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Preface

Probability and statistics appear explicitly or implicitly in many disciplines,
including computer and information science, physics, chemistry, geology, biology,
medicine, psychology, sociology, political science, education, economics, business,
operations research, and all branches of engineering.

The purpose of this book is to present an introduction to principles and methods
of probability and statistics which would be useful to all individuals regardless of
their fields of specialization. It is designed for use as a supplement to all current
standard texts, or as a textbook in a beginning course in probability and statistics
with high school algebra as the only prerequisite.

The material is divided into two parts, since the logical development is not
disturbed by the division while the usefulness as a text and reference book is
increased.

Part I covers descriptive statistics and elements of probability. The first chapter
treats descriptive statistics which motivates various concepts appearing in the
chapters on probability, and the second chapter covers sets and counting which
are needed for a modern treatment of probability. Part I also includes a chapter
on random variables where we define expectation, variance, and standard deviation
of random variables, and where we discuss and prove Chebyshev’s inequality and the
law of large numbers. This is followed by a separate chapter on the binomial and
normal distributions, where the central limit theorem is discussed in the context of
the normal approximation to the binomial distribution.

Part II treats inferential statistics. It begins with a chapter on sampling
distributions for sampling with and without replacement and for small and large
samples. Then there are chapters on estimation (confidence intervals) and hypoth-
esis testing for a single population, and then a separate chapter covering these topics
for two populations. Lastly, there is a chapter on chi-square tests and analysis of
variance.

Each chapter begins with clear statements of pertinent definitions, principles,
and theorems together with illustrative and other descriptive material. This is
followed by graded sets of solved and supplementary problems. The solved
problems serve to illustrate and amplify the material, and provide the repetition of
basic principles so vital to effective learning. The supplementary problems serve as
a complete review of the material in the chapter.

We wish to thank many friends and colleagues for invaluable suggestions and
critical review of the manuscript. We also wish to express our gratitude to the staff
of McGraw-Hill, particularly to Barbara Gilson and Mary Loebig Giles, for their
excellent cooperation.

SEYMOUR LipscHUTZ
Joun J. ScHILLER

Temple University
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PARTI: Descriptive Statistics and Probability

Chapter 1

Preliminary: Descriptive Statistics

1.1 INTRODUCTION

Statistics, on the one hand, means lists of numerical values; for example, the salaries of the employ-
ees of a company, or the SAT scores of the incoming students of a university. Statistics as a science,
on the other hand, is the branch of mathematics which organizes, analyzes, and interprets such raw
data. Statistical methods are applicable to any area of human endeavor where numerical data are
collected for some type of decision-making process.

This preliminary chapter simply covers topics related to gathering and describing data called
Descriptive Statistics. 1t will be used in both the first part of the text, which mainly treats Probability
Theory, and the second part of the text, which mainly treats Inferential Statistics.

Real Line R

The notation R will be used to denote the set of real numbers, which are the numbers we use for
numerical data. We assume the reader is familiar with the graphical representation of R as points on a
straight line, as pictured in Fig. 1-1. We refer to such a line as the real line or the real line R.

- -V5 -vZ

o |

-4 -3 -2 -1 0 1 2 3 4
The real line R

Fig. 1-1

v

Frequently we will deal with sets of numbers called inzervals. Specifically, for any real numbers &
and b, with & < b, we denote and define intervals from a to b as follows:

(a,0) = {x : @ < x < b}, open interval

[@,0] = {x: @« < x < b}, closed interval
[a,0) = {x : a < x < b}, closed-open interval
(0] = {x: @< b < b}, open-closed interval

That is, each interval consists of all the points between & and b; the term “‘closed” and a bracket are used
to indicate that the endpoint belongs to the interval and the term “open” and a parenthesis are used to
indicate that an endpoint does not belong to the interval.

Subscript Notation, Summation Symbol
Consider a list of numerical data, say the weights of eight students. They may all be denoted by:
Wy, Wz, Wi, Wy, Ws, Wg, Wy, Wy

The numbers 1, 2, ..., 8 written below the ws are called subscripts. An arbitrary element in the list will
be denoted by w;. The subscript j is called an index because it gives the position of the element in the
list. (The letters i and k are also frequently used as index symbols.)

1



2 PRELIMINARY: DESCRIPTIVE STATISTICS [CHAP. 1

The sum of the eight weights of the students may be expressed in the form
wy + wy + w3 + wg + ws + wg + wy + wg

Clearly, this expression for the sum would be very long and awkward to use if there were many more
numbers in the list. Mathematics has developed a shorthand for such sums which is independent of the
number of items in the list.

Summation notation uses the suinmation symbol )" (the Greek letter sigma). Specifically, given a
list X1, X,, ..., X, of n numbers, its sum may be denoted by

n
§ E g -
=

which is read:
The sum of the x-sub-js as j goes from / to n. If the number # of items is understood we may simply

write
>

More generally, suppose f(k) is an algebraic expression involving the variable k, and n; and n, are
integers for which n; <#n,. Then we define

ST = Fm) +flm 4 1) flm £ 2) 4t fng)

k=n;

Thus we have, for example,

8

E Wwj =Wy + wy + W3 + Wy + Ws + we +wy + wyg
i1

n .

g ax' = ay+ ayx + ;x> + -+ apx”
=0

5
2152:32+42+52:9+16+25:50
k=3

Z ‘kbk = l]b] Jrlzbz + - +¢,Lb,,
S0 = - (- Dt (- x)

(We assume the index goes from 1 to » in the last two sums.)

1.2 FREQUENCY TABLES, HISTOGRAMS

One of the first things one usually does with a large list of numerical data is to form some type of
frequency table, where the table shows the number of times an individual item occurs or the number of
items that fall within a given interval. These frequency distributions may be pictured using histo-
grems. We illustrate this technique with two examples.

EXAMPLE 1.1 An apartment house has 45 apartments, with the following number of tenants:
21 3522214262 431
2 431 4 42 44223142
31 524132 442513 4

Observe that the only numbers which appear in the list are 1, 2, 3, 4, 5, and 6. The frequency distribution of
these numbers appears in Fig. 1-2.  Specifically, column 1 lists the given numbers and column 2 gives the frequency
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ofcach number. (Thesc frequencics can be obtained by some sort of “tally count™ as in Problem 1.2.)  Figurc 1-2
also gives the cumulative frequency distribution.  Specifically, columm 3 gives the cumulative requency of each
numbcer, which is the number of tenant numbers not cxcceding the given number.  The cumulative frequency is
obtaincd by simply adding up the frequencics until the given frequency. