , or Ha : JL el JLo 

PRESCRIPTION 9.1 (P-value hypotheses tests for JI when (J is known) 

Requirements: X has known standard deviation (J, and the sample mean X is approximately normally 
distributed. 

Let a be the specified level of significance for the test, and suppose that a value x of the sample mean 
X is obtained in a random sample of size n. Complete the following steps. 
(1) Sta te Hypotheses: State null hypothesis Ha : JL = JLo and alternative hypothesis Ha· 
(2) Compute Test Statistic: The test statistic is the standardized sample mean, namely Z = :/-;0 

which, assuming Ha is true, is (approximately) the standard normal random variable. Compute 

the test value of Z, which is the z score of x: z = : / �. 
(3) Determine P-value: Using a standard normal table (or computer software), find the P-value of the 

test corresponding to Ha: 
For Ha: JL < JLo, the P-value is P(Z :::; z) 
For Ha: JL > JLo, the P-value is P(Z � z) 
For Ha: JL el JLo, the P-value is P(Z :::; - Iz l ) + P(Z � Iz l ) [equivalently, 2P(Z � Iz l ) ] · 

(4) Draw Conclusion: If P-value :::; a, then both z and x are said to be statistically significant at level a, 
and Ha is rejected. If P-value > a, then z and x are not statistically significant at level a, and Ha is 
not rejected. 
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Alferna th-e Version of I'rescription 9 .• 
Instead of computing the P-values in Step 3 of Prescription 9.1, we could determine the critical 

region for the alternative hypothesis at the spedfied leve! of significance, o (see Scction 9.1). IJ'the test 
value = is in the critical region, thcn the test rcsult is significant at leve! o, and the null hypothesis would 
be rcjccted. If the test value z is not in the critical region, then the test result is not significant at levcl a, 
and the null hypothesis would not be rejccted. Hence Prescription 9.1 can be replaced by the rollowing. 

I'RESCRII'TlON 9.lll (Critical-region hypotheses tests for p and tf is known) 

Rcquiremems: X has known slandard deviation a, and the sample mean X is approximalcly normally 
distributed. 

(1) and 2 Same as in Prescriplion 9.1. 
(3) DClcrmine Critical Region: Using a standard normal lable (or compuler software), find Ihe critical 

region corresponding lO Ha and a: 
For Ha: ¡;. < 110, the critical region is all = scores :; :5  z*, where z" is lhe (negative) value 
satisfying P(Z :5 z") = a (Fig. 9-3(a)). 

For HlI: ¡;. > 110, the critical region is all = scores z 2: z*, where :;* is the (posilive) value satisfying 
peZ " " ) � a (Fig. 9-3(b)). 
For Ha: /1 ,¡:. 110, lhe critical region is all z scores for which :; :5 -z* or = 2: z", where z" is the 
(positive) value satisfying P(Z S -:;") -1- P(Z 2: :;*) = O [equivalently, peZ 2: :;") = 0/2] 
(Fig. 9-J(,). 

(4) Draw Cone/llsion: 11' the sample value z 01' Ihe test statistic lies in the critical region, Ihen both z and 
.\' are said to be slatistically significant al levcl 0", and Ho is rejccled. Ir z does nOl lie in Ihe critical 
region, then z and .\' are not statistieally significant at leve! 0", and l/o is not rejected. 

80th versions of Prescription 9.1 are applied to the following example . 

. ./� " Z Critica] region 

(b) H8:� >�o 

Critical regiOD 
(c) H8:� ""  �o 

"·ig. 9-3 Crit¡cal Z regions, s¡gn¡ficance leve! 0". 
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EXAMPLE 9.1 5 A population random variable X is normally distributed with unknown mean p, and with standard 
deviation a = 2. The null hypothesis is Ha : p, = 1 5. A random sample of size 25, drawn from the population, 
results in a sample mean x = 16 .  Test the null hypothesis at significance level a = 0.01 against each of the 
following alternative hypothesis: 

P-value solution: Since X is normally distributed, so is X. The null and alternative hypotheses have already 
be en stated in each case. The value of the test statistic is z = 16 -/ 1 5  = 2.5 in all three cases. We now do each case . d· ·d ll 2 5 m IVI ua y. 
(a) By Step 3 in Prescription 9 . 1 ,  the P-value is peZ <::: 2.5) = 0.9938, which is certainly not less than 0.0 1 .  There­

fore, the test result z = 2.5 (or x = 1 6) is not statistically significant at level 0 .01 , and the null hypothesis would 
not be rejected. 

(b) By Step 3 in Prescription 9. 1 ,  the P-value is P(Z ::> 2.5) = 0.0062, which is less than 0.0 1 .  Therefore, the test 
result z = 2.5 (or x = 16) is statistically significant at level 0 .01 , and the null hypothesis would be rejected. 

(e) By Step 3 in Prescription 9. 1 ,  the P-value is 
peZ <::: -2.5) + P(Z ::> 2.5) = 0.0062 + 0.0062 = 0.0124 

which is not less than 0.0 1 .  Therefore, the test result z = 2.5 (or x = 16) is not statistically significant at level 
0.0 1 ,  and the null hypothesis would not be rejected. 
Critieal-region solution 

(a) The critical region for the one-sided alternative Ha: P, < 1 5  at significance level a = 0.01 is z <::: -2.33 
(Fig. 9-2(a)). Since the test value z = 2.5 is not in this region, the test result is not statistically significant at 
level 0 .01 , and the null hypothesis Ha : P, = 1 5  would not be rejected. 

(b) The critical regio n for the one-sided alternative Ha: p, > 1 5  at significance level a = 0.01 is z ::>  2.33 
(Fig. 9-2(b)). Since the test value z = 2.5 is in this region, the test result is statistically significant at level 0 .01 , 
and the null hypothesis Ha : p, = 15 would be rejected. 

(e) The critical region for the two-sided alternative Ha: p, el 1 5  at significance level a = 0.01 consists of the z scores 
satisfying z <::: -2. 58 or z ::> 2.58 (Fig. 9-2(e)). Since the test value z = 2.5 is not in this region, the test result is 
not statistically significant at level 0 .01 , and the null hypothesis Ha : P, = 1 5  would not be rejected. 

Hypotheses Tests for JI When (J is Unknown 

As in the case of confidence intervals for JL, when the standard deviation a is not known, we use the 
sample standard deviation 

J 1 - 2 S =  -¿ (Xi - X) 
n - l 

in place of a, and the t distribution in place of the standard normal distribution. The corresponding 
prescriptions for the hypotheses tests are as follows. 

PRESCRIPTlON 9.2 (P-value hypotheses tests for JI when (J is unknown) 

Requirement: The sample mean X is approximately normally distributed. 
Let a be the specified level of significance. Suppose the values Xl , X2 , . . .  , Xn of X are obtained in a 

random sample of size n. . . Xl + X2 + . . .  + Xn First compute the sample statIstIcs X = and n 
/ 1 _ 2 S = V n _ 1 ¿ (Xi - x) .  Then complete the following steps. 

(1) Sta te Hypotheses: State null hypothesis Ha : JL = JLo and alternative hypothesis Ha· 

(2) Compute Test Statistic: The test statistic is t = � ¡ln° which, assuming Ha is true, is (approxi­
mately) the t random variable with n - 1 degrees of freedom. Compute the test value of t as the t 
score of the sample mean: ¡ = �¡ln°. 
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(3) Determine P-value: Using a t table, if adequate, or computer software for the t random variable 
with n - 1 degrees of freedom, find the P-value of the test corresponding to Ha: 

For Ha: JL < JLo , the P-value is P(t < i) 
For Ha: JL > JLo , the P-value is P(t > i) 
For Ha: JL el JLo , the P-value is P(t < - 1 11 ) + P(t > 1 1 1 ) [equivalently, 2P(t > 1 1 1 ) ] 

(4) Draw Conclusion: If P-value :::; a, then both the value 1 of the test statistic and the value x of the 
sample mean are said to be statistically significant at level a, and Ha is rejected at the a level of 
significance. If P-value > a, then 1 and x are not statistically significant at level a, and Ha is not 
rejected. 

EXAMPLE 9.16 A population random variable X is normally distributed with unknown mean and standard 
deviation. A random sample of size 16 yields a sample mean x = 1 10 and sample standard deviation 
s = 1 8 . 1 8 .  Test the null hypothesis Ho : p, = 100 against the alternative hypothesis Ha: P, el 100 at the significance 
level a = 0.05 by computing the P-value of the test. 

Since a is unknown, we apply Prescription 9.2. X is normally distributed, so X also is. Step 1 has 
already been completed since the null and alternative hypotheses are given. In Step 2, the test statistic is the t 

. X - lOO X - lOO . random vanable t = S/V16 = S/4 ' wl1h 1 5  degrees of freedom. The test value is the t score of 

- A 1 10 - 100 . X: t = 1 8 . 1 8/4 = 2.2. The P-value of the test IS P(t <::: -2.2) + P(t ::> 2.2) = 2P(t ::> 2.2) . The closest value to 

2.2 for 15 degrees of freedom in Table A-2 of the Appendix is 2. 13 ,  which corresponds to a P-value of 0.05. The 
actual P-value is less than 0.05. Using computer software, we find that the P-value is 0.0439. Since 0.0439 is less 
than 0.05, we reject the null hypothesis. 

Alternative Version of Prescription 9.2 

Most t tables in textbooks are inadequate to determine the P-value in many cases when the test 
statistic is the t random variable. The alternative version of Prescription 9.2 uses the critical regio n 
corresponding to the level of significan ce a and the alternative hypothesis Ha> and does not require the 
determination of the P-value. The critical region can be determined for various levels of significance 
and degrees of freedom from Table A-2 for the t random variable in the Appendix. 

PRESCRIPTION 9.2a (Critical-region hypotheses tests for JI when (J is unknown) 

Requirement: The sample mean X is approximately normally distributed. 
(1) and (2) Same as in Prescription 9.2. 
(3) Determine Critical Region: Using a t table with n - 1 degrees of freedom (or computer software), 

find the critical region corresponding to Ha and a: 
For Ha : JL < JLo , the critical regio n is all values 1 :::; t*, where t* is the (negative) value satisfying 
P(t :::; t*) = a (Fig. 9-4(a)). 
For Ha : JL > JLo, the critical regio n is all values 1 ?  t*, where t* is the (positive) value satisfying 
P(t ? t*) = a (Fig. 9-4(b)). 
For Ha: JL el JLo , the critical regio n is all values 1 for which 1 :::; -t* or 1 ?  t*, where t* is 
the (positive) value satisfying P(t :::; -t*) + P(t ? t*) = a [equivalently, P(t ? t*) = aj2] 
(Fig. 9-4(c)). 

(4) Draw Conclusion: If the sample value, 1, of the test statistic lies in the critical region, then 1 and x are 
statistically significant at level a, and Ha is rejected. If 1 does not lie in the critical region, then 1 
and x are not statistically significant at level a, and Ha is not rejected. 
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EXAMPlE 9.17 Test ¡he null hypothesis /-lo: Jl = lOO against the a[ternative hypothesis Ha: JI #- lOO in Example 
9.16 al the significance leve] 1) = 0.05 by dctcnnining Ihe critica] region for Ha al level 0 = 0.05. 

\Ve follow Prcscriplion 9.Za. Thc critical region for the two-sidcd altcrnativc lla:JL #" 100 al significante levcl 
o: = 0.05 and 1 S degTces of frceJom consisls 01' ¡he I scorcs for which ¡ ::; -2.13 or ¡ 2:: 2.13 (Fig. 9-5). Sinec Ihe tesl 
valuc í = 2.2 is in Ihis region, ¡he test rcsuh is slatislically signiflcant al leve] 0.05. and ¡he null hYPolhesis 
110: JI = 100 would be Tejeclcd. 

0.025 

213 2.2 

Fig. 9-5 

9.3 1·IYl'OTI·IESES TESTS FOR PROI)ORTlONS 

0.025 

As in the case of confidence intcrvals, we assume that a population is brokeo up into two 
groups, and the members of one of tite groups are referred to as '·successes." Let p be the (unknown) 
proportion of successes in the population, and let P be the random variable whose value on a 
random sam le of size 11 is the proportion ¡; of succcsscs in the snmple. P has mean p and standard 
deviation p( l -p)jll. and is approximatcly normal when 11 2: JO. \Ve then nrrive at the foJlowing 
prescription. 
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PRESCRIPTlON 9.3 (P-value hypotheses tests for population proportion p) 

Requirement: The sample size n is large, n � 30. 

273 

Let a be the specified level of significance for the test, and suppose p is the proportion of successes 
obtained in a random sample of size n � 30. Complete the following steps. 
(1) State Hypotheses: State null hypothesis Ho : P = Po and alternative hypothesis Ha. 
(2) Compute Test Statistic: The test statistic is the standardized sample proportion, namely 

Z = 
P - Po which, assuming Ho is true, is approximately normally distributed with y'Po ( 1 - po )/n 

mean O and standard deviation 1 .  Compute the test value of Z as the z score of p ,  namely 
p - po z = 

-Jr=po
='=;:(=:=¡ -====po=;=:) /:¡=n 

(3) Determine P-value: Using a standard normal table (or computer software), find the P-value of the 
test corresponding to Ha: 

For Ha:P < Po , the P-value is P(Z :::; z) 
For Ha:P > Po , the P-value is P(Z � z) 
For Ha:P el Po , the P-value is P(Z :::; - Iz l )  + P(Z � Iz l )  [equivalently, 2P(Z � Iz l ) ]  

(4) Draw Conclusion: If P-value :::; a, then the z score of the sample proportion p is statistically sig­
nificant at level a, and Ho is rejected. We would also say that p is statistically significant at level 
a. If P-value > a, then z and p are not statistically significant at level a, and Ho is not rejected. 

EXAMPLE 9.18 A pharmaceutical company claims that 90 percent of smokers that use their anti-tobacco product, 
Kickit, break the smoking habit in two months. In a random sample of 100 smokers who used Kickit as prescribed, 
84 stopped smoking in two months. Determine the P-value of the test of the null hypothesis Ho:p = 0.9 against 
the alternative hypothesis Ha:P < 0.9. Is the sample proportion p = 1

8
0� = 0.84 statistically significant at the 0.01 

leve!? 
Since the sample size n = 100 is greater than 30, we can use Prescription 9.3 . The test statistic is 

P - 0.9 P - 0.9 d h l f . 0.84 - 0.9 h !" h l f h . Z = = ---, an t e test va ue o Z IS = -2. T erelore t e P-va ue o t e test IS 
JO.9(1 - 0.9)/100 0.03 0.03 

peZ <::: -2) . Using the standard normal table, we find that peZ <::: -2) = 0.0228. Since 0.0228 is not less than 
0.01 , the sample proportion p = 0.84 is not statistically significant at the 0.01 significance leve!. The test does not 
provide enough evidence to reject the null hypothesis at the 0.01 leve!. It does, however, provide evidence to reject 
the null hypothesis at any significance level greater than or equal to 0.0228. 

Alternative Version of Prescription 9.3 

Instead of computing the P-values in step 3 of Prescription 9.3, we could determine the critical 
regio n for the alternative hypothesis at the specified level of significance, a. If the test value z is in the 
critical region, then the test result is significant at level a, and the null hypothesis would be rejected. If 
the test value z is not in the critical region, then the test result is not significant at level a, and the null 
hypothesis would not be rejected. Hence, Prescription 9.3 can be replaced by the following. 

PRESCRIPTlON 9.3a (Critical-region hypotheses tests for population proportion p) 

Requirement: The sample size n is large, n � 30. 

(1) and (2) Same as in Prescription 9.3. 
(3) Determine Critical Region: Using a standard normal table (or computer software), find the critical 

regio n corresponding to Ha and a: 
For Ha: JL < JLo , the critical regio n is all z scores z :::; z* , where z* is the (negative) value 
satisfying P(Z :::; z*) = a (Fig. 9-3(a)). 
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For Ha: JL > JLo , the critical regio n is all z scores z � z*, where z* is the (positive) value satisfying 
P(Z � z*) = a (Fig. 9-3(b)). 
For Ha : JL el JLo , the critical regio n is all z scores for which z � z* or z :::; -z* , where z* is 
the (positive) value satisfying P(Z :::; -z*) + P(Z � z*) = a [equivalently, P(Z � z*) = aj2] 
(Fig. 9-3(c)). 

(4) Draw Conclusion: If the z score of the sample proportion p lies in the critical region, then z and 
therefore p are statistically significant at level a, and Ho is rejected. If z does not lie in the critical 
region, then z and p are not statistically significant at level a, and Ho is not rejected. 

EXAMPLE 9.1 9 The critical region at the 0.01 level for the test in Example 9 . 1 8  consists of all z scores less than or 
equal to z*, where peZ <::: z*) = 0.0 1 .  From the normal table, we find that z* = -2.33 . Therefore, the critical 
region is all z <::: -2.33. For any z score of the sample proportion in this region, the null hypothesis Ha:P = 0.9 
would be rejected at the 0.01 significance leve!. Since the z score in Example 9 . 1 8  is -2, which is not <::: -2.33, Ha is 
not rejected. 

EXAMPLE 9.20 What sample size would be needed for the test value p = 0.84 of Example 9. 1 8  to be statistically 
significant at the 0.01 significance leve!? 

From Example 9 . 19, the z score of the sample proportion 0.84 must be less than or equal to -2.33 .  The z score 
f A O 84 . 0.84 - 0.9 -0.06 0 2  r.:; S · 0 2  r,;; 2 33 r,;; 1 1  65 S o P = .  IS Z = = - . v n. ettmg - . v n = - . , we get v n = . . quar-

VO.9(1 - 0.9)/n VO.09/yíi 
ing 1 1 .65 and rounding upward, we find that n = 1 36. 

9.4 HYPOTHESIS TESTS FOR V ARIANCES 

Suppose X is approximately a normally distributed random variable with mean JL and unknown 
variance 172 • We consider hypotheses tests for 172 when JL is unknown; the case where JL is known is 
covered in the exercises. The null hypothesis will be 

Ho : 172 = 176 
and the alternative hypothesis will be one of the following: 

Hypotheses Tests for (i When JI is Unknown 

As with confidence intervals, hypotheses tests for 172 depend on the chi-square random variable with 
n -

1 degrees of freedom, 

2 (n - l)s2 
X = 172 

where S2 = _1_ 2:: (Xi - xl is the sample variance, Xl , X2 , . . .  , Xn being a random-variable sample n - l 
corresponding to X, and X is the sample mean. Proceeding as in the case of confidence intervals, we 
arrive at the following prescription. 

PRESCRIPTION 9.4 (P-value hypotheses tests for (i when JI is unknown) 

Requirement: X is approximately normally distributed. 
Let a be the level of significance for the test. Suppose the values Xl , X2 , . . .  , Xn of X are obtained in 

a random sample of size n. Compute the corresponding values of the sample mean 
Xl + X2 + . . .  + X • 2 

1 
2 X = n , and sample vanance s = --1 2:: (Xi - x) . Then complete the following 

steps. n n -
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(1) SIa/C /fYPolhcses: Sta te null hypothesis /fo: 17:' = � and alternative hypothesis /f/!. 

(2) e T s " l'h 
' " , (u - 1)S' 

h' h ' 1/ ' , ( , omplIIC 1 eSI 1a/ISflc: e test statlsttc IS X� = � w le , assummg . o IS truc, IS approxl-
"O 

matcly) a ehi·squarc random vnriable with n - 1 degrees of freedom. Compute the test value 
�2 (11 - l)s2 
X = � . 

"o 
(3) Delermille P+\'alue: Using a table or eomputer software for the ehi·square random variable with 

(4) 

n - 1 degrees or rreedom, find the P+value or the test corresponding to /1/!: 

For /f/!: � < �, the P-value is p(X2 :5 :e) 
For /fa: (12 > �, the P-value is P(X2 ;:: X2) 
� , � . {2P(X2 :5 X2) if .\) < � 
For /fa: rr =F 00, thc P·value IS 

2P(X2 ;:: i) if i > tlo 

Draw COIle/llsion: Ir P·value :5 a, lhen both ;\) and .� arc said to be statisLÍcally significant at level 
a, Hnd /fo is rejectcd. Ir P-value > a, then ;e and i are not statistically significant at levcl a. and 
Ho is not rejected. 

Allernalil'e Version or I)rescriplion 9.4 
Chi·square la bIes in texlbooks are often inadequale for computing P·values due 10 Ihe need \O 

indude dala for many difierem degrees of freedom. An allemalive version of Prescription 9.4 replaees 
P-values by the critical region for the altemative hypothesis al the specified levcl of significancc, a (scc 
Scction 9.1). If Ihe test value i is in the critical region, then the test result is significant at levcl a, and 
lhe null hypothesis would be rejected. Ir ;e is not in the critieal region, then the test result is not 
significant at level a, and the nul! hypothcsis would not be rejccted. Hencc Prcscription 9.4 can be 
replaccd by the following. 

I)RESCRII'TlON 9.411 (Crilical-region hypotheses lesls ror ".2; II unknown) 

Rcqlliremelll: X is approximately normally distrihuted. 

(1) and (2) Same as in Prescriplion 9.4. 
(3) Determine CrÍlical Region: Usiag a chi-square table with 11 - l degrccs of frccdom (or computer 

software), find Ihe critical region corresponding 10 H" and a: 

For H/!: (72 < tlo, the critical region 
p(X2 :5 x*) = a (Fig. 9-6(a» . 

is o" values �2 < • X - X , where X· is lhe value satisfying 

For H/!: (72 > tlo, the critical region 
P(x' � X') � a (Fig, 9·6(b)), 

is o" values �2 > • 
X - X , where X· is lhe value satisfying 

For /f/!: (71 =F cr5, the critical region is all values i :5 xt or Xl 2: X;, where xt is the value 
satisfying P(x� :5 xi) = a/2, and x; is the value satisfying P(Xl 2: X�) = a/2 (Fig. 9-6(c) . 

regioo 
(a) H.: al< a� 

regioo 
(b) H; a2> a� 

""ig. 9-6 Critical X" rcgions. 

Critica! regioo 
(e) H.: a2". a� 

a 
2 
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(4) Draw Conclusion: If the sample value, :e, of the test statistic lies in the critical region, then :e and i 
are statistically significant at level n, and Ha is rejected. If :e does not lie in the critical region, 
then :e and i are not statistically significant at level n, and Ha is not rejected. 

EXAMPLE 9.21 Over the years the grades in a mathematics professor's calculus classes have be en normally 
distributed with mean 75 and standard deviation 8. Recently the grades seem to have fallen and show more 
variation. A sample of 41 recent grades has mean x = 73 and standard deviation s = 9.6. Assuming the grades 
are still normally distributed, test the null hypothesis Ha: (i = 64 against the alternative hypothesis Ha: (i > 64 at 
the 0.05 significance leve!. 

P-value solution: The grades are a random variable X which we are assuming is normally distributed. How­
ever, since the grades seem to have fallen, we will not assume that the mean of X is 75. Therefore, Prescriptions 9.4 

d l . h h . . .  2 (n - l)s2 40S2 2 h· h ·f · . h· an 9.4a app y. In el1 er case, t e test stal1sl1c IS X = 
0"
6 = """64 = 0.625S w lC , 1  Ha IS true, IS a c 1-

square random variable with 40 degrees of freedom. The test value is X2 = 0.625 X (9.6)2 = 57.6. To apply 
Prescription 9.4, we must compute the P-value of the test, which is P(X2 ::> 57.6). Table A-3 in the Appendix 
shows that 0.025 < P(X2 ::> 57.6) < 0.05; using computer software, we find that P(X2 ::> 57.6) "" 0.035. Since 
0.035 < 0.05, the test is statistically significant at the 0.05 level; and we reject the null hypothesis that the variance 
is still 64. 

Critical regio n solution: We now apply Prescription 9.4a. The critical region for X2 (40) for the alternative 
hypothesis Ha: 0"2 > 64 at the 0.05 significance level is all values X2 ::> X*, where X* satisfies 
P(X2 ::> X*) = 0.05. From Table A-3 in the Appendix, with 40 degrees of freedom, we find that 
X* = 55.8 . The test value is X2 = 57.6 (see P-value solution), and since 57.6 > 55.8, the test value is in the critical 
region, which means that the test is significant at the 0.05 level, so the null hypothesis Ha: 0"2 = 64 is rejected at this 
leve!. 

Warning 

As with confidence intervals for the variance, hypotheses tests for the variance, based on the chi­
square test statistic, are not robust, meaning that decisions made may not be very reliable when X is not 
close to being normally distributed. Therefore the practical use ofhypotheses testing for the variance is 
limited. 

Solved Problems 
TESTING HYPOTHESES ABOUT P ARAMETERS 

9.1. The 9th grade algebra scores in a school district have been normally distributed with a mean of 75 
and a standard deviation of 8 .25. A new teaching system is introduced to a random sample of 25 
students, and in the first year under the new system the average score is 78 .2. What is the 
probability that an average this high would occur for a random sample of 25 students in a 
given year under the old system? 

Let X be the algebra scores under the old system. X is a normal random variable with mean 75 
and standard deviation 8 .25. Let X denote the sample mean for all random samples of size 25. X is 
n0rt11ally distributed with mean 75 and standard deviation � = 1 .65. Then P(X ::> 78 .2) = 

P (Xl�;5 ::> 78.�.� 75) = P(Z ::> 1 .94), where Z is the standard normal random variable. Using Table 

A-l in the Appendix, we find that peZ ::> 1 .94) = 0.0262 "" 0.026. Therefore an average as high as 78.2 
would be expected to occur by chance under the old system in approximately 26 out of 1000 cases. 

9.2. State a null hypothesis and alternative hypothesis for testing the new teaching system described in 
Problem 9. 1 .  
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The null hypothesis states that the average score under the old system has not changed with the new 
system, that is, Ha: p, = 75. The alternative hypothesis, for one who feels that the new system is better, 
states that the new mean score has increased, that is, Ha: p, > 75. It is assumed that a = 8 .25 under both 
systems. 

9.3. What is the test statistic and the P-value of the test in Problems 9 . 1  and 9.2? 

The test statistic is the standardized sample mean, namely Z = XI�;5 which, if Ha is true, is the 
standard normal random variable. The P-value of the test corresponding to the alternative hypothesis 
Ha: X >  75 is P(X ::> 78.2) = peZ ::> 1 .94) = 0.0262. 

9.4. At which significance levels would the null hypothesis be rejected in Problems 9 . 1  and 9.2? 
Specifically, would the null hypothesis be rejected at significance level 0.05, at significance level 
0.0 1? 

Since the P-value of the test i s  0.0262 (Problem 9.3), the null hypothesis, Ha: p, = 75 ,  would be rejected 
at any significance level a for which 0.0262 is less than or equal to a, and would not be rejected if 0.0262 is 
greater than oo. Since 0.0262 is less than 0.05, the null hypothesis would be rejected at the 0.05 level of 
significance; since 0.0262 is greater than 0.01 , Ha would not be rejected at the 0.01 level of significance. 

9.5. What is the critical regio n for the test in Problems 9 . 1  and 9.2 at the (a) 0.05 significance level, 
(b) 0.01 significance level? 
(a) Since the test statistic, assuming Ha: p, = 75 is true, is the standard normal random variable, and the 

alternative hypothesis is Ha: p, > 75, it follows from Example 9.7 that the critical region at the 0.05 
significance level consists of all z scores greater than or equal to 1 .65. 

(b) From Example 9.8, the critical region at the 0.01 significance level consists of all z scores greater than or 
equal to 2.33. 

9.6. For what values of the sample mean X in Problems 9 . 1  and 9.2 will the test statistic lie in the 
critical regio n at the (a) 0.05 significance level, (b) 0.01 significance level? 
(a) By Problem 9.5, all z scores of the sample mean that are greater than or equal to 1 .65 lie in the 

critical region at the 0.05 significance leve!. The inequality x 1�6�5 ::> 1 .65 is equivalent to 

x ::>  1 .65 x 1 .65 + 75 "" 77.72. Therefore the test statistic will lie in the critical region, and Ha will be 
rejected when x ::> 77.72. 

(b) By Problem 9.5, all z scores of the sample mean that are greater than or equal to 2.33 lie in the 

critical region at the 0.01 significance leve!. The inequality x 1�6�5 ::> 2.33 is equivalent to 

x ::> 2.33 x 1 .65 + 75 "" 78.84. Therefore, the test statistic will lie in the critical region, and Ha will be 
rejected, when x ::> 78.84. 

9.7. Suppose the null hypothesis Ha : JL = 75 in Problems 9 . 1  and 9.2 is true. What values of the 
sample mean will result in a Type 1 error at the (a) 0.05 significance level, (b) 0.01 significance 
level? 

A Type I error occurs if Ha: p, = 75 is rejected when it is true. Ha will be rejected whenever the z score 
of the sample mean lies in the critical region. (a) By Problem 9.6, part (a), a Type I error at the 0.05 level 
will occur if x ::>  77.72 and Ha is true. (b) By Problem 9.6, part (b), a Type I error at the O.Ol level will occur 
if x ::> 78.84 and Ha is true. 
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9.8. Suppose the new average score is actually 78 in Problems 9 . 1  and 9.2, and the standard deviation 
of the scores is still 8 .25. What is the power K(78) of the test at the 0.01 significance level? What 
is the probability of a Type II error when JL = 78? 

K(78) is the probability that the test statistic 1'l�;5 lies in the critical region, given that 1'l�;8 is the 
standard normal random variable. At the 0.01 level, the critical region is all z scores greater than or equal 

to 2.33 (Problem 9.5), and xl�6�5 ::> 2.33 is equivalent to x ::>  78.84 (Problem 9.6, part (b)). Therefore, - (X - 78 78.84 - 78) K(78) = P(X ::> 78.84) = P � ::> 1 .65 = P(Z ::> 0 .51 )  = 0.305. The probability that a Type 

11 error will occur when p, = 78 is 1 - K(78) = 1 - 0.305 = 0.695. 

9.9. With reference to Problem 9.8, what is the power K(78) of the test at the 0.01 significance level if 
the sample size is lOO? What is the probability of a Type 1 error when the sample size is lOO? What 
is the probability of a Type II error when JL = 78 and the sample size is lOO? 

f h l · ·  h h . . .  1' - 75 1' - 75 d 1' - 78 . h d d I t e samp e Slze IS 100, t en t e test stal1sl1c IS 117\7\ = O 825 , an O 825 IS t e stan ar 
normal random variable. Therefore 8 .25/y l00 . . (X - 75 ) - -

K(78) = P 0.825 ::> 2.33 = P(X ::> 2.33 x 0.825 + 75) = P(X ::> 76.92) (X - 78 76.92 - 78) = P 0.825 ::> 0.825 = peZ ::> -1 . 3 1 )  = 0.9049 

The probability of a Type I error is equal to the significance level 0 .01 , regardless of the sample 
size. The probability of a Type 11 error, when p, = 78 and the sample size is 100, is 
1 - K(98) = 1 - 0.9049 = 0.0951 . 

9.10. With reference to Problem 9.8, what sample size is needed to raise the power of the test to 0.98 
when JL = 78? 

Let n be the sample size. h h . . . 1' - 75 d 1' - 78 . h d d l T en t e test stal1sl1c IS / r.;; ' an / r.;; IS t e stan ar norma 8.25 yn 8 .25 y n  

random variable. The sample size n must satisfy P ( X -/ � ::> 2.33) = 0.98, equivalently, 8 .25 n - ( 1' - 78 75 - 78 ) ( -3yíi ) P(X ::> 75 + 2.33 x 8 .25/ yíi) = 0.98, or P 8 .25/ yíi ::> 8 .25/ yíi + 2.33 = P Z ::>  8.25 + 2.33 = 0.98. 

From the standard normal table, we find that the Z value for which P(Z ::> z*) = 0.98 is 
* l · -3yíi t: r.;; r.;; 8 .25 ( )  . z = -2.05. So vmg 8.25 + 2.33 = -2.05 or y n, we get y n = -3- 2.05 + 2.33 = 12.045. Squanng 

12.045 and rounding upward, we find that a sample size of n = 146 is needed for the power K(78) to equal 
0.98 at the 0.01 level of significance. 

HYPOTHESES TESTS FOR MEANS 

9.11. The useful lifetime of Everlast's 1 . 5  volt battery is a normally distributed random variable with 
mean 40 hours and standard deviation 4 hours. A new chemical composition is introduced to 
make the production of the batteries more efficient. The company wants to see if the useful 
lifetime of the battery has been affected by the new process. Specifically, they wish to test the 
null hypothesis Ha : JL = 40 against the alternative hypothesis Ha : JL el 40. It is assumed that the 
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standard deviation is still 4 hours. A sample of 100 batteries has a useful lifetime of 39. 1 
hours. Determine the test statistic and P-value of the test. 

We follow Prescription 9 . 1 .  The test statistic is the standardized sample mean, namely X - 40 X - 40 . 39. 1  - 40 . Z = fif¡f¡ = -O 4 whose test value IS Z = 0 4  = -2.25. The P-value of the test IS computed 
�v l00 . . 

under the assumption that the null hypothesis is true, that is, that Z is the standard normal random 
variable. Using the standard normal table, we find that the P-value of the test IS 

2P(Z ::> 1 - 2.25 1 ) = 2P(Z ::> 2.25) = 2 x 0.0122 = 0.0244. 

9.12. At which significance levels would the null hypothesis be rejected in Problem 9. 1 1? Specifically, 
would the null hypothesis be rejected at significance level 0.05, at significance level 0.0 1? 

As determined in Problem 9 . 1 1 ,  the P-value of the test i s  0.0244. The null hypothesis would be rejected 
at any significance level a for which 0.0244 <::: a, and would not be rejected if 0.0244 > oo. Therefore, the 
null hypothesis would be rejected at the 0.05 significance level but not at the 0.01 significance leve!. 

9.13. What is the critical region for the test in Problem 9. 1 1  at the (a) 0.05 significance level, (b) 0.01 
significance level? 

We use Prescription 9. 1a. The critical regio n is all z scores greater than or equal to z* or less than or 
equal to -z*, where P(Z ::> z*) = 00/2, a being the level of significance. 

(a) Here 00/2 = 0.05/2 = 0.025. From the standard normal table, we find that peZ ::> z*) = 0.025 for 
z* = 1 .96. Therefore the critical region is all z scores greater than or equal to 1 .96 or less than or 
equal to - 1 .96. 

(b) Here 00/2 = 0.01/2 = 0.005. From the standard normal table, we find that peZ ::> z*) = 0.005 for 
z* = 2.58. Therefore the critical region is all z scores greater than or equal to 2.58 or less than or 
equal to -2.58. 

9.14. Use the critical regions obtained in Problem 9 . 13 to determine whether to reject or not reject the 
null hypothesis in Problem 9. 1 1 .  

We use Prescription 9. 1a. In Problem 9. 1 1 ,  the test value of the sample mean X is 3 .91 ,  and the value 

f h . .  X - 40 . 39. 1  - 40 . . l h h l f o t e test stal1sl1c Z = --- IS Z = = -2.25. Smce -2.25 IS ess t an - 1 .96, t e test va ue o Z 0.4 0.4 
is the critical region for the 0.05 significance level (Problem 9 . 1 3), and the null hypothesis Ha: /-L = 40 would 
be rejected at that leve!. Since -2.25 is not less than -2.58, the test value of Z is not in the critical region 
for the 0.01 significance level (Problem 9. 1 3), and the null hypothesis would not be rejected at that leve!. 

9.15. For what values x of the sample mean in Problem 9. 1 1  will the z score of x lie in the critical regio n 
(a) at the 0.05 significance level, (b) at the 0.01 significance level? 

_ . x - /-Lo x - 40 x - 40 The z score of x IS z = / r.;; = fif¡f¡ = --o a v n 4/v 100 0.4 
(a) At the 0.05 significance level, the critical region consists of all z scores greater than or equal to 1 .96 

x - 40 or less than or equal to - 1 .96 (Problem 9 . 1 3) . Setting ----¡=)A ::> 1 .96, we get x ::>  1 .96 x 
. ·1 l . x - 40 h f ·11 1· 0.4 + 40 "" 40.78. Slml ar y, settmg ----¡=)A <::: -1 .96, we get x <::: 39.22. Hence, t e z score o X Wl le 

in the critical regio n at the 0.05 significance level when x ::> 40.78 or x <::: 39.22. 
(b) At the 0.01 significance level, the critical region consists of all z scores greater than or equal to 

x - 40 2.58 or less than or equal to -2.58 (Problem 9. 1 3). Setting ----¡=)A ::> 2.58, we get x ::>  2.58 x 
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. ·1 l . x - 40 0.4 + 40 "" 4l .03. Slml ar y, settmg ----¡=)A <::: -2.58, we get X <::: 38.97. Hence, the z score of x will lie 

in the critical region at the 0.01 significance level when x ::> 4l .03 or x <::: 38 .97. 

9.16. Suppose it is decided to reject the null hypothesis Ha : JL = 40 in Problem 9. 1 1  if a random sample 
of 100 batteries gives an average useful life of less than 39.5 or greater than 40.5 . At what 
significance level is the test being conducted? 

The significance level a is determined under the assumption that Ha is true, in which case the test 
statistic Z = 1' - 40 is the standard normal random variable; a is the probability that a test value of Z is less 0.4 
h 39.5 - 40 h 40.5  - 40 h· h . ( ) t an = -l .25 or greater t an = l .25, w IC IS 2P Z > l .25 = 2 x 0 . 1056 = 0.2122. 0.4 0.4 -

9.17. What is the power of the test in Problem 9 . 16 at the value 39 for JL? What is the probability of a 
Type II error when JL = 39? 

The power K(39) of the test in Problem 9. 1 6  is the probability that the sample mean X will as sume a 
value greater than or equal to 40.5  or less than or equal to 39.5, assuming p, = 39, that is, assuming that 

Z = 1' - 39 is the standard normal random variable. Therefore, 0.4 
- - ( 1' - 39 40.5  - 39) (X - 39 39.5 - 39) K(39) = P(X ::> 40.5) + P(X <::: 39. 5) = P----¡]A ::> 0.4 + P ----¡]A <::: 0.4 

= peZ ::> 3.75) + pez <::: l .25) = 0.8945 

The probability of a Type 11 error when p, = 39 is 1 - K(39) = 1 - 0.8945 = 0. 1055. 

9.18. The following cholesterol levels were found in a random sample of 10 women aged 20 to 24 
engaged in a low-fat diet program: 

176 , 1 80 , 1 75, 186 , 1 82, 188 ,  1 80 , 186 , 1 68 ,  184 
The null hypothesis is that the average cholesterol level of all women who maintain the diet is 
normally distributed with mean JL = 1 84. The alternative hypothesis is Ha: JL < 1 84. Use the 
data to determine the P-value of the test. 

Since a is not given, we follow Prescription 9.2. The value of the sample mean is 
176 + 1 80 + 175 + 1 86 + 182 + 1 88 + 1 80 + 1 86 + 1 68 + 1 84 1 805 x =  10 = W = 180.5 

and the value of the sample variance (se e Problem 8.3) is 

2 1 2 10 -2 1 10 2 s = 9L X - 9 x = 9 (326, 141) = 9 ( 1 80.5) = 37.6 1 1  

h l d d d . . . 12 h . . .  X - 184 h l · so t e samp e stan ar eVlal10n IS s = vs- = 6 . 133 .  T e test stal1sl1c IS t = !1r. W ose test va ue IS 
S/v l0 

A 1 80.5 - 184 h l f h . ( ) ( ) h· h . d t = !1r. "" -1 .80. T e P-va ue o t e test IS P t < -1 .80 = 1 - P t < 1 .80 , w IC IS compute 
6 . 1 33/v 10 - -

under the assumption that t is a t random variable with 9 degrees of freedom. The value closest to 1 .80 in 
the t table for 9 degrees of freedom is l .83, which gives a P-value of 1 - 0.95 = 0.05. The P-value for l . 80 is 
slightly larger than 0.05; using computer software, we find that the P-value for l .80 is 0.0527. 

9.19. Find the critical regio n for the test in Problem 9 . 18 at the (a) 0.05 significance level, (b) 0.0 1 
significance level. 
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We follow Prescription 9.2a. (a) The critical region corresponding to the alternative hypothesis 
Ha: p, < 184 is all values t of the test statistic satisfying t <::: t*, where P(t <::: t*) = 0.05. Using the t table 
with 9 degrees of freedom we find that t* = - 1 .83. (b) Here the critical region is all values t <::: t*, where 
P(t <::: t*) = 0.01 ; the t table gives t* = -2.82. 

9.20. For what values x of the sample mean, corresponding to other samples of 10 women in Problem 
9 . 18 , will the null hypothesis Ha : JL = 184 be rejected (a) at the 0.05 significance level, (b) at the 
0.01 significance level? 

x - 184 The null hypothesis will be rejected when the t score of x, namely 117\ ' lies m the critical 
s/v 10 

region. The value s of the sample standard deviation will vary from sample to sample. 

(a) From Problem 9. 19, the critical region for the alternative hypothesis at the 0.05 significance level 
. x - 184 consists of all t scores less than or equal to - 1 .83 . Settmg 117\ <::: -1 .83, we get 

1 .83s s/v 10 
x <::: 184 - 117\ "" 1 84 - 0.5787s. The result depends on the value s of the sample standard deviation 

v IO 
obtained in the sample. 

(b) From Problem 9. 19, the critical region for the alternative hypothesis at the 0.01 significance level 
. x - 184 Settmg 117\ <::: -2.82, we get 

s/v 10 
consists of all t scores less than or equal to -2.82. 

2.82s 
x < 184 - 117\ "" 1 .84 - 0.891 8s. - v IO 

As in part (a), the result depends on the sample value s of the 

sample standard deviation. 

9.21. Suppose the cholesterol levels of a random sample of 10 women in the low-fat diet program of 
Problem 9 . 1 8 have a sample standard deviation value of s = 5.2. What values x of the sample 
mean will result in a rejection of the null hypothesis Ha : JL = 184 in favor of the alternative 
hypothesis Ha: JL < 1 84 (a) at the 0.05 significance level, (b) at the 0.01 significance level? 
(a) According to Problem 9.20, the null hypothesis will be rejected at the 0.05 significance level if 

x <::: 184 - 0.5787s. Substituting s = 5.2, we find that if x <::: 1 84 - 0.5787 x 5.2 "" 180.99, then the 
null hypothesis will be rejected. 

(b) According to Problem 9.20, the null hypothesis will be rejected at the 0.01 significance level if 
x <::: 184 - 0.891 8s. Substituting s = 5.2, we find that if x <::: 1 84 - 0.891 8  x 5.2 "" 179.36, then the 
null hypothesis will be rejected. 

9.22. The bumpers on a new Saber automobile are supposed to sustain only minor damage in collisions 
at speeds up to 5 miles per hour. In a test of 5 Sabers, the mean speed for minor damage was 4.8 
miles per hour with a sample standard deviation of 0.3 miles per hour. Are the test results 
statistically significant at the 0.05 level? 

We as sume that the top speed for minor damage is normally distributed. The test statistic is the t score 
of the sample mean, and the results are statistically significant if the test statistic lies in the critical region of 
the t random variable at 4 degrees of freedom. The null hypothesis is Ha: p, = 5, and the alternative 
hypothesis is Ha: p, < 5. From the t table, the critical t value at the 0.05 level with 4 degrees of freedom 
is t* = -2. 13 .  Therefore, the critical region, which i s  in the direction of alternative hypothesis, consists of 

ll l h l h f h l . A 4.8 - 5 . a t scores ess t an or equa to -2. 13 .  T e t score or t e samp e mean ls t = � = -1 .49. Smce 
0.3/v 5 
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- l .49 is not less than -2. 1 3, the test results are not statistically significant at the 0.05 leve!. There is not 
enough evidence to reject the null hypothesis at this leve!. 

9.23. At what levels are the test results in Problem 9.22 statistically significant? 
The test results are statistically significant at any level a for which the P-value of the test is less 

than or equal to a. The P-value of the test is the probability that a sample mean of 4.8 or lower would 
occur if the actual mean were equal to 5. That is, the P-value is equal to P(X <::: 4.8) = p( X - � <::: 4.8 -�) = P(t < -l .49), where t is a t random variable with 4 degrees of freedom. The 

0.3/y 5 0.3/y 5  -
value closest to - l .49 obtainable from Table A-2 in the Appendix is - l .53 which corresponds to 
a = O. l .  Computer software gives P( t <::: -l .49) "" 0. 105. 

- * * 
9.24. Show that (a) -z* < x /

- '::} < z* is equivalent to (b) x - z ::; < /Lo < x + z :;. 
� y n  y n  zy n 

- * The i�equality -z* < :¡; is equivalent to -� < x - /-Lo which in turn IS equivalent to 

/-Lo < x + �. That is, the left inequality of (a) is equivalent to the right inequality of (b). AIso, the 
- * * inequality :¡; < z* is equivalent to x - /-Lo < � which in turn is equivalent to x -� < /-Lo . There-

fore, the right inequality of (a) is equivalent to the left inequality of (b). 

HYPOTHESES TESTS FOR PROPORTlONS 

9.25. In a random sample of 125 cola drinkers, 68 said they preferred Coke over Pepsi. Let p denote 
the percentage of all cola drinkers that prefer Coke over Pepsi. Do a P-value test of the null 
hypothesis Ho :p = 0.5 against the alternative hypothesis Ha :P > 0.5 at the 0.05 percent level. 

Since the sample size n = 125 is greater than 30, we can use Prescription 9.3 . Letting P denote the 

l . d . bl h . . . P - 0.5 P - 0.5 f . samp e proporl1on ran om vana e, t e test stal1sl1c IS Z = "" ---o I Ha IS true, 
VO.5 ( 1  - 0.5)/125 0.0447 

then Z is (approximately) the standard normal random variable. The test proportion of those that prefer 

Coke is ft = 1
6�5 = 0.544, and the test value of Z is z = 

0·���4��· 5 "" 0.98. Using a standard nonnal table, 

the P-value of the test is P(Z ::> 0.98) = 0 . 1635. Since 0 . 1635 is not less than 0.05, there is not enough 
evidence to reject Ha at the 0.05 significance leve!. 

9.26. What is the critical region for the hypothesis test in Problem 9.25? Is the test value of the test 
statistic in the critical region? What conclusions can you make regarding the null hypothesis 
Ho :p = 0.5? 

The critical region is detennined under the assumption that the null hypothesis Ha: P = 0.5 is true, in 

h· h h . . P - 0.5 P - 0.5 . ( . 1 )  h d d l w IC case t e test stal1sl1c Z = "" --- IS approxlmate y t e stan ar norma 
VO.5 ( 1  - 0.5)/125 0.0447 

random variable. By Prescription 9.3a, the critical region for Z corresponding to the alternative hypothesis 
Ha: P > 0.5 at the 0.05 significance level is all z scores z ::>  z*, where P(Z ::> z*) = 0.05. From the standard 
nonnal table, we find that z* = l .65. The test value of Z is z = 0.98 (Problem 9.25), and since 0.98 is less 
than 1 .65, the test value of Z is not in the critical region. We therefore would not reject the null hypothesis. 
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9.27. In Problem 9.25, how large of a sample is needed for a sample proportion p = 0.544 to be 
statistically significant at the 0.05 level? Use the notion of P-value to answer the question. 

We choose the sample size n so that the P-value of the test is at most 0.05. The test statistic is 
_ P - 0.5 _ P - 0.5 _ (P - 0.5)yíi d h l f . _ (0. 544 - 0.5)yíi _ Z - - / r,;; - O 5 , an t e test va ue o Z IS Z - O 5 -VO.5 ( 1  - 0.5)/n 0.5 y n . . 

0.088yíi. Hence we want n to satisfy P(Z ::> 0.088yíi) <::: 0.05. From the standard normal table, we find 

that P(Z ::> z*) = 0.05 for z* = 1 .65. Setting 0.088yíi = 1 .65, we get yíi = 0
1
.�6:8 = 1 8 .75. Squaring and 

rounding upward, we find that n = 352 is the smallest sample size for a test proportion p = 0.544 to be 
statistically significant at the 0.05 leve!. 

9.28. Use the critical region to answer the question posed in Problem 9.27. 
For samples of size n, the critical region for the test in Problem 9.25 consists of all z scores z = p -

/
O� 0.5 y n 

of the sample proportion p for which z ::> 1 .65 (Problem 9.26). Substituting p = 0.544 and setting z ::> 1 .65, 
0. 544 - 0.5 h· h . . l r,;; r,;; 1 .65 . d we get 0.5/yíi ::> 1 .65, w IC IS eqUlva ent to 0.088y n ::>  1 .65, or y n ::> 0.088 "" 18 .75. Squanng an 

rounding upward, we find that n ::> 352, as in Problem 9.27. 

9.29. In Problem 9.25, what test proportion p is needed for the test to be statistically significant at 
the 0.05 level, based on a sample of size n = 125? Use the notion of P-value to answer the 
question. 

We choose p so that the P-value of the test is at most 0.05, that is, P ( Z ::> �.�4��) <::: 0.05. From 

Problem 9.27 (or from the standard normal table), we know that P(Z ::> z*) = 0.05 for z* = 1 .65. Setting 
p - 0.5 A 

0.0447 ::> 1 .65, we get p ::> 1 .65 x 0.0447 + 0.5 "" 0 .5738. Hence, a test proportion of at least 0. 5738 is 
needed for statistical significance at the 0.05 leve!. 

9.30. Use the critical region to answer the question posed in Problem 9.29. 

The test value of the test statistic is z = �.�4��' and we want to !ind the test proportion p for which 
z is in the critical region z ::>  1 .65 (Problem 9.26). Setting �.�4�� ::> 1 .65, we get p ::>  1 .65 x 
0.0447 + 0.5 "" 0 .5738, as in Problem 9.29. 

9.31. What is the power of the test in Problem 9.25 at p = 0.6? 
The power of the test at p = 0.6, denoted by K(0.6), is the probability that the null hypothesis 

Ha: P = 0.5 will be rejected at the 0.05 significance level when the true proportion of cola drinkers that 
prefer Coke over Pepsi is p = 0.6. Ha will be rejected in favor of Ha: P > 0.5 if the test statistic lies in the 

critical regio n for Ha at the 0.05 level, which is all z scores z ::> 1 .65. h . .  P - 0.5 . l T e test stal1sl1c 0.0447 IS no onger 
the standard normal since we are now assuming that p = 0.6, not 0 .5 . Hence, we must compute ( P - 0.5 ) . h P - 0.6 h· h . l P - 0.6 . P --- > 1 .65 , glven t at , w IC IS equa to 0.0438 ' IS the standard normal 0.0447 - VO.6(1 - 0.6)/125 
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random variable. We get 

(p - 0.5 ) A A P 0.0447 ::> 1 .65 = P(P ::> 1 .65 x 0.0447 + 0.5) = P(P ::> 0. 5738) 

= p(p - 0.6 > 0.5738) 
= P(Z > -O 6) 0.0438 - 0.0438 _ .  , 

[CHAP. 9 

where Z is the standard normal random variable. From the standard normal table, we find that 
P(Z ::> -0.6) = 0.7258. Hence, the power of the test at p = 0.6 is 0.7258. 

9.32. What sample size is needed in Problem 9.25 for the power of the test at p = 0.6 to equal 0.9? 

h . . .  P - 0.5 (P - 0.5)yíi d . h h d . bl T e test stal1sl1c IS = , an we are assummg t at t e ran om vana e 
ylO. 5 ( 1  - 0. 5)/n 0 .5 P - 0.6 (P - 0.6)yíi . h d d I · h !" bl Z = = IS t e stan ar norma . Wl1 relerence to Pro em 9 .31 ,  we want 

ylO.6(1 - 0 .6)/ yíi 0.4899 

to detennine the sample size n so that P ( (P -o�:)yíi ::> 1 .65) = 0.9. We get 

( (P - 0.5)yíi ) _ ( A 1 .65 x 0.5 ) P 0.5 ::> 1 .65 - P P ::>  yíi + 0.5 

( (P - 0.6)yíi [1 .65 x 0.5 ] yíi ) = P 0.4899 ::> yíi + 0.5 - 0.6 x 0.4899 
_ ( > 0.825 - O . lyíi) _ 
- P Z _ 0.4899 - 0.9 

where Z is the standard normal random variable. From the standard normal table, we find that 

( ) . 0.825 - O . lyíi 1ii 
= 

-1 .28 x 0.4899 - 0.825 "" 14.52. P Z ::>  -1 .28 = 0.9. Settmg 0.4899 = -1 .28, we get y "  -0.1 
Squaring and rounding upward, we get n = 21 1 .  

HYPOTHESES TESTS FOR V ARIANCES 

9.33. Find the critical regio n at the 0.01 significance level for the test in Example 9.2 1 ,  and determine 
whether the null hypothesis would be rejected at this level. 

We apply Prescription 9.4a. The critical region for x2 (40) for the alternative hypothesis Ha: X2 > 64 at 
the 0.01 significance level is aH values :e ::> x*, where x* satisfies P(X2 ::> X*) = 0.0 1 .  From Table A-3 in 
the Appendix, with 40 degrees of freedom, we find that X* = 63.7. The test value obtained in Example 9.21 
is :e = 57.6, and since 57.6 < 63.7, the test value is not in the critical region, which means that the nuH 
hypothesis Ha: (i = 64 is not rejected at this leve!. 

9.34. The amount of soda in 96 0z bottles of Andy's Root Beer is normally distributed with mean 
JL = 96 and standard deviation (J = 12 oz. A new bottling procedure is designed to decrease the 
variability of the amount of soda in the bottles. A sample of 101 bottles has a standard devia­
tion of 0.98 oz. Test the null hypothesis Ha : (J2 = 1 .44 against the alternative hypothesis 
Ha: (J2 < 1 .44 at the 0.025 level. 

We apply Prescription 9.4a. The critical region for X2 ( 100) for the alternative hypothesis 
Ha: (i < 1 .44 at the 0.025 significance level is aH values X2 <::: X*, where X* satisfies 
P(X2 <::: X*) = 0.025. From Table A-3 in the Appendix, with 100 degrees of freedom, we find that 
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x* = 74.2. The test value of the test stal1sl1c is X2 = (n -
2
1 )i 

= 
100 x (0.98)2 

"" 66.69; and since (]"a 1 .44 
66.69 < 74.2, the test value is in the critical region, which means that the null hypothesis Ha: (]"2 = 1 .44 is 
rejected at the 0.025 significance leve!. 

9.35. The number of hours spent sleeping by an undergraduate college student is a normal random 
variable with mean JL = 7 .5 and variance 172 = 1 .25. In graduate school the student's sleep 
pattern changes. A sample of 1 5  days gives an average of x = 6 .25 hours and i = 1 . 5 . Assum­
ing that the sleeping hours are normally distributed, test the null hypothesis Ha : 172 = 1 .25 against 
the alternative hypothesis Ha : 172 el 1 .25 at the 0.05 significance level . 

We apply Prescription 9.4a. The critical region for X2 ( 14) for the alternative hypothesis 
Ha: (]"2 el 1 .25 at the 0.05 significance level is all values X2 <::: Xr or X2 ::> X�, where Xr satisfies 
P(X2 <::: Xr) = 0.05/2 = 0.025, and X� satisfies P(X2 ::> X�) = 0.025. From Table A-3 in the Appendix, 
with 14 degrees of freedom, we find that Xr = 5.63 and X� = 26. 1 .  The test value of the test statistic is 
A 2 (n - 1 )i 14 x 1 . 5  1 6 8 h· h . . h . .  l . Th f h ll h h · X = = = .  , W lC IS not m t e cnl1ca reglon. ere ore, t e nu ypot eSls (]"6 1 .25 
Ha: (]"2 = 1 .25 is not rejected at the 0.05 significance leve!. 

9.36. Suppose X is a normal random variable with mean JL and variance 172, and Xl , X2 , . . .  , Xn is a 

random sample of size n corresponding to X. Show that X2 = ¿ (Xi �JL)2 is a chi-square 
random variable with n degrees of freedom. 

For i = 1 , 2, . . .  , n, the random variable Zi = X - P, is standard nonnal, and the ZiS are independent. (]" 

Therefore, by definition (se e Section 7.4), X2 = L (Xi � p,)2 is a chi-square random variable with n degrees 
of freedom. (]" 

9.37. The weight of a 16 oz bag of C&P Potato Chips is a random variable X with mean JL = 16 0z and 
standard deviation 17 = 0 .5 oz. A new quality control procedure is introduced to reduce the 
variability of X. The weights of a random sample of 25 bags are as follows: 

1 5.8 1 5.4 1 5 .9 16 .5 16 .3 
1 5.9 16.0 1 5 .9 16 .6 15 .5 
1 6.4 1 5 .2 16 .6 16 .2 15 .8 
16 .6 15 .7 1 5 .4 1 5 .9 16 . 1 
1 5. 5  16 .4 1 5 .4 1 5 .5 16 .4 

Assuming that the mean of all bags produced under the new system is still 1 6 oz, test the null 
hypothesis Ha : 172 = 0 .25 against the alternative hypothesis Ha : 172 < 0 .25 at the 0.01 level. Use 
X2 = ¿ (Xi � JL)2 as the test statistic. 

By Problem 9.36, X2 is a chi-square random variable with 25 degrees of freedom. From the chi­
square table, the critical region for Ha: (]"2 < 0.25 at the 0.01 level is all test values of X2 less than or 
equal to 1 1 . 5 . Computing with the help of a calculator, we find that the test value is 

X2 = L (Xi - 16)2 
= 18 . 52. The test value is not in the critical region, so the null hypothesis is not rejected 0.25 

at the 0.01 level of significance. The sample does not supply enough evidence at this level to conclude that 
the new quality control procedure has actually decreased the variability of X. 

9.38. At what significance level would the null hypothesis in Problem 9.37 be rejected, based on the 
sample data? 
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From the chi-square table, with 25 degrees of freedom, we find that the critical region for the alternative 
hypothesis Ha: (i < 0.25 at the 0 . 1 level is all test values less than or equal to 16 . 5, and the critical regio n for 
the alternative hypothesis at the 0.25 level is all test values less than or equal to 19.9. Since the test value 
obtained in Problem 9.37 is 1 8 . 52, we can conclude that the smallest significance level that the null hypoth­
esis Ha: (i = 0.25 would be rejected is between 0 .1 and 0.25. Using computer software, we find that the 
P-value of the test is 0. 1 8 .  Therefore, Ha will be rejected at any level greater than or equal to 0 . 18 .  

Supplementary Problems 

INTRODUCTION: TESTING HYPOTHESIS ABOUT PARAMETERS 

9.39. The tread life of Goodwear's all-weather tire is normally distributed with mean /-L = 39, 000 miles and 
standard deviation a = 3000 miles. A test of 16 new model all-weather tires results in an average tread 
life of 40,500 miles. What is the probability that an average tread life of 40,500 miles or greater would 
occur with the previous model all-weather tires? 

9.40. Identify the null and alternative hypotheses in Problem 9.39, and classify each as either simple or composite. 

9.41. What is the P-value of the test in Problem 9.39? 

9.42. Would the null hypothesis in Problem 9.39 be rejected at the 0.01 significance leve!? What about the 0.05 
significance leve!? 

9.43. Find the critical region for the test in Problem 9.39 at the 0.05 significance level, and find the power of the 
test at (a) /-L = 39,000 miles, (b) /-L = 40,500 miles, (e) /-L = 42,000 miles. 

9.44. Repeat part (b) ofProblem 9.43 under the assumption that the test result in Problem 9.39 was obtained for a 
sample of 36 tires. 

9.45. Suppose the null hypothesis is Ha : /-L = /-La and the test value x of the sample mean of a normal random 
variable is greater than /-La . Under which of the following alternative hypotheses is Ha more likely to be 
rejected? 

HYPOTHESES TESTS FOR MEANS 

9.46. The sample mean of a random sample of 50 values of a random variable X is x = 72.4. Assuming that X 
has standard deviation a = 9, test the null hypothesis Ha: /-L = 70 against the alternative hypothesis 
Ha: /-L > 70 at the 0.05 significance level by computing the P-value of the test. 

9.47. Perform the test in Problem 9.46 by using the critical region for the test. 

9.48. Repeat Problems 9.46 and 9.47 for the significance level 0.0 1 .  

9.49. Determine the power of the test in Problem 9.46 at /-L = 71 . 5 .  
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9.50. The numbers 125 .5, 130.2, 1 12.8, 120.2, 1 1 l .3 form a random sample of five values of a normal random 
variable X. Test the null hypothesis Ha : /-L = 1 1 0  against the alternative hypothesis Ha: /-L > 1 10 at the 0.05 
significance leve!. 

9.51. Repeat Problem 9.50 at the 0.01 significance leve!. 

9.52. Repeat Problems 9 .50 and 9 .51 for the alternative hypothesis Ha: /-L el 1 10. 

9.53. Using Table A-2 in the Appendix, estimate the P-value of the test in Problem 9.50. Ifappropriate computer 
software is available, find the P-value. 

9.54. Suppose a test of the null hypothesis Ha: /-L = /-La against the alternative hypothesis Ha: /-L > /-La is rejected at 
the 0.05 significance level but not at the 0.01 significance leve!. If possible, determine what the decision 
would be if Ha were tested against Ha: /-L el /-La at each of the levels 0.05 and 0.0 1 .  Assume that X is normally 
distributed and a is known. 

HYPOTHESIS TESTS FOR PROPORTIONS 

9.55. In a random sample of 25 students at a private liberal arts college, 1 7  were receiving sorne sort of financial 
aid. Letting p denote the proportion of all students at the college receiving financial aid, test the hypothesis 
Ha: p  = 0.5 against the alternative hypothesis Ha:P > 0.5 at the 0.05 significance level by computing the 
P-value of the test. 

9.56. Perform the test in Problem 9.55 by using the critical region for the test. 

9.57. Repeat Problems 9.55 and 9.56 at the 0.01 significance leve!. 

9.58. How large of a sample is needed in Problem 9.55 for the test value p = 0.68 to be statistically significant at 
the O. O 1 leve!? 

9.59. Determine the power of the test in Problem 9.55 at P = 0.7. 

9.60. Determine the sample size needed for the power of the test in Problem 9.55 to be 0.95 at P = 0.7. 

HYPOTHESIS TESTS FOR V ARIANCES 

9.61. The number of eggs produced annually by individual chicken hens on Old McDonald's Farm is normally 
distributed with mean 250 and standard deviation 15 .  The number of eggs produced by 6 randomly chosen 
hens given a new feed was: 260, 240, 270, 250, 265, 245. Test the null hypothesis Ha: a = 1 5  against the 
alternative hypothesis Ha: a <::: 1 5  at the 0 . 1  significance leve!. Assume that the mean is still 250 (see 
Problem 9.36). 

9.62. Repeat Problem 9.61 under the assumption that the mean with the new feed may no longer be 250. 

9.63. The grades in elementary algebra in a school district are normally distributed with mean 73 and standard 
deviation 9. A new program, designed to reduce the variation in grades, is introduced at a random selection 
of schools in the district. In a random selection of 51 students in the new program, the standard deviation 
was 7.4. Test the hypothesis Ha: a = 9 against the alternative hypothesis Ha: a < 9 at the 0.05 significance 
leve!. 
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9.64. Repeat Problem 9.63 at the 0.01 significance leve!. 

9.65. Test the hypothesis Ha: (i = 10, 000 against the alternative hypothesis Ha: (i el 10,000 at the 0.05 signifi­
canee level for the sample SAT scores: 520, 540, 475, 5 10, 400, 550, 425, 600, 430, 5 15 .  

9.39. 

9.40. 

9.41. 

9.42. 

9.43. 

9.44. 

9.45. 

9.46. 

9.47. 

9.48. 

Ánswers to Supplementary Problems 

P(X > 40,500) = p (X - 39� > 40,500 -�OO) = P(Z > 2) = 0.0228 - 3000/ 1 6  - 3000/ 1 6  -

Ha: /-L = 39,000, Ha: /-L > 39, 000; Ha is simple, Ha is composite. 

0.0228 (see answer 9.39). 

Since 0.01 < 0.0228 < 0.05, Ha would not be rejected at the 0.01 significance level, but would be rejected at 
the 0.05 leve!. 

C . .  l . x - 39,000 1 65 40 23 5 nl1ca reglon: 
3000/ V16

::> . , or x ::> , 7. 

(a) K(39,000) = 0.05 _ 

(b) K(40,500) = P(X ::> 40,237.5), given that X - 40� is standard normal, 
3000/ 16 

= p (X - 40,500 > 40,237.5 - 40,500 ) = P(Z > -0.35) = 0.64 
3000/V16 - 3000/V16 -

( ) ( ) ( - ) . h X - 42,000 . d d l e K 42,000 = P X > 40,237.5 , glven t at l1Z IS stan ar nonna - 3000/v 1 6  

= p (X - 42,000 > 40,237.5 - 42,000 ) = P(Z > -2.35) = 0.99 
3000/V16 - 3000/V16 -

C . .  l . x - 39,000 1 65 39 825 nl1ca reglon: 
3000/V36

::> .  or x ::>  , . 

( ) ( - ) . h X - 40,500 . d d l K 40,500 = P X > 39,825 , glven t at Mi: IS stan ar norma - 3000/v 36 

= P 
(X - 40,500 > 39, 825 - 40,500) = P(Z > - 1 .35) = 0.91 

3000/V36 - 3000/V36 -

When x > /-La , the value Z of the test statistic is positive, and the P-value for Ha: /-L > /-La is half the P-value for 
Ha: /-L el /-La· Therefore, Ha is more likely to be rejected when the alternative hypothesis is Ha: /-L > /-La. 

P-value = 0.03 < 0.05; reject Ha. 

. .  l . x - 70 / {CA l . Cnl1ca reglon: {CA ::> 1 .65, or x ::> 1 .65 x 9 v 50 + 70 "" 72. 1 ;  test va ue: x = 72.4; reJect Ha. 
9/v 50 

l d ·  . .  l . x - 70 / 
{CA 

P-va ue = 0.03 > 0.0 1 ;  o not reJect Ha. Cnl1ca reglOn: 
9//50 

::> 2.33, or x ::>  2.33 x 9 v 50 + 70 "" 72.97; 
test value: x = 72.4; do not reject Ha . 
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9.49. ( ) ( - ) ' h 2 - 71 . 5  . d d l K 71 . 5  = P X > 72. 1 , glven t at rz¡¡ IS stan ar norma - 9/y � 

= (2 - 71 . 5  72. 1 - 71 . 5 ) = ( 0 4  ) = 0 32 P rz¡¡ > rz¡¡ P Z > . 7  . 
9/ y 50 - 9/ y 50 -

9.50. Critical region: i ::>  2 . 13 ;  test value: i = 2.76; reject Ha. 

9.51. Critical region: i ::>  3.75; test value: i = 2.76; do not reject Ha. 

9.52. Critical region at 0.05 significance level: l il ::> 2.78; test value: i = 2.76; do not reject Ha. Critical region at 
0.01 significance level: l il ::> 4.60; test value: i = 2.76; do not reject Ha. 

9.53. 

9.54. 

9.55. 

9.56. 

9.57. 

9.58. 

9.59. 

9.60. 

0.01 < P-value < 0.05 (P-value = 0.025). 

The test value z satisfies 1 . 65 <::: z < 2.33. Therefore, O < z < 2.58, which means Ha will not be 
rejected in favor of Ha: /-L el /-La at the 0.01 significance level. To be rejected in favor of Ha: /-L el /-La at 
the 0.05 significance level, z would have to satisfy z >  1 .96, which cannot be determined from 
1 .65 <::: z < 2.33. 

P-value = 0.036 < 0.05; reject Ha. 

. .  l ' P - 0.5 P - 0.5 A l A ' Cnl1ca reglon: = -0-1- ::> 1 .65, or P ::> 0.665; test va ue: p = 0.68 > 0.665; reJect Ha . 
VO.5 x 0.5/25 . 

p - 0.5 P-value = 0.036 > 0 .01 ;  do not reject Ha. Critical region: � ::> 2.33, or P ::>  0.733; test value: 
p = 0.68 < 0.733; do not reject Ha. 

. . . p - 0.5 P - 0.5 0.68 - 0.5 ¡;:; Cnl1cal reglon: = / ¡;:; > 2.33; / ¡;:; = 0.36yn > 2.33 for n > 42. 
VO.5 x 0.5/n 0.5 y n - 0.5 y n - -

Critical region: p ::> 0.665 (see answer 9.56). 

( )  (
A 

) ' P - 0.7 P - 0.7 K 0.7 = P P ::>  0.665 , glven that 
"" -O 091 is standard normal. 

VO.7 x 0.3/25 . 7 (P - 0.7 0.665 - 0.7 ) = P 0.0917 ::> 0.0917 = P(Z ::> -0.38) = 0.648 

(
A 

) • P - 0.7 P - 0.7 . Want P P ::>  0.665 = 0.95, glven that = � IS standard normal. 
VO.7 x 0.3/n y O.21/n 

P > = P Z > - = 0.95 ( P - 0.7 0.665 - 0.7) ( 0.035Vii) 
VO.21/n - VO.21/n - Jü.2T 

n = 466.7; round up to 467. 

for _ 0.035Vii = - 1 .65 Jü.2T 

9.61. Critical region: :e <::: 2.20; test value: 

A 2 (260 - 250)2 + (240 - 250)2 + (270 - 250)2 + (250 - 250)2 + (265 - 250)2 + (245 - 250)2 
X = 1 52 = 3.78 

do not reject Ha. 
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9.62. 

9.63. 

9.64. 

9.65. 

HYPOTHESES TESTS FOR A SINGLE POPULATION 

Critica! region: :e <::: l .6 1 ;  test va!ues: x = 255, i = 140, X2 = 
5 �5;40 = 3. 1 1 ;  do not reject Ha. 

• • • A A 50 x (7.4)2 . Cnl1ca! reglon: X2 <::: 34.8; test va!ue: X2 = 92 = 33.80; reJect Ha . 

Critica! region: X2 <::: 29.7; test va!ue: X2 = 33 .80; do not reject Ha. 

[CHAP. 9 

Critica! region: X2 <::: 2.70 or X2 ::> 19.0; test va!ues: x = 496.5, i = 3983 .61 ,  X2 = 
9 x

l����·61 
= 3 .59; do not 

reJect Ha. 



Chapter 1 0  
Inference for Two Populations 

10.1 CONFIDENCE INTERV ALS FOR THE DIFFERENCE OF MEANS 

Let X and Y be independent random variables with means JLx and JLy, and standard deviations o-x 
and o-y, respectively. The object is to obtain a confidence interval for JLx - JLy, based on independently 
chosen random samples of size m and n from the X and Y distributions, respectively. We consider the 
cases where o-x and o-y are known, and where o-x and o-y are unknown. 

Note that JLx - JLy is the mean of the random variable X - Y, so we can proceed as in Section 8.3 , 
where confidence intervals for the mean of a single random variable are obtained. Also, since X and Y 
are independent random variables, so are X and Y, and therefore the variance of X - Y is the sum ofthe 
variances of X and Y: 

2 2 
2 o-x o-y o-X_y =-+­m n 

where o-i is the variance of X and o-� is the variance of Y. 
The confidence intervals prescribed for JLx - JLy require that the sample means X and Y be approxi­

mately normally distributed. (Actually, it is only required that X - Y be approximately normally 
distributed.) For small X-samples (m < 30), X will be normally distributed if X itself is, and for 
small Y-samples (n < 30), Y will be normally distributed if Y is. For large samples (m and n � 30), 
the Central Limit Theorem allows us to assume that X and Y are approximately normally distributed 
regardless of the distributions of X and Y. 

We arrive at the following prescription. 

PRESCRIPTlON 10.1 (Confidence inferval for Jlx - Jly; lTx and lTy known) 

Requirements: X and Y are independent random variables with known standard deviations o-x and o-y, 
respectively; X and Y are approximately normally distributed. 

Let , be the specified confidence level, and suppose the values XI , X2 , . . .  , Xm of X and YI , Y2 , . . .  , Yn of 
y are obtained in independently chosen random samples of size m and n, respectively. First compute 

XI + X2 + . . .  + X _ YI + Y2 + . . .  + y the sample values x = m and y = n Then complete the following steps. m n 
(1) Find Critical Z Value: Find the value z* of the standard normal random variable Z for which 

P( -z* :::; Z :::; z*) = ¡. ¡o-i o-� (2) Compute M argin 01 Error: Compute E = z* -+ -. m n 
(3) Determine Confidence Interval: An approximate 100, percent confidence interval for JLx - JLy is 

[x - y - E, x - y + E] . 

EXAMPLE 10.1 The weights of two types ofmice in a psychology research lab are normally distributed. Type X 
mice have mean weight 28 grams and standard deviation ax = 3 grams; Type Y mice have mean weight 28 grams 
and standard deviation ay = 2 grams. A new diet is designed to increase the average weight of each type. The 
gram weights of 8 Type X mice under the new diet are: 

29, 28 , 30, 3 1 ,  26, 32, 25, 34 

29 1 
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Ten Type Y mice under the new diet have gram weights: 
27, 3 1 ,  30, 28 , 29, 25, 3 1 ,  30, 29, 26 

Find a 90 percent confidence interval for /-Lx - /-Ly corresponding to mice on the new diet. Assume ax = 3 grams 
and ay = 2 grams. 

We use Prescription 10. 1 .  The sample value of X is 
29 + 28 + 30 + 31 + 26 + 32 + 25 + 34 

x = 8 = 29.375 "" 29.38 

and the sample value of Y is 
26 + 3 1  + 30 + 28 + 29 + 25 + 3 1  + 30 + 29 + 26 

y = 10 = 28.6 

From Table A-1 ,  the critical value z* of the standard normal random variable Z for which P( -z* <::: Z <::: z*) = 0.9 is 
z* = 1 .65. Therefore, 

*vaJr a} �4 E = z - + - = 1 .65 - + - "" 2.04 
m n 8 10 

and the corresponding approximate 90 percent confidence interval for /-L x  - /-Ly is 
[(29.38 - 28.60) - 2.04, (29.38 - 28 .60) + 2.04] = [- 1 .26, 2.82] 

Since O is in the confidence interval, we do not have strong evidence that either mean weight under the new diet is 
greater than the other. 

Confidence Iníervals for Jlx - Jly When (Jx and (Jy are Unknown buí Equal 

Suppose ax and ay are not known but are presumed to be equal. Let X¡ ,  X2 , . . .  ,Xm and 
Y¡ ,  Y2 , . . .  , Yn be independent random-variable samples corresponding to X and Y, respectively (see 
Section 8 . 1). The statistic 

Sp = (m - I)S1 + (n - I)S} 
m + n - 2  

2 1 - 2 2 1 - 2 where Sx = --¿:)X; - X) and Sy = --¿:) Y; - Y) are the sample vanances for X and Y, m - l n - l 
respectively, is called the pooled estimator of the common standard deviation of X and Y. If X and Y 
are independent normal random variables, it can be shown that the random variable 

has a t distribution with m + n - 2 degrees of freedom (see Problem 10.6). 

PRESCRIPTlON 10.2 (Confidence iníerval for Jlx - Jl y ;  (Jx , (Jy unknown buí equal) 

Requirements: X and Y are independent random variables; X and Y are approximately normally 
distributed; ax and ay are unknown but equal. 

Let , be the specified level of confidence, and suppose X¡ , X2 , . . .  , Xm and Y¡ , Y2 , . . .  , Yn are inde­
pendently chosen random samples corresponding to X and Y, respectively. First compute the sample 

1 _ _ X¡ + X2 + · · · + Xm - _ Y¡ + Y2 + · · · + Yn 2 _ _ 1 _ ,, ( . _ -)2 2 _ _  1 _ ,, ( . _ -)2 va ues x - , y - , sx - 1 
L.J X, X ,  Sy - 1 

L.J Y, Y , m n m - n -

and Sp = (m - l )s1 + (n - l )s} 
m + n - 2  Now complete the following steps. 
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(1) 

(2) 
(3) 

Find Critical t Value: Using a t table (or computer software), find the value t* of the t random 
variable with m + n - 2 degrees of freedom that satisfies P( -t* :::; t :::; t*) = ¡. 

Compute Margin 01 Error: Compute E = t*spJ 1 
+
L 

m n 
Determine Confidence Interval: An approximate 100, percent confidence interval for JLx - JLy is 
[x - y - E, x - y + E] . 

EXAMPLE 10.2 Suppose in Example 10 . 1  that the random weights X and Y of each type of mice had standard 
deviation 2.5 0z before the new dieto Use the data given there to construct a 90 percent confidence interval for 
/-Lx - /-Ly under the assumption that the new standard deviations are unknown but equal. 

We use Prescription 10.2. From Example 10. 1 ,  x = 29.375 and ji = 28.6. The values of the sample 
variances are S� = �L(Xi - 29.375)2 R0 9. 125 and S� = �L(Yi - 28.6)2 R0 4.267, computed with the help of a 

(m - l )s� + (n - l )s� calculator. The pooled estimator Sp of the common variance has value Sp = m + n - 2  
/7 x 9 . 125 + 9 x 4.267 bl A . h d f f d fi d h h . .  1 1 V 1 6  RO 2.53. From Ta e -2, wl1 1 6  egrees o ree om, we n t at t e cnl1ca va ue 

" "ti'I'0)
, 

PI � " S , S " )  � 0.9 ¡, ,' � 1 .75. Th,,,f,,,,, !h, mocgin 01' ,rrm ¡, E � " '" J � + � � 

1 .75 x 2.53 8 + 10 RO 2.10, and the approximate 90 percent confidence interval for /-Lx - /-Ly IS 

[(29.38 - 28 .6) - 2. 10 , (29.38 - 28.6) + 2. 10] = [-1 .32, 2.88] . 

Confidence Intervals for Jlx - Jly When (Jx and (Jy are Unknown and Not Necessarily Equal 

Small samples: If it is unreasonable to assume that the unknown standard deviations o"x and O"y 
are equal, then in place of t, you can use the random variable 

Although T does not have a t distribution, when m and n are moderate, say m � 5 and n � 5, T can be 
approximated as a t random variable provided X and Y are normally distributed. The number of 
degrees of freedom, in terms of the sample values si and s�, can be taken as the largest integer, denoted 
by [k] , which is less than or equal to 

( si 
+ 
?y) 2  

k =  m n 
1 ( 2 ) 2 1 ( 2 ) 2 

m - 1 :: + n _ 1 
s: 

The corresponding confidence interval for JLx - JLy is [x - y - E, x - y + E] ' where E = t*Jsi + s�, t* m n 
being the value of the t random variable with [k] degrees of freedom satisfying P( -t* :::; t :::; t*) = , (see 
Problem 10.4). 

Large samples: If m and n are each 30 or larger, then the aboye random variable T is approximately 

the standard normal random variable Z, and E = z* 
P( -z* :::; Z :::; z*) = , (see Problem 10.3). 

2 2 Sx + 
SY, z* being the value of Z satisfying m n 
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10.2 HYPOTHESES TESTS FOR THE DIFFERENCE OF MEANS 

[CHAPo 10 

In the previous section we gave prescriptions to find confidence intervals for JLx - JLy, where X and 
y are independent random variables. Here we consider hypotheses tests for JLx - JLy. Prescriptions 
are given for tests in which the null hypothesis is 

Ha: JLx - JLy = 0, equivalently, Ha : JLx = JLy 
and the alternative hypothesis is one of the following. 

Ha: JLx - JLy < 0, equivalently, Ha: JLx < JLy 
Ha: JLx - JLy > 0 , equivalently, Ha: JLx > JLy 
Ha: JLx - JLy el 0, equivalently, Ha: JLx el JLy 

As with confidence intervals, we consider the case where o"x and O"y are known and the case where 
they are unknown. For each of these, both P-value and critical-region tests are prescribed. 

PRESCRIPTlON 10.3 (P-value hypotheses tests for Jlx - Jl y ;  lTx and lTy known) 

Requirements: X and Y are independent random variables with known standard deviations o"x and O"y, 
respectively; X and Y are approximately normally distributed. 

Let a be the specified level of significance; and suppose that a value x of X is obtained in a random 
sample of size m, and a value y of Y is obtained in an independently chosen random sample of size n. 
Complete the following steps. 
(1) Sta te Hypotheses: State null hypothesis Ha: JLx = JLy and alternative hypothesis Ha· 

(2) Compute T"t Stati" ,,-.. Th, tc,t ,tati,ti, i, Z � #4 whkh, a,"uming !To m tmc, m 
O"� t?y -+-m n 

(approximately) the standard normal random variable. Compute the test value of Z as 
x - y  z =  . 

J� + O"} m n 
(3) Determine P-value: Using a standard normal table (or computer software), find the P-value of the 

test corresponding to Ha: 
For Ha: JLx < JLy, the P-value is P(Z :::; z) 
For Ha: JLx > JLy, the P-value is P(Z � z) 
For Ha: JLx el JLy, the P-value is P(Z :::; - Iz l ) + P(Z � Iz l ) [equivalently, 2P(Z � Iz l ] 

(4) Draw Conclusion: If P-value :::; a, then z and x - y are statistically significant at level a, and Ha is 
rejected. If P-value > a, then z and x - y are not statistically significant at level a, and Ha is not 
rejected. 

EXAMPLE 10.3 With reference to Example 10 . 1 ,  test the null hypothesis Ha : /-Lx = /-Ly against the alternative 
hypothesis Ha: /-Lx el /-L y  at the 0 . 10 level of significance by computing the P-value of the test. 

The test statistic is 
X - y X - y X - y 

z =  
a2 a2 � 1 .235 
--.K + ---.I. 

8 + 10 m n 

which, if Ha : /-Lx = /-Ly is true, is the standard normal random variable. The test value of Z is 
x - ji 29.38 - 28.6 z = 1 .235 = 1 .235 "" 0.63 



CHAPo 10] INFERENCE FOR TWO POPULA TIONS 295 

Using Table A-l ,  we find that the P-value for Ha: /-Lx el /-Ly is 2P(Z ::> z) = 2P(Z ::> 0.63) = 2(0.2643) = 
0.5286. Since 0.5286 > 0 . 10, the test is not significant at the 0 . 10 level, and we do not reject the null 
hypothesis. 

Alternative Version of Prescription 10.3 

As an alternative to the P-value test, a critical-region test can be prescribed as follows. 

PRESCRIPTlON 10.3a (Critical-region hypotheses tests for Jlx - Jly;  (Jx and (Jy known) 

Requirements: X and Y are independent random variables with known standard deviations o"x and O"y, 
respectively; X and Y are approximately normally distributed. 

(1) and (2) Same as in Prescription 10.3. 
(3) Determine Critical Region: Using a standard normal table (or computer software), find the critical 

regio n corresponding to Ha and a: 
For Ha: JLx < JLy, the critical regio n is all z scores z :::; z*, where z* is the (negative) value 
satisfying P(Z :::; z*) = a (Fig. 9-3(a)). 
For Ha: JLx > JLy, the critical regio n is all z scores z � z*, where z* is the (positive) value 
satisfying P(Z � z*) = a (Fig. 9-3(b)). 
For Ha: JLx el JLy, the critical regio n is all z scores for which z � z* or z :::; -z*, where z* is 
the (positive) value satisfying P(Z :::; z*) + P(Z � z*) = a [equivalently, P(Z � z*) = aj2] 
(Fig. 9-3(c)). 

(4) Draw Conclusion: If the sample value z of the test statistic lies in the critical region, then z and 
x - ji are statistically significant at level a, and Ha is rejected. If z does not lie in the critical 
region, then z and x - ji are not statistically significant at level a, and Ha is not rejected. 

EXAMPLE 10.4 With reference to Example 10. 1 ,  test the null hypothesis Ha : /-Lx = /-Ly against the alternative 
hypothesis Ha: /-Lx el /-Ly at the 0 . 1  level of significance by determining the critical region. 

The critical region consists of all z scores for which z ::> z* or z <::: -z*, where z* is the (positive) value satisfying 
peZ ::> z*) = 0. 1/2 = 0.05. From Table A-l ,  we find that peZ ::> z*) = 0.05 for z* = 1 .65. Therefore, the critical 
region consists of all z scores <::: -1 .65 or ::> 1 .65. The test z score is 0.63 (Example 10 .3) . Since 0.63 is not in the 
critical region, the null hypothesis is not rejected at the 0 . 1 significance leve!. 

Hypotheses Tests for Jlx - Jly When (Jx and (Jy are Unknown but Equal 

As in the case of confidence intervals for JLx - JLy, when the standard deviations o"x and O"y are 
unknown but equal, we replace the standard deviation of X - Y by the po oled estimator 

Sp = (m - I)Sl + (n - I )S} 
m + n - 2  

2 1 - 2  2 1 - 2  where Sx = m _ 1 ¿(Xi - X) and Sy = n _ 1 ¿(Yi - Y) are the sample variances for X and Y, 
respectively. We also use the t distribution with m + n - 2 degrees of freedom in place of the standard 
normal distribution. The corresponding prescriptions for performing hypotheses tests are as follows. 

PRESCRIPTlON 10.4 (P-value hypotheses tests for Jlx - Jly ; (Jx , (Jy unknown but equal) 

Requirements: X and Y independent random variables; X and Y are approximately normally distri­
buted; o"x , O"y unknown but equal. 

Let a be the specified level of significance, and suppose XI , X2 , . . .  , Xm and YI , Y2 , . . .  , Yn are inde­
pendently chosen random samples corresponding to X and Y, respectively. First compute the sample 
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_ xI + x2 + . . .  + xm _ YI + Y2 + . . .  + Yn 2 1 _ 2 2 1 _ 2 values X = , y = Sx = --1 ¿(Xi - X) , Sy = --1 ¿(Yi - y) , m n m - n -

and Sp = 
(m - 1 )si + (n - 1 )s� . -'------'----'--2---'--. Then complete the followmg steps. m + n -

(1) Sta te Hypotheses: State null hypothesis Ha: JLx = JLy and alternative hypothesis Ha· 
(2) Compute Test Statistic: The test statistic is 

X - y  t = -----;== 

SpJ 1 
+
� 

m n 

which, assuming Ha is true, is (approximately) the t random variable with m + n - 2 degrees of 
freedom. Compute the test value of t as 

A x - y  t = ----=�= 
s J I 

+
� 

P m n 

(3) Determine P-value: Using a t table, if adequate, or computer software for a t random variable 
with m + n - 2 degrees of freedom, find the P-value of the test corresponding to Ha: 

For Ha: JLx < JLy, the P-value is P(t < i) 
For Ha: JLx > JLy, the P-value is P(t > i) 
For Ha: JLx el JLy, the P-value is P(t :::; 1 11 ) + P(t > 1 11 ) [equivalently, 2P(t > 1 11 ] 

(4) Draw Conclusion: If P-value :::; a, then 1 and x - y are statistically significant at level a, and Ha is 
rejected. If P-value � a, then 1 and x - y are not statistically significant at level a, and Ha is not 
rejected. 

Alternative Version of Prescription 10.4 

The alternative version of Prescription 10.4 uses the critical regio n for Ha and a in place of the 
P-value of the test. The critical regio n can be determined for various levels of significance and 
degrees of freedom from Table A-2 in the Appendix. 

PRESCRIPTION 10.4a (Critical-region hypotheses tests for Jlx - Jly;  (Jx , (Jy unknown but equal) 

Requirements: X and Y are independent random variables; X and Y are approximately normally 
distributed; o"x , O"y unknown but equal. 

(1) and (2) Same as in Prescription 10.4. 
(3) Determine Critical Region: Using a t table with m + n - 2 degrees of freedom (or computer soft-

ware), find the critical regio n corresponding to Ha and a: 

For Ha: JLx < JLy, the critical regio n is all values 1 :::; t*, where t* is the (negative) value satis­
fying P(t :::; t*) = a (Fig. 9-4(a)). 
For Ha: JLx > JLy, the critical region is all values 1 � t*, where t* is the (positive) value satis­
fying P(t � t*) = a (Fig. 9-4(b)). 
For Ha: JLx el JLy, the critical regio n is all values 1 for which 1 � t* or 1 :::; -t*, where t* is 
the (positive) value satisfying P(t :::; -t*) + P(t � t*) = a [equivalently, P(t � t*) = aj2] 
(Fig. 9-4(c)). 
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(4) Draw Conclusion: If the sample value ¡ of the test statistic lies in the critical region, then ¡ and 
x - ji are statistically significant at level a, and Ha is rejected. If ¡ does not lie in the critical region, 
then ¡ and x - ji are not statistically significant at level a, and Ha is not rejected. 

EXAMPLE 10.5 Suppose in Example 10 . 1  that the random weights X and Y of each type of mice had standard 
deviation 2.5 oz before the new dieto Use the data given there to test the null hypothesis Ha: /-Lx = /-L y  against the 
alternative hypothesis Ha: /-Lx el /-Ly at the 0. 1 level of significance. Assume that the new standard deviations are 
unknown but equal. 

We use Prescription 10.4(a). From Example 10.2, x = 29.375,)1 = 28.6, and Sp "" 2.53. The test value of the 
test statistic 

IS 

X - y 
t = -----=== 

SpV� + � 
m n 

t = 
29.375 - 28.6 "" 0.65 fll 2.53y S + 1O 

From Table A-2, with 1 6  degrees of freedom, we find that the critical value t* satisfying 
P(t :;:, t*) = 0 . 1/2 = 0.05 is t* = 1 .75. Therefore, the critical region is all t scores t <::: -1 .75 or t :;:,  1 .75. Hence, 
0.65 is not in the critical region, so the null hypothesis is not rejected at the 0.01 level of significance. 

Hypotheses Tests for Jlx - Jly When (Jx and (Jy are Unknown and Not Necessarily Equal 

Small samples: As with confidence intervals, if it is unreasonable to assume that the unknown 
standard deviations o"x and O"y are equal, then in place of t you can use as a test statistic the random 
variable 

which, if Ha : JLx = JLy is true, has an approximate t distribution when m and n are moderate, say m � 5 
and n � 5, and X and Y are normally distributed. To obtain the number of degrees of freedom, first 
find sample values si and s� , and then compute 

(i i ) 2 
� + �  

k =  m n 
1 ( 2 ) 2 1 ( 2 ) 2 

m - 1 :: + n _ 1 
s: 

The largest integer les s than or equal to k is the number of degrees of freedom of T. Now proceed as in 
Prescription 10.4 or 10.4a with the statistic T in place of t (see Problem 10 . 12). 

Large samples: If m and n are each 30 or larger, then the aboye random variable T is approximately 
the standard normal random variable Z, assuming Ha: JLz = JLy is true, and you can proceed as in 
Prescription 10.3 or 10.3a with T in place of Z (see Problem 10. 1 3). 

10.3 CONFIDENCE INTERV ALS FOR DIFFERENCES OF PROPORTIONS 

Suppose it is a presidential election year, and that PI and P2 are two states' respective (unknown) 
proportions of eligible voters that favor the Democratic candidate. Suppose also that some of the 
candidate's advisors believe that PI is greater than P2, that is, that PI -P2 is positive, whereas others 
believe that PI is les s than P2. If the two states have a nearly equal number of electoral votes, and the 
candidate can spend time campaigning in only one of them, it would be helpful to obtain a confidence 
interval for PI - P2, based on random samples of size nI and n2, respectively. 



298 INFERENCE FOR TWO POPULATIONS [CHAPo 10 

Sampling in a situation such as this can be modeled by two independent binomial experiments 
b(nl ,P I ) and b(n2 ,P2) ,  where PI i s the probability of success in each of the nI tri al s constituting the 
first experiment, and P2 is the probability of success in each of the n2 tri al s constituting the 
second experiment. The collection of all possible proportions of successes in the nI tri al s making up 
the first experiment defines a random variable PI with mean PI and variance PI ( 1 -PI )/nl . Similarly, 
all proportions of successes in the n2 tri al s making up the second experiment define a random variable P2 
with mean P2 and variance P2 ( 1 -P2)/n2 . Therefore, the mean of PI - P2 is 

/LF¡-F2 = PI -P2 
and since we are assuming independence, the variance of PI - P2 is 

(72 , = PI ( 1 -PI ) + P2 ( 1 -P2) p¡-p2 nI n2 
Also, if nI and n2 are large, say nI � 30 and n2 � 30, then by the Central Limit Theorem, PI - P2 is 
approximately normally distributed. As in the case of a single proportion, the variance of PI - P2 is 
estimated by 

PI ( 1  -PI ) h(1 - P2) :....::...-'-------=--=-:... + =--=--'-------=--=-:... nI n2 
where PI and P2 are sample values of PI and P2 obtained in independently drawn large random samples 
from the respective binomial populations. 

We arrive at the following prescription. 

PRESCRIPTlON 10.5 (Confidence inferval for PI -P2) 

Requirements: The sample sizes nI and n2 are large, say nI � 30 and n2 � 30. 
Let , be the specified confidence level; and suppose that a value PI of PI is obtained in a random 

sample of size nI � 30, and a value P2 of P2 is obtained in an independently chosen random sample of 
size n2 � 30. Complete the following steps. 
(1) Find Critical Z Value: Using a standard normal table (or computer software), find the value z* of 

the standard normal random variable Z for which P( -z* :::; Z :::; z*) = ,  [equivalently, 
P(O :::; Z :::; z*) = ,/2] . 

(2) Compute Margin 01 Error: 

(3) Determine Confidence Interval: An approximate 100, percent confidence interval for PI -P2 is 
[PI -P2 - E,PI -P2 + E] . 

EXAMPLE 10.6 A presidential candidate needs either Ohio's 21 electoral votes or Pennsylvania's 23 electoral votes 
to virtually insure a victory. In a poll of 500 eligible voters in Ohio, 260 favored the candidate over his primary 
opponent; and in a pole of 600 eligible voters in Pennsylvania, 306 voters favored the candidate. The proportions, 
PI = 0.52 in Ohio and P2 = 0.51 in Pennsylvania, seem to give a slight edge to Ohio, and the candidate has time and 
money to concentrate on only one of the states. Find a 99 percent confidence interval for PI -P2, and interpret the 
result. 

Since the sample sizes are each larger than 30, we can apply Prescription 10 .5 . From the standard normal table, 
PI ( 1 -PI )  P2 ( 1 -P2) we find that P( -z* <::: z <::: z*) = 0.99 for z* = 2.58. The margin of error is E = z* + = nI n2 

2 58 0 .52 x 0.48 + 
0 .51 x 0.49 � O 078 The corresponding approximate 99 percent confidence interval for . 500 600 � . . 

PI -P2 is [(0 .52 - 0.51 ) - 0.078, (0 .52 - 0.51 ) + 0.078] = [-0.068 , 0.088] . Since O is in the confidence interval, the 
slight edge in Ohio's favor may simply be due to chanceo The results do not indicate that Ohio is the bet1er choice 
for a campaign effort (se e Problem 10. 1 7) . 
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10.4 HYPOTHESES TESTS FOR DIFFERENCES OF PROPORTlONS 

As in the case of confidence intervals for differences of proportions, we consider two independent 
binomial experiments bl (nI , PI )  and b2 (n2 ,P2) , where PI i s  the probability of success in each of the nI 
tri al s constituting the first experiment, and P2 is the probability of success in each of the n2 tri al s 
constituting the second experiment. The collection of all possible proportions of successes in nI tri al s 
defines a random variable PI , and the collection of all possible proportions of successes in n2 tri al s 
defines a random variable P2. The random variable PI - P2 has mean PI -P2, and since PI and P2 are 
. d d h . f A A . PI ( 1  - PI )  P2 ( 1  -P2) F 1 1 30 d In epen ent, t e vanance o PI - P2 IS + . or arge samp es, say nI � an 
n2 � 30, PI - P2 is approximately normal. 

nI n2 

So far, all that we have said applies to confidence intervals. However, there is one major difference 
between confidence intervals and hypotheses tests for differences of proportions. In the case of a 

confidence interval for PI - P2, the variance of PI - P2 is approximated by PI (1 - PI )  
+ h

( 1  -h) , nI n2 
where PI and h are sample values of PI and P2, respectively. In the case of hypotheses tests, where the 
null hypothesis is 

Ha : PI -P2 = O, equivalently, 

we combine the sample data to obtain the pooled sample proportion P = XI + X2 , XI being the number of nI + n2 
successes in nI trials making up the first experiment, and X2 the number of successes in n2 tri al s making 
up the second experiment. In terms of the sample values PI and h, P can be computed as an average, 
weighted according to the relative values of nI and n2 (see Problem 10.20): 

A nlPI + n2h P = nI + n2 

Note that if nI = n2 , then the aboye weil?htedAaverage simplifies to PI ; P2. ReplacingpI and P2 by P in 
the aboye formula for the variance of PI - P2, we get the estimate 

p(1 - P) (� + �) nI n2 
for the variance of PI - P2. The random-variable statistic whose value is p on each pair of samples of 
sizes nI and n2 respectively, is denoted by P. We then arrive at the following prescriptions for hypoth­
eses tests concerning PI - P2. 

PRESCRIPTlON 10.6 (P-value hypotheses tests for PI -P2) 

Requirement: The sample sizes are large, say nI � 30 and n2 � 30. 
Let a be the specified level of significance. Suppose that a value PI of PI is obtained in a random 

sample of size nI � 30, and a value h of P2 is obtained in an independently chosen random sample of 
. 30 F· h 1 d 1 . A nlPI + n2h d h 1 h slze n2 � . Irst compute t e poo e samp e proportlOn P = , an t en comp ete t e 

following steps. nI + n2 

(1) State Hypotheses: State null hypothesis Ha : PI = P2 and alternative hypothesis Ha· 
(2) Compute Test Statistic: The test statistic is 
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which, if Ha is true, is approximately normally distributed with mean O and standard deviation 
1 .  Approximate the sample value of Z as 

PI -h z = ----r=���=== 

p(1 - p) (�+�) nI n2 

(3) Determine P-value: Using a standard normal table (or computer software), find the P-value of the 
test corresponding to Ha: 

For Ha: PI < P2 , the P-value is P(Z :::; z) . 
For Ha: PI > P2 , the P-value is P(Z � z) . 
For Ha: PI el P2 , the P-value is P(Z :::; - Iz l ) + P(Z � Izl) [equivalently, 2P(Z � Izl) ] · 

(4) Draw Conclusion: If P-value :::; a, then the values z and PI -P2 are statistically significant at level 
a, and Ha is rejected. If P-value > a, then z and PI - h are not statistically significant at level a, 
and Ha is not rejected. 

Cornrnent 

Some statisticians estimate the variance of PI - P2 by 
PI ( 1 - PI ) + P2 ( 1 -h) , as in the case of nI n2 

confidence intervals, but since the null hypothesis states that the proportions PI and P2 are equal, it seems 
more natural to pool the sample data rather than treat the sample values separately. 

EXAMPLE 10.7 With reference to Example 10.6, test the null hypothesis Ha : PI = P2 against the alternative 
hypothesis Ha: PI > P2 at the 0.01 significance level by computing the P-value of the sample results. 

Th l . .  E l lO 6 A 260 O 52 d A 306 O 51 h I d · · e samp e proportlOns m xamp e . are PI = 500 = .  an P2 = 600 = . , so t e poo e proportJon IS 
A 500 x 0.52 + 600 x 0 .51 260 + 306 
P = 500 + 600 = 1 100 "" 0 .5 145. The corresponding estimate of the test statistic is 

PI - P2 Z = ----r==='='===='="=== 

P(I - P) (� + �) nI n2 

0.52 - 0.51 ---¡=========== "" 0.33 
0 .5145 x 0.4855 x ( 5�0 + 6�0 ) 

The P-value of the test is P(Z ::> 0.33) = 0.3707. Since 0.3707 is substantially higher than 0.0 1 ,  we don't even come 
close to rejecting the null hypothesis at the 0.01 significance leve!. 

Alternative Version of Prescription 10.6 

An alternative version of Prescription 10.6, which uses the critical regio n determined by the alter­
native hypothesis and the level of significance, is the following. 

PRESCRIPTION 10.6a (Critical-region hypotheses tests for PI -P2) 

Requirement: The sample sizes are large, say nI � 30 and n2 � 30. 
(1) and (2) Same as in Prescription 10.6. 
(3) Determine Critical Region: Using a standard normal table (or computer software), find the critical 

regio n corresponding to Ha and a: 
For Ha: PI < P2 , the critical regio n is all values z :::; z*, where z* is the (negative) value satis­
fying P(Z :::; z*) = a (Fig. 9-3(a)). 
For Ha: PI > P2 , the critical regio n is all values z � z*, where z* is the (positive) value satisfying 
P(Z � z*) = a (Fig. 9-3(b)). 



CHAPo 10] INFERENCE FOR TWO POPULA TIONS 301 

For Ha: PI el P2, the critical regio n is all values z for which z � z* or z :::; -z*, where z* is 
the (positive) value satisfying P(Z :::; z*) + P(Z � z*) = a [equivalently P(Z � z*) = aj2] 
(Fig. 9-3(c)). 

(4) Draw Conclusion: If the sample value z of the test statistic lies in the critical region, then 
z and PI -h are statistically significant at level a, and Ha is rejected. If z does not lie in 
the critical region, then z and PI -P2 are not statistically significant at level a, and Ha is not 
rejected. 

EXAMPLE 10.8 Test the null hypothesis Ha : PI = P2 in Example 10 .6 against the alternative hypothesis 
Ha: PI > P2 at the 0.01 significance level by determining the critical region for the test. 

The test statistic is the standard normal random variable Z, and from Table A-1 ,  we see that peZ ::> z*) = 0.01 
for z* = 2.33. From Example 10.7 above, the value of the test statistic is z = 0.33, which is far from the 
critical region. Therefore, with sorne emphasis, we do not reject the null hypothesis at the 0.01 significance 
leve!. 

10.5 CONFIDENCE INTERV ALS FOR RATIOS OF V ARIANCES 

So far we have found confidence intervals for differences of means and differences of proportions; 
and it is possible to find confidence intervals for the difference of variances, o} and O"�, corresponding to 
two independent normal random variables X and Y, respectively. However, the probability distribu­
tion of O"i - O"� is more complicated than the probability distribution of O"ijO"�. Therefore, since either 
of these two expressions could be used to compare the two variances, we will determine confidence 
intervals for O"ijO"�. We consider the case where JLx and JLy are unknown here, and the case where JLx 
and JLy are known in the exercises. First, however, a new distribution, called the F distribution, must 
be introduced. 

The F Distribution 

In Section 8.3 we saw how the standard normal and chi-square distributions could be combined to 
produce the t distribution, which proved useful in constructing confidence intervals and hypotheses tests 
for means and their differences. Here, two chi-square distributions are combined to produce the F 
distribution, which is defined as follows. 
Definition: Let x2(m) and x2(n) be independent chi-square random variables with degrees of freedom 

m and n, respectively. Then, the random variable 

F = x
2 (m)jm 
x2 (n)jn 

is called an F random variable with m and n degrees ollreedom. 

Properties of the F Distribution 

The random variable F is also denoted by F(m, n) to emphasize its dependence on the parameters m 
and n. Note that F(n, m) is not the same as F(m, n) ; in fact, 

x2 (n)jn 1 F(n, m) = x2(m)jm = F(m, n) 
The first number m in parentheses for F(m, n) always refers to the degrees of freedom of the chi-square 
random variable in the numerator of the aboye definition of F. There is a density curve for each 
pair (m, n), several of which are illustrated in Fig. 10- 1 . Note that the F random variable assumes 
only positive values, since it is a ratio of positive random variables. The density curves are skewed 
to the right, but the skewing becomes les s severe as both m and n increase. The mean and standard 
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deviation of F(m, n) are 
n JLF = -­n - 2  
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for n � 3 and n IJF =--n - 2  
2(m + n - 2) 
m(n - 4) 

[CHAPo 10 

for n � 5 

JLF is not defined for n = 1 or 2, and IJF is not defined for n = 1 , 2, 3 , or 4. The mode of F(m, n) is 
n(m - 2) 
( ) 

for m � 3; for m = 1 or 2, there is no mode. m n + 2 

4 

Fig. 10-1 Density curves for F(1 ,  2), F( 4, 8), and F(lO, 20). 

Confidence Infervals for /Ti//T} When Jlx and Jly are Unknown 

Suppose X and Y are independent normal random variables with unknown variances IJ� and IJ}, 
respectively. Let X¡ , X2 , . . .  , Xm and Y¡ , Y2 , . . .  , Yn be independent random-variable samples corre­
sponding to X and Y, with sample means X and Y, respectively (see Section 8 . 1). Then 

and 

where S� = _1
-1 ¿(Xi - 1')2 and S} = _1-1 ¿(Yi - y)2 , are independent chi-square random vari-m - n -

ables with m - 1 and n - 1 degrees of freedom, respectively (see Sections 7.4 and 8 .5). Dividing the chi­
square random variable on the left aboye by m - 1 gives S� / IJ�, and dividing the one on the right by 
n - 1 gives S} / IJ}. Therefore, by definition, the ratio 

S}/IJ} F(n - 1 , m - 1 ) =  2 / ? Sx OX 
is an F random variable with n - 1 degrees of freedom in the numerator and m - 1 degrees of freedom in 
the denominator. F can also be written as 

IJ�S} F(n - 1 m - 1) = --, IJ}S� 

Let us consider a 98 percent confidence interval for IJ� / IJ}. Using an F table, or computer software, 
we can find constants a and b for which P(a :::; F(n - 1 ,  m - 1 ) :::; b) = 0.98. For example, we could 
choose a and b to satisfy 

P(F :::; a) = 0.01 
(see Fig. 10-2 and Example 10 .9). 

and P(F :::; b) = 0.99 
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t'ig. 10-2 

Thcn 
P(a ,; F ';  b) � P(F '; b) - P(F '; a) � 0.99 - 0.01 � 0.98 

, , 
S b ·  . O"\·Sy r F h u StllullOg ; '" or " we ave 

O"'j' .)j' 

which is cquivalcnt lO 

Therefore, 

P a 
Sj. < a:-r < b Sj· = 0.98 ( 

, 

, ' ) s, - -, - S' )' ay r 

[ sI sl] a -:;- , b -, Sy Si"' 
is a random 98 pcrcem confidence imerval for ai/C11'. 
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EXAMPlE 10.9 A random sample of size 26. drawn from a nonnal population X. has sample variancc Ir = 64; 
and a random sample ofsize 16, drawn from a normal population r, has sample variancc s} = 100. Assuming Ihal 
X and }' are independenl, find a 98 perccnl eonfidencc inlerval for o1..¡uly• 

\Ve have m - I = 26 - I = 25, and 11- I = 16 - I = 15. \Ve muSI find (J and b for whie.h 
P(F( 15, 25) :5 a) = 0.01 alld P(F( 15,25) :5 b) = 0.99. Tables AA 10 A-1 in the Appcndix gi\'c valucs P direelly 
for P(F(I 5, 25) :5 P) = 0.9 or 0.95 or 0.915 or 0.99. Prom Table A·7. we fmd Ihat b = 2.85. Tabk A·1 can also 
be used indireclly 10 find Ihe valuc of a for which P(F(15, 25) :5 a) = 0.01 as follows. Sinec F(15,25) = ("' 

I 
)' Ihe folJowing cqualÍons are equivalen\. F _5, 15 

P(F( 15, 25) :5 a) = 0.01 

1'C.·(2�, 15) :5 (1) = 0.01 

P(F(25, 15) � ;,) = 0.01 

P(F(25, 15) <�) = I -0.01 = 0.99 

P T b1 fi h· � - "8 -_1_ p. 1 Ir -� - 6 T r d· 'rom a e A·7, wc md t .tI - ]._ ,  or a - 3 '8' ma ly, ..l - 00 - 0. 4. here ore, the eorrespon mg 
ti ._ �y I 

98 perccnl confidence inlerval for Q"�¡t?y is [a s�', b�r] � [_1_ x 0.64, 2.85 x 0.64] = [0.195, 1.8241. si-' sr ].28 
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In general, if the significance level is " we can replace 0.98 by , in the aboye example to arrive at the 
following prescription. 

PRESCRIPTION 10.7 (Confidence inferval for a}/a"i; Jlx and Jly unknown) 

Requirements: The random variables X and Y are independent and approximately normally dis­
tributed. 

Let , be the specified significance level, and suppose that values XI ,  X2 , . . .  , Xm of X and 
YI , Y2 , . . .  , Yn of y are obtained in independently chosen random samples. First compute the 

_ XI + X2 + . . .  + Xm _ YI + Y2 + . . .  + Yn 2 1 _ 2 sample values X = , y = Sx = --1 ¿(Xi - X) ,  and m n m -
s� = n � 1 ¿(Yi - .9)2 . Then complete the following steps. 

(1) Find Critical F Values: Find values F� and F� that satisfy P(F(m - 1 ,  n - 1) :::; F�) = 1 � , and 
* 1 + , . P(F(n - 1 ,  m - 1) :::; F 2) = -2- (see FIg. 10.3). 

(2) Determine Confidence Interval: An approximate 100, percent confidence interval for O"i / O"� is [ 1 si * si ] 
----;¡;- x 2 , F2 x 2 · FI Sy Sy 

1 + , 1 .98 In Example 10.9, -2- = 2 = 0.99, * * si m - 1 = 25, n - 1 = 1 5, F I = 3.28, F 2 = 2.85, and 2 = 0.64. 

According to Prescription 10.7, the corresponding 98 percent confidence [_1_ x 0.64, 2.85 x 0.64
] = [0 . 1 95 , 1 .824] , as was obtained in Example 10.9. 3 .28 

Fig. 10-3 

WARNING 

Sy . 1 l' 2 / 2 . mterva lor O"x O"y IS 

Just as in the case for a single variance, the aboye approximate confidence intervals for O"i / O"� are 
not robust, and can deviate very significantly from the true confidence intervals when X and Y are 
not normally distributed (see Section 8 .5). Hence, the practical use of these confidence intervals is 
limited. 

10.6 HYPOTHESES TESTS FOR RATIOS OF V ARIANCES 

Suppose X and Y are approximately normally distributed random variables with means JLx and JLy, 
and unknown variances O"i and O"�, respectively. As in the case of confidence intervals, we consider 
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hypotheses tests for O"i / O"� when JLx and JLy are unknown. The null hypothesis will be 

equivalently, Ha: O"i = O"� 

and the alternative hypothesis will be one of the following: 

Ha: O"i/O"� < 1 ; equivalently, 

Ha: O"i/O"� > 1 ; equivalently, 

Ha: O"i/O"� el 1 ; equivalently, 

Ha: O"i < O"� 

Ha: O"i > O"� 

H · 2 el 2 
a. O"X O"y 

Hypotheses Tests for /Ti / /T} When Jlx and Jly are Unknown 

In the previous section, confidence intervals for O"i / O"� utilized the F random variable 

O"is� F(n - 1 m - 1 ) =--, 
O"�si 
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2 1 - 2  2 1 - 2  where Sx = m _ 1 ¿:)Xi - X) and Sy = n _ 1 ¿:)Yi - Y) are the sample variances for X and Y, 

respectively. If the null hypothesis Ha: O"i = O"� is true, then the aboye random variable becomes 

S} F(n - 1 m - 1 ) = -, si 

Also, by the reciprocal property of the F distribution, 

si F(m - 1  n - 1 ) = -, s} 

Hence, either s� / si or si / s� can be used as the test statistic. Proceeding as in the case of confidence 
intervals, we arrive at the following prescription. 

PRESCRIPTION 10.8 (P-value hypotheses tests for /Ti / /T}; Jlx , Jly unknown) 

Requirement: X and Y are approximately normally distributed. 
Let a be the level of significance for the test. Suppose the values XI , X2 , . . .  , Xm of X and 

YI , Y2 , . . .  , Yn of Y are obtained in independently chosen random samples. Compute the sample values 
XI + X2 + . . .  + Xm _ YI + Y2 + . . .  + Yn 2 1 _ 2 2 1 _ 2 X = m ' y = n Sx = m _ 1 ¿ (Xi - X) , and Sy = n _ 1 ¿(Yi - y) . 

Then complete the following steps. 
(1) State Hypotheses: State null hypothesis Ha : O"i = O"� and alternative hypothesis Ha. 
(2) Compute Test Statistic: Let si / S� be the test statistic, which, assuming Ha is true, is approxi­

mately an F( m - 1 ,  n - 1) random variable. Compute the test value as si / s�. 
(3) Determine P-value: Using an F table, if adequate, or computer software, find the P-value of the 

test corresponding to Ha: 
For Ha: O"i < O"�, the P-value is P(F(m - l , n  - 1) :::; si/s�) 
For Ha: O"i > O"�, the P-value is P(F(m - l , n  - 1) � si/s�) 

2 2 . { 2P(F(m - 1 , n - 1 ) :::; si/s�) if si/s� < 1 For Ha: O"x el O"y, the P-value IS 
( (  ) 2 / 2 ) ·f 2 / 2 2P F m - 1 , n - 1 � Sx Sy I Sx Sy > l 
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(4) Draw COIle/lIsion: Ir P-value $. o ,  lhcn the lest is statistically significant al leve] 0 ,  and /Jo is 
rejected in favor of /-la" Ir P-value > CI:, then the test is Ilot statistically significant al leve! n, and 
Ho is no! rejcctcd in favor of /-la-

EXAMPlE 10.10 In Example 10.9, a random sample of size 111 = 26, drawn fmm a nonnal population X, has 
sample variance si = 64; aud a random sample of size 11 = 16. dmwn fr0111 a normal populatlon l'. has sample 

. . . . 2,, 64 . � , 
variance s� = 100. The valuc of ¡he leSI 51311SllC IS ;' = 

100 
= 0.64. Le! ¡he nulJ hypolhcS1S be /lo: 111, = ay, and 

, 
let u = 0.05 be ¡he significance leve!. Thcn, llsing computcr software, \Ve find Ihal for 11 Q: o-:¡' < u"y. ¡he P-valuc is 
P(F(25, 15) :5 0.64) � 0.16. Sinec 0.16 > 0.05. \Ve would nOI rcjccl Ihe null hypolhcsis in favor of /la: 0'1' < a2y al 
the 0.05 significance level. Note thal for /la: ai· =1- �y. the I'-value is (\Vice the P-value for /la: ai, < a"y, namely 
2 X 0.16 = 0.32; so we would also nOI rejccl lhe null hypothesis in favor of Ha: a} =1- t?y al theO.05 significance leve!. 

Alternath'c Version of Prescription 10.8 

The foHowing allernative version of Prescriplion 10.8 replaces the P-value by the crilical region for 
lhe alternative hypothesis at lhe specified level of significance o. Because of the limitalions of lhe F 
tables in the Appendix, aH crilical regions are defmed in terms of the right lai1 of either the 
F(n - 1 ,  m - 1)  or F(m - 1 , 11 - 1 )  distribution. 

I�RESCRII�TlON 10.8a (Crirical-region hypofheses tesis for 0';'/0'3,; Jl.X,Jl.I' unknown) 

Requiremelll: X and Y are approximalely nonnaHy disuibuled. 

Same as in Prcscription 10.8. (1) and (2) 
(3) Determil/e CriticaJ Regiol/: 

For H,,: O'i, < O'L the critica] region 
" 

is all samplc values -f 2: F*, where F* is thc F va]uc 
'x 

satisfying P(F(II - 1 ,  I/J - ] )  � P) = 1 - o (Fig. 10-4(a» . 

For /-1,,: �, > c?y, the critical region is aH sample values �' 2: F* where F* is the F va1ue 
S;, 

satisfying P(F(m - 1 , 11 - 1 )  � F*) = 1 - a (Fig. 1O-4(b»). 

1,m-1) 
I - a  

1 ,  /1-1) 
I - a  

(6) H.: (J) > (Jl ; Critica1 regíon: s] Isi :;¡, P 

1, /1- t) 
1-a12 

(e) H.: 0'] ;.o (Ji ; Critica! regíon: si Is] :I! FI· • s] Isi :;¡, Ft 

Fig. 10-4 
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2 2 
For Ha: O"i el O"�, the critical regio n is all values s; � Fr or s; � F�, where Fr is the F value 

Sx Sy 
satisfying P(F(n - 1, m - 1 ) :::; Fr) = 1 - a/2, and F� IS the F value satisfying 
P(F(m - 1 ,  n - 1 ) :::; F�) = 1 - a/2 (Fig. 10-4(c)). 

(4) Draw Conclusion: If the test value si / s� or s� / si lies in its corresponding portion of the critical 
region, then the test is statistically significant at level a, and Ha is rejected in favor of Ha. If the 
test value does not lie in the critical region, then the test is not statistically significant at level a, and 
Ha is not rejected in favor of Ha. 

EXAMPLE 1 0.1 1 In Example 10 . 10, s� = 64, based on a random sample of size m = 26; and s� = 100, based 
on a random sample of size n = 16 . The null hypothesis is Ha : O"� = O"� . The critical region at the 00 = 0.05 

2 

level of significance for Ha: O"� < O"� is all sample values s; ::>  F*, where F* is the F value satisfying 
Sx 

P(F( 15 , 25) <::: F*) = 1 - 00 =  0.95. From Table A-5 in the Appendix, we find that F* = 2.09. The value of the 

d· . .  . s� 100 1 56 h· h . . h . .  l · d . correspon mg test stal1sl1c IS s� 
= 64 :::'; . , w  IC IS not m t e cnl1ca reglon, so we o not reJect 

Ha: O"� = O"� in favor of Ha: O"� < O"� at the 0.05 significance leve!. 
For the alternative hypothesis Ha: O"� el O"�, the critical region at the 0.05 significance level contains all values 

2 2 
S; ::> Fr or S; ::> F;, where Fr is the F value satisfying P(F(1 5, 25) <::: Fr) = 1 - 00/2 = 0.975, and F; is the F value 
Sx Sy 
satisfying P(F(25, 1 5) <::: F;) = 1 - 00/2 = 0.975. From Table A-6 in the Appendix, we find that Fr = 2.41 and 

2 2 

F; = 2.69. Since s; :::,; 1 . 56 and s; = 0.64, neither statistic is in its corresponding portion of the fundamental 
Sx Sy 

region, so the null hypothesis is not rejected in favor of Ha : O"� el O"� at the 0.05 significance leve!. 

Solved Problems 
CONFIDENCE INTERV ALS FOR THE DIFFERENCE OF MEANS 

10.1. The scores on a standardized math test in District X are normally distributed with mean 74 and 
standard deviation 8, while those in District Y are normally distributed with mean 70 and 
standard deviation 10. A new learning program, which makes extensive use of computers, is 
introduced in both districts. The mean score under the new system of a random sample of 40 
students in District X is x = 75. In District Y, ji = 73, based on a random sample of 50 
students. Find a 95 percent confidence interval for JLx - JLy under the new system. Assume 
o"x = 8 and O"y = 10. 

We apply Prescription 10 . 1 .  From Table A-l ,  the value z* of the standard nonnal random 
variable Z satisfying P( -z* <::: Z <::: z*) = 0.95 IS z* = 1 .96. The margin of error IS 

* O"� O"� __ 1 .96 64 
+ 

100 ""' 3 .72. Th !" h d· . 95 E = z 40 + 50 40 50 · - erelore, t e correspon mg approxlmate percent con-

fidence interval is [(75 - 73) - 3.72, (75 - 73) + 3 .72] = [- 1 . 72, 5 .72] . 

10.2. Suppose the sample standard deviation for X in Problem 10. 1 ,  based on the random sample of 
size 40, is Sx = 8 .8 ; and that for Y, based on the sample of 50 students, is Sy = 9.2. Determine 
an approximate 95 percent confidence interval for JLx - JLy under the assumption that o"x and O"y 
are unknown but equal. 
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We apply Prescription 10.2. The sample value of the pooled estimator of the common standard 
deviation is 

Sp = (m - l )s} + (n - l )s} 
m + n - 2  

39(8.8)2 + 49(9.2)2 "" 9.02 88 

Table A-2 in the Appendix shows that the value t* of the t random variable, with 60 degrees of freedom, that 
satisfies P( -t* <::: t <::: t*) = 0.95 is t* = 1 .98, and for 120 degrees of freedom, t* = 2.00. Since 88 is 
approximately midway between 60 and 120, we will use t* = 1 .99. (Computer software gives 1 .9873.) The 

. f . * �1 �1 h d· . margm o error IS E = t sp - + - = 1 .99 x 9.02 - + - "" 3 . 8 1 .  T e correspon mg approxlmate 
m n 40 50 

95 percent confidence interval for /-Lx - /-Ly is [(75 - 73) - 3.8 1 ,  (75 - 73) + 3 .8 1 ]  = [- 1 .8 1 , 5.8 1 ] .  

10.3. Suppose that the sample standard deviation for the 40 District X students in Problem 10. 1 
is Sx = 7 .8, and that for the 50 students in District Y is Sy = 9.6. Compute an approxi­
mate 95 percent confidence interval for ¡Lx - ¡Ly under the assumption that the random 
variable 

x - y - (¡Lx - ¡Ly) T = -----¡=========_'_....:....:.. 

is approximately normally distributed with mean O and standard deviation 1 .  
We follow Prescription 10 . 1  with S} = (7.8)2 = 60.84 in place of o-} = 64 and s} = (9.6)2 = 92. 1 6  

in place o f  a} = 100. As  shown in Problem 1 0 . 1 ,  the value z * of  the standard normal random variable 

Z satisfying P( -z* <::: Z <::: z*) = 0.95 is z* = 1 .96. The margin 
60.84 92. 1 6  1 .96 ----;¡¡=) + ----so "" 3 .59. The corresponding approximate 9 5  

[(75 - 73) - 3 .59, (75 - 73) + 3.59] = [-1 . 59, 5 .59] . 

2 2 
f . _ * Sx Sy _ o error IS E - z 40 + 50 -

percent confidence interval is 

10.4. With reference to the mice in Example 10. 1 ,  find a 90 percent confidence interval for ¡Lx - ¡Ly 
under the assumption that 

is approximately a t random variable whose degrees of freedom are given by the largest integer 
les s than or equal to the expression for k at the end of Section 10. 1 .  

We follow Prescription 10.2 with the margin o f  error E = t * S} + s} in place of E = t*spV�+L 
m n m n 

From the data in Example 10. 1 ,  we find that S} "" 9. 125 and s} "" 4.276 (se e Example 10.2). Substituting 
these values, along with m = 8 and n = 10, into the expression for k, we get ( 9. 125 + 4.276 ) 2 

k = 
8 10 "" 1 1 .93 � ( 9 . 125 ) 2 � ( 4.276 ) 2 

7 8 + 9 10 

We therefore assume that T has 1 1  degrees of freedom. From Table A-2, we find that the value t * of the t 
random variable, with 1 1  degrees of freedom, that satisfies P( -t* <::: t <::: t*) = 0.9 is t* = 1 .80. Then 
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E = l .80 9 . 125 
+ 

4.276 "" 2.25. Using the values X "" 29.38 and y = 28 .6 obtained in Example 10 . 1 ,  8 10 
we find that the corresponding 90 percent confidence interval for Px - py IS 
[(29.38 - 28.6) - 2.25, (29.38 - 28.6) + 2.25] = [- 1 .47, 3.03] . 

10.5. What justifies the assumptions made concerning the random variable T in Problems 10.3 and 
10.4? 

It can be proven, by methods beyond the level of this text, that the distribution of the random variable T 
in Problem 10.3 approaches the standard normal distribution as m and n increase without bound. For our 
purposes, the assumption that T is approximately standard normal is justified because the random variables 
X and Y are normally distributed, and the sample sizes m = 40 and n = 50 are each larger than 30. Simi­
larly, for our purposes, the assumption in Problem 10.4 that T is approximately a t random variable with the 
specified number of degrees of freedom is justified because the random variables X and Y are normally 
distributed, and the sample sizes m = 8 and n = 10 are each larger than 5. 

10.6. Suppose X and Y are independent random variables, and O"i = O"� . Show that the random 

va,iahk X - Y � 1" )  ddin,d in Scctioo 10 . 1 ha, a I di,trihution with m I n - 2 d'g"" of 
1 1 Sp - + -

freedom. m n 
By definition, if Z and X2 are independent, where Z is a standard normal random variable and X2 is a 

chi-square random variable with k degrees of freedom, then � is a t random variable with k degrees of 
v x2jk 

freedom (se e Section 8 .3). Let (i be the common value of O"� and O"� . The random variable 

When Z is divided by VX2 j(m + n - 2), O" 

X - Y - (Px - Py) cancels, and the resulting quotient is � '  where S p = 
1 1 Sp - + -m n 

HYPOTHESES TESTS FOR THE DIFFERENCE OF MEANS 

(m - I)S� + (n - I )S� 
m + n - 2 

10.7. The average GPA for 60 mathematics majors at a particular university is 3.4 with a variance 
of 0.2; and the GPA for the 50 physics majors at the university is 3 .5 with a variance of 0. 12. 
Letting X and Y represent the mathematics and physics GPAs, respectively, and assuming the 
GPAs are normally distributed, test the null hypothesis Ha : JLx = JLy against the alternative 
hypothesis Ha: JLx < JLy at the 0.05 significance level by constructing the P-value for the test. 

Following Prescription 10.3, the test statistic is 

Z =  X - y 
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which, assuming Ha is true, is standard norma!. The test value of Z is 

z =  
3.4 - 3 .5  "" - 1 .32 
0.2 0 . 12 
60 + 50 

[CHAPo 10 

The P-value of the test i s  P(Z <::: -1 .32) "" 0.09. Since the P-value i s  greater than 0.05, the test i s  not 
significant at the 0.05 level, and the null hypothesis is not rejected at that leve!. 

10.8. In Problem 10.7, test the null hypothesis Ha : JLx = JLy against the alternative hypothesis 
Ha: JLx < JLy at the 0.05 significance level by constructing the critical regio n for the test. 

Following Prescription 10.3a, at the 0.05 Ievel, the critical region for Ha: /-Lx < /-Ly is all values z <::: z*, 
where P(Z <::: z*) = 0.05. From Table A-l ,  we find that z* = -1 .65. The test value of Z found in Problem 
10.7 is z = -1 .32, which is not in the critical region. Therefore, Ha is not rejected in favor of Ha at the 0.05 
significance leve!. 

10.9. At what significance level would the null hypothesis in Problem 10.7 be rejected in favor of the 
alternative hypothesis? 

Ha would be rejected at any level greater than or equal to the P-value of the test, which was determined 
to be 0.09. In particular, Ha would be rejected in favor of Ha at the 0 . 1  significance leve!. 

10.10. The annual salaries, in thousands of dollars, of 8 men in middle management at a given company 
are: 55.5, 64.8, 68 .2, 70.2, 52.4, 56.8, 60.6, 72.5, while those for 6 women are: 56.2, 48 .8 , 58.4, 50.9, 
60.2, 54.5 . Let X and Y denote the salaries of the men and women, respectively; and assuming 
normal distributions and equal standard deviations, test Ha : JLx = JLy against Ha: JLx > JLy at the 
0.05 significance level by constructing a critical regio n for the test. 

Following Prescription lO.4a, the needed sample values are 

x = 
55.5 + 64.8 + 68.2 + 70.2 + 52.4 + 56.8 + 60.6 + 72.5 "" 62 63 8 . 

ji 
= 

56.2 + 48.8 + 58.4 + 50.9 + 60.2 + 54.5 "" 54 83 6 . 

2 1 2 Sx = "7 L(Xi - 62.63) "" 54.87 

2 1 2 Sy = "5 L(Yi - 54.83) "" 19.07 

S
p 

= . /7 x 54.87 + 5 x 19.07 "" 6.32 V 12 

The t"t ,lati,ti, i, I � � whi,h, ",uming JI" i, tme, i, a I <andnm "nahl, with 12 deg"" uf 
1 1 

Sp 8 + 6 
f d h l f . A 62.63 - 54.83 h · ·  l . f ll ree om. T e test va ue o t IS t = M "" 2.29. T e cnl1ca reglon or Ha: /-Lx > /-Ly IS a 

1 1 6.32 - + -8 6 
values t ::>  t*, where P(t ::> t*) = 0.05. From Table A-2 in the Appendix, with 12 degrees of freedom, we 
find that t* = 1 .78. Since the test value 2.29 is greater than 1 . 78, the null hypothesis Ha: /-Lx = /-Ly is 
rejected in favor of Ha: /-Lx > /-Ly at the 0.05 significance leve!. 

10.11. In Problem 10 . 10 , what is the smallest significance level at which the null hypothesis would be 
rejected in favor of the alternative hypothesis? 
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The answer is the P-value of the test, which is P(X - y ::>  62.63 - 54.S3 = 7.S), assuming Ha is true; 
equivalently 

P ( X - Y ::> 62.63 - 54.S3 "" 2.29) MI MI S - + - 6.32 - + -p S 6 S 6 
Using Table 4-2 in the Appendix, with 12 degrees of freedom, we find that the P-value is between 0.01 and 
0.025. Using computer software, we find that the P-value is 0.02. 

10.12. The sample standard deviations in Problem 10 . 10 are Sx = 7.41 and Sy = 4.37. Such a large 
difference seems to indicate that the assumption of equality may be unwarranted (see Problem 
10.33). Repeat the test using as the test statistic 

X - y 
T =  �2 S2 � + ---.!:. m n 

which, assuming Ha is true, has an approximate t distribution with degrees of freedom equal to 
the largest integer les s than or equal to ( 2 2 ) 2 Sx Sy - + -

k =  m n 
1 ( 2 ) 2 1 ( 2 ) 2 

m - 1 :: + n _ 1 
s: 

We apply Prescription lO.4a, with T in place of t. The value of the test statistic is 

f = 62.63 - 54.S3 "" 2.46 
. /54.S7 19.07 

and the value of k is 
V -S- + -6-

( 54.S7 
+ 

19.07 ) 2 
S 6 ",, 1 1 .53 � C4

�
S7y + � C9

�
07y 

The critical region for Ha : /-Lx > /-Ly is aH values t ::>  t*, where P(t ::> t*) = 0.05. From Table A-2, with 1 1  
degrees of freedom, we find that t* = I .S0. Since the test value 2.46 is greater than I .S0, the nuH hypothesis 
Ha : /-Lx = /-Ly is rejected in favor of Ha at the 0.05 significance level, as in Problem 10 . 10 .  

10.13. A random sample of size 100 drawn from a normal population X has sample mean x = 74.8 
sample standard deviation Sx = 7; and a random sample of size 1 50 drawn from a normal 
population Y has sample mean ji = 72 and sample standard deviation Sy = 10. Test the null 
hypothesis Ha: JLx = JLy against the alternative hypothesis Ha: JLx el JLy at the 0.01 level of sig­
nificance. Use T from Problem 10. 12 as the test statistic; for large samples, and assuming Ha is 
true, T is approximately standard normal. 

We foHow Prescription 1O.3a, with T in place of Z. The value of the test stal1sl1c is 
74.S - 72 h · ·  l · h · ·fi l l f h l . h h · f = "" 2.60. T e cnl1ca reglo n at t e 0.01 slgm cance eve or t e a ternal1ve ypot eSIS 
49 100 
100 + 1 50 

Ha: /-Lx el /-Ly is aH values f ::>  z* or f <::: -z*, where P(Z ::> z*) = 0.01 /2 = 0.005. From Table A-l ,  we find 
that z* = 2.5S. Since f = 2.60, we reject Ha in favor of Ha at the 0.01 leve!. 
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10.14. Would the null hypothesis Ha: JLx = JLy in Problem 10. 1 3 be rejected in favor of Ha: JLx > JLy at 
the 0.01 significance level? 

The critical region at the 0.01 significance level for Ha: /-Lx > /-Ly consists of all values f ::> z*, where 
P(Z ::> z*) = 0.0 1 .  From Table A-l ,  we find that z* = 2.33. Since the test value is f = 2.60, Ha will be 
rejected in favor of Ha: /-Lx > /-Ly at the 0.01 significance leve!. In general, if Ha: /-Lx = /-Ly is rejected in 
favor of Ha: /-Lx el /-Ly at any significance level a, then Ha will be rejected in favor of Ha: /-Lx > /-Ly at the 
same level, provided X > y. This is so because the right-tail portion of the critical region for Ha: /-Lx el /-Ly is 
contained in the critical region for Ha: /-Lx > /-Ly; and therefore any test value of Z that is in the right-tail 
portion of the critical region for Ha: /-Lx el /-Ly will also be in the critical region for Ha: /-Lx > /-Ly. 

CONFIDENCE INTERV ALS FOR DIFFERENCES OF PROPORTlONS 

10.15. In a random sample of 50 people from eastern states in the U.S.A. , 40 said they favored gun 
control; and 25 out of 48 from western states were in favor of gun control. Find a 95 percent 
confidence interval for PI -P2, where PI is the proportion of those in eastern states favoring gun 
control, and P2 is the proportion of those in western states favoring gun control, and interpret the 
result. 

We follow Prescription 10.5 . The sample proportions are PI = �� = 0.8 and P2 = !� = 0. 52, and the 

. . .  . . /0.8 x 0.2 0.52 x 0.48 esl1mated sample standard devlal10n IS V 50 + 48 = 0.09. From Table A-l ,  we find that 

P(O <::: Z <::: z*) = 0.95/2 = 0.475 for z* = 1 .96. Therefore, the margin of error is E = 1 .96 x 0.09 = 0. 18 , 
and the 95 percent confidence interval for PI - P2 is [(0.8 - 0.52) - 0 . 1 8, (0.8 - 0. 52) + 0. 18] = 
[0. 10 , 0.46] . Since O is not contained in the interval, the sample provides strong evidence that pI > P2 . 

10.16. The sample difference in Problem 10. 1 5 is PI - h = 0.8 - 0.52 = 0.28. What is the probability 
that a difference as large or larger than this would occur if in fact PI = P2? 

Let PI denote the proportion from eastern states favoring gun control in an arbitrary random sample of 
size 50, and P2 the proportion from western states favoring gun control in an arbitrary random sample of size 
48. The random variable PI - P2 is approximately normally distributed with mean PI -P2 and variance 
PI ( 1

5;
PI )  +P2 ( 1

4;
P2) . We want to compute P(PI - P2 ::> 0.28), given thatPI = P2 . An estimate p of the 

common value of PI and P2 can be obtained by pooling the data: p = ��: !� "" 0.66. Then, PI - P2 is 

. l l ·  h d ·  p(1 -p) p(1 -p) 0.66 x 0.34 0.66 x 0.34 approxlmate y norma wl1 mean O an vanance 50 + 48 = 50 + 48 "" 0.009. 
A A (PI - P2 - O 0.28 ) . Therefore, P(PI - P2 ::> 0.28) = P y'ü.()()§ ::> � = P(Z ::> 2.95), where Z IS the standard 

0.009 v 0.009 
normal random variable. From Table A-l ,  we find that P(Z ::> 2.95) = 0.0016 . That is, the chances of a 
difference as large as 0.28 occurring are only 1 6 in 10,000 if in fact PI = P2 . 

10.17. Repeat Problem 10. 16 using the data in Example 10.6. 
In Example 10.6, the difference in the sample proportion is PI -P2 = 0.52 - 0.51 = 0.0 1 .  The estimate 

of the common proportion, obtained by pooling the data, is p = ���: ��� "" 0.51 5, and the estimated 
• A A . 0 .5 15 x 0.49 0 .5 15 x 0.49 vanance of PI - P2 IS 500 + 600 "" 0.0009. Then 

A A ( PI - P2 0.01 ) P(PI - P2 ::> 0.01) = P JO]i)09 ::> JO]i)09 = P(Z ::> 0.33) = 0.37 0.0009 0.0009 
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Hence the chances are 3 7  in 100 that a difference as large as 0.01 would occur if p ¡  = P2 . In this case, 
the data do not provide strong evidence that p¡ > P2 . 

HYPOTHESES TESTS FOR DIFFERENCES OF PROPORTlONS 

10.18. Using the data in Problem 10. 1 5, test the null hypothesis Ha : p¡ = P2 against the alternative 
hypothesis Ha: p¡ > P2 at the 0.01 significance level by finding the P-value for the test. 

40 25 We follow Prescription 10.6 . The sample proportions are p¡ = 50 = 0.8 and P2 = 48 = 0.52, so 
p¡ -P2 = 0.28. The P-value of the test, computed under the assumption that Ha is true, is 
P(p¡ -P2 ::> 0.28) .  From Problem 10. 16, P(p¡ -P2 ::> 0.28) = 0.0016 .  Since 0.00 16  < 0.01 , the null 
hypothesis is rejected in favor of Ha: p¡ > P2 at the 0.01 significance leve!. 

10.19. Using the data in Problem 10. 1 5, test the null hypothesis Ha : p¡ = P2 against the alternative 
hypothesis Ha: p¡ > P2 at the 0.01 significance level by finding the critical regio n for the test. 

. . h l . A 40 d A 25 d h We use Prescnpl10n 10 .6a. T e samp e proporl1ons are p¡ = 50 = 0.8 an P2 = 48 = 0.52; an t e 
pooled proportion is p = �� : !� "" 0.66. (Note that p can also be computed by the fonnula given in 

P . .  10 6 l A n¡p¡ + n2P2 50 x 0.8 + 48 x 0.52 O 66 rescnpl10n . ,  name y P = = "" . . n¡ + n2 50 + 48 See Problem 10.20.) The value 
of the test statistic is 

8.0 - 0.52 
----;0======= "" 2.93 

0.66 x 0.34 ( 510 + ;8 ) 
For the alternative hypothesis Ha: p¡ > P2 at the 0.01 significance level, the critical region is all z ::> z*, 

where peZ ::> z*) = 0.0 1 ,  Z being the standard nonnal random variable. From Table A-l ,  we find that 
z* = 2.33. Since 2.93 > 2.33, the test statistic lies in the critical region, and Ha: p¡ = P2 is rejected in favor 
of Ha. 

10.20. Suppose that X¡ is the number of successes in n¡ tri al s making up one experiment, X2 is the 
number of successes in n2 tri al s making up a second experiment. Then ÍJ¡ = X¡ and Íh = X2 are n¡ n2 
the corresponding proportions of successes. Show that the pooled proportion p = X¡ + X2 can 

A A n¡ + n2 
A n¡p¡ + n2P2 also be computed by the formula P = ---=--=----=-.::. n¡ + n2 

h . A X¡ A d f A X2 A From t e equal1onp¡ = -, we get X¡ = n¡p¡ , an romp2 = -, we get X2 = n2P2 . n¡ n2 
d . h f l A X¡ + X2 A n¡p¡ + n2P2 d · d an X2 m t e ormu a P = ---, we get P = , as es¡re . n¡ + n2 n¡ + n2 

CONFIDENCE INTERV ALS FOR RATlOS OF V ARIANCES 

10.21. Find a 98 percent confidence interval for IJx/IJy in Example 10.9. 

Substituting for X¡ 

The 98 percent confidence interval for o1/a� found in Example 10.9 is [0 . 195, 1 . 824] . The correspond­
ing 98 percent confidence interval for ax/ay is h/0. 195, V1 .824] = [0.442, 1 .35 1 ] .  

10.22. The sample variance of 1 1 one-liter bottles ofwine bottled in summer was si = 50 (mli, and the 
sample variance of 1 6 one-liter bottles of wine bottled in winter was S} = 60 (ml)2. Assuming 
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that the volume of liquid in the bottles is normally distributed, find a 90 percent confidence 
interval for O"i / O"�. 

f 11 . . h d , + 1 1 .90 We o ow Prescnpl10n 10.7, w ere m = 1 1  - 1 = 10, n = 16 - 1 = 1 5, an -2- = 2 = 0.95. From 

Table A-5, we find that P(F(10, 1 5) <::: Fr) = 0.95 for Fr = 2. 54; and P(F( 15 ,  10) <::: F�) = 0.95 for 

F� = 2.85. The corresponding 90 percent confidence interval is [ 2.�4 x �� ,  2.85 x ��] = [0.328 , 2.375] . 

10.23. A random sample of six values of a random variable X is: 
32, 40 , 25, 3 1 ,  24, 28 

and independently obtained eight sample values of a random variable Y are: 
1 5 , 14, 18 , 12, 20 , 16 , 17 , 16 

Assuming that X and Y are normally distributed, find a 90 percent confidence interval for O"i / O"� 
and one for O"x/O"y. 

. . 32 + 40 + 25 + 31 + 24 + 28 1 80 We follow Prescnpl10n 10.7 . The sample values are x = 6 = 6 = 30, 
_ _ 1 5 + 14 + 18 + 12 + 20 + 16 + 17 + 16 _ 128 _ 2 _ �"'( . _ )2 _ d 2 _ �"'( . _ )2 _ y - 8 - 8 - 1 6, SX - 5 L... x, 30 - 34, an Sy - 7 L... Y, 1 5  - 6. 

1 + I 1 .90 * * AIso, -1- = 2 = 0.95. From Table A-5, we find that P(F(5, 7) <::: F¡) = 0.95 for F¡ = 3 .97, 

P(F(7, 5) <::: F�) = 0.95 for F� = 4.88. The corresponding 90 percent confidence interval for o1/a� is 

[ 1 34 34 ] 
3 .97 x 6 , 4.88 x 6 = [1 .43 , 27.65] . The corresponding 90 percent confidence interval for ax/ay is 

[yl.43, V27.65] = [1 .20, 5.26] . 

10.24. A statistician reports that [0.250, 1 .265] is a 98 percent confidence interval for O"i / O"� based on a 
random sample of m = 41 values from a normal distribution X and n = 3 1 values from a normal 
distribution Y, independent of X. What is the sample value of si / s�? 

We follow Prescription 10.7, where m - 1 = 40, n - 1 = 30, 1 + I = 1 .98 = 0.99. The 98 percent 

confidence interval is [� x sL F� x S� ] , where Fr and F� Sa�Sfy P(�( 40, 30) <::: Fr) = 0.99 and 
F¡ Sy Sy 2 

( ( ) *) * * Sx P F 30, 40 <::: F2 = 0.99. From Table A-7, we find that F¡ = 2.30 and F2 = 2.20. Therefore' "2 must 
2 2 Sy 

satisfy the equations 2
1
30 x s; = 0.250 and 2.20 x s; = 1 .265. From the first equation, we get 

2 . Sy Sy s; = 2.30 x 0.250 = 0.575. Checking this value in the second equation, we do get 2.20 x 0.575 = 1 .265. 
Sy 
Hence, the ratio of sample variances is 0 .575. 

10.25. Suppose X and Y are independent normal random variables with means /Lx and /Ly, and vari­
ances O"i and O"�, respectively; and let X¡ , X2 , . . .  , Xm and Y¡ , Y2, . . .  , Yn be independent random­
variable samples corresponding to X and Y. Show that 

is an F(n, m) random variable. 

2 1 2 O"X X -¿(Yi - /Ly) n 
? 1 2 o-y X - ¿(Xi - /Lx) m 
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The random variables Xi - /-Lx and Yi - /-Ly are independent standard normal random variables. By ax ay 
definition, L ( Xi ;;x ) 2 is a chi-square random variable with m degrees of freedom, and L ( Yi ;;y ) 2 

is a chi-square random variable with n degrees of freedom (see Section 7.4). Therefore, 

� L ( Yi - /-Ly ) 2 
n ay 
1 (Xi - /-Lx ) 2 -L --m ax 

is an F(n, m) random variable, as defined in Section 10 .5. By multiplying numerator and denominator of 
this fraction by a�a�, the result is 

2 1 2 ax x - L(Yi - /-Ly) n 

10.26. Let X and Y be independent random variables with known means JLx and JLy, respectively. 
Give a prescription for a 100, percent confidence interval for ai / a�. 

By following the reasoning leading to Prescription 10.7, with � L(Xi - /-LX)2 in place of S�, and m � L(lj  - /-Ly)2 in place of S�, we arrive at the lOO, percent confidence interval n 

2 2 * * . * 1 + , * 1 + , for ax/ay, where FI and F2 sal1sfy P(F(m, n) <::: FI )  = -2-' and P(F(n, m) <::: F2) = -2-· 

10.27. Use the result of Problem 10.26 to find a 90 percent confidence interval for ai/a� in Problem 
10.23, assuming that JLx = 30 and JLy = 16. 

1 2 1 2 1 + , 1 .90 The sample values are "6 L(Xi - 30) "" 28 .33 and "8 L(Yi - 16) = 5.25. AIso, -2- = 2 = 0.95. 

From Table A-5, we find that P(F(6, 8) <::: Fr) = 0.95 for Fr = 3 .58, and P(F(8, 6) <::: F�) = 0.95 for 
F� = 4. 1 5. U sing the result of Problem 10.26, the corresponding 90 percent confidence interval for 
2 / 2 . [ 1 28.33 28.33 ] [ 1 k · h l f d h· h ax ay IS -- x -- , 4. 1 5  x -- = 1 . 5 1 , 22.39 . Hence, nowmg t e va ues o /-Lx an /-Ly, w IC 3.58 5.25 5.25 

enables us to increase by one the number of degrees of freedom in the numerator and denominator of the F 
random variable, results in a smaller confidence interval than the one obtained in Problem 10.23. 

HYPOTHESES TESTS FOR RATlOS OF V ARIANCES 

10.28. In Problem 10.22, the sample variance of 1 1  one-liter bottles of wine bottled in summer was 
si = 50 (mli and the sample variance of 16 one-liter bottles of wine bottled in winter was 
s� = 60 (mli. Assuming that the volume of liquid in the bottles is normally distributed, test the 
null hypothesis Ha : ai = a� against the alternative hypothesis Ha: ai < a� at the 0.05 signifi­
cance level by finding the critical regio n for rejecting the null hypothesis. 
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We follow Prescription 10.8a, where m - 1 = 10, n - 1 = 1 5, and 1 - a = 0.95. The critical region is 
all values s�/s� ::> F*, where F* is the F value satisfying P(F(1 5, 10) <::: F*) = 0.95. From Table A-5, we 
find that F* = 2.85. The test value of s�/s� is 60/50 = 1 .2. Therefore, we do not reject Ha at the 0.05 
significance leve!. 

10.29. Find the P-value for the test in Problem 10.28. 
We follow Prescription 10.8, where m - 1 = 10, n - 1 = 1 5, and Ha: O"� < O"�. The P-value for the test 

is the probability that a value of s�/s� as small or smaller than 50/60 = 0.83 would occur if the null 
hypothesis Ha : O"� = O"� were true; that is, P(F(10, 1 5) <::: 0.83) . Table A-4 in the Appendix can tell us only 
that this probability is greater than 0 . 1 .  Using computer software, we find that P(F(lO, 1 5) <::: 0.83) = 0.39. 

10.30. For the data in Problem 10.23, test the null hypothesis Ha: O"i = O"� against the alternative 
hypothesis Ha: O"i > O"� at the 0.05 significan ce level by finding the critical regio n for the alter­
native hypothesis. 

We follow Prescription 1O.8a, where m - 1 = 5, n - 1 = 7, and 1 - a = 0.95. The critical region is all 
values s�/s� ::> F*, where F* is the F value satisfying P(F(5, 7) <::: F*) = 0.95. From Table A-5 in the 
Appendix, we find that F* = 3 .97. The test value of s�/s� is 34/6 = 5.67. Since 5.67 > 3 .97, we reject Ha 
at the 0.05 significance leve!. 

10.31. With reference to the previous problem, would Ha : O"i = O"� be rejected in favor of Ha: O"i > O"� 
at the 0.01 significance level. 

The critical regio n at the 0.01 significance level is all values s� / s� ::> F*, where F* is the F value 
satisfying P(F(5, 7) <::: F*) = 0.99. From Table A-7, we find that F* = 7.46. Since the test value 5.67 is 
less than 7.46, we would not reject Ha in favor of Ha at the 0.01 significance leve!. 

10.32. Determine the P-value for the test in Problem 10.30. 
We follow Prescription 10.8, where m - 1 = 5, n - 1 = 7, and Ha: O"� > O"�. The P-value for the test is 

the probability that a value of s� / s� as large or larger than 34/6 = 5.67 would occur if the null hypothesis 
Ha : O"� = O"� were true; that is, P(F(5, 7) ::> 5.67) . Tables A-6 and A-7 in the Appendix can tell us only that 
this probability is less than 0.025 and greater than 0.0 1 .  Using computer software, we find that 
P(F(5, 7) ::> 5.67) = 0.02. 

10.33. In Problem 10 . 10 , we tested Ha : JLx = JLy against Ha: JLx > JLy under the assumption that 
o"x = O"y. Test this assumption at the 0.05 significance level. That is, test Ha : O"i = O"� against 
Ha: O"i el O"�, using the data of Problem 10 . 10 . 

We follow Prescription 10.8a, where m - 1 = 7, n - 1 = 5 ,  and 1 - 00/2 = 0.975. The critical region is 
all values s�/s� ::> Fr or s�/s� ::> F�, where Fr is the F value satisfying P(F(5, 7) <::: Fr) = 0.975, and F� 
is the F value satisfying P(F(7, 5) <::: F�) = 0.975. From Table A-6, we find that Fr = 5.29 
and F� = 6.85 . The test value of s�/s� = 19.07/54.87 = 0.35, and the test value of s�/s� = 
54.87/19.07 = 2.88. Since neither test value is in the corresponding portion of the critical region, we do 
not reject Ha at the 0.05 significance leve!. 

Supplementary Problems 
CONFIDENCE INTERV ALS FOR THE DIFFERENCE OF MEANS 

10.34. Use the data in Example 10 . 1  to find a 95 percent confidence interval for /-Lx - /-Ly. 

10.35. Use the data in Problem 10. 1 to find a 90 percent confidence interval for /-Lx - /-Ly. 
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10.36. Given that X and Y are independent normally distributed random variables with equal but unknown 
variances, find a 98 percent confidence interval for /-Lx - /-Ly, based on the independently obtained random 
samples 

and 
XI = 12.5, X2 = 14.2, x3 = 10.8, x4 = 1 1 . 5, x5 = 10 . 1 ,  x6 = 12.9 
YI = 10.2, 12 = 10 .5, Y3 = 1 1 .4, Y4 = 9.8, Y5 = 12.1 

10.37. Suppose the random variables X and Y in Problem 10.36 do not necessarily have equal variances. Then the 
statistic T defined in Section 10 . 1  can be used to determine a confidence interval for /-Lx - /-Ly. T is approxi­
mately a t random variable with [k] degrees of freedom, where k is defined along with T in Section 10. 1 ,  and 
[k] is the largest integer less than or equal to k. Find k and [k] for the data in Problem 10.36. 

10.38. Use the result of Problem 10.37 to find a 98 percent confidence interval for /-Lx - /-Ly. 

10.39. A random sample of 50 values of a normal random variable X gave sample values x = 1 14.8, s� = 70.4; and 
an independently obtained random sample of 60 values of a normal random variable Y gave sample values 
ji = 1 10.6, s� = 48.2. Assuming X and Y are independent, find a 95 percent confidence interval for 
/-Lx - /-Ly. Use the statistic T defined in Section 10. 1 ,  and assume that T is approximately normally dis­
tributed. 

10.40. Why was the statistic T defined in Section 10 . 1  assumed to be an approximate t random variable in Problem 
10.37 and an approximate normal random variable in Problem 10.397 

HYPOTHESES TESTS FOR DIFFERENCES OF MEANS 

10.41. X and Y are independent random variables with variances O"� = 125, O"� = 1 50. Independently obtained 
random samples of 35 values of X and 40 values of Y have sample means x = 102.8, ji = 98 . 1 .  Test the null 
hypothesis Ha : /-Lx = /-Ly against the alternative hypothesis Ha: /-Lx el /-Ly at the 0.05 significance level by 
computing the P-value of the test. 

10.42. Perform the test in Problem 10.41 by determining the critical region for the test. 

10.43. Using the data in Problem 10.41, test the null hypothesis Ha : /-Lx = /-Ly against the alternative hypothesis 
Ha: /-Lx > /-Ly at the 0.05 significance level by computing the P-value of the test. 

10.44. Using the data in Problem 10.41, test the null hypothesis Ha : /-Lx = /-Ly against the alternative hypothesis 
Ha: /-Lx > /-Ly at the 0.05 significance level by determining the critical region of the test. 

10.45. In Problem 10.36, test the null hypothesis Ha : /-Lx = /-Ly against the alternative hypothesis Ha : /-Lx el /-Ly at 
the 0 . 10 significance level by determining the P-value of the test, assuming computer software is available. 

10.46. In Problem 10.36, test the null hypothesis Ha : /-Lx = /-Ly against the alternative hypothesis Ha : /-Lx el /-Ly at 
the 0 . 10 significance level by determining the critical region for the test. 

10.47. In Problem 10.36, test the null hypothesis Ha : /-Lx = /-Ly against the alternative hypothesis Ha : /-Lx > /-Ly at 
the 0 . 10 significance level by determining the P-value of the test, assuming computer software is available. 

10.48. In Problem 10.36, test the null hypothesis Ha : /-Lx = /-Ly against the alternative hypothesis Ha : /-Lx > /-Ly at 
the 0 . 10 significance level by determining the critical region for the test. 
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10.49. With reference to Problems 10.41 and 10.42, find K(7); that i s  the power of the test at /-Lx- y = /-Lx - /-L y  = 7. 

10.50. With reference to Problems 10.43 and 10.44, find K(7). 

CONFIDENCE INTERV ALS FOR DIFFERENCES OF PROPORTIONS 

10.51. Suppose sample proportions PI = 0.58 and P2 = 0.52 are obtained in independent random samples of size 36 
and 44, respectively. Find a 98 percent confidence interval for the difference PI - P2 of the corresponding 
population proportions. 

10.52. When asked if they believed a woman would be elected president in the next 20 years, 22 out of 40 randomly 
selected men said yes, and an independent survey, 33 out of 48 randomly selected women said yeso Let PI 
and P2 denote the proportions of all men and women, respectively, that believe a woman will be elected 
president in the next 20 years. Find a 95 percent confidence interval for PI - P2 . 

10.53. Use the data in Problem 10.52 to find 90 percent and 98 percent confidence intervals for PI - Pl, and 
compare these with the 95 percent confidence interval obtained in Problem 10 .52. 

10.54. It is desired to obtain a margin of error of at most 0.02 in a confidence interval for the difference PI - P2 

of population proportions at the 0.95 confidence level, based on two independent random samples, each of 
size n. How large must n be? (Hint: Use the inequality PI (1 -PI) + P2 ( 1  -P2) <::: 0.5.) 

10.55. Suppose [-0.25, 0.25] is a confidence interval for PI - P2, based on independent random samples, each of 
size 36. If PI = 0.62, find P2 and the confidence level of the interval? 

HYPOTHESES TESTS FOR DIFFERENCES OF PROPORTIONS 

10.56. Using the data in Problem 10 .51 ,  test the null hypothesis Ha : PI = P2 against the alternative hypothesis 
Ha: PI > P2 at the 0 . 1  significance level by computing the P-value of the test. 

10.57. Perform the test in Problem 10 .56 by determining the critical region for the test. 

10.58. Using the data in Problem 10.52, test the null hypothesis Ha : PI = P2 against the alternative hypothesis 
Ha: PI < P2 at the 0 . 1  significance level by computing the P-value of the test. 

10.59. Perform the test in Problem 10 .58 by determining the critical region for the test. 

10.60. Using the data in Problem 10.52, test the null hypothesis Ha : PI = P2 against the alternative hypothesis 
Ha: PI el P2 at the 0 . 1  significance level by computing the P-value of the test. 

10.61. Perform the test in Problem 10.60 by determining the critical region for the test. 

CONFIDENCE INTERVALS FOR RATIO S OF VARIANCES 

10.62. Find the mean and standard deviation of the random variable F(1 6, 20). 

10.63. Find a and b for which P(F(10, 12) <::: a) = 0.05 and P(F(10, 12) <::: b) = 0.95. 
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10.64. Find positive numbers a and b for which P(a <::: F(15, 8 )  <::: b )  = 0.95. 

10.65. A random sample of size 31, drawn from a normal population X, has sample variance S} = 42.25; and an 
independently drawn random sample size 41 , drawn from a normal population Y, has sample variance 
S� = 23.04. Assuming X and Y are independent; find a 95 percent confidence interval for a}/a� . 

10.66. A random sample offive values of a normal random variable X is: 10, 12, 18 , 27, 13 ;  and a random sample of 
6 values of a normal random variable Y is: 23, 24, 3 1 ,  26, 28, 30. Find a 90 percent confidence interval for 
ax /ay. 

HYPOTHESES TESTS FOR RATIO S OF VARIANCES 

10.67. Using the data in Problem 10.65, test the null hypothesis Ha : a} = a� against the alternative hypothesis 
Ha: a} > a� at the 0.05 significance level by finding the P-value of the test, assuming computer software is 
available. 

10.68. Perform the test in Problem 10.67 by determining the critical region for the test. 

10.69. Using the data in Problem 10.65, test the null hypothesis Ha : a} = a� against the alternative hypothesis 
Ha: a} el a� at the 0.05 significance level by finding the P-value of the test, assuming computer software is 
available. 

10.70. Perform the test in Problem 10.69 by finding the critical region for the test. 

10.71. Using the data in Problem 10.66, test the null hypothesis Ha : a} = a� against the alternative hypothesis 
Ha: a} > a� at the 0. 1 significance level by finding the P-value of the test, assuming computer software is 
available. 

10.72. Perform the test in Problem 10.71 by finding the critical region for the test. 

10.73. Using the data in Problem 10.66, test the null hypothesis Ha : a} = a� against the alternative hypothesis 
Ha: a} el a� at the 0. 1 significance level by finding the P-value of the test, assuming computer software is 
available. 

10.74. Perform the test in Problem 10.73 by finding the critical region for the test. 

Ánswers to Supplementary Problems 
10.34. [-1 .645, 3 . 195]. 

10.35. [-1 .256, 2.806]. 

10.36. [-0.984, 3 .384]. 

10.37. k = 8 .462, [k] = 8 .  

10.38. [-0.948, 3 .348]. 
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10.39. [l .285, 7. 1 1 5] . 

10.40. The sample sizes are small (6 and 5) in Problem 10.37, and they are large (50 and 60) in Problem 10.39. 

10.41. P-value = 0.08; do not reject Ha . 

10.42. Critical region: Iz l ::> l .96; test value: z = l .74; do not reject Ha . 

10.43. P-value = 0.04; reject Ha . 

10.44. Critical region: z ::> l .65; test value: z = l .  74; reject Ha . 

10.45. P-value = 0. 1 6; do not reject Ha . 

10.46. Critical region: l il ::> l .83; test value: i = l . 55; do not reject Ha . 

10.47. P-value = 0.08; reject Ha . 

10.48. Critical region: i ::>  l .38; test value: i = l . 55; reject Ha . 

10.49. 0.74. 

10.50. 0.83 . 

10.51. [-0.20, 0.32]. 

10.52. [-0.340, 0.065]. 

10.53. 90 percent [-0.307, 0.032]; 98 percent [-0.378, 0 . 103]; the 90 percent confidence interval is contained in the 
95 percent confidence interval (Problem 10 .52), which is contained in the 98 percent confidence interval, or, 
the higher the degree of confidence wanted, the larger the interval must be. 

10.54. n ::>  4802. 

10.55. Íh = 0.62; 97. 1 1  percent. 

10.56. P-value = 0.29; do not reject Ha . 

10.57. Critical region: z ::> l .28; test value: z = 0. 54; do not reject Ha . 

10.58. P-value = 0.09; reject Ha . 

10.59. Critical region: z <::: -12.8; test value: z = -l .33; reject Ha . 

10.60. P-value = 0 . 18 ;  do not reject Ha . 

10.61. Critical region: Iz l ::> l .65; test value: z = -l .33; do not reject Ha . 

10.62. J-LF "" 1 . 1 1 , aF "" 0.57. 

10.63. a = 1/2.91 ,  b = 2.75. 

10.64. a = 1/3 .20, b = 4.10 . 
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10.65. [0 .95, 3 .69]. 

10.66. [0 .93, 5.29]. 

INFERENCE FOR TWO POPULA TIONS 

10.67. P-value = 0.0366; reject Ha. 

10.68. Critical region: s� / s� ::> 1 . 74; test value: s� / s� = 1 .83; reject Ha. 

10.69. P-value = 0.0733; do not reject Ha. 
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10.70. Critical region: s�/s� ::> 1 .94 or s�/s� ::> 2.0 1 ;  test values: s�/s� = 1 . 83, s�/s� = 0.55; do not reject Ha. 

10.71. P-value = 0.0659; reject Ha. 

10.72. Critical region: s�/s� ::> 3. 52; test value: s�/s� = 4.47; reject Ha. 

10.73. P-value = 0 . 1 3 1 8; do not reject Ha. 

10.74. Critical region: s�/s� ::> 5 . 19 or s�/s� ::> 6.26; test values: s�/s� = 4.47, s�/s� = 0.22; do not reject Ha. 



Chapter 1 1  
Chi-Square Tests and Analysis of Variance 

11.1 CHI-SQUARE GOODNESS-OF-FIT TEST 

The chi-square distribution can be used to determine how well experimental data match expected 
values in a probability model. For example, if we toss a fair coin 10 times, the expected number of 
heads is 5, as is the expected number of tails. However, we could get more or fewer heads than tails in 
10 tosses. It would not be very surprising to get 6 heads and 4 tails (probability � 0 .2) . It is even 
possible to get 10 heads with a fair coin, but the probability of 10 straight heads is only about 0.00 1 , so if 
this actually happened, we might begin to doubt that the coin is fair. We expect some variation in the 
experimental data due to chance, but a great de al of variation from the expected number of heads and 
tails would make us suspect that the fair-coin model is not very accurate. Where do we draw the 
line? The chi-square test, which is based on the following theorem, addresses this question. The 
test provides a technical tool for comparing the expected outcomes of an experiment with the actual 
outcomes that occur. 

Theorem 11.1: Let al , a2 , . . .  , ak be the possible outcomes of an experiment, with corresponding prob­
abilities PI , P2 , . . .  , Pk ·  For each performance of n independent tri al s of the experiment, 
npj is the expected number of occurrences of aj; suppose jj is the actual number of 
occurrences of aj' where II + f2 + . . .  + Ik = n. Then for large values of n, say npj � 5 
for each j, the random variable 

2 (JI - npI )2 (J2 - np2)2 (Jk - npk)2 X = + + . . .  + -"----"---'-
npI np2 nPk 

is approximately chi-square with k - 1 degrees of freedom. 

Null Hypothesis and Test Statistic 

In applications of Theorem 1 1 . 1 ,  the probabilities PI , P2 , . . .  , Pk are not known, but a probability 
model of their values is conjectured. The null hypothesis is 

Ha : P(al ) = PI , . . .  , 
Experimental data are then gathered and a value :e of the test statistic X2 is computed. If :e = O, then 
the experimental data exactly match the conjectured expected values. In general, the smaller :e is, the 
more support there is for the null hypothesis; the larger :e is, the less support there is for the null 
hypothesis. 

Multinomial Random Variable 

A more technical statement of the chi-square test involves the notion of a multinomial random 
variable which is a generalization of a binomial random variable. In the binomial case, n independent 
tri al s of an experiment having two possible outcomes, success and failure, are performed. The trials are 
called independent because the probability of success is the same for each tri al. The binomial random 
variable X is the number of successes in the n trials. Note that the random variable Y = n - X  is the 
number of failures in the n trials. In the multinomial case, n independent tri al s of an experiment having 
k possible outcomes, al , a2 , . . .  , ak , are performed. The tri al s are independent because the probability 

322 
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of aj' j = 1,2, . . . , k, is the same for eaeh trial. The random variable Xj is the number of times aj oeeurs 
in the 11 trials; and the k random variables Xl' X2, . . .  , Xk, taken collcctivcly, are called a lIlullillomial 
ralldom J"ariablc, denoled simply by X. Note thal Ihese random variables are not independent since 
Xk = II - (XI + X2 + " , + Xk_I) ' The frequencY !j refcrred to in Theorem 1 1 . 1  is the value of Xj 
obtained in 11 Irials. In terms of the multinomial random variable X, the null hypothesis Ho in the 
chi-square goodnes�-of-fit test states that the data are a random sample of outcomes for X, while the 
alternative hYPolhesis Ha states the data are not a random sample 01' outcomes for X. 

I)erforming Ihe Tesl: P-value and Criticll.l Region 

An experiment consisting of 11 independent trials is performed, aud the frequenciesf¡, 12, · · · , Jk of 
outeollles al, a2, . . .  ,ak are determined, where JI + f:. + . . .  + Jk = 11. Using these frequeneies, a test 
value ;e of Ihe above X2 is computed. Thcn Ihe P-value of the test is the probabilily that a test value as 
large or larger than i would occur if No were true. That is. the P·value is p(l 2: y), assuming k - I 
degrees of freedom. If a level ofsignificance a is spccified, then No is rejccted if P-value :s a; Ho is not 
rejected if P-value > a. Equivalently, the critical region for the test consists of all values of X2 that are 
greatcr than or cqual 10 x*, where x* is the critical value satisfying P(X2 2: x*) = a (see Fig. 11-1); No is 
rejccted if y is in the critical region; /Jo is not rejected if y is not in Ihe critical region. 

Note that Ihe alternative hypothesis Na: P(aj) f. p) is multidircclional in terms of the k probabilities 
Pea)), j = 1 , 2, . . .  , k. I-lowever. the test is one-sided in the chi-square random variable since the a[ter­
nativc hypothesis is equivalent to the hypothesis i 2: X*. 

a 

, " 
x' Critica! region 

"·ig. 11-1 

EXAMPlE 11.1 A die is tosscd 60 times, and Ihe frequene.y of eae.h faee is as indieated in lhe chart: 

Face ((1j) 1 2 3 4 5 6 

Frcquency (h) 5 7 5 14 1 3  1 6  

Assullle lhat the die is fair, and apply Ihe chi-square goodness-of.fil test al the 0.05 levd of significance. 
Ifthe die is fair, then p¡ = i, and /lp) = 6O ' i= 10 for j= 1,2, . . .  ,6. The test value is 

_2 _ (5 - 10)2 (7 _ 10)2 (5 _ 10)2 ( 14- 10)2 ( 1 3 - 10)2 ( 1 6 - 10)2 _ 1"' X - ID 
+ 

10 + 10 
+ 

10 + 10 + 10 - -

Therc are 6 - I = 5 degrees of freedom. The P·value is p(X2 ;?: 12) = 0.0348, using compuler software. Sinee 
0.0348 is less than 0.05, the hypothesis that the die is fair is rcjectcd al the 0.05 level of significancc. If computer 
software is not available to compute P(X2 ;?: (2), Tablc A-3 in the Aprendi;>; ean be uscd to detennine that the one­
sidcd critical region for 5 degrees of fre...--dOlll at the 0.05 level of significance is all values of x" that are greater than 
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x* = 1 l . 1 .  Since 1 2  is greater than 1 1 . 1 ,  1 2  is in the critica! region, and the hypothesis that the die is fair is rejected 
at the 0.05 leve! of significance. 

11.2 CHI-SQUARE TEST FOR EQUAL DISTRIBUTlONS 

In the previous section, we used a chi-square random variable to test whether experimental data 
conformed to a hypothesized probability distribution. The chi-square random variable can also be 
used to test whether two or more independent multinomial random variables with the same outcomes 
have the same probability distributions. For example, suppose that a group of subjects is randomly 
broken up into two categories before the fiu season; each person in one category will receive a Type- l fiu 
shot, and each person in the other category will receive a Type-2 fiu shot. The possible outcomes for 
each category are: no fiu, a mild case of fiu, and a severe case of fiu. The hypothesis that each type of 
shot has the same effect is tested by constructing a chi-square random variable in terms of the expected 
frequency of each outcome and the observed frequency of each outcome. 

Null Hypothesis 

More generally, suppose X and Y are independent multinomial random variables, each with out­
comes al , a2 , . . .  , ak. Let Pj be the probability of outcome aj in the distribution of X, and let qj be the 
probability of outcome aj in the distribution of Y, for j = 1 , 2, . . .  , k. Note that qj is not necessarily 
equal to 1 -Pj. The null hypothesis is 

for j = 1 , 2 , . . .  , k  

Test Statistic 

Suppose fj is the frequency of outcome aj in a random sample of X of size m, and gj is the frequency 
of outcome aj in a random sample of Y of size n. By Theorem 1 1 . 1 ,  the random variables 

(Ji - mpl (g - nql xi = ¿ J J and x� = ¿ J J are approximately chi-square, each with k - 1 degrees of mpj nqj 
freedom. Furthermore, since X and Y are independent, it follows that xi + x� is approximately chi­
square with degrees of freedom k - 1 + k - 1 = 2k - 2. 

In practice, Pj and qj are not known, but are estimated from the experimental data. Since the null 
hypothesis is that Pj = qj, each is estimated by the pooled sample value 

A fj + gj P = --J m + n 
for j = 1 , 2 , . . .  , k. Figure 1 1 -2 illustrates the estimated probabilities when k = 5. 

When Pj and qj are replaced by fiJ in the random variable xi + X�, k - 1 degrees of freedom are lost, 
so the random variable 

2 " (Ji - mp l " (g - np l X = D J A J + D J A J 
mpj npj 

is approximately chi-square with 2k - 2 - (k - 1 )  = k - 1 degrees of freedom; X2 is the test statistic for 
the test for equality. 

Performing the Test: P-value and Critical Region 

A random sample of m values of X results in frequencies 11 , 12 , . . .  , Ik of outcomes al , a2 , . . .  , ak , 
where II + 12 + . . .  + Ik = m; and an independently obtained random sample of n values of Y results in 
frequencies gl , g2 , . . .  , gk of al , a2 , . . .  , ak , where gl + g2 + . . .  + gk = n. Using these frequencies, the 
estimated probabilities Pj are computed, along with the expected frequencies mfiJ and nfiJ, 
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Totals 

Fig. 11-2 Probabilities Pj estimated from frequencies lj and gj . 

325 

j = 1 , 2, . . .  , k. Then the corresponding value :e of X2 is determined. The P-value of the test is the 
probability that a test value as large or larger than :e would occur if Ha were true. That is, the P-value 
is P(X2 � :e) ,  assuming k - 1 degrees of freedom. If a level of significance a is specified, then Ha is 
rejected if P-value :::; a; Ha is not rejected if P-value > a. Equivalently, the critical regio n for the 
test consists of aH values of i that are greater than or equal to X*, where X* is the critical value 
satisfying P(X2 � X*) = a (see Fig. 1 1 - 1); Ha is rejected if :e is in the critical region; Ha is not rejected 
if :e is not in the critical region. As in the chi-square goodness-of-fit test in Section 1 1 . 1 ,  this test is 
also one-sided in the chi-square random variable; the alternative hypothesis Ha is equivalent to the 
hypothesis: X2 � X*. 

EXAMPLE 1 1 .2 The freshman math grades of 250 males and 210 females at a university were distributed as 
indicated in the following tableo 

Grades 

A B C D F Totals 

Male 35 42 85 48 40 250 
Gender Female 28 50 77 35 20 210 

Totals 63 92 1 62 83 60 460 

Use the chi-square random variable to test, at the 0.05 significance level, the hypothesis the grade distributions are 
the same. 

By pooling the m = 250 male and n = 210 female frequencies in each grade category, we obtain the following 
estimated probabilities : 

A 63 
PA = 460 ' 

A 162 
Pe = 460 ' 

The expected frequencies mpj for the males are: 

A 63 
mp A = 250 x 460 = 34.24 

mftn = 250 x 4
8:0 = 45. 1 1  

A 92 
mp B = 250 x 460 = 50 

mftp = 250 x 4
6
6
0
0 = 32.61 

and the expected frequencies npj for the females are: 

npA = 210 x 4
6:0 = 28.76 

A 83 
npD = 210 x 460 = 37.89 

nfts = 210 x :620 = 42 

A 60 
npF = 210 x 460 = 27.39 

A 60 
PF = 460 

A 1 62 
mPe = 250 x 460 = 88.04 

nPe = 210 x !�� = 73.96 
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The corresponding chi-square test value is 

A 2 (35 - 34.24)2 (42 - 50)2 (85 - 88 .04)2 (48 - 45. 1 1 )2 (40 - 32.61 )2 
X = 34.24 + 50 + 88 .04 + 45. 1 1  + 32.6 1  

(28 - 28.76)2 (50 - 42)2 (77 - 73.96)2 (35 - 37.89)2 (20 - 27.39)2 
+ 28.76 + 42 + 73.96 + 37.89 + 27.39 

"" 7 . 14 

There are k = 5 grades and k - 1 = 4 degrees of freedom. The critical chi-square region for 4 degrees of freedom at 
the 0.05 significance level is all values greater than or equal to 9.49. Since 7 . 14 < 9.49, we do not reject the 
hypothesis that the grade distributions for males is the same as that for females. 

Extension to More Than Two Distributions 

The chi-square test for equality of two multinomial random variables X and Y can be extended to 
three or more independent multinomial random variables XI , X2 , . . .  , X" each having the same number 
of outcomes al , a2 , . . .  , ak . The null hypothesis is 

Ha : Plj = P2j = . . .  = Prj ; j = 1 , 2, . . .  , k  

where Pi} is the probability of outcome aj in the distribution of Xi. Let Ji} denote the frequency of 
outcome aj in ni tri al s corresponding to Xi. For each j (j = 1 , 2, . . .  , k) ,  the common value of Pi} 
(i = 1 , 2, . . .  , r) in the null hypothesis is estimated by Pj, obtained by pooling the frequencies Ji} 
(i = 1 , 2, . . .  , r) :  

A Iv + J2j + . . .  + Irj Jj p . = = -] nI + n2 + . . .  + nr n 
where Jj = Jlj + J2j + . . .  + Irj is the sum of the frequencies corresponding to outcome aj for 
all r multinomial random variables, and n = nI + n2 + . . .  + nr is the total number of tri al s (see Fig. 
1 1 -3). The number of degrees of freedom before the probability estimates are made is r(k - l ) ,  
corresponding to r independent multinomial random variables, each one consisting of k - 1 
independent frequency counts. Only k - 1 degrees of freedom are lost by the estimates 
since A = 1 - (PI + P2 + . . .  + A-I ) .  Hence, after the estimates are made, there are 
r(k - l) - (k - l) = (r - l ) (k - l) degrees of freedom. See Problem 1 1 . 14 for an example of the chi­
square test of equality for three multinomial random variables. 

Totals 

Fig. 11-3 Probabilities Pj estimated from frequencies fijo 

11.3 CHI-SQUARE TEST FOR INDEPENDENT ATTRIBUTES 

The chi-square random variable can also be applied in testing whether attributes are independent. 
For example, suppose n math students are classified according to stress experienced at final-exam time 
(Attribute X) and grades received in the final exam (Attribute Y). Stress is classified as L (low), 
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M (medium), and H (high); while grades are classified as A, B, e, D, and F. Cross-classifying the 
students according to the three categories of attribute X and the five categories of attribute Y results in 
Fig. 1 1 -4, which contains 3 x 5 = 1 5  cells within the margins. For example, the cell labeled LA con­
tains all students that experience low stress and get an A in the final exam, while the cell labeled He 
contains all students that experience high stress and get a e in the final exam. Such a table of cell 
counts is called a 3 x 5 contingency tableo 

Fig. 11-4 Contingency tableo 

A different group of n students would most likely result in a different contingency tableo When all 
such tables are considered, a probability can be associated with each cell. For example, P(LA) is the 
probability that a randomly chosen student will experience low stress and get an A in the final exam, 
while p(He) is the probability that a student will experience high stress and get a e in the final 
exam. Similarly, a probability can be associated with each marginal category. For example, P(L) 
is the probability that a student will experience low stress, and P( C) is the probability that a student will 
get a e in the final exam. 

Attributes X and Y are, by definition, independent if the probability corresponding to each cell of 
Fig. 1 1 -4 is equal to the product of the probability in the row margin of the cell with the probability in 
the column margin of the cell. That is, if 

P(LA) = P(L)P(A) ,  P(LB) = P(L)P(B) , . . .  , P(HF) = P(H)P(F) 

fifteen equations in all. Usually, the actual values of the probabilities in these equations are not known, 
but must be estimated from samples. The estimated probabilities most likely will not satisfy the 
equations exactly, so to test the hypothesis that X and Y are independent, a chi-square random variable 
X2 is constructed in terms of the expected and observed frequencies of the cross categories. The value of 
X2 on a particular random sample of students is then used to test the hypothesis that attributes X and Y 
are independent. 

Contingency Table of Probabilities 

To be more specific, and also more general, let X and Y be attributes associated with individual s 
in a population. Suppose that X can be classified into mutually disjoint categories Al , A2 , . . .  , A" and 
y can be classified into mutually disjoint categories BI , B2 , . . .  , Be - The probability P(AiBj) that a 
randomly chosen individual in the population can be classified into both category Ai and category Bj will 
be denoted by Pi}. Figure 1 1 -5 is an r x c contingency table 01 probabilities, where Pi} is in the ith row 
andjth column, i = 1 , 2, . . .  , r; j = 1 , 2, . . .  , c. 

The right column margin of Fig. 1 1 -5 contains the probabilities Pi. , i = 1 , 2, . . .  , r, where the dot after 
the subscript i indica tes summation through index j. For example, when i = 1 ,  

P I  = Pl l  + PI2 + . . .  + PIe = P(AI )  

Similarly, the lower row margin contains the probabilities Pj , j = 1 , 2, . . .  , c , where the dot before the j 
indicates summation through index i. For example, when j = 2, 

P·2 = PI2 + P22 + . . .  + Pr2 = P(B2) 
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y 
BI 

Al Pll PI2 Pie PI' 

X P21 P22 P2c P2° 

Prl Pr2 Prc Pro 

p.] P'2 P'e 

Fig. 11-5 Contingency table of probabilities. 

The sum of all of the probabilities Pi} within the margins is 1 ,  as is the sum of the marginal probabilities 
Pi , as is the sum of the marginal probabilities Pj' 

Contingency Table of Frequencies 

A random sample of n individual s in the population results in an r x e eontingeney tabie ollrequen­
des, as illustrated in Fig. 1 1 -6. For example,f12 denotes the number of individuals in the eross eategory 
A l E2, while 12l denotes the number of individual s in eros s eategory A2EI ' 

y 

X 

Fig. 11-6 Contingency table of frequencies. 

The marginal frequeney at the right of eaeh row in Fig. 1 1 -6 is the sum of the e frequeneies preeeding 
it, and the marginal frequeney at the bottom of eaeh eolumn is the sum of the r frequeneies aboye 
it. For example, 

J¡  = 111 + 112 + . . .  + Ile and 12 = 112 + 122 + . . .  + /"2 

The sum of all of the frequeneies Ii} within the margins is n, as is the sum of the marginal frequeneies Ji. , 
as is the sum of the marginal frequeneies Ij' When all possible samples of n individual s in the popula­
tion are eonsidered, it follows from Theorem 1 1 . 1  that the random variable 

is approximately ehi-square with re - 1 degrees of freedom, assuming n is large. Note that, in eaeh 
summation, j runs from 1 to e. 

Null Hypothesis and Test Statistic 

The null hypothesis is that attributes X and Y are independent. Equivalently, 
Ha: Pi} = Pi x Pj 
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for each pair ij. In practice, the values of Pi. and Pj are unknown, but are estimated as 

A /; /;1 + /;2 + . . .  + /;e Pi· = - = n n and 

329 

When Pi- and Pj are replaced by their estimates Pi. and Pj in the chi-square random variable aboye, 
r - 1 + e - 1 degrees of freedom are lost; and the resulting random variable 

2 _ " (llj - n x PI X pj)2 ,, (12) - n x h X pj)2 . . .  ,, (J,.) - n x Pr X pj)2 X - ú  A A + ú A A + + ú A A n X PI . X Pj n X P2. X Pj n X Pr. X Pj 
is approximately chi-square with re - 1 - (r - 1 + e - 1 )  = (r - 1 ) (  e - 1 )  degrees of freedom, assuming 
the null hypothesis is true. In each summation, j runs from 1 to e. The random variable X2 is the test 
statistic. 

Performing the Test: P-value and Critical Region 

A random sample of n individual s in the population results in the frequencies fij of cross categories 
AiB), where i = 1 , 2, . . .  , r , j = 1 , 2, . . .  , e, and ¿ fij = n. Using these frequencies, the estimated prob­
abilities A and Pj are computed, followed by the expected frequencies n x Pi- x Pj' and then a value :e 
of the test statistic X2 is determined. The P-value of the test is the probability that a test value as 
large or larger than :e would occur if Ha were true. That is, the P-value is P(X2 � :e) ,  assuming 
(r - 1) (e - 1 )  degrees of freedom. If a level of significance a is specified, then Ha is rejected if P-value 
:::; a; Ha is not rejected if P-value > a. Equivalently, the critical regio n for the test consists of all values 
of X2 that are greater than or equal to X*, where X* is the critical value satisfying P(X2 � X*) = a (see 
Fig. 1 1 - 1); Ha is rejected if :e is in the critical region; Ha is not rejected if :e is not in the critical region. 

As in the chi-square tests in Sections 1 1 . 1  and 1 1 .2, this test is also one sided in the chi-square 
random variable; the alternative hypothesis Ha is equivalent to the hypothesis: X2 � X*. 

EXAMPLE 1 1 .3 Let's consider Example 1 l .2 from the point of view of independence of at1ributes rather than 
equality of distributions. That is, 460 freshmen are cross classified according to gender and grades, as indicated in 
the tableo 

Grades 

A B C D F Totals (Ji ) 

Male 35 42 85 48 40 250 
Gender Female 28 50 77 35 20 210 

Totals Cf) 63 92 162 83 60 460 

Use the chi-square random variable to test, at the 0.05 significance level, the hypothesis that the at1ributes of gender 
and grades are independent. 

Here r = 2 and e = 5. The subscripts i = 1 , 2  correspond to male, female, respectively; and the subscripts 
j = 1 ,  2, 3, 4, 5, correspond to grades A, B, C, D, F, respectively. The probability estimates for gender are 

and those for grades are 

A 11 63 poI = --;; = 460 ' 
A 14 83 
PA = --;; = 460 ' 

A 12 92 po2 = --;; = 460 ' 
A 1s 60 poS = --;; = 460 
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The expected frequency estimate for males getting As is 
A 250 63 n x jJ ¡ x P·I = 460 x 460 x 460 = 34.24 

Similarly, the other nine cross-classification frequency estimates are 

[CHAPo 1 1  

n x Íh x P2 = 50, n x Íh x P3 = 88 .04, n x Íh x P4 = 45. 1 1 ,  n x PI x Ps = 32. 61 

and n x A X PI = 28 .76, 
n x P2 x P4 = 37.89, 

n x P2 x P2 = 42, n x A x P3 = 73 .96, 
n x P2 x Ps = 27.39 

The corresponding value of the chi-square test statistic is 

A 2 (35 - 34.24)2 (42 - 50)2 (85 - 88 .04)2 (48 - 45. 1 1 )2 (40 - 32.61 )2 
X = 34.24 + 50 + 88.04 + 45. 1 1  + 32.6 1  

(28 - 28.76)2 (50 - 42)2 (77 - 73.96)2 (35 - 37.89)2 (20 - 27.39)2 
+ 28 .76 + 42 + 73.96 + 37.89 + 27.39 

"" 7 . 14 

There are (r - 1 )  (e - 1 )  = 1 x 4 = 4 degrees of freedom. The critical chi-square region for 4 degrees of freedom at 
the 0.05 significance level is all values greater than or equal to 9.49. Since 7 . 14 < 9.49, we do not reject the 
hypothesis that the attributes of gender and grades are independent. 

Comparing the Chi-Square Tests for Equal Distributions and for Independent Attributes 

We see that the value of the chi-square statistic in Example 1 1 .3 is the same as that in Example 
1 1 .2. In fact, the chi-square test for equality of independent multinomial distributions always gives the 
same result as that for independence of cross classified attributes. That is, suppose an r x e frequency 
table is given. The table can be interpreted as a table of observed frequencies for r independent multi­
nomial random variables XI , X2 , . . .  , X" each with the same e outcomes (Fig. 1 1 -3, where k = e) , or as a 
table of observed frequencies for a cross-classification of a collection of r attributes with a collection of e 
attributes (Fig. 1 1 -6). Let a significance level a be specified. Then, on the basis of the chi -square test, 
the hypothesis that the r multinomial random variables have the same distributions will be rejected at 
level a if and only if the hypothesis that the r attributes are independent of the e attributes is rejected at 
level a (see Problems 1 1 . 1 3 ,  1 1 . 14, and 1 1 . 1 5) . 

Although the results are the same, the collection of the data is different in the two cases. In the case 
of the r multinomial random variables, r independent random samples of sizes nI , n2 , . . .  , nr are collected, 
one sample for each random variable; in the attribute case, a single random sample of size n is collected, 
and the data are then cross-classified into an r x e contingency tableo The two cases are comparable, 
and give equivalent results, when n = nI + n2 + . . .  + nr. 

11.4 ONE-WAY ANALYSIS OF VARIANCE 

In Section 10.2 we tested the hypothesis that two independent random variables have the same 
mean. When their variances were unknown, we further assumed that the random variables were 
approximately normal and that the variances, although unknown, were equal (see Prescriptions 10.4 
and 10.4(a)). Here we test the hypothesis that m independent approximately normal random variables 
with the same unknown variance have the same mean. In the case of two distributions, a t random 
variable was used as the test statistic. Here it is more convenient to use an F random variable as the 
test statlstlc. Both statistics measure in ratio form the variation between the distributions as being 
separate in relation to the variation within a single distribution obtained by pooling the data from each 
one. "Analysis of variance" is the technical expression used to describe this measure of variation. The 
analysis is "one-way" since only the row random variables are compared. 
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One-Way Random-Samples Table 

Suppose that X¡ , X2 , . . .  , Xm are m independent normal random variables with unknown means 
JL¡ , JL2 , . . .  , JLm and unknown but common variance 172 . We wish to test the null hypothesis 

Ha: JL¡ = JL2 = . . .  = JLm 

As illustrated in Fig. 1 1 -7, let Xii , Xi2 , . . .  , Xin be a random-variable sample of Xi of size n for 
i = 1 , 2, . . .  , m. 

Fig. 11-7 One-way random-samples tableo 

The right margin in Fig. 1 1 -7 contains the individual sample means Xi, where 

X. = Xii + Xi2 + . . .  + Xin 
1 n i = 1 , 2, . . .  , m  

The grand sample mean in the lower right comer, obtained by pooling the random samples, is 

Square Variations 

- X¡ + 1'2 + . . .  + Xm X = ---=----=-----"-' 
m 

The total square varzatzon, V r, of the samples in Figure 1 1 -7 is the sum of the squares of the 
deviations of the pooled samples from the grand sample mean: 

Vr = ¿ (XIj - 1')2 + ¿ (X2) - 1')2 + . . .  + ¿ (Xm) - 1')2 

where in each summation, j runs from 1 to n. The grand sample mean X is an estimator of the grand 
parameter mean JL = (JL¡ + JL2 + . . .  + JLm) / m, and Xi - X is an estimator of JLi - JL. If the null hypoth­
esis were true, then JLi - JL = 0, which means that Xi - X can be used as a measure of the disagreement of 
the data and the null hypothesis. With this in mind, the square deviation between the row samples, 
denoted by VR, is defined as 

The square variation due to random error, denoted by Veo is defined as 
Ve = Vr - VR 

A formula for Ve as a sum of squares is given in Problem 1 1 .22. Some important properties of 
these square variations can be summarized in the following theorem (see Problem 1 1 .23). 

Theorem 11.2: Ve/(J2 is chi-square with mn - m degrees of freedom regardless of whether the null 
hypothesis Ha : JL¡ = JL2 = . . .  = JLm is true or not. If Ha is true, then VR/(J2 is chi­
square with m - 1 degrees of freedom, and V r / 172 is chi -square with mn - 1 degrees of 
freedom; and all three chi-square random variables are independent. 
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The Test Statistic 

It follows from Theorem 1 1 .2 and the definition of the F distribution (Section 10.5) that if Ha is true, 
then 

F = _V_R.,;.,./...:....( m_-_1",-:-) Ve/ (mn - m) 

is an F random variable with m - 1 and mn - m degrees of freedom. F will be the statistic to test 
Ha . Motivation for this choice of test statistic is provided by the following theorem (see Problem 
1 1 .24). 

Theorem 11.3: E(Ve/(mn - m)) = 172, and where 
JL = (JL¡ + JL2 + . . .  + JLm)/m. 

Theorem 1 1 .3 says that if the null hypothesis is true (meaning JL = JLi for i = 1 , 2, . . .  , m), then 
E(VR/(m - 1) ) will equal 172, and therefore sample values of F should be close to 1 ; the more the 
means JLi differ, the larger sample values of F are likely to be. 

One-Way Analysis-of-Variance Table 

In applications of the F test for equal means, a one-way analysis-of-variance table is usually con­
structed as illustrated in Fig. 1 1 -8. 

Random error 

Ve 
Total 

of freedom Mean square F 

mn - m  
mn - m 

mn - l  

Fig. 11-8 One-way analysis-of-variance table. 

Performing the Test: P-value and Critical Region 

- 1) 
- m) 

Random collections of n sample values Xii , Xi2 , . . .  , Xin for each random variable Xi, i = 1 , 2, . . .  , m, 
are independently obtained. Using these, values Xi of the sample means Xi are computed, as well as a 
value X of the grand mean X. The corresponding values 

VT = ¿ (xlj - x)2 + ¿ (X2) - x)2 + . . .  + ¿ (xm) - x)2 , 

and 

of VT, VR, and Ve are then computed, and finally the value 

F =  vR/ (m - 1 ) 
ve/ (mn - m) 

of the test statistic F is determined. The P-value of the test is the probability that a test value as large 
or larger than F would occur if Ha: JL¡ = JL2 = . . .  = JLm were true. That is, the P-value is P(F � F) , 
assuming m - 1 and mn - m degrees of freedom. If a level of significance a is specified, then Ha is 
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rejected if P-value :5 0"; /Jo is not rejected if P-value > 0". Equivalently, the critical region for the leSt 
consists of al[ valucs of F that are greater than or cqual to F*, whcre F* is the critical valuc satisfying 
P(F � F*) = O" (sec Fig. 1 1 -9); Ha is rejected if fr is in the critical region; /Jo is not rejected if fr is not in 
lhe critical region. 

As in the chi-square tests in Sections 1 1 . 1 ,  1 1 .2, and 1 1 .3, this test is also one sided in lhe leSt 
statislic; the alternative hypothesis H" is equivalent to the hypothcsis F � F*. 

a 

, 
Critical region 

¡;-¡g. 1 1-9 

EXAMPlE 11.4 A random sample ofsizc 4 is taken from each of Ihree independenl normal random variables, Xl' 
Xl, Xl, resulting in Ihe following lable of sample values. 

X, 13 11 lO 22 

X2 lO 8 21 1 1  

X, 15 12 25 10 

Assumillg Ihal Ihe Ihree random variables have equal variances, tesl. al the 0.05 significance lcvcl, the hypothcsis 
that XI> X2, Xl have Ihe same mean. 

The samplc means are 
1 3 + 1 1 + 16 + 22 Xl = 4 = 15.S, 1 6 + 8 + 2 1 + 1 1  

S;2 = 4 
d l · 15.5 + 14+ 15.5 Th I . . . an the grand samp c mean 15 .\' = 

3 
15. e lota square vanatlOn 15 

I.IT = ( 1 3- Isi + (1 1 - IS)2 + ( 1 6- 1S)2 + (22 - I S)2 + ( 16- IS/ + (8 - I S/ + (21 - IS)2 

+ (1 1 _ 15)' + ( 15 _ 15)2 + (12 _ 15)2 + (25 _ 15)2 + (JO - 15/ 
= 306 

Thc squarc deviation bctwccn row samplcs is 

I.I/( = 4[(15.5 - 15)2 + (14 - 15)2 + (15.5 - 15)2J = 6 
and the square variation due 10 random error is 

11. = 306 - 6= 300 
To delcnninc the dcgrces of frcooom of Ihe lest SlaliSlic. we note Ihal 111 - 1 = 3 - I = 2, and 11111 - 111 = 
3 x 4 - 3 = 9. Therefore. Ihe tesl slatistie is 

(, 
9) - 6/2 -0 0  F -, -

300/9 - . 9 
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The critical region at the 0.05 significance level consists of all test values greater than or equal to 4.26. Since 
0.09 < 4.26, the test value is not in the critical region, and we do not reject the null hypothesis that the mean s of Xl , 
Xl, X3 are equal. The corresponding analysis-of-variance table is as follows. 

Square variation Degrees of freedom 

Between row samples 
VR = 6 m - I = 2  

Random error 
Ve = 300 mn - m = 9  

Total 
VT = 306 mn - l = l 1 

Mean square 

�
= 3 

m - l  

_v_e_ = 33.33 
mn - m  

F 

vR/(m - l ) = 0 09 ve/(mn - m) . 

Comparing the t Test and the F test for Equality of Means in the Two-Sample Case 

In the case of two independent normal distributions with equal but unknown variances, we can use 
either the F statistic defined here or the t statistic of Section 10.2 (Prescriptions 4 and 4(a)) to test the 
hypothesis that the distributions have equal means (see Problem 1 1 . 1 8). The t test and the F test for 
equal means against Ha: JLI el JL2 will have the same P-value and therefore will give the same result at 
any significance level. To see that the P-values are equal, we first note that, in the two-sample case, 
F = t2, where F = F(1 ,  n - 1) (see Problem 1 1 . 1 9). The alternative hypothesis Ha: JLI el JL2 is two-sided 
in the t test, and therefore the P-value is equal to P( l t l  � l il ) ,  where i is the sample value of t. 
The P-value in the F test is P(F � F) , where F is the test value. Since I t l  = n and l il = fl, the two 
P values are equal. 

11.5 TWO-WAY ANALYSIS OF VARIANCE 

In one-way analysis of variance, only row variables are compared. In two-way analysis of var­
iance, we compare both row and column variables defined by a frequency table of two cross-classified 
attributes, A and B, where A is classified into r categories Al , A2 , . . .  , A" and B is classified into e 
categories Bl , B2 , . . .  , Be - For example, as illustrated in Fig. 1 1 -10, where r = 2 and e = 3, the popula­
tion may consist of college students; attribute A is gender, classified into Al :  Male and A2: Female, and 
attribute B is age, classified into Bl :  Below 20 years, B2: 20 to 25 years, and B3 :  Over 25 years. Each 
entry A;Bj in the table represents the number of students in both category A; and category Bj. 

Fig. 11-10 Cross classification of at1ributes. 

Assumptions for Two-Way Analysis of Variance 

In general, consider a population classified according to two attributes A and B. A sample of size n 
from the population results in an r x e cross-classification table such as Fig. 1 1 - 1 1 ,  where the entry in 
row i and column j is the number of individual s in the population falling into categories A; and Bj. We 
assume that the entry in row i and column j is a value of a normal random variable Xi} with mean JLi} and 
standard deviation (J. That is, all re random variables Xi} have the same standard deviation; they are 
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also assumed to be independent. Then, for i = 1 ,  2, . . .  , r , the row sample mean 
Xil + Xa + · · · + Xic 

e 

has mean JLi. = (JLil + JLa + . . .  + JLiJ/e. For j = 1 , 2, . . .  , e, the column sample mean 

X . = 
XIj + X2j + . . .  + Xrj 

:1 r 
has mean JLj = (JLlj + JL2j + . . .  + JLry)/r. The grand sample mean is defined to be 

1' = XI + 1'2 + . . .  + Xr. 
r equivalently, 1' = 1' 1 + 1'2 + · · · + 1'c 

e 
X has mean JL = (JLI + JL2· + . . .  + JLr ) / r which is also equal to JL = (JL 1 + JL·2 + . . .  + JL J / e. 

Null Hypotheses 

Row 

Attribute B 

Attribute A 

Column 

Grand 

Fig. 11-11 Two-way cross-classification tableo 

means 

mean 
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In a two-way analysis of variance, there are two null hypotheses, one saying that the row means are 
equal: 

(R) . Ha . JLlj = JL2j = . . .  = JLrj for j = 1 , 2, . . .  , e 

and the other saying that the column means are equal: 

H¿C) : JLil = JLa = . . .  = JLic for i = 1 , 2, . . .  , r 

With reference to cross-classification of college students in Fig. 1 1 - 10, H¿R) says that the gender 
distributions are equal, and H¿C) says that the age distributions are equal. 

Square Variations 

Analogous to the one-way case, for two-way analysis, the total square variation, denoted by V r, is 
the sum of the squares of the deviations of all re random variables from the grand mean: 

Vr = ¿ (XIj - 1')2 + ¿ (X2j - 1')2 + . . .  + ¿ (Xrj - 1')2 

where j runs from 1 to e in each summation. The square deviation between rows, denoted by VR , is 
defined as 

where i runs from 1 to r. The square deviation between eolumns, denoted by Ve, is defined as 

Ve = r ¿ (Xj - X)2 
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where j runs from 1 to e. The square variation due to random error, denoted by Ve> is defined as 

In one-way analysis of variance, we were able to say that the distribution of Ve does not depend on 
whether the null hypothesis is true or not (Theorem 1 1 .2). To obtain a similar result here, we assume 
that the means JLi} of the random variables Xi} satisfy the equations JLi} = JL + ni + f3j' where ¿ ni = O 
and ¿ f3j = O (see Problems 1 1 .27-1 1 .30). Then, as in the one-way case, some important properties of 
the square variations can be summarized in the following theorem. 

Theorem 11.4: Ve/(J2 is chi -square with (r - 1) (e - 1 )  degrees of freedom regardless of whether either 
null hypothesis is true. If H6R

) 
is true, then VR/(J2 is chi-square with r - 1 degrees 

of freedom; and if H¿C) is true, then VC/(J2 is chi-square with e - 1 degrees of free­
domo If both H¿R) and H¿C) are true, then Vr/(J2 is chi-square with re - 1 degrees of 
freedom; and all four chi-square random variables are independent. 

The Test Statistics 

It follows from Theorem 1 1 .4 and the definition of the F distribution (Section 10 .5) that if H¿R) is 
true, then 

F(R) = VR/(r - 1 )  

Ve/ (r - l ) (e - 1 )  

i s  an F random variable with r - 1 and ( r - 1 )  ( e - 1 )  degrees of freedom. F(R) is the test statistic used 
to test H¿R) . Similarly, if the null hypothesis H¿C) is true, then 

F(C) = Vc/(e - 1 )  

Ve/ (r - l ) (e - 1 )  

i s  an F random variable with e - 1 and ( r - l ) (e - 1) degrees of freedom. F¿C) i s  the test statistic used 
to test H¿C) . Motivation for the choice of test statistics is provided by the following theorem. 

Theorem 11.5: 2 2 e 2 E(Ve/(r - l ) (e - 1))  = 17 , E(VR/ (r - 1) )  = 17 + r _ 1 
¿ (JLi - JL) , 

2 r 2 and E(Vc/(e - 1) )  = 17 + e _ 1 
¿ (JLj - JL) . 

Theorem 1 1 .5  says that if H¿R) is true, then E(VR/ (r - 1))  will equal 172, and sample values of F(R) 
will tend to be close to 1 ;  the more the row means differ, the larger sample values of F(R) are likely to 
be. Similarly, if H¿C) is true, then E(Vc/ (e - 1) )  will equal 172, and sample values of F(C) will tend to be 
close to 1 ;  the more the column means differ, the larger sample values of F(C) are likely to be. 

Two-Way Analysis-of-Variance Table 

In applications of an F test for equal row means and for equal column means, a two-way analysis-of­
varianee table is usually constructed as illustrated in Fig. 1 1 - 12. 

Performing the Tests: P-value and Critical Regions 

A total of re random values xi}, one for each random variable Xi}, are independently obtained. 
Using these, the sample-mean values Xi. = (Xii + Xi2 + . . .  + xiJ/e, Xj = (xlj + X2j + . . .  + xrj)/r, 
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of freedom Mean square 

Between rows r - 1 

Between columns 
e 1 

Random error 

Ve 
(r l )(c 1)  

(r - l)(c - l) 

Total rc - l  

Fig. 11-12 Two-way analysis-of-variance tableo 

F 
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1)  

and X = (Xl + x2 + . . .  + xr )/r (equivalently, X = (Xl + X2 + . . .  + xJ/c) are computed. The 
corresponding values 

are then computed. FinaHy the values 

¡(R) = vR/ (r - 1 )  
ve/(r - 1 ) (c - 1 )  

of the test statistics are determined. 

and 

and 

¡(e) = vc/ (c - 1 )  
ve/ (r - 1 ) (c - 1) 

The P-value of the row test is the probability that a test value as large or larger than ¡(R) would 
occur if H¿R) were true. That is, the P-value is P(F � ¡(R) ) ,  assuming r - 1 and (r - 1 ) (c - 1¿ degrees 
of freedom. If a level of significance a is specified, then H¿R) is rejected if P-value :::; a; HaR) is not 
rejected if P-value > a. Equivalently, the critical regio n for the test consists of aH values of F that are 
greater than or equal to F*, where F* is the critical value satisfying P�F � F*) = a, assuming r - 1 and 
(r - 1) (e - 1) d�wees of freedom (see Fig. 1 1 -2); H¿R) is rejected if ¡ R) is in the critical region; H¿R) is 
not rejected if F R) is not in the critical region. 

The P-value of the column test is the probability that a test value as large or larger than ¡(e) would 
occur if H¿e) were true. That is, the P-value is P(F � ¡(e) ) ,  assuming e - 1 and (r - 1 ) (c - 1� degrees 
of freedom. If a level of significance a is specified, then H¿e) is rejected if P-value :::; a; Ha e) is not 
rejected if P-value > a. Equivalently, the critical regio n for the test consists of aH values of F that are 
greater than or equal to F*, where F* is the critical value satisfying P�F � F*) = a, assuming e - 1 and 
(r - 1) (e - 1 )  d�wees of freedom (see Fig. 1 1 -9); H¿ e) is rejected if ¡ e) is in the critical region; H¿ e) is 
not rejected if F e) is not in the critical region. 

As in the one-way analysis of variance, these tests are also one sided; the alternative hypothesis Ha in 
each case is equivalent to the hypothesis: F � F*. 

EXAMPLE 1 1 .5 Three types of indoor lighting: Al, Al, and A3 , were tried on three types of flower: Bl , Bl , and B3 , 
grown from seed. The average heights in cm after 12 weeks of growth are indicated in the tableo 

(a) Test, at the 0.05 significance level, whether there is a significant difference in growth due to lighting. 
(b) Test, at the 0.05 significance level, whether there is a significant difference in growth due to flower type. 
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Flowers 

Bl B2 B3 Row sample means 

Al 1 6  24 19 19.67 
Lighting A2 1 5  25 1 8  19.33 

A3 21 31  15 22.33 

Column sample means 1 7.33 26.67 1 7.33 20.44 

Grand sample mean 

From the table, we see that the grand sample mean is x = 20.44. The total variation is 

VT = ( 1 6  - 20.44)2 + (24 - 20.44)2 + ( 19 - 20.44)2 + ( 1 5  - 20.44)2 + (25 - 20.44)2 

+ ( 1 8  - 20.44)2 + (21 - 20.44)2 + (31 - 20.44)2 + ( 1 5  - 20.44)2 = 232.22 

[CHAPo 1 1  

The row sample means are Xl . = 19.67, x2. = 19.33, and x3. = 22.33; and the square deviation between rows is 

VR = 3 [( 19.67 - 20.44)2 + ( 19.33 - 20.44)2 + (22.33 - 20.44)2] = 16 . 19 

The column sample mean s are X. l = 1 7.33, X.2 = 26.67, and X.3 = 17 .33 ;  and the square deviation between columns is 

Ve = 3 [( 1 7.33 - 20.44)2 + (26.67 - 20.44)2 + ( 1 7.33 - 20.44)2] = 174.47 

Therefore, the square variation due to random error is 
Ve = 232.22 - ( 174.47 + 16 . 19) = 41 . 56 

(a) The degrees of freedom of the row test statistic are r - 1 = 2 and (r - 1) (e - 1 )  = 4; and the value of the row 
test statistic is 

A (R) _ 1 6. 19/2 _ F - 41 . 56/4 - 0.78 

From Table A-5 in the Appendix, the critical regio n for the row test at the significance level 0.05 consists of all 
test values greater than or equal to 6.94. Since 0.78 < 6.94, the test value is not in the critical region, and we 
do not reject the null hypothesis that the column means are equal. Equivalently, we conclude that there is not 
a significant difference in growth due to the type of lighting. 

(b) The degrees of freedom of the column test statistic are e - 1 = 2 and (r - 1 )  (e - 1 )  = 4; and the value of the 
column test statistic is 

¡(e) = 1 74.47/2 = 8 .40 41 . 56/4 
From Table A-5, the critical region for column test at the significance level 0.05 consists of all test values greater 
than or equal to 6.94. Since 8 .40 > 6.94, the test value is in the critical region, and we reject the null 
hypothesis that the column mean s are equal. Equivalently, we conclude that there is a significant difference 
in growth due to the type of flower. The corresponding analysis-of-variance table is 

Square variation Degrees of freedom 

Between rows 
VR = 16 . 19 r - l = 2 

Between columns 
Ve = 1 74.47 e - l = 2 

Random error 
Ve = 41 . 56 (r - l ) (e - l) = 4 

Total 
VT = 232.22 re - 1 = 8 

Mean square 

VR = 8 . 10 r - l  

Ve 
--1 = 87.24 e -

Ve = 10 39 (r - 1 )  (e - 1 )  . 

F 

¡(R) = 0.78 

¡(e) = 8 .40 
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Solved Problems 

CHI-SQUARE GOODNESS-OF-FIT TEST 

11.1. A pair of dice is tossed 360 times, and the frequency of each sum is indicated in the chart. 

Sum 2 3 4 5 6 7 8 9 10 

Frequency 8 24 35 37 44 65 51  42 26 

Would you say that the dice are fair on the basis of the chi-square test? 
The null hypothesis is 

1 1  12 

14 14 

1 Ha : P(2) = 36 = P(12), 

4 P(5) = 36 = P(9) ,  

P(3) = 3
2
6 = P( l 1 ) ,  

5 P(6) = 36 = P(8), 

P(4) = :6 = P(10) , 

6 P(7) = 36 
The following table lists the 1 1  expected frequencies npj' where n = 360. 

Sum 2 3 4 5 6 7 8 9 10 1 1  

Expected frequency 10 20 30 40 50 60 50 40 30 20 

The chi-square test sum is 

12 

10 

A 2 (8 - 10)2 (24 - 20)2 (35 - 30)2 (37 - 40)2 (44 - 50)2 (65 - 60)2 (51 - 50)2 
X = 10 + 20 + 30 + 40 + 50 + 60 + 50 

(42 - 40)2 (26 - 30)2 ( 14 - 20)2 ( 14 _ 10)2 
+ 40 + 30 + 20 + 10 "" 7.45 
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From Table A-3 in the Appendix, with 10 degrees of freedom, we find that the probability of a sum as large 
or larger than 6.74 is 0.75, and the probability of a sum as large or larger than 9.34 is 0.5 . Hence, the 
probability of getting 7.45 or larger is between 0.5 and 0.75 (using computer software, the probability is 
0.68), which is strong evidence that the dice are fair. More precisely, the null hypothesis would not be 
rejected at any significance level less than 0.68. 

11.2. Over the years, the grades in a certain college professor's class are typically as follows: 10 percent 
As, 20 percent Bs, 50 percent Cs, 1 5  percent Ds, and 5 percent Fs. The grades for her current 
class of 100 are 1 6  As, 28 Bs, 46 Cs, 10 Ds, and O Fs. Test the hypothesis that the current class is 
typical by a chi-square test at the 0.05 significance level. 

The null hypothesis, expected frequency, and actual frequency are shown in the following tableo 

Grade A B C D F 

Ha : probability = 0 . 1  0.2 0.5 0 . 1 5  0.05 

Expected frequency 10 20 50 1 5  5 

Actual frequency 1 6  28 46 10 O 
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The chi-square test sum is 

A 2 ( 1 6  - 10)2 (28 - 20)2 (46 - 50)2 ( 1 0  - 1 5)2 (O - 5)2 
X = 10 + 20 + 50 + 1 5  +--5- "" 1 3 .79 

From Table A-3, with 5 - 1 = 4 degrees of freedom, the critical region consists of aH values greater than or 
equal to 9049. Since 13 .79 > 9049, we reject the hypothesis that the class is typica!. 

11.3. A bag is supposed to contain 20 percent red beans and 80 percent white beans. A random 
sample of 50 beans from the bag contains 1 6  red and 34 white. Apply the chi-square test at the 
0.05 significance level to either reject or not reject the hypothesis that the contents are as adver­
tised. 

If the contents are 20 percent red and 80 percent white, then P(red) = PI = 0.2, and 
P(white) = P2 = 0.8; npI = 50 x 0.2 = 10 and np2 = 50 x 0.8 = 40. The test chi-square value is 

A 2 ( 1 6  - 10)2 (34 - 40)2 
X = 10 + 40 = 4.5 

From Table A-3, with one degree of freedom, the critical region consists of aH values greater than or equal to 
3 .84. Since 4. 5 > 3.84, we reject the hypothesis that the bag contains 20 percent red and 80 percent white 
beans. 

11.4. A coin is tossed 100 times, resulting in 60 heads (H) and 40 tails (T). Apply the chi-square test 
at the 0.05 significance level to either reject or not reject the hypothesis that the coin is fair. 

The nuH hypothesis is: P(H) = PI = 0.5, P(T) = P2 = 0.5 . We have n = 100, so npI = 100 x 
0.5 = 50 = np2 . The test chi-square value is 

A 2 (60 - 50)2 (40 - 50)2 
X = 50 + 50 = 4 

From Table A-3, with one degree of freedom, the critical region consists of aH values greater than or equal to 
3 .84. Since 4 > 3.84, we reject the hypothesis that the coin is fair. 

11.5. Suppose a coin is tossed 100 times, resulting in x heads. For what values of x will the null 
hypothesis that the coin is fair not be rejected on the basis of the chi-square test at the 0.05 
significance level? 

If x is the number of heads, then 100 - x is the number of tails. For the hypothesis of fairness not to 
be rejected at the 0.05 level, the test chi-square sum must satisfy (see Problem 1 1 04) 

which simplifies to 

Simplifying further, 

A 2 _ (x - 50)2 ( 100 - x - 50)2 3 84 X - 50 + 50 < .  

(x - 50)2 (50 - x)2 3.84 50 + 50 < or 2(x - 50)2 3 .84 50 < 

(x - 50)2 < 25 x 3.84 or Ix - 50 1 < V25 x 3.84 "" 9.80 < 10 

Hence, x must satisfy Ix - 50 1 < 10 which is equivalent to -10  < x - 50 < 10, or 40 < x < 60. Therefore, 
if there are more than 40 but fewer than 60 heads in 100 tosses, the hypothesis of fairness wiH not be rejected 
at the 0.05 significance leve!. 
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CHI-SQUARE TEST FOR EQUAL DISTRIBUTlONS 

11.6. At what significance level would the null hypothesis in Example 1 1 .2 be rejected? 
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The chi-square test value obtained in Example 1 l .2 is 7. 14, and the number of degrees of freedom is 
4. From Table A-3, we see that any test value equal to or greater than 5.39 will be in the critical region at 
significance level 0.25. Hence, the null hypothesis will be rejected at the 0.25 significance leve!. Using 
computer software, we find that the P-value of the test, which is defined as p(X2 ::> 7 . 14) for 4 degrees of 
freedom, is 0 . 13 .  Hence, the null hypothesis will be rejected at any significance level greater than or equal to 
0 . 1 3 .  

11.7. A random group of 40 people younger than 50 years was given a fiu shot, and a second random 
group of 60 people 50 years or older was given the same fiu shot. Each member of the groups 
was classified according to whether the member did not get the fiu (N), had a mi Id case of the fiu 
(M), or had a severe case of the fiu (S). The frequencies in each group are as indicated in the 
following tableo 

Reaction 

N M S Totals 

Under 50 years 30 6 4 40 
Age 50 years or older 36 12 12 60 

Totals 66 1 8  16 100 

Use a chi-square random variable to test, at the 0.05 significance level, the hypothesis that the 
reactions to the shot are the same in each group. 

By pooling the subjects under 50 years and those 50 years and over in each reaction group, we get the 
following estimated probabilities: 

fiN = 1
6
0
6
0 = 0.66, PM = /0

8
0 = 0 . 18 ,  fts = 1

1
0
6
0 = 0 . 16  

The expected frequencies mpj for the m = 40 subjects under 50 years are 
mpN = 40 x 0.66 = 26.4, mpM = 40 x 0 . 18  = 7.2, mfts = 40 x 0 . 16 = 6.4 

and the expected frequencies npj for the n = 60 subjects 50 years and over are 
npN = 60 x 0.66 = 39.6, npM = 60 x 0 . 1 8  = 10.8, nfts = 60 x 0.16 = 9.6 

The corresponding chi-square test value is 

A 2 (30 - 26.4)2 (6 - 7.2)2 (4 - 6.4)2 (36 - 39.6)2 (12 - 10.8)2 (12 - 9.6)2 X = 26.4 + 7.2 + 6.4 + 39.6 + 10.8 + 9.6 
"" 2.65 

There are k = 3 reaction levels and k - 1 = 2 degrees of freedom. From Table A-3, the critical chi-square 
regio n for 2 degrees of freedom at the 0.05 significance level is all values greater than or equal to 5.99. Since 
2.65 < 5.99, we do not reject the hypothesis that the reactions to the shot are the same in each group. 

11.8. At what significance level would the null hypothesis in Problem 1 1 .7 be rejected? 
The chi-square test value obtained in Problem 1 l .7 is 2.65, and the number of degrees of freedom is 

2. From Table A-3, we see that any test value equal to or greater than l .39 will be in the critical region at 
significance level 0 .50. Hence, the null hypothesis will be rejected at the 0 .50 significance leve!. Using 
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computer software, we find that the P-value of the test, which is defined as p(X2 ::> 2.65) for 2 degrees of 
freedom, is 0.27. Hence, the null hypothesis will be rejected at any significance level greater than or equal to 
0.27. 

11.9. Salaries for 200 males and 300 females at a certain company are as indicated in the following 
frequency table, where the notation [a, b) means a salary greater than or equal to a but les s than b. 

Salaries in thousands of dollars 

1 2 3 4 5 
[20, 30) [30, 40) [40, 50) [50, 60) [60, -) Totals 

Male 20 34 46 60 40 200 
Gender Female 45 78 90 62 25 300 

Totals 65 1 12 136 122 65 500 

U se the chi-square random variable to test, at the 0.05 significance level, the hypothesis the salary 
distributions are the same. 

By pooling the male and female frequencies in each salary grade, we obtain the following estimated 
probabilities: 

PI = 5
6;0 = 0 . 13 ,  

A = 122 = 0.244 P4 500 ' 

A = � = 0.224 P2 500 ' 

Ps = 5
6;0 = 0 . 1 3  

The expected frequencies mpj for the m = 200 males are: 

mpI = 200 x 0 . 13  = 26, 

mp4 = 200 x 0.244 = 48 .8 ,  

mp2 = 200 x 0.224 = 44.8 ,  

mps = 200 x 0.13 = 26 

and the expected frequencies npj for the n = 300 females are: 

npI = 300 x 0 . 1 3  = 39, 
np4 = 300 x 0.244 = 73.2, 

np2 = 300 x 0.224 = 67.2, 
nps = 300 x 0 . 13  = 39 

The corresponding chi-square test value is 

P3 = ��� = 0.272, 

mp3 = 200 x 0.272 = 54.4, 

np3 = 300 x 0.272 = 8 1 .6, 

A 2 (20 - 26)2 (34 - 44.8)2 (46 - 54.4)2 60 - 48.8)2 (40 - 26)2 X = 26 + 44.8 + 54.4 + 48.8 + 26 
(45 - 39)2 (78 - 67.2)2 (90 - 8 1 .6)2 (62 - 73 .2)2 (25 - 39)2 

+ 39 + 67.2 + 8 1 .6 + 73.2 + 39 
"" 25.66 

There are k = 5 salary grades and k - 1 = 4 degrees of freedom. The critical chi-square region for 4 
degrees of freedom at the 0.05 significance level is all values greater than or equal to 9.49. Since 
25.66 > 9.49, we reject the hypothesis that the salary distribution for males is the same as that for females. 

11.10. What is the probability that the chi-square value of 25.66 obtained in Problem 1 1 .9, or higher, 
would occur if the male and female salaries were equally distributed? 

From Table A-3, with 4 degrees of freedom, we see that the probability that a test value equal to or 
greater than 18 . 5  is 0.00 1 .  Hence, the probability of getting 25.66 or higher is less than 0.00 1 .  Using 
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computer software, we find that p(X2 ::> 25.66) for 4 degrees of freedom is 0.000 04. Hence, there are only 4 
chances in 100,000, or 1 in 25,000, that a chi-square value this large would occur if the male and female 
salaries were equally distributed. 

CHI-SQUARE TEST FOR INDEPENDENT ATTRIBUTES 

11.11. A random group of 800 eligible voters was cross-classified according to annual income and 
party affiliation, as indicated in the following tableo In the table, [20, 40) signifies income of 
at least $20,000 but less than $40,000; [40, 60) means at least $40,000 but les s than $60,000, and 
[60,000, -) means $60,000 and over. Apply a chi-square test for independence of annual income 
and party affiliation at the 0.05 significance level. 

Annual income 

[20, 40) [40, 60) [60, -) Totals (J;) 

Democratic 125 225 70 420 
Party Republican 60 200 120 380 

Totals (Jj) 1 85  425 190 800 

The contingency table has r = 2 rows, where Democratic affiliation corresponds to i = 1 and Republican 
affiliation corresponds to i = 2; there are e = 3 columns, where j = 1 corresponds to the salary range [20, 40), 
j = 2 corresponds to [40, 60), and j = 3 corresponds to [60, -). The estimated row probabilities are: 

A 420 380 
PI = 800 = 0.525, P2 = 800 = 0.475 

and the estimated column probabilities are: 
A 185 
P·I = 800 ' 

The expected frequency estimates are: 

n x ft¡ x PI = 800 x 0.525 x ��� = 97. 125, 

A 425 
P·2 = 800 ' 

A 190 
P·3 = 800 

n x ft¡ x P2 = 223. 125, 

n x A x PI = 87.875, n x P2 x P2 = 201 . 875, n x P2 x P3 = 90.25 

The test value of the chi-square statistic is: 
A 2 ( 125 - 97. 125)2 (225 - 223 . 125)2 (70 - 99.75)2 
X = 97.125 + 223 . 125 + 99.75 

(60 - 87.875)2 (200 - 201 .875)2 ( 120 - 90.25)2 
+ 87.875 + 201 .875 + 90.25 

"" 35.56 

n x ft¡ x P3 = 99.75, 

There are (r - 1 ) (c - 1) = 1 x 2 = 2 degrees of freedom. From Table A-3, the critical region for 2 degrees 
of freedom at the 0.05 significance level is all test values greater than or equal to 5.99. Since 35.56 > 5.99, 
we reject the hypothesis that annual income and party affiliation are independent. 

11.12. Estimate the P-value for the test in Problem 1 1 . 12, and interpret the result. 

The P-value is the probability that a test value as large or larger than 35 .56 would occur, at 2 degrees of 
freedom, if the at1ributes of annual income and party affiliation were independent. From Table A-3 in the 
Appendix, we can conclude only that the P-value is less than 0.00 1 .  Using computer software, we find that 
p(X2 ::> 35.56) = 0.000 000 02. Hence there are only 2 changes in 100 million, or 1 in 50 million, that such a 
large test statistic would occur if the at1ributes of annual income and party affiliation were independent. 
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11.13. A random group of 300 males was cross-classified according to age and total cholesterol level, as 
indicated in the table below. 

Total cholesterol 

Under 200 200-239 240 or higher 
Low Medium High Totals (/; ) 

20-34 66 24 8 98 
Age 35-54 54 48 22 124 

55-74 18 50 10 78 

Totals (Jj) 1 38 122 40 300 

Use the chi-square random variable to test, at the 0.01 significance level, the hypothesis that the 
attributes of age and cholesterol level are independent. 

The contingency table has r = 3 rows, where age bracket 20-34 corresponds to i = 1 , 35-54 corresponds 
to i = 2, and 55-74 corresponds to i = 3. There are e = 5 columns, where j = 1 corresponds to low 
cholesterol level, j = 2 corresponds to medium, and j = 3 corresponds to high. The estimated row prob­
abilities are: 

98 
300 ' 

124 
300 ' 

78 
300 

and the estimated column probabilities are: 

A 122 
P·2 = 300 ' 

A 40 
P·3 = 300 

The expected cross-classification frequency estimates, where n = 300, are: 

n x ft¡ x PI = 45.08, 
n x P2 x PI = 57.04, 
n x P3 x PI = 35.88, 

n x ft¡ x P2 = 39.853, 
n x P2 x P2 = 50.427, 
n x P3 x P2 = 31 .72, 

The test value of the chi-square statistic is: 

n x PI x P3 = 1 3 .067, 
n x P2 x P3 = 1 6.533, 

n x P3 x P3 = 10.4 

A 2 (66 - 45.08)2 (24 - 39.853)2 (8 - 13 .067)2 (54 - 57.04)2 (48 - 50.427)2 
X = 45.08 + 39.853 + 1 3.067 + 57.04 + 50.427 

(22 - 1 6.533)2 ( 1 8  - 35.88)2 (50 - 31 .72)2 ( 10 - 10.4)2 
+ 16 .533 + 35.88 + 31 .72 + 10.4 

"" 39.53 

There are (r - 1) (e - 1) = 2 x 2 = 4 degrees of freedom. From Table A-3, the critical region for 4 degrees 
of freedom at the 0.01 significance level is all test values greater than or equal to 1 3.3 .  Since 39.53 > 1 3 .3, 
the test value is in the critical region, and we reject the hypothesis that age and total cholesterol level are 
independent. 

11.14. Consider the table in Problem 1 1 . 1 3  as a frequency table for three independent multinomial 
random variables, XI , X2, X3 , where Xi distributes the number of subjects in its corresponding 
age bracket among the three cholesterol levels. Test, at the 0.01 significance level, the hypothesis 
that the random variables have the same distribution. 



CHAPo 1 1] CHI-SQUARE TESTS AND ANALYSIS OF VARIANCE 345 

The null hypothesis is Ha: Pll = P21 = P31 ;  P12 = P22 = P32; P13 = P23 = P33 , where Pij is the probability 
of cholesterol level j in age bracket i. We estimate the probability of cholesterol level j by pooling the 
frequencies in the jth column of the table: 

A 40 
P3 = 300 

The expected frequencies corresponding to the 98 subjects in age bracket 20-34 are: 
1 38 98 x 300 = 45.08, 122 98 x 300 = 39.853, 40 98 x 300 = 13 .067 

Those corresponding to the 124 subjects in age bracket 35-54 are: 
138 124 x 300 = 57.04, 122 124 x 300 = 50.427, 124 x 3�00 = 16 . 533 

and those corresponding to the 78 subjects in age bracket 55-74 are: 
1 38 78 x 300 = 35.88, 122 78 x 300 = 3 1 . 72, 40 78 x 300 = 10.4 

Note that these 9 frequencies also occurred as cross-classification frequencies in Problem 1 1 . 1 3 . The test 
value of the chi-square statistic here will also be the same as in Problem 1 1 . 1 3, namely, X2 "" 39.53. Finally, 
since there are also 4 degrees of freedom here, the critical region at the 0.01 significance level is the same as in 
Problem 1 1 . 13 ,  namely all test values greater than 1 3.3 .  We therefore reject the hypothesis that the three 
multinomial random variables have the same distribution. 

11.15. Suppose the frequency data in an r x e contingency table for cross-classified attributes is the same 
as the frequency data in an r x e table for r independent multinomial random variables, each with 
the same e possible outcomes. Show that the test value of the chi-square statistic is the same in 
each case. 

In the cross-classification case, the probability estimates are 

(see Fig. 1 1 -6), and the expected frequency estimates are 

A A j, Jj 
n x Pi. x Pj = i. X --;; 

In the multinomial random variables case, the probability estimates are 

A Jj 
Pj = --;; 

(see Fig. 1 1 -3), and the expected frequency estimates are 

A fj 
ni x Pj = ni x --;; 

Since ni = Jil + Ji2 + . . .  + Jic = Ji. , it follows that the expected frequency estimates are the same, and 
therefore the test values of the chi-square statistic are the same. Note that the number of degrees of 
freedom is (r - 1) (e - 1) in each case. 

ONE-WAY ANALYSIS OF VARIANCE 

11.16. The average gas mileage, in miles per gallon, of a random sample of compact cars, five from each 
of three manufactures, is given in the tableo Assume that the average gas mileage for each of the 
three makes of cars is normally distributed, and that the three distributions have the same 
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vanance. Test, at the 0.01 significance level, the hypothesis that the three distributions have the 
same mean. 

XI 32.5 30.2 34.6 3 1 .3 29.8 

X2 28.9 29.6 30.2 30.6 29. 1  

X3 34.8 36.2 3 1 . 8  33.7 35.3 

As indicated in the table, the three distributions are labeled XI , X2, X3 , respectively. The respective 
test values of the sample means for XI , X2, X3 are 

XI = 32.5 + 30.2 + 34.6 + 3 1 .3 + 29.8  = 3 1 68 5 . , X2 = 28.9 + 29.6 + 30.2 + 30.6 + 29. 1  = 29 68 5 . , 

X3 = 34.8 + 36.2 + 3 1 . 8  + 33.7 + 35 .3 = 34 36 5 . 

d h d i · 3 1 .68 + 29.68 + 34.36 3 1 91  an t e gran samp e mean I S  X = 3 = .  . The total square variation is 

VT = (32.5 - 3 1 .9 1 )2 + (30.2 - 3 1 .9 1 )2 + (34.6 - 3 1 .9 1 )2 + (3 1 .3 - 3 1 .9 1 )2 + (29.8 - 3 1 .92)2 

+ (28.9 - 3 1 .9 1 )2 + (29.6 - 3 1 .9 1 )2 + (30.2 - 3 1 .9 1 )2 + (30.6 - 3 1 .9 1 )2 + (29 . 1  - 3 1 .9 1 )2 

+ (34.8 - 3 1 .9 1 )2 + (36.2 - 3 1 .9 1 )2 + (3 1 . 8  - 3 1 .9 1 )2 + (33.7 - 3 1 .9 1 )2 + (35.3 - 3 1 .9 1 )2 

= 83.73. 

The square deviation between row samples is 

VR = 5 [(3 1 .68 - 3 1 .9 1 )2 + (29.68 - 3 1 .9 1 )2 + (34.36 - 3 1 .9 1 )2] = 55. 14 

and the square variation due to random error is 

Ve = 83.73 - 55. 14 = 28 .59 

The degrees of freedom are m - 1 = 3 - 1 = 2 and mn - m = 3 x 5 - 3 = 12, and the test statistic is 
A 55. 14/2 F(2, 12) = 28 .59/12 = 1 1 .57 

From Table A-7, the critical region at the 0.01 significance level consists of all test values greater than or 
equal to 6.93. Since 1 1 . 57 > 6.93, the test value is in the critical region, and we reject the null hypothesis 
that the means of XI , X2, X3 are equal. The corresponding analysis-of-variance table is as follows. 

Square variation Degrees of freedom 

Between row samples 
VR = 55 . 14 m - l = 2 

Random error 
Ve = 28 .59 mn - m = 12 

Total 
VT = 83.73 mn - 1 = 14 

Mean square 

� = 27.57 m - l  

_v_e_ = 2.38 mn - m  

F 

VR/(m - 1 )  = 1 1 .57 Ve/ (mn - m) 

11.17. Determine the P-value for the test in Problem 1 1 . 16, and interpret the result. 

The P-value for the test is the probability that a value of the test statistic equal to or greater than 1 1 . 57 
would occur if the hypothesis that the three distributions have the same mean were true. From Table A-7 
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in the Appendix, with 2 and 12 degrees of freedom, we can conclude only that the P-value is less than 
0.0 1 .  Using computer software, we find that the P-value is 0.00 16. Hence, there are only 1 6  chances in 
10,000 or 1 in 625 that such a result would occur if each of the three car makes had the same average gas 
mileage. 

11.18. In the case of two independent normal distributions with equal but unknown variances, we can 
use either the F statistic (Section 1 1 .4) or the t statistic (Section 10.2) to test the hypothesis that 
the distributions have equal means. Apply both tests to Xl and X2 from Problem 1 1 . 17 at the 
0.05 significance level. 

The table of sample values is as shown in the table below. 

XI 32.5 30.2 34.6 3 1 .3 29.8 

X2 28.9 29.6 30.2 30.6 29. 1  

We first apply analysis of variance using the F statistic. From Problem 1 1 . 1 7, the test values o f  the 
sample mean s for XI and X2 are XI = 31 .68 and x2 = 29.68. The test value of the grand sample mean is 

3 1 .68 + 29.68 30 68 Th l . . . X = 2 = . . e tota square vanatlOn IS 

VT = (32. 5 - 30.68)2 + (30.2 - 30.68)2 + (34.6 - 30.68)2 + (3 1 .3 - 30.68)2 + (29.8 - 30.68)2 

+ (28 .9 - 30.68)2 + (29.6 - 30.68)2 + (30.2 - 30.68)2 + (30.6 - 30.68)2 + (29 . 1  - 30.68)2 

= 27. 14  

The square deviation between row samples is 

VR = 5[(31 .68 - 30.68)2 + (29.68 - 30.68)2] = 10 

and the square variation due to random error is 
Ve = 27. 14  - 10 = 17 . 14 

The degrees of freedom are m - 1 = 2 - 1 = 1 and m n  - m = 2 x 5 - 2 = 8, and the test statistic is 
A 10/1 F( I , 8) = 17 . 1 3/8 = 4.67 

From Table A-5, the critical region, at the 0.05 significance level, consists of all test values greater than or 
equal to 5.32. Since 4.67 < 5.32, the test value is not in the critical region, and we do not reject the null 
hypothesis that the mean s of XI , X2 are equal. 

We now apply the t test from Section 10.2, following Prescription 4(a) from that section, where the 
random variables X and Y in Prescription 4(a) are represented here by XI and X2, respectively. AIso, m 
and n from Prescription 4(a) are both equal to 5 here. We then compute the following test values: 

XI = 3 1 .68, X2 = 29.68 

S�l = � [(32.5 - 3 1 .68)2 + (30.2 - 3 1 .68)2 + (34.6 - 3 1 .68)2 + (31 .3 - 31 .68)2 + (29.8 - 3 1 .68)2] = 3.77 

S�2 = � [(28 .9 - 29.68)2 + (29.6 - 29.68)2 + (30.2 - 29.68)2 + (30.6 - 29.68)2 + (29 . 1  - 29.68)2] = 0.52 

S
p = )4 x 3.77 + 4 x 0.52 = 1 46 8 . , t = 31 .68 - 29.68 = 2. 1 7  

1 .46V� + � 

From Table A-2, the critical region, at the 0.05 significance level with 8 degrees of freedom, for the alter­
native hypothesis Ha: PI el P2 consists of all values t ::>  2.3 1 ,  or t <::: -2.31 .  Since 2 . 17 satisfies neither of 
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these inequalities, 2. l 7  is not in the critical region, and the null hypothesis Ha : p¡ = P2 is not rejected in 
favor of Ha: p¡ el P2, which is the same result obtained by the F test. 

11.19. Note that, in Problem 1 1 . 1 8 ,  [2 = (2. 17)
2 = 4.7 = F, allowing for rounding. Show that in gen­

eral, F = t2 in the two-sample case, where F is the test statistic of Section 1 1 .4 for testing equality 
of means, and t is the test statistic of Section 10.2, Prescriptions 4 and 4(a), for testing equality of 
means based on random samples of the same size. 

. . . x2 (m)/m 2 Z2 X2 ( 1 )/ 1  FlfSt note that, by defimtJon, F(m, n) = x2 (n)/n and t (n) = x2 (n)/n = x2 (n)/n. Therefore, 

F(I , n) = t2 (n) . To see how this equality applies here, let the random variables X and Y in the t test of 
Prescriptions 4 and 4(a) be denoted by X¡ and X2 with means p¡ and P2, respectively. Also, m = n in the t 
test since both random samples have size n; and m = 2 in the F test since there are only two random 
variables X¡ and X2. In both tests, the null hypothesis is Ha : p¡ = P2, and the alternative hypothesis is 
Ha: p¡ el P2 · Substituting X¡ for X and X2 for Y, and m = n in the formula for the t statistic in Prescrip­
tion 4 gives 

where 

1\ - 1'2 t = ----"V-'=1 
====

1 S - + -
P n n 

(n - I)S}¡ + (n - I)S}, 
n + n - 2  

each summation going from j = 1 to j = n. Then 

2 n(X¡ - 1'2)2 t = 2 2 (L (XIj - Xl )  + L (X2j - X2) )/(n - 1)  
On the other hand, substituting m = 2 in the formula for the F statistic, we get 

and 

(see Problem 1 1 .22). 
n - - 2 VR = "2 (X¡ - X2) . 

where 

Ve = L (XIj - X¡ )2 + L (X2j - 1'2)2 

- X¡ + 1'2 Substituting X = 2 in the formula for VR and simplifying, gives 

Finally, the 2s cancel, resulting in F = t2, as desired. 

11.20. Both the F test and the t test in Problem 1 1 . 18 were applied under the assumption that Xl and X2 
have equal variances. Apply the two-sample F test described in Prescription 10.8(a) of Section 
10.6 to test the hypothesis that a}¡ = O"i2 against the alternative hypothesis O"i¡ el O"i2 at the 0.05 
significance level. 

The random variables X and Y in Prescription 8(a) are represented here by X¡ and X2, respectively. 
Also, m and n from Prescription 8(a) are both equal to 5 here. From Problem 1 1 . 1 8, we have the test 
values s�¡ = 3.77 and s�, = 0. 52. For the alternative hypothesis Ha: O"�¡ el O"�" the critical region is all 
values s�, /s�¡ ::> F* or s�)s�, ::> F*, where F* is the F value satisfying P(F(4, 4) <::: F*) = 1 - 0.05/2 = 
0.975. From Table A-6, we find that F* = 9.6. We have s�)s�, = 3.77/0 .52 = 7.25, and 
s�, /s�¡ = 0.52/3.77 = 0 . 14. Since neither value is in the critical region, we do not reject the null hypothesis 
that O"�¡ = O"�, . 
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11.21. Let X] , X2 , . . .  , Xm be m random variables with sample means X] , 1'2 , . . .  , Xm, respectively, each 

- X] + 1'2 + · · · + 1' 
based on random samples of size n. Let X = m. Show that, for each i = 1 ,  

m 
2, . . .  , m, ¿ (Xi¡ - Xi) (Xi - X) = 0, where j runs from 1 to n in the summation. 

Let i be any fixed integer from 1 to m. Then 

L (Xij - Xi) (Xi - X) = (Xi - X) L (Xij - Xi) = (Xi - X) (nXi - nXi) = O 

11.22. With reference to the definitions of V r, VR, and Ve in Section 1 1 .4, show that 

Ve = ¿ (XIj - xd + ¿ (X2) - 1'2)2 + . . .  + ¿ (Xm) - Xm)2 

where in each summation, j runs from 1 to n. 
By definition, Ve = V T - VR, where V T is a sum of summations L (Xij - 1')2; j runs from 1 to n in each 

summation, and there is one summation for each integer i from 1 to m (se e Section 1 1 .4). VR is a sum of 
terms n(Xi - 1')2; one term for each i from 1 to m. Keeping i fixed and letting j run from 1 to n, we have 

L (Xij - 1')2 = L (Xij - Xi + Xi - 1')2 

= L (Xij - 1';)2 + 2 L (Xij - X;) (Xi - X) + L (Xi - 1')2 
- 2 - - 2 = L (Xij - X;) + O (Problem 1 1 .20) + n(Xi - X) 

= L (Xij - 1';)2 + n(Xi - 1')2 

Adding the terms on the right side of the equality by letting i run from 1 to m, and then subtracting VR, we 
get the desired resulto 

11.23. Sketch a proof of Theorem 1 1 .2. 

From Problem 1 1 .22, 

Each summation on the right side is a chi-square random variable with n - 1 degrees of freedom (Theorem 
7.7). Furthermore, the mn random variables Xij are independent. Therefore, the sum of the summations 
on the right side is a chi-square random variable with m(n - 1) = mn - m degrees of freedom. Also, each 
Xi is normally distributed with mean Pi and variance (i In. If Ha is true, then X is the sample mean of 

Xi. Therefore, if Ha is true, then VR/a2 = L (Xi �/ 
1')2 is a chi-square random variable with m - 1 degrees a n 

of freedom (Theorem 7.7). Finally, since VT/a2 = VR/a2 + Ve/a2, it can be shown that VT/a2 is chi­
square with mn - m + m - 1 = mn - 1 degrees of freedom, provided Ha is true; and it can also be shown 
that all three chi-square random variables are independent. 

11.24. Sketch a proof of Theorem 1 1 .3 .  

The expected value of a chi-square random variable with k degrees of freedom is  k.  Since Ve/ a2 i s  chi­
square with mn - m degrees of freedom (Theorem 1 1 .2), it follows that E(Ve/a2) = mn - m, and therefore 
E( Ve/(mn - m)) = a2 . To determine E( VR/(m - 1 ) ) ,  first consider 

L (Xi - 1')2 = L (1'1 - 2XiX + 1'2) 
= L 1'1 - 2mX2 + mX2 

= L 1'1 - mX2 
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where i runs from 1 to m in the summation. Therefore, since VR/ (m - 1) = _n_ L (Xi - 1')2 , it follows 
that m - 1 

E( VR/(m - 1 ) )  = _n_ L E(X¡) _ �E(X2) m - l m - l 
Now E(X2) = (i + Ji for any random variable X with mean P and variance (i. Xi has mean Pi and 
variance a2/n, while X has mean P = PI + P2 + . . .  + Pm and variance a2/mn. Therefore, 

Now 

m 
n (a2 2) nm ( a2 2) E(VR/(m - l) ) = -- L - + Pi - -- - + p  m - l n m - l mn 
n m 2 n 2 1 2 nm 2 = -- -a + -- L P - --a - --P m - l n m - l ' m - l m - l 

2 n 2 2 = a + -- L (Pi - P ) m - l 

L (p - p;)2 = L (l - 2PPi + p¡) = L l - 2p L Pi + L p¡ 
= ml - 2ml + L p¡ = L p¡ - ml 

= L (p¡ - p2) 
Therefore, E( VR/(m - 1 ) )  = a2 + m � 1 L (p - Pi)2, as stated in the theorem. 

11.25. Show that for each i = 1 ,  2, . . .  , m, the mean Pi of Xi is related to the grand mean 
P = (PI + P2 + . . .  + Pm)/m by the equation Pi = P + ai , where ¿ ai = O. 

L ai = L (p - p;) = L P - L Pi = mp - mp = O 
TWO-WAY ANALYSIS OF VARIANCE 

11.26. Find the P-value for the row test and for the column test in Example 1 1 . 5. 

The P-value for the row test is the probability that an F-value, with 2 and 4 degrees of freedom, as large 
as 0.78 would occur if the hypothesis H¿R) : HIj = H2j = P3j for j = 1 , 2, 3  were true. From Table A-4 in the 
Appendix, we can conclude only that the P-value is greater than 0 . 1 .  U sing computer software, we find that 
the P-value is 0 .52. The P-value for the column test is the probability that an F-value, with 2 and 4 degrees 
of freedom, as large as 8 .40 would occur if the hypothesis H¿C) : Pil = Pi2 = Pi3 for i = 1 , 2, 3  were true. 
From Tables A-S and A-6, we see that the P-value is between 0.025 and 0.05. Using computer software, we 
find that the P-value is 0.037. 

11.27. Suppose that Pi} = P + ai + f3j, where ¿i ai = O and ¿j f3j = O (the notation indicates that i runs 
from 1 to r in the first summation, andj runs from 1 to e in the second summation). Show that 
ai = P¡. - P and f3j = Pj - p. 

From the given equation Pij = P + ai + f3j, we get 

cai = ¿ ai = ¿(Pij - P - f3j) = ¿ Pij - ¿ p - ¿ f3j = epi_ - ep - O j j j j j 
Then, dividing both sides of cai = epi_ - ep, we get ai = Pi- - p. The proof that f3j = Pj - P is similar. 

11.28. Suppose that Pi} = P + ai + f3j, where ai = Pi- - P and f3j = Pj - p. Show that ¿i ai = O and 

¿j f3j = O. 
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From the given equation Pi} = P + a i  + /3j, we get 

¿ ai = ¿(Pi) - P - /3j) = rpj - rp - r/3j = r(pj - P - /3j) = O 

The proof that Lj /3j = O is similar. 

11.29. Let JLij be the entry in the ith row and jth column of the matrix 
JLij = JL + O!i + f3j, where ¿i O!i = O and ¿j f3j = O. [ ;9 1 1  8 

6 3 

4 

12 ] 
7 . 

5 

Show that 

11.30. 

By Problem 1 1 .28, it is sufficient to show that Pi} = P + ai + /3j, where ai = Pi. - P, /3j = Pj - P, and 
p¡. + P2· + . . .  + Pr· p. ¡ + P·2 + . . .  + P·e ·  h d A · h . 10 P = = ¡S t e gran mean. veragmg t e row mean s g¡ves p¡. = , r e 

. 10 + 5 + 3 P2. = 5, P3. = 3. The grand mean ¡S P = 
3 

= 6. Therefore, a¡ = 10 - 6 = 4, a2 = 5 - 6 = -1 ,  
and a3  = 3 - 6 = -3. Averaging the column means gives p.¡ = 5 ,  P.2 = 7 ,  P.3 = 4, PA = 8. Therefore, 
/3¡ = 5 - 6 = -1 ,  /32 = 7 - 6 = 1 ,  /33 = 4 - 6 = -2, and /34 = 8 - 6 = 2. 

We must now verify that Pi} = P + ai + /3j for all 12 means in the given matrix. For example, 
P + a¡ + /3¡ = 6 + 4 + ( -1 )  = 9 = Pll and P + a¡ + /32 = 6 + 4 + 1 = 1 1  = P¡2 . Continuing this way, we 
will find that P + ai + /3j = Pi} holds in all 12 cases. 

Let 1'" he the eoUy io the ith mw aod Jth eo1umo nI' the matrix [ �: 12 12 ] 
1 8  21 . 

6 12 

(a) Show that the property JLij = JL + O!i + f3j, where ¿i O!i = O and ¿j f3j = O, is not satisfied for 
aH of the entries in the matrix. 

(b) Replace the entry in the ith row and jth column of the matrix with Pij = JL¡. + JLj - JL to 
obtain a new matrix that does satisfy the property Pij = JL + O!i + f3j, where ¿i O!i = O and 
¿j f3j = O. 

(a) If the matrix did satisfy the desired property, then by Problem 1 1 .27, the equation Pi} = Pi. + Pj - P 
21 + 12 + 12 would have to hold for each Pi} in the matrix. Checking Pl l ,  we see that p¡. 3 

= 1 5, 

p.¡ = 
21 + �5 + 9 1 5, and P = 

21 + 12 + 12 + 1 5  +
9
1 8  + 21 + 9 + 6 + 12 

= 14. Then p¡. + p. ¡  _ P = 

1 5  + 1 5  - 14 = 16, but Pll = 21 . Therefore, the matrix does not have the desired property. 
(b) To construct a matrix with the desired property, we first compute the remaining two row means and 

two column mean s, which are P2. = 18 ,  P3. = 9, P.2 = 12, P.3 = 1 5 . We already have {lll = 16 .  We 
then compute {l12 = p¡. + P.2 - P = 1 5  + 12 - 14 = 13 , {ll3 = p¡. + P.3 - P = 1 5  + 1 5  - 14 = 1 6, and 
continuing this way, we get {l21 = 19, {l22 = 1 6, {l23 = 19, {l3¡ = 10, {l32 = 7, and {l33 = 10. The new 

matrix is [ �� � � �� l which, by its construction, has the desired property. 
10 7 10 

Supplementary Problems 

CHI-SQUARE GOODNESS-OF-FIT TEST 

11.31. In 1 50 tosses of a coin, 90 heads and 60 tails were observed. Test the hypothesis that the coin is fair by a 
chi-square test at the 0.05 significance leve!. 
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11.32. Repeat the test in Problem 1 l .3 1  at the 0.01 level of significance. 

11.33. A random-digit generator on a calculator gave the distribution of digits shown in the tableo Test the 
hypothesis that the digits are random by a chi-square test at the 0.05 significance leve!. 

Digit O 1 2 3 4 5 6 7 8 9 

Frequency 1 1  1 1  9 8 8 1 1  9 1 1  13  9 

11.34. The standard normal random variable Z, with mean O and standard deviation 1 ,  has a probability distribu­
tion, in terms of class intervals 11 , 12 , h, 14 , 15, as shown in the first two columns of the following tableo The 
third column shows the class frequencies of 100 z scores chosen at random from sorne population. Apply a 
chi-square test at the 0.05 significance level to the hypothesis that the z scores are a sample from a standard 
normal population. 

� Pj h 
(-00, - 1 .5) 0.0668 7 

[-1 .5, -0.5) 0.2417 1 5  

[-0. 5, 0 .5) 0.3830 45 

[0.5, l . 5) 0.2417 25 

[1 .5, (0) 0.0668 8 

11.35. Use the class frequency distribution of Problem 1 l .34 to apply a chi-square test at the 0.05 significance level 
to the hypothesis that the following 50 test scores are approximately normally distributed. 

30 66 71 78 88 40 66 72 78 79 
42 67 72 80 90 52 67 73 80 90 
55 68 74 82 92 60 68 74 83 93 
60 68 75 84 93 62 70 76 84 94 
64 70 76 85 95 65 70 78 86 97 

11.36. It is estimated that the political preference in a certain community is as follows: 50 percent Democrat, 25 
percent Republican, 15 percent Independent, 10 percent other. A random sample of 200 people resulted in 
90 Democrats, 65 Republicans, 25 Independents, and 20 other. Test the hypothesis that the estimate is 
correct at the 0 . 1  significance leve!. 

CHI-SQUARE TEST FOR EQUAL DISTRIBUTIONS 

11.37. Independently obtained random samples of two independent multinomial random variables, X and Y, each 
with outcomes al , a2, a3,  a4, resulted in the following contingency table of frequencies. Apply a chi-square 
test at the 0.05 significance level to the hypothesis that X and Y have the same probability distribution. 

al a2 a3 a4 Totals 

X 25 45 1 5  1 5  100 
Y 45 50 35 10 140 

Totals 70 95 50 25 240 
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11.38. Perform the test in Problem 10.37 at the 0.01 significance leve!. 

11.39. Each die of a pair of unbalanced dice, one red and one white, is tossed 200 times, resulting in the following 
frequency distribution for the faces of the dice. Apply a chi-square test at the 0.01 significance level to the 
hypothesis that the dice have the same probability distribution. 

Side landing face-up 

1 2 3 4 5 6 Totals 

Red die 30 20 42 10 41 57 200 
White die 44 30 24 20 50 32 200 

Totals 74 50 66 30 91  89 400 

11.40. Random samples of 125 male graduates and 100 female graduates of a certain college resulted in the 
following frequency table for the number of semesters in which a natural science was studied. Apply a 
chi-square test at the 0.05 significance level to the hypothesis that male and female students at the college 
take the same amount of natural science courses. 

Semesters of natural science 

1 2 3 4 Totals 

Males 5 6 50 64 125 
Females 8 14 34 44 100 

Totals 1 3  20 84 108 225 

11.41. Random samples of 200 first-year students and 1 50 transfer students at a given college resulted in the 
following frequency table for the number of high-school years in which a foreign language was studied. 
Apply a chi-square test at the 0.01 significance level to the hypothesis that first-year and transfer students 
have the same high-school foreign language backgrounds. 

O 

First-year students 10 
Transfer students 20 

Totals 30 

Years of foreign-language 
study in high-school 

1 2 3 

1 1  75 61  
1 8  54 30 

29 129 91 

4 Totals 

43 200 
28 1 50 

71  350 

11.42. Independently obtained random samples of three independent multinomial random variables, X, Y, and Z, 
each with outcomes al , al, a3 , resulted in the following contingency table offrequencies. Apply a chi-square 
test at the 0.05 significance level to the hypothesis that X, Y, and Z have the same probability distribution. 

al al a3 Totals 

X 33 25 12 70 
Y 46 20 24 90 
Z 50 14 26 90 

Totals 129 59 62 250 

11.43. Repeat the test in Problem 1 1 .42 at the 0.01 significance leve!. 
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CHI-SQUARE TESTS FOR INDEPENDENT ATTRIBUTES 

11.44. Seventy-five exercise programs were rated for quality of exercise and motivational value. Each at1ribute 
was classified as good, fair, or poor, and the cross-classification frequencies are indicated in the following 
tableo Apply a chi-square test at the 0.05 significance level to the hypothesis that quality of exercise and 
motivational value are independent. 

Exercise 
value 

Good 
Fair 
Poor 

Totals 

Motivational value 

Good Fair Poor Totals 

1 5  6 4 25 
7 12 6 25 
5 8 12 25 

27 26 22 75 

11.45. Use Table A-3 in the Appendix to find an approximate P-value for the test in Problem 1 1 .44. (If computer 
software is available, find the exact P-value of the test.) 

11.46. Sixty supermarket pizzas were rated for taste (fair, good, very good) and price (high, medium, low). The 
cross-classification results are indicated in the following frequency contingency tableo Apply a chi-square 
test at the 0.05 significance level to the hypothesis that taste and price are independent. 

Price 

High Medium Low Totals 

Very good 8 6 4 1 8  
Taste Good 6 8 8 22 

Fair 4 6 10 20 

Totals 1 8  20 22 60 

11.47. Use Table A-3 to find an approximate P-value for the test in Problem 1 1 .46. (If computer software is 
available, find the exact P-value of the test.) 

11.48. A random sample of 500 students at a given college was cross-classified according to gender and major 
subject area of study chosen. The results are listed in the following tableo Apply a chi-square test at 
the 0.05 level of significance to the hypothesis that the at1ributes of gender and major subject area are 
independent. 

Major area of study 

Business Liberal arts Nursing Education Totals 

Male 105 76 15 48 244 
Gender Female 71  94 31  60 256 

Totals 176 1 70 46 108 500 

11.49. Use Table A-3 to find an approximate P-value for the test in Problem 1 1 .48. (If computer software is 
available, find the exact P-value of the test.) 
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ONE-WAY ANALYSIS OF VARIANCE 

11.50. A random sample of size 3 is taken from each of three independent, normally distributed random variables 
Xl , Xl , X3 having equal but unknown variances. Test, at the 0.05 level of significance, the hypothesis that 
Xl , Xl, and X3 have equal means. 

Xl 94 82 84 

Xl 102 94 78 

X3 76 68 70 

11.51. Use Tables A-4 to A-7 in the Appendix to find an approximate P-value for the test in Problem 1 1 . 50. (If 
computer software is available, find the exact P-value of the test.) 

11.52. A home gardener wishes to determine the effect of different fertilizers on the average number of tomatoes 
produced by her plants. She grows five tomato plants on each of four separate plots, Xl , Xl, X3 , X4, and 
uses a different fertilizer treatment on each plot. The number of tomatoes per plant are indicated in the 
following tableo Test, at the 0.05 level of significance, the hypothesis that plots Xl , Xl, X3 , and X4 have 
equal average yields. 

Xl 14 10 12 16 1 7  

Xl 9 1 1  12 8 10 

X3 1 6  1 5  14 10 18 

X4 10 1 1  1 1  1 3  8 

11.53. Repeat the test in Problem 1 1 . 52 at the 0.01 significance leve!. 

11.54. Use Tables A-4 to A-7 to find an approximate P-value for the test in Problem 1 1 . 52. (If computer software 
is available, find the exact P-value of the test.) 

TWO-WAY ANALYSIS OF VARIANCE 

11.55. The table in Problem 1 1 . 50 is repeated here, but interpreted as a table obtained by cross-classifying attributes 
A and B, in which A has three categories Al , Al, A3 , and B has three categories Bl , Bl, B3 . Test, at the 0.05 
significance level, the hypothesis that the row means are equa!. 

Attribute B 
Row sample 

Bl Bl B3 mean s 

Al 94 82 84 86.67 
Attribute A Al 102 94 78 91 .33 

A3 76 68 70 71 .33 

Column 
sample 90.67 8 1 .33 77.33 83 . 1 1  
mean s 

Grand sample mean 
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11.56. Use the data in Problem 1 1 . 55 to test, at the 0.05 significance level, whether the column mean s are equal. 

11.57. Using Tables A-4 to A-7, approximate the respective P-value of the tests in Problems 1 1 . 55 and 1 1 .56. (If 
computer software is available, find the exact P-values of the tests.) 

11.58. The table in Problem 1 1 . 52 is repeated here, but interpreted as a table obtained by cross classifying four 
types of fertilizers with 5 types of tomato plants. The entry in the row i and column j of the table represents 
the yield from type j tomato plant treated with type i fertilizer. Test, at the 0.05 significance level, the 
hypothesis that the row means are equal. 

Fertilizer 
type 

A l 
Al 
A3 
A4 

Column 
sample 
means 

Bl 
14 
9 

1 6  
10 

12.25 

Plant type 

Bl B3 
10 12 
1 1  12 
15 14 
1 1  1 1  

1 1 .75 12.25 

Row sample 
B4 Bs means 

1 6  1 7  13 .8 
8 10 10 

10 1 8  14.6 
1 3  8 10.6 

1 1 .75 13 .25 12.25 

Grand sample mean 

11.59. Use the data in Problem 1 1 . 58 to test, at the 0.05 significance level, whether the column mean s are equal. 

11.60. Using Tables A-4 to A-7, approximate the respective P-value of the tests in Problems 1 1 .58 and 1 1 . 59. (If 
computer software is available, find the exact P-values of the tests.) 

Ánswers to Supplementary Problems 

11.31. Critical region: :e ::> 3 .84; test value: :e = 6.00; reject hypothesis that coin is fair (P-value = 0.0143). 

11.32. Critical region Xl ::> 6.63; test value: Xl = 6.00; do not reject hypothesis that coin is fair (P-value = 0.0143). 

11.33. Critical region: Xl ::> 1 6.9; test value: Xl = 2.4; do not reject hypothesis that the digits are random 
(P-value = 0.983). 

11.34. Critical region: Xl ::> 9.49; test value: Xl = 4.96; do not reject hypothesis that the z scores are from a normal 
population (P-value = 0.291). 

11.35. Sample mean: x = 73.84; sample standard deviation: s = 14.40; z score: z = (x - x)/s; class frequencies of z 
scores: 

Ij Pj h 
(-00, -1 . 5) 0.0668 4 

[-1 . 5, -0. 5) 0.2417 8 

[-0.5, 0 .5) 0.3830 22 

[0. 5, 1 . 5) 0.2417 15 

[ 1 . 5, (0) 0.0668 1 
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Critical region: :e ::> 9.49; test value: X2 = 4.28; do not reject hypothesis that the test scores are approxi­
mately normally distributed (P-value = 0.369). 

11.36. Critical region: X2 ::> 6.25; test value: X2 = 6.33; reject hypothesis that the estimate lS correct (P­
value = 0.097). 

11.37. Critical region: X2 ::> 7 .81 ;  test value: X2 = 8 .55; reject hypothesis that X and Y have the same probability 
distribution (P-value = 0.036). 

11.38. Critical region: X2 ::> 1 1 .3; test value: X2 = 8 .55; do not reject hypothesis that X and Y have the same 
probability distribution (P-value = 0.036). 

11.39. Critical region: X2 ::> 1 5 . 1 ;  test value: X2 = 20.8; reject hypothesis that the dice have the same probability 
distribution (P-value = 0.0009). 

11.40. Critical region: X2 ::> 7.8 1 ;  test value: X2 = 7.96; reject hypothesis that males and females take the same 
amount of science courses (P-value = 0.047). 

11.41. Critical region: X2 ::> 1 3.3; test value: X2 = 1 5.34; reject hypothesis that first-year and transfer students have 
the same high-school foreign language backgrounds (P-value = 0.004). 

11.42. Critical region: X2 ::> 9.49; test value: X2 = 9.83; reject hypothesis that X, Y, and Z have the same probability 
distribution (P-value = 0.0434). 

11.43. Critical region: X2 ::> 1 3.3; test value: X2 = 9.83; do not reject hypothesis that X, Y, and Z have the same 
probability distribution (P-value = 0.0434). 

11.44. Critical region: X2 ::> 9.49; test value: X2 = 1 3 . 1 ;  reject hypothesis that quality of exercise and motivational 
value are independent. 

11.45. 0.01 < P-value < 0.025 (P-value = 0.01 1). 

11.46. Critical region: X2 ::> 9.49; test value: X2 = 4.09; do not reject hypothesis that taste and price are indepen­
dent. 

11.47. 0.25 < P-value < 0.5 (P-value = 0.393). 

11.48. Critical region: X2 ::> 7 .81 ;  X2 = 1 5.09; reject hypothesis that gender and major subject area are independent. 

11.49. 0.001 < P-value < 0.005 (P-value = 0.002). 

11.50. Square variation Degrees of freedom Mean square F 

Between row samples � =  328 .45 VR/(m - l) = 4 74 VR = 656.89 m - l = 2 m - l Ve/(mn - m) . 

Random error _v_e_ = 69.33 Ve = 416 mn - m = 6 mn - m 
Total 

VT = 1072.89 mn - l = 8 

Critical region: F(2, 6) ::> 5 . 14; test value: F = 4.74; do not reject the hypothesis of equal means. 

11.51. 0.05 < P-value < 0 . 1  (P-value = 0.0583). 
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11.52. Square variation Degrees of freedom Mean square F 

Between row samples � = 26. 18 VR/(m - l) = 4 59 VR = 78 .55 m - l = 3 m - l  Ve/ (mn - m) . 

Random error _v_e_ = 5.7 Ve = 9 1 .2 mn - m = 16 mn - m  
Total 

VT = 169.75 mn - 1 = 19 

Critical region: P(3, 16) ::> 3 .24; test value: P = 4.59; reject the hypothesis of equal average yields. 

11.53. Critical region: P(3, 16) ::> 5.29; test value: P = 4.59; do not reject the hypothesis of equal average yields. 

11.54. 0.01 < P-value < 0.025 (P-value = 0.01 67). 

11.55. Square variation Degrees of freedom 

Between rows 
VR = 656.89 r - l = 2 

Between columns 
Ve = 280.89 e - l = 2 

Random error 
Ve = 135. 1 1  (r - l ) (e - l ) = 4 

Total 
VT = 1072.89 re - 1 = 8 

Mean square 

VR = 328.45 r - l  
Ve = 140.45 e - 1 
Ve = 33 78 (r - 1 )  (e - 1 )  . 

F 

P(R) = 9.72 

p(e) = 4. 1 6  

Critical region: P(R) (2, 4) ::> 6.94; test value: P(R) = 9.72; reject hypothesis that row mean s are equal. 

11.56. Critical region: p(e) (2, 4) ::> 6.94; test value: p(e) = 4. 1 6; do not reject hypothesis that column means are 
equal. 

11.57. Problem 1 1 . 55: 0.025 < P-value < 0.05 (P-value = 0.0291); Problem 1 1 . 56: P-value > 0. 1 (P-value = 0 . 1054). 

11.58. Square variation 

Between rows 
VR = 78.55 

Between columns 
Ve = 6 

Random error 
Ve = 85.2 

Total 
VT = 1 69.75 

Degrees of freedom 

r - l = 3 

e - l = 4 

(r - l ) (e - l ) = 12 

re - l = 19 

Mean square 

VR = 26 . 18  r - l  

� = 1 .5 e - l 
Ve = 7 1  (r - 1 )  (e - 1 )  . 

F 

P(R) = 3.69 

p(e) = 0.21 

Critical region: P(R) (3, 12) ::> 3 .49; test value: P(R) = 3.69; reject hypothesis that row means are equal. 

11.59. Critical region: p(e) (4, 12) ::> 3.26; test value: P(R) = 0.21 ;  do not reject hypothesis that column mean s are 
equal. 

11.60. Problem 1 1 . 58: 0.025 < P-value < 0.05 (P-value = 0.0432); Problem 1 1 . 59: P-value > 0. 1 (P-value = 0.9279). 
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Tablc A-I Standard normal t1istribution 

The lable enlries are ¡he prohabilities p for which 
1'(0 < Z < :), where : ranges frOlll 0.00 10 3.99. - -

, O 1 1 3 4 5 6 

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 

0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 

0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 

0.3 . 1 1 79 .1217 .1255 .1293 .1331 . 1368 .1406 

0.4 1554 .1591 1628 .1664 -1700 .1736 .1772 

0.5 . 19 15 .1950 .1985 .2019 .2054 .2088 .2123 

0.6 .2258 .2291 .2324 .2357 .2389 .2422 .2454 

0.7 .2580 .2612 .2642 .2673 .2704 .2734 .2764 

0.8 .2881 .2910 .2939 .2967 .2996 .3023 .3051 

0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 

1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 

11 .3643 .3665 _3686 .3708 .3729 _3749 .3770 

1.2 .3849 .3869 _3888 .3907 .3925 .3944 _3962 

\3 _4032 .4049 _4066 .4082 .4099 .4115 _4131 

1.4 _4192 .4207 _4222 .4236 .4251 .4265 _4279 

1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 

1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 

1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 

1.8 .464\ .4649 .4656 .4664 .4671 .4678 .4686 

1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 

2_0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 

2.\ .482\ .4826 .4830 .4834 .4838 .4842 .4846 

2.2 .486\ .4864 .4868 .4871 .4875 .4878 .4881 

2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 

2.4 .49 18 .4920 .4922 .4925 .4927 .4929 .4931 

2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 

2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 

2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 

2.8 .4914 .4975 .4976 .4977 .4977 .4978 .4979 

2.9 .498\ .4982 .4982 .4983 .4984 .4984 .4985 

3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 

3.1 .4990 .4991 .4991 .4991 .4992 .4992 .4992 

3.2 .4993 .4993 .4994 .4994 .4994 .4994 .4994 

3.3 .4995 .4995 .4995 .4996 .4996 .4996 .4996 

3.4 .4997 .4997 .4997 .4997 .4997 .4997 .4997 

3.5 .4998 .4998 .4998 .4998 .4998 .4998 .4998 

3.6 .4998 .4998 .4999 .4999 .4999 .4999 .4999 

3.7 .4999 .4999 .4999 .4999 .4999 .4999 .4999 

3.8 .4999 .4999 .4999 .4999 .4999 .4999 .4999 

3.9 .5000 .5000 .5000 .5000 .5000 .5000 .5000 
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7 8 9 

.0279 .03 19 .0369 

.0675 .0714 .0764 

. 1064 . 1 103 .1 141 

. 144] .1480 .1 517 

.1808 1844 1879 

.2157 .2190 .2224 

.2486 .2518 .2549 

.2794 .2823 .2852 

.3078 .3106 .3133 

.3340 .3365 .3389 

.3577 .3599 .3621 

.3790 _3810 _3830 

.3980 .3997 _4015 

.4147 .4162 _4177 

.4292 .4306 _4319 

.4418 .4429 .4441 

.4525 .4535 .4545 

.46\6 .4625 .4633 

.4693 .4699 .4706 

.4756 .4761 .4767 

.4808 .4812 .4817 

.4850 .4854 .4857 

.4884 .4887 .4890 

.49 \ \  .4913 .4916 

.4932 .4934 .4936 

.4949 .4951 .4952 

.4962 .4963 .4964 

.4972 .4973 .4974 

.4979 .4980 .498\ 

.4985 .4986 .4986 

.4989 .4990 .4990 

.4992 .4993 .4993 

.4995 .4995 .4995 

.4996 .4996 .4997 

.4997 .4997 .4998 

.4998 .4998 .4998 

.4999 .4999 .4999 

.4999 .4999 .4999 

.4999 .4999 .4999 

.5000 .5000 .5000 
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Table A-2 Thc r úislribution 

Thc enlry in ro\\! k (degre.:s of freedom) 
under colullm heading p (probability) is Ihe 
valuc /. for whlch 1'(0 "'; I .'5: ['") = p. 

l:z 
0.05 0.1 0.2 0.25 0.3 0.4 

I .158 .325 .727 1 .000 1.376 3.08 
2 .[42 .289 .617 .8[6 1.061 1 .89 
3 .137 .277 .584 .765 .978 1 .64 
4 .134 .271 .569 .741 .941 1.53 
5 . l32 .267 .559 .727 .920 1 .48 
6 · \3 [ .265 .553 .718 .906 1.44 
7 .130 .263 .549 .7[1 .896 1 .42 
8 . l30 .262 .546 .706 .889 1 .40 
9 .129 .261 .543 .703 .883 1.38 

10 .129 .260 .542 .700 .879 1.37 
11 .[29 .260 .540 .697 .876 1.36 
12 · [28 .259 .539 .695 .873 1.36 
13 · [28 .259 .538 .694 .870 1.35 
14 .128 .258 .537 .692 .868 1.34 
15 .[28 .258 .536 .691 .866 1.34 
lO .[28 .258 .535 .690 .865 1.34 
17 .[28 .257 .534 .689 .863 1.33 
18 · [27 .257 .534 .688 .862 1.33 
lO · [27 .257 .533 .688 .86[ 1.33 
20 · [27 .257 .533 .687 .860 1.32 
21  · [27 .257 .532 .686 .859 1.32 
22 · [27 .256 .532 .686 .858 1.32 
23 · [27 .256 .532 .685 .858 1.32 
24 · [27 .256 .53 [ .685 .857 1.32 
25 · [27 .256 .53 [ .684 .856 1.32 
26 · [27 .256 .53 [ .684 .856 1.32 
27 .[27 .256 .53 [ .684 .855 U[ 
28 · [27 .256 .530 .683 .855 1.3[ 
29 · [27 .256 .530 .683 .854 1 .3  [ 
30 .127 .256 .530 .683 .854 U[ 
40 .[26 .255 .529 .681 .851 1.30 
60 · [26 .254 .527 .679 .848 1.30 

[20 .126 .254 .526 .677 .845 1 .29 
00 .[26 .253 .524 .674 .842 1 .28 

0.45 

6.31 
2.92 
2.35 
2.13 
2.02 
1.94 
1.90 
1.86 
1.83 
LBl 

1.80 
1.78 
1.77 
1.76 
1.75 
1.75 
1.74 
1.73 
1.73 
1.72 
1.72 
1.72 
1.7 [ 
1.7 [ 
1.7 [ 
1.7 [ 
1.70 
1.70 
1 .70 
1.70 
1.68 
1 .67 
1.66 
[.645 

" " 

0.415 

U.71 
4.30 
3.18 
2.78 
2.57 
2.45 
2.36 
2.)l 

2.26 
2.23 
2.20 
2.18 
2. [6 
2.14 
2. [3 
2. [2 
2.[[ 
2.[0 
2.09 
2.09 
2.08 
2.07 
2.07 
2.06 
2.06 
2.06 
2.05 
2.05 
2.04 
2.04 
2.02 
2.00 
1 .98 
1.96 
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0.49 0.495 

31.82 63.66 
6.96 9.92 
4.54 5.84 
3.75 4.60 
3.36 4.03 
3.14 3.71 
3.00 3.50 
2.90 3.36 
2.82 3.25 
2.76 3.[7 
2.72 3.11  
2.68 3.06 
2.65 3.0[ 
2.62 2.98 
2.60 2.95 
2.58 2.92 
2.57 2.90 
2.55 2.88 
2.54 2.86 
2.53 2.84 
2.52 2.83 
2.51 2.82 
2.50 2.8[ 
2.49 2.80 
2.48 2.79 
2.48 2.78 
2.47 2.77 
2.47 2.76 
2.46 2.76 
2.46 2.75 
2.42 2.70 
2.39 2.66 
2.36 2.62 
2.33 2.58 

SOllrce: R. A. Fi,hcr :md F. Yales. Slalisúca! T"blesfor Biological. Agrii;!lIIJlrll! a",1 Medita! Research. published by Longlllan 
Group LId .. London (previously publish�-d by Oli'"cr and Boyd. Edinburgh). and by pcrrni,sion of Ihc authors and 
publishcrs. 
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X k 
1 
2 
3 
4 
5 
6 
1 
8 
9 

10 
1 1  
12 
I l  
14 
15  
16 

11 
18 
19 
20 
21  
22 
23 
24 
25 
26 
21 
28 
29 
30 
40 
50 
60 
10 
80 
90 

100 
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Tablc A-3 Th(' chi-squarc distribulion 

The cnlry in ro\\' k (degrees or fre...>dom) 
under colu111n heading p (probabilily) is Ihe 

value X· ror whieh 1'(0 � X2 � X·) = p. 
~ " X ·  

0.005 0.01 0.025 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.915 0.99 0.995 

.0000 .0002 .0010 .00]1) .0158 .102 .455 1.32 2.11 ].84 5.02 6.6] 7.88 

.0100 .0201 .0506 .10] .211 .515 1.39 2.77 4.61 5.99 1.]8 9.21 10.6 

.0711 . 1 15  .216 .]52 .584 1.21 2.]1 4.11 6.25 1.81 9.35 1 1.] 12.8 
.207 .291 .484 .111 1.06 1.92 3.]6 5.]9 1.18 9.49 1 1 . 1  1 ].] 14.9 
.412 .554 .831 1.15 1.61 2.61 4.35 6.6] 9.24 1 1. 1  12.8 15.1 16.1 
.616 .812 1.24 1.64 2.20 ].45 5.35 1.84 10.6 12.6 14.4 16.8 18.5 
.989 1.24 1.69 2.17 2.8] 4.25 6.]5 9.04 12.0 14.1 16.0 18.5 20.3 
1.34 1.65 2.18 2.13 3.49 5.07 7.34 10.2 13.4 1 5.5 17.5 20.1 22.0 
1.73 2.09 2.70 3.]3 4.11 5.90 8.34 11 .4 14.7 16.9 19.0 21.1 23.6 
2.16 2.56 ].25 ].94 4.87 6.74 9.34 12.5 16.0 18.] 20.5 23.2 25.2 
2.60 3.05 3.82 4.57 5.58 7.58 10.] 13.7 11.3 19.1 21.9 24.7 26.8 
3.07 ].51 4.40 5.23 6.30 8.44 11.3 14.8 18.5 21.0 23.3 26.2 28.3 
3.57 4. 1 1  5.01 5.89 7.04 9.30 12.3 16.0 19.8 22.4 24.7 27.7 29.8 
4.07 4.66 5.6] 6.57 1.79 10.2 13.] 17.1 21 . 1  2].1 26.1 29.1 31.3 
4.60 5.23 6.26 7.26 8.55 1 1 .0 14.3 18.2 22.3 25.0 27.5 30.6 32.8 
5.14 5.81 6.91 7.96 9.31 11 .9 15.3 19.4 23.5 26.3 28.8 32.0 34.3 

5.10 6.41 1.56 8.67 10.1 12.8 16.] 20.5 24.8 21.6 ]0.2 ]3.4 35.1 
6.26 1.01 8.2] 9.]9 10.9 1].7 17.] 21.6 26.0 28.9 ] 1.5 ]4.8 37.2 
6.84 1.63 8.91 10.1 1 1 .7 14.6 18.3 22.7 21.2 30.1 32.9 ]6.2 38.6 
7.43 8.26 9.59 10.9 12.4 15.5 19.] 23.8 28.4 31.4 ]4.2 ]7.6 40.0 
8.03 8.90 10.] 11.6 13.2 16.3 20.] 24.9 29.6 32.1 ]5.5 ]8.9 41.4 
8.64 9.54 11 .0 12.3 14.0 11.2 21.3 26.0 ]0.8 33.9 ]6.8 40.] 42.8 
9.26 10.2 1 1.1 1].1 14.8 18.1 22.] 27.1 ]2.0 35.2 ]8.1 41.6 44.2 
9.89 10.9 12.4 13.8 15.7 19.0 23.3 28.2 33.2 36.4 ]9.4 43.0 45.6 
10.5 1l.5 13. I 14.6 16.5 19.9 24.] 29.3 34.4 31.1 40.6 44.] 46.9 
11.2 12.2 13.8 15.4 17.] 20.8 25.3 30.4 ]5.6 38.9 41.9 45.6 48.3 
11.8 12.9 14.6 16.2 18.1 21.1 26.3 31 .5 ]6.7 40. 1 43.2 47.0 49.6 
12.5 13.6 15.] 16.9 18.9 22.7 27.] ]2.6 ]7.9 41.3 44.5 48.] 51.0 
13.1 14.3 16.0 17.7 19.8 23.6 28.] 33.7 39.1 42.6 45.7 49.6 52.3 
13.8 15.0 16.8 18.5 20.6 24.5 29.] 34.8 40.3 43.8 47.0 50.9 53.1 
20.7 22.2 24.4 26.5 29.1 3].7 39.] 45.6 51.8 55.8 59.3 63.7 66.8 
28.0 29.1 ]2.4 34.8 37.7 42.9 49.3 56.3 6].2 67.5 11.4 16.2 79.5 
35.5 37.5 40.5 4].2 46.5 52.3 59.] 67.0 14.4 79.1 83.3 88.4 92.0 
4].3 45.4 48.8 51.1 55.] 61.1 69.3 17.6 85.5 90.5 95.0 100 104 
51.2 5].5 57.2 60.4 64.3 71 . 1  79.3 88.1 96.6 102 101 1 12  1 16  
59.2 61.8 65.6 69.1 13.] 80.6 89.] 98.6 108 1 13  1 18  124 128 
67.3 10. I 14.2 17.9 82.4 90.1 99.3 109 1 18 124 110 116 140 
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0.999 

10.8 
1].8 
16.3 
18.5 
20.5 
22.5 
24.] 
26.1 
27.9 
29.6 
]1.3 
]2.9 
34.5 
]6.1 
37.7 
39.3 

40.8 
42.] 
43.8 
45.] 
46.8 
48.3 
49.1 
51.2 
52.6 
54.1 
55.5 
56.9 
58.] 
59.7 
73.4 
86.1 
99.6 
1 12 
125 
131 
149 

SOl/ru: E. S. Pearson and H. O. Hanley, Biome/rik(l ¡(lb/es jor S/mis/icimrs. Vol. I (1966), Table 8, pages 137 and 138. by 
pcrmission. 
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Tablc A-4 90th pcrcenlilcs for lhe F dislribution 

The entry in colullln 111, ro\\' 11 is lhe ",alue F· for which P(O ..s: F(m,II) :':::: F·) = 0.90. 
111 = degrccs of frecdotll in llUlllcrator; 11 = degrecs of frccdom in dcnominator 

m 
1 2 3 4 5 6 7 8 , 10 1 2  1 5  20 24 25 " 

1 39.9 49.5 53.6 55.8 57.2 58.2 58.9 59.4 59.9 60.2 fIJ.7 61.2 61.7 62.0 62.1 
2 8.53 '.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.41 9.42 ,." 9.45 " 
l 5." 5.46 5.39 5.34 DI 5.28 5.27 5.25 5.24 5.23 5.2 5.20 5.1 8 5.1 8 5. 1 
4 4." 4.32 4.19 4.11  4.05 4.01 3.98 3.95 3.94 3.92 l.' 3.87 l .8 3.83 3.8 

5 4.ot 3.78 3.62 3.51 3.45 3.40 3.37 3.34 3.32 3.30 l.2 3.24 3.21 3.[9 3. 1 
6 3.78 3.46 3.29 3.18 3. 1 1  3.05 3.01 2.98 2.96 2.94 2.9 2.87 2.8 2.82 2.8 1  
7 3.5 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.6 2.63 2.5 2.58 2.5 
8 3.4< 3. 1 1  2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.5 2.46 2.4' 2.40 2.4< 
9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.3 2.34 2.30 2.28 2.2 

1 0 l.2 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.28 2.24 2.20 2.18 2. 1 
1 1  3.2 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.21 2. 17 2.1' 2.10 2. 1 
12 3.1 8 2.8 1  2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.1 2.10 2.0 2.04 2.03 

13 3.1 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2,1 2.05 2.01 1 .98 1.9 
14 3.1 2.73 2.52 2.39 2.31 2,24 2.19 2.15 2.12 2.10 2.0 2.01 1.9 1 .94 1.9 
15  3.0 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.0 1.97 1.91 1 .90 1.8 
16 l.O 2.67 2.46 2.33 2.24 2.1 8 2. 13 2.09 2.06 2.03 l., 1.94 1 .8 1 .87 1 .8 

1 7  3.03 2.64 2.44 2.3 1 2.22 2.1 5  2. 10 2.06 2.03 2.OQ l., 1.91 1 .86 1 .84 1 .83 

18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.9 1.89 1.84 1.81 1.8 
19 29$ 2.61 2.40 2.27 2.18 2.11  2.06 2.02 1.98 1.96 1.91 1.86 1.81 1 .79 17 
20 2.9 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.8 1.84 17 1 .77 17 
2 1  2.9 2.57 2.36 2.23 2. 1 4  2.08 2.02 1.98 1 .95 1 .92 1 .8 1 .83 1 .78 1 .75 17 
22 2.9 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1 .8  1.81 1.76 1 .73 17 
23 2.9 2.55 2.34 2.21 2 . 1 1  2.05 1.99 1.95 1.92 1.89 1.8 1.80 1.7 1 .72 1.71 
24 2.93 2.54 2.33 2.1 9  2.1 0  2.04 1.98 1.94 1.91 1 .88 1 .83 1.78 1 .73 1.70 17 
" 2.9 2.53 2.32 2.1 8 2.09 2.02 1 .97 1.93 1.89 1 .87 1 .8 1 .77 1 .7' 1 .69 1 .68 

26 2.91 2.52 2.31 2.1 7 2.08 2.0 1  1.96 1.92 1 .88 1 .86 1.81 1.76 1.71 1 .68 1.6 
27 2 9( 2.51 2.30 2.17 2.07 2.00 1.95 1.91 L87 1.85 1.8 1.75 1 .70 1 .67 1.6 
28 2.8 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84 17 1.74 1 .69 1 .66 1.6 
29 2.8 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83 17 1.73 1.68 1 .65 L� 
lO 2.88 2.49 2.28 2.14 2.05 1 .98 1 .93 1.88 1 .85 1 .82 1 .7 1 .72 1 .67 1.64 1.6 
40 2.8 2.44 2.23 2.09 2.00 1 .93 1.87 1 .83 1.79 17 1.71 1.66 1.61 1 .57 L5 
60 2.7 2.39 2.1 8 2.04 1 .95 1 .87 1 .82 1.77 1. 74 1.71 1 .6 1.60 1 .54 1.51 L� 

120 2.7 2.35 2.13 1.99 1.90 L82 1.77 1.72 1.68 1.65 LO l.S4 1 .48 1 .45 L� 
00 2.71 2.30 2.08 1.94 1.85 1.77 L72 1.67 1.63 1.60 L5 1.49 1 .41 1.38 1.38 

[APP. A 

� o.JlJ 
• FO 

30 40 60 1 20 00 

62.3 62.5 62.8 63.1 63.3 
9.46 9.47 9.47 9.48 9.49 
5.[7 5. 16 5 . 1 5  5. 1 4  5. 1 3 

3.82 3.80 3.79 3.78 3.76 

3.[7 3.16 3.14 3.12 3. 1 1  
2.80 2.78 2.76 2.74 2.72 

2.56 2.54 2.51 2.49 2.47 
2.38 2.36 2,34 2.32 2.29 
2.25 2.23 2.21 2.IR 2.16 
2.16 2. 13 2.1 1  2.08 2.06 

2.08 2.05 2.03 2.00 1.97 

2.01 1.99 1.96 1.93 1.90 

1.96 1.93 1.90 1.88 1.85 
1.91 1.89 1.86 1.83 1.80 
1.87 1.85 1.82 1.79 1.76 
1 .84 1.81 1.78 1.75 1 .72 

1 .8 1 1 .78 1.75 1.72 1.69 
1 .78 1.75 1.72 1.69 1.66 
1 .76 1.73 1.70 1.67 1.63 
1.74 1.71 1.68 1.64 1.61 
1.72 1.69 1.66 1.62 1.59 
1 .70 1.67 1.64 1.60 1.57 
1 .69 1.66 1.62 1.59 1.55 
1.67 1.64 1.61 1.57 1.53 

1 .66 1 .63 1 .59 1.56 1 .52 

1 .65 1.61 1 .58 1.54 1.50 
1.64 LO! 1.57 1.53 1.49 
1.63 l .S9 1.56 1.52 1.48 
1.62 l .S8 1.55 1.51 1.47 
1.61 1 .57 1 .54 1.50 1.46 
1 .54 1.51 1.47 1.42 1 .38 
1 .48 1.44 1.40 1.35 1 .29 
1.41 1.37 1.32 1.26 1 . 1 9  
1.34 1.30 1.24 1 . 1 7  LOO 



Arp. Al 

� " 1 

1 161  
2 18.5 

3 10.1 
4 7.1 1 
, 6.61 
6 5.99 
7 5.59 
8 5.32 

9 5.12 
1 0 4.96 
1 1  4.84 
1 2  4.75 

13 4.67 

14 4.60 
1 5  4.54 

lO 4.49 

1 7  4.45 

1 8  4.41 

lO 4.38 

20 4.35 

2 1 4.32 

22 4.30 
23 4.28 
24 4.26 
25 4.24 
26 4.23 

27 4.21 
28 4.20 

29 4. 1 8 

30 4.1 7 

40 4.08 

60 4.00 
120 3.92 

00 3.84 

APPENDrx 

Tahle A-5 951h perccnriles ror Ihe F distrihution 

The cntry in column 11/, row /1 is the valuc F· 
for which 1'(0 :S F(II/,/I) ::; P) = 0.95. 
11/ = dcgrees of frccdom in nUlllerator 
/1 = dcgrees of frecdolll in denominator 

2 3 4 5 6 7 8 9 10 

200 216 225 230 234 2J7 239 241 242 

19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 
9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 

6.94 6.59 6.39 6.26 6.16 6.09 604 6.00 5.96 

5.79 SA l  5.19 5.05 4.95 4.88 4.82 4.77 4.74 

5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 
4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 
4.46 4.07 3 .84 3.69 3.58 3.50 3.44 3.39 3.35 
4.26 3.86 3.63 3.48 3.37 3.29 3.23 3 . 1 8  3.14 
4. 10 3.71 3.48 3.33 3.22 3. 1 4  3.07 3.02 2.98 
3.98 3.59 3.36 3.20 3.09 3.01 2.9.S 2.90 2.85 

3.89 3.49 3.26 3. 1 1  3.00 2.91 2.85 2.80 2.75 

3.81 3.4 1 3. 18 3.03 2.92 2.83 2.77 2.1 1 2.67 

3.74 3.34 3. 1 1  2.96 2.85 2.76 2.70 2.65 2.60 

3.68 3.29 3.06 ' '>1 2.79 2.71 2.64 2.59 2.54 

3.63 3.24 3.01 1.85 2.74 2.66 2.59 2.54 2.49 

3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 
3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 

3.52 3. 1 3 2.90 2.74 2.63 2.54 2.48 2.42 2.38 

3.49 3.10 2.87 2.7 1 2.60 2.5 1 2.45 2.39 2.35 

3.47 3.07 2.84 2.68 1.57 2.49 2.42 2.37 2.32 

3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 

3.42 3.03 2.80 '.64 2.53 2.44 2.37 2.32 2.27 
3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 
3.39 2.99 2.76 2.<iO 2.49 2.40 2.34 2.28 2.24 
3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 
3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 
3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 

3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2. 1 8 

3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.2 1 2.16 

3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 

3.15 2.76 2.53 2.37 2.25 2. 1 7 2. 10 2.04 1.99 

3.07 2.68 2.45 2.29 2.18 2.09 2.20 1.96 1.91 
3.00 2.60 2.37 2.21 2.10 2.01 194 1.88 1.83 

& o.os 
• F" 

12 15 20 24 25 30 40 

244 246 248 249 249 250 251 
19.4 19.4 19.4 19.5 19.5 19.5 19.5 

8.74 8.70 8.66 8.64 8.63 8.62 8.59 

5.91 5.86 5.80 5.77 5.77 5.15 5.72 

4.68 4.62 4.56 4.53 4.52 4.50 4.46 
4.00 3.94 3.87 3.84 3.83 3.81 3.77 

3.57 5.51 3.44 3.41 3.40 3.38 3.34 

3.28 3.22 3 . 1 5  3. 12  3. 1 1  3.08 3.04 

3.07 3.01 2.94 2.90 2.89 2.86 2.83 
2.91 2.85 2.77 2.74 2.73 2.70 2.66 
2.79 2.72 2.65 2.61 2.60 2.57 2.53 

2.69 2.62 2.54 2.51 2.50 2.47 2.43 

2.60 2.53 2.46 2.42 2.4 1 2.38 2.34 

2.53 2.46 2.39 2.35 2.34 2.31 2.27 

2.48 2.40 2.33 2.29 2.28 2.25 2.20 

2.42 1.35 2.28 1.24 2.13 2.19 2.1 5  
2.38 2.31 2.23 2.19 2.18 2.15 2.10 

2.34 2.27 2.19 2.1 S 2.14 2.11  2.06 
2.31 2.23 2.Hi 2. 1 1  2. 1 1  2.07 2.03 

2.28 2.20 2.12 2.08 2.07 2.04 1 .99 
1.25 2. 18 2. 10 2.05 2.05 1.0 1 1 .96 
2.23 2. 15 2.07 2.03 2.02 1.98 1 .94 

2.20 2.1 3 2.05 2.01 2.00 1.96 1.91 
2.18 2 . 1 1  2.03 1.98 1.97 1.94 1.89 
2.16 2.09 2.01 1.96 1.96 1 .92 1.87 
2.15 2.07 199 1.95 1.94 1.90 1.85 
2.13 2.06 1.97 1.93 1.92 1.88 1.84 
2.12 2.04 1.96 1 .91 1.91 1.87 1 .82 

2. 10 2.03 1.94 1 .90 1.89 1 .85 1 .8 1 
1.09 2.01 1 .93 1.89 1.88 1.84 1 .79 
2.00 1 .92 1 .84 1.79 1.78 1.74 1 .69 
1 .92 1.84 1 .75 1 .70 1.69 1.65 1 .59 
1 .83 1.75 1.66 1.61 1.60 1.55 1 . 50 

1.75 1.67 1.57 1.52 1.51 1.46 1.39 

363 

60 120 00 

252 253 254 

19.5 19.5 19.5 

8.57 8.55 8.53 

5.69 5.66 5.63 

4.43 440 4.37 

3.74 3.70 3.67 

3.30 3.27 3.23 

3.01 2.97 2.93 

2.79 2.75 2.71 
2.62 2.58 2.54 
2.49 2.45 2.40 

2.38 2.34 2.30 

2.30 2.25 2.2 1 
2.22 2. 18 2. 1 3  
2. 16 2.1 1 2.07 

2. 1 1  1.06 2.0 1 
2.06 2.01 1.96 

2.02 1.97 1.92 
1.98 1.93 1 .88 

1 .95 190 1.84 
1 .92 1.87 1.81 
189 1.84 1.78 

1.86 1.81 1 .76 
1.84 1.79 1.73 
1.82 1.77 1 . 7 1  
1.80 1.75 1.69 
1.79 1.73 1.67 

1.77 1 .7 1 1.65 

1 .75 1 .70 1.64 
1 .74 1.68 1.62 

164 1.58 1.51 

1 .53 1.47 1 .39 

1.43 1 .35 1.25 
1 .32 1.22 100 

Sorm:e: E. S. Pcarson and H. O. Hartlcy, LJwmemka Tahlesfor SIaII5I1Cmns, Vol. 2 (1972). Tablc 5. page 178, by pcrmlsslon. 
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Tahle A-6 97.5 percenriles for rhe F distribution 

The cntry ¡n column 111, row 11 is Ihe valuc ¡;. for which 1'(0 � F(m,II) .:5: p.) = 0.975. 
111 = dcgrees of freedom in numcrator; 11 = degrecs of freedolll in denominalor 

X " 1 2 3 4 5 6 7 8 9 1 0 1 2  1 5 20 24 25 

1 647.8 799.5 864.2 899.6 921.9 937.1 948.2 956.7 963.3 %8.6 976.7 984.9 993.1 991.3 998.1 

2 38.5 39.0 39.2 39.2 39.3 39.3 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.5 39.5 

3 1 7.4 16.0 1 5.4 15.1 14.9 14.7 14.6 14.5 14.5 14.4 1 4.3 14.3 14.2 14.1 14.1 

4 12.2 10.6 9.98 9.6<1 9.36 9.20 9.07 8.98 8.9<1 8.84 8.75 8.66 8.56 8.5\ 8.50 

5 10.0 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.52 6.43 6.33 6.28 6,27 

6 8.81 7.26 , 6<1  6.23 ' " 5.82 5.70 5.00 5.52 5.46 5.37 5.27 5. 17 5.12 5.]] 

7 8.07 6.54 5.89 5.52 5.29 5. 12 4.99 4.9<1 4.82 4.76 4.67 4.57 4.47 4,42 4.40 

" 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 430 4.20 4. 10 4.0<1 3.95 3.94 

9 7.21 5.71 5.08 4.12 4.48 4.32 4.20 4.10 4.03 3.96 3.87 3.77 3.67 3.61 3.60 

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.62 3.52 3.42 3.37 3.35 

1 1  6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.43 3.33 3.23 3.17 3.16 

I I  6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 J.44 337 3.28 3.18 3.07 3.02 3,01 

13 6.41 4.97 4.35 4.00 3.77 3.6<1 3.48 3.39 3.31 3.25 3. 15 3.05 2.95 2.89 2.88 

14 6.30 4.86 4.24 3.89 3.66 3.50 3,38 3.29 3.21 3.15 3.05 2.95 2.84 2.79 2.78 

15 6.20 4.77 4. 1 5 J.8<J 3.58 3.41 3.29 3.20 3. 12 3.06 2.96 2.86 2.76 2.70 2.69 

lO 6. 12 4.69 4.08 3.73 3.50 3.34 3.22 3. 1 2  3.05 2." 2.89 2.79 2.68 2.63 2.61 

17 6.04 4.62 4.01 J.66 3.44 3.28 3.16 3.06 2.98 2.92 2.82 2.72 2.62 2.56 2.55 

" 5.98 4.56 3.95 3.61 3.38 3.32 3.1 0 3.01 2.93 2.87 2.77 2.67 2.56 2.50 2.49 

lO 5.92 4.51 3.90 3.56 3.33 3, 1 7  3.05 2.96 2.88 2.82 2.72 2.62 2.51 2,45 2.44 

20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.68 2.57 2,46 2.41 2,40 

21 5.83 4.42 3.82 3.48 3.25 3.'" 2.97 2.87 2.80 2.73 2.64 2.53 2.42 2.37 2.36 

22 5.79 438 3.78 3.44 3.22 3M 2.93 2.84 2.76 2.70 2.60 2.50 2.39 2.33 2.32 

23 5.75 4.35 3.75 3.41 3.1 8  3.02 2.90 2.81 2.73 2.67 2.57 2.47 2.36 2.30 2.29 

24 5.72 4.32 3.72 3.38 3.1 5 2.99 2.87 2.78 2.70 2.64 2.54 2.44 2.33 2.27 2.26 

25 5.69 4.29 3.69 3.35 3. 13 2.97 2.85 2.75 2.68 2.61 2.51 2.41 2.30 2.24 2.23 

26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 2.59 2,49 2.39 2.28 2.22 2.21 
27 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63 2.57 2.47 236 2.25 2.19 2.18 

28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55 2,45 2.34 2.23 2.17 2.16 

29 5.59 4.20 3.61 3.27 3.04 2.&8 2.76 2.67 2.59 2.53 2.43 2.32 2.21 2.1 5 2.14 

JO 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.41 2.3 1 2.20 2.14 2.12 

40 5.42 4.05 3.46 3. 13 2.90 2.74 2.62 2.53 2.45 2.39 2.29 2.18 2.07 2.01 1.99 

'" 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.1 7 2.06 1.94 l.88 1.87 

120 5. 15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.l6 2.05 1 .95 1.82 1.76 1.75 
00 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2. 19 2. 1 1  2.05 1.94 1 .83 l.71 1 .64 1.63 

[APP. A 

�" • FO 

30 40 60 120 00 

1001 1006 1010 1014 1018 

39.5 39.5 39.5 39.5 39.5 

14. 1 14.0 14.0 13.9 13.9 

8.46 8.41 8.36 8.3 1 8.26 

6.23 6. 18 6. 12 6.01 6.02 
5.07 5.Dl 4.% 4,90 4.85 

436 4.31 4.25 4.20 4. 14 

3.89 3.84 3.78 3.73 3.67 

3.56 3.51 3.45 3.39 3.33 

3.3 1 3.26 3.20 3.14 3.08 

3.12 3 06 3.0<1 2M 2.88 

2.96 2.91 2.85 2.79 2.12 
2.84 2.78 2.72 2.66 2.(iO 
2.73 2.67 2.61 2.55 2,49 
2.64 2.59 2.52 2.46 2.40 
2.57 2.51 2.45 2.38 2.32 

2.50 2.44 2.38 2.32 2.25 

2.44 2.38 2.32 2.26 2.19 

239 2.33 2.27 2.20 2.14 

235 2.29 2.22 2.16 2.09 

2.3 1 2.25 2.18 2.1 1  2.04 

2.27 2.21 2. 14 2.08 2.00 
2.24 2.18 2. 1 1  2.04 1.97 

2.21 2.1 5 2.08 2.01 1.94 

2.18 2. 12 2.05 1 .98 1.91 

2.16 2.09 2.03 1 .95 1.88 

2.13 2.07 2.00 1.93 1.85 

2.1 1  2.05 1 .98 1.91 1 .83 

2.09 2.03 1 .96 1 .89 1.81 

2.07 2.Dl 1 .94 1 .87 1.79 

1 .94 1.88 1.80 1 .72 1 .64 

1 .82 1.74 1 .67 L58 lAS 

1 .69 L61 1.53 1 .43 1.31 

1 .57 1 ,48 1.39 1 .27 1.00 
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Tablc A-7 99th pcrcclltilcs for lhe F distributioll 

The cntry in colllmn 111, row 11 is the valllC F· 
for whic:h I'(O :'S: F(III,II) -::; P) = 0.99. 
111 = dcgrces of freedom in nllmCr.J.tor �OI 
11 = degrccs of frccdom in dcnominator , F' 

1 2 3 4 5 6 7 8 , 10 12 15 20 24 25 30 40 60 

4052 SOOO 5403 5625 5764 5859 5928 5981 6023 6056 6106 6157 6209 6235 6240 6261 6287 6313 

98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5 99.5 99.5 

34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 27.1 26.9 26.7 26.6 26.6 26.5 26.4 26.3 

21 .2 18.0 16.7 16.0 15.5 1 5.2 1 5.0 14.8 14.7 14.5 14.4 14.2 14.0 13.9 13.9 1 3.8 1 3.1 1 3.1 

16.3 13.3 12. 1 1 1 .4 1 1 .0 10.1 10.5 10.3 10.2 10.1  9.89 9.72 9.55 9.47 9.45 9.38 9.29 9.20 

13.7 10.9 9.78 9. 15 8.15 8.47 8.26 8.10 7.98 7.81 1.72 7.56 7.40 7.3 1 7.30 7.23 7. 1 4  7.06 

12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.3 1 6. 16 6.07 6.06 5.99 5.91 5.82 

1 1 .3 8.65 7.59 7.01 6.63 6.37 6. 1 8 6.03 5.91 5.81 5.67 5.52 5.36 5.28 5.26 5.20 5. 12 5.03 

10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5. 1 1  4.96 4.81 4.73 4.71 4.65 4.57 4.48 

10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.33 4.31 4.25 4.17 4.08 

9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 4.02 4.01 3.94 3.86 3.78 

9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.78 3.76 3.70 3.62 3.54 

9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.59 3.57 3.51 3.43 3.34 

8.86 6.51 5.56 5.04 4.70 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.43 3.41 3.35 3.27 3.18 

8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.61 3.52 3.37 3.29 3.28 3.21 3. 13 3.05 

8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.7� 3.69 3.55 3.41 3.26 3. 18 3. 16 3. 10  3.02 2.93 

8.40 6. 1 1 5. 19 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.3 1 3. 16 3.08 3.01 3.00 2.92 2.83 

8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3 60 3.51 3.37 3.23 3.08 lOO 2.98 2.92 2.84 2.75 

8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.92 2.91 2.84 2.76 2.67 

8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.86 2.84 2.78 2.69 2.6 1 

8.02 5.78 4.81 4.37 4.04 3.8 1 3.64 3.51 3.40 3.3 1 3. 17 3.03 2.88 2.80 2.79 2.72 2.64 2.55 

7.95 5.72 4.82 4.3 1 3.99 3.76 3.59 3.45 3.35 3.26 3. 12 2.98 2.83 2.75 2.73 2.61 2.58 2.50 

1.88 5.66 4.76 4.26 3.94 J.71 3.54 3.4 1  3.JO J.21 3.07 2.93 2.18 2.70 2.69 2.62 2.54 2.45 

7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3. 1 7 3.03 2.89 2.74 2.66 2.64 2.58 2.49 2.40 

7.77 5.57 4.68 4. 18 3.86 3.63 3.46 3.32 3.22 3. 13 2.99 2.85 2.70 2.62 2.60 2.54 2.45 2.36 

7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3. 18  3.09 2.96 2.82 2.66 2.58 2.57 2.50 2.42 2.33 

7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.93 2.78 2.63 2.55 2.54 2.47 2.38 2.29 

7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3 . 1 2  3.03 2.90 2.75 2.60 2.52 2.51 2.44 2.35 2.26 

7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.87 2.73 2.57 2.49 2.48 2.41 2.33 2.23 

7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.47 2.45 2.39 2.30 2.21 

7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.29 2.27 2.20 2.11 2.02 

1.08 4.98 4.1 3 3.65 3.34 J.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2. 1 2 2. 10 2.03 1.94 1.84 

6.85 4.79 3.95 3.48 3. 17 2.96 2.79 2.66 2.56 2.47 2.34 2. 19 2.03 1 .95 1 .93 1 .86 1 .76 1.66 

6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.5 1 2.41 2.32 2. 1 8 2.04 1 .88 1 .79 1.78 1 .70 1 .59 1.47 
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2.3 1 2.21 
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2.14 2.03 

2. 1 1  2.01 
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SOl/'ce: E. S. Pearson and H. O. Hartley. BiQmelrika Tablesfo, SlaliSljcilms. Vol. 2 (1972). Tahle 5. pa¡,'C 180. by pconissioll. 





Addition rule, 91  
Additive property, 91 
Algebra of sets, 49, 54, 65 
Alternative hypothesis, 261 
Approximate curve, 23 
Axes, 16 
Axioms of probability, 90 

B(n,p) , 1 80 
Bar graph, 4 
Bayes' theorem (formula), 1 1 3, 121 
Bernoulli trials, 1 80 
Best -fitting: 

curve, 23 
line, 21 

Biased: 
estimator, 236, 237 
point estimate, 236 

Bimodal, 14 
Binomial: 

coefficients, 57, 7 1  
distribution, 1 8 1 ,  192 

normal approximation, 187 
experiment B(n,p), 1 80 

Birthday problem, 95 
Bivariate data, 1 5, 3 1  
Boundaries, class, 3 

C(n, r), 61 
Cartesian plane R2, 16 
Central limit theorem (CLT), 1 88, 21 5, 216 

for sample proportions, 217 
Central tendency, 5 
Chebyshev's inequality, 1 5 1 ,  165, 1 72 
Chi-square: 

distribution, 218 
goodness-of-fit test, 322, 339, 352 
tests, 322 

for equal distributions, 324, 341, 352 
for independent attributes, 326, 343, 354 

Circular graph, 4 
Class, 3, 45 
Classes of sets, 53, 69 
Coefficien 1: 

confidence, 239 
correlation, 18 

Coefficient of variation, 1 3  

Index 
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Combinations, 60, 75 
Comparison, 13 
Complement, 49 

rule, 91 
Composite hypothesis, 262 
Conditional probability, 109, 1 1 7  
Confidence: 

coefficient, 239 
interval, 237, 251 , 257 

Confidence intervals for: 
difference of means, 291-293, 307, 3 16  
difference of proportions, 297, 298, 3 12, 3 1 8  
means, 240-242, 252, 258 
proportions, 244, 254, 258 
ratio s of variance, 301 ,  302, 304, 3 13 ,  3 1 8  
single population, 236 
standard deviation, 247 
variances, 245, 246, 256, 259 

Confidence level, 239 
Contingency table, 327, 328 
Continuous: 

random variable, 1 32, 148 
sample space, 89, 94 

Coordinates, 16 
Correlation, 1 7, 143 

coefficient, 1 8  
negative, 1 8  
positive, 17 

Countable sets, 5 1  
Counting, 55 ,  66 ,  73 

product rule, 56 
sum rule, 55 

Counting numbers P, 46 
Covariance Cov(X, Y), 143 
Critical: 

region, 263 
value, 243 

Cumulative: 
distribution function, 1 50 
frequency, 4 

Curve fitting, 23 

Data: 
bivariate, 1 5, 3 1  
qualitative, 4 

Deck of cards, 90 
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Degrees of freedom for: 
chi-square distribution, 218, 219 
F distribution, 301 
t distribution, 242, 292, 293, 297 

DeMorgan's laws, 49 
Density function, 148 
Deviation, 8 
Dice, pair of, 89 
Difference of sets, 49 
Discrete: 

random variable, 1 32, 147 
sample space, 89, 94 

Disjoint sets, 47 
Dispersion, 7 
Distribution, 1 34 

chi-square, 218 
F, 301 
frequency, 3, 24 
normal, 1 82 
Poisson, 190 
probability, 93 
sampling, 210 
standard normal, 182 
t, 242 

Dotplot, 26 
Duality, 50, 65 

Element, 45 
Elementary event, 88 
Empty set, 46 
Equal distributions, chi-square test for, 324 
Equiprobable space, 92, 98 
Error: 

square, 21 
Type 1 and 11,  265 

Estimator, 218, 236, 237 
Event, 88, 97 
Expectation, 96, 103 

discrete random variable, 148 
finite random variable, 136, 1 53 
random variable, 149 

Expected value, 96 
Exponential curve, 23 

F distribution, 301 
Factorial, 56, 71 
Fair game, 96, 1 38 
Finite: 

probability space, 92, 100 
sets, 50 

Five-number summary, 1 3  
Frequency: 

distribution, 3, 24 
table, 2 

Function, 1 32 
of a random variable, 146 

INDEX 

Grand mean, 1 5  

Ha , null hypothesis, 261 
Ha' alternative hypothesis, 261 
Histogram, 2 
Hypotheses testing, 261 ,  270, 278 
Hypotheses tests for: 

difference of means, 294-297, 309, 3 17  
difference of  proportions, 299, 300, 3 13 ,  3 1 8  
means, 268-271 ,  278, 286 
proportions, 273, 282, 287 
ratio s of variances, 304-306, 3 1 5, 3 19  
variances, 274, 275, 284, 287 

Image of a function, 1 32 
Impossible event, 88 
Inclusion-exclusion, 51 
Independent: 

events, 1 14, 122 
three or more, 1 1 5  

random variables, 144 
continuous, 1 50 

trials, 1 1 5, 124 
Index, 1 
Indexed classes of sets, 54 
Induction, 54, 71 
Inferences for two populations, 291 
Inferential statistics, 210 
Infinite sets, 50 
Integers Z, 46 
Intersection, 48 
Interval, 1 

estimate, 237 

Joint distribution, 142, 16 1  

K(p¡ ) , power of a test, 266 
Kurtosis, 248 

Law of large numbers, 1 53, 172 
Least squares: 

curve, 23 
line, 21 
method of, 20 

Level, confidence, 239 
Limits, class, 3 

Margin of error, 238 
Marginal distribution, 142 
Mathematical induction, 54, 71  
Mean, 5, 27 

difference of, 291 ,  294 
grand, 1 5  
hypotheses test for, 268-271 ,  278, 286 
sample, 213, 222, 230 
weighted, 1 5  



Mean of: 
binomial distribution, 1 8 1  
normal distribution, 182 
Poisson distribution, 190 
random variable, 139, 1 57 
F(m, n), 302 
P, 217 
S2 , 219 
t(k), 242 
X, 213, 214, 216 
X2 (k), 242 

Measurable sets, 89 
Median, 6, 27 
Midrange, 1 5  
Mode, 1 4  

of F(m, n), 302 
Moment, 1 67 
Multinomial distribution, 191  
Multinomial random variable, 322 
Multiplication theorem, 1 1 0  
Mutually exclusive, 8 8  

N ,  46 
Natural numbers N, 46 
Negative correlation, 18 
Normal approximation to B(n,p), 187, 200 
Normal distribution, 1 82, 197 

evaluation of, 1 85  
Normal equations, 36, 41 
Null hypothesis, 261 

One-sided: 
alternative, 262 
test, 262 

One-way analysis of variance, 330, 345, 355 
Ordered pairs, 52 
Origin, 1 6  

P, 46 
P(n, r), 57 
Parabolic curve, 23, 35 
Parameters, 5, 236, 248 
Partition, 53, 69 
Pascal's triangle, 57 
Percentiles, 1 1 ,  29 
Permutations, 58, 74 

with repetitions, 59 
Pie graph, 4 
Point estimate, 236 
Poisson distribution, 190, 202 
Polynomial curve, 23 
Pooled: 

estimator of common standard deviation, 292, 295 
sample proportion, 299 

Population, 210 
mean, 6 

INDEX 

Population (Cant.) : 
standard deviation, 9 
variance, 9 

Position, 1 1  
Positive correlation, 1 7  
Power: 

curve, 23 
set, 53 

Power of a test, 266 
Powerful test, 267 
Probability, 87, 90 

distribution, 93, 1 34 
function, 90 
space, 90 

discrete, 94 
finite, 93 

Product: 
rule principIe, 56 
set, 52, 68 

Proper subset, 45 
Proportions, sample, 216, 226 

hypotheses tests for, 273, 282, 287 
P-value of a test, 262 

Quadrants, 1 6  
Qualitative data, 4 
Quartiles, 1 1 , 29 

R, 1 , 46 
Random: 

confidence interval, 238 
sample, 210, 236 

Random variable, 1 32, 1 53 
continuous, 1 32 
discrete, 1 32 
function of, 146 
sample, 236 
sums and products, 133 

Range, 14 
space, 132 

Range of a function, 1 32 
Real numbers R, 46 

line, 1 
Reasonable doubt, hypothesis testing, 267 
Regression line, 21 
Relative: 

frequency, 87 
variation, 13 

Repeated trials, 1 1 5, 124 
Robust confidence interval, 247 

Sp, pooled estimator of ax and ay, 292, 295 
Sample: 

mean, 5, 1 32, 1 52, 213, 222, 230 
proportion, 216, 226, 23 1 
random, 210, 236 

369 
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Sample (Cont.): 
spaee, 88, 97 

di serete, 94 
finite, 92 
uneountable, 95 

standard deviation, 8 
varianee, 8, 217, 228, 230 

Sampling, 60, 210, 219, 230 
from large populations, 216 
with replaeement, 210, 219, 230 
without replaeement, 21 1 ,  219, 230 

Sampling distribution, 210 
of (n - I )S21(is, 219 
of X, 213-215  

Seatterplots, 17  
Sets, 45, 63 

eountable, 51 
finite, 50 

Signifieanee level of a test, 263 
Simple hypothesis, 262 
Small samples, 243 
Spaee, probability, 90 
Square: 

deviation, 33 1 ,  335 
between eolumns, 335 
between row samples, 331 ,  335 

variations, 331, 335 
Squares error, 21 
Standard deviation, 7, 27, 139, 148, 1 57 
Standard deviation of: 

binomial distribution, 1 8 1  
normal distribution, 1 82 
Poisson distribution, 190 
F(m, n), 302 
P, 217 
S2 , 219 
t(k), 242 
X, 213, 214, 216 
X2 (k), 218 

Standard units, 13 ,  185 
S tandardized: 

normal distribution, 1 83 
random variable, 141 

Statistie, 236, 248, 257 
Statistieal signifieanee, 263 
Statisties, 5, 236, 248 
Stem-and-Ieaf, 26 
Stirling's approximation, 57 
Stoehastie proeess, 1 1 1 , 1 1 9  
Subseript, 1 

INDEX 

Subset, 45, 63 
Sum rule principIe, 55 
Summation symbol, 1 

t distribution, 242 
Tally eount, 3, 24 
Test statistie, 292 
Tests: 

ehi-square, 322 
signifieanee level, 263 

Total: 
probability, 1 12, 121 
square deviation, 33 1 ,  335 

Tree diagram, 62, 76, 1 1 1  
Two-sided: 

alterna ti ve, 262 
test, 262 

Two-way analysis of varianee, 334, 350 
Type 1 error, 265 

probability of, 266 
Type 11 error, 265 

probability of, 266 

Unbiased: 
estimator, 218, 236 
point estimate, 237 

Uneountable spaees, 95, 101 
Unimodal, 14 
Union of sets, 48 
Universal set U, 46 

Ve, square deviation between eolumns, 331  
Ve' square deviation due to random error, 33 1 ,  336 
VR, square deviation between row samples, 33 1 ,  335 
V T, total square deviation, 33 1 ,  335 
Value, class, 3 
Varianee, 7, 27, 139, 148, 1 57, 217 

eonfidenee interval, 245 
hypotheses tests for, 274, 275, 284, 287 
sample, 217, 228, 232 

Varianee of: 
binomial distribution, 1 8 1  
normal distribution, 182 
Poisson distribution, 190 

Variation, eoeffieient of, 1 3  
Venn diagrams, 47, 65 

Weighted mean, 1 5  

Z ,  integers, 46 
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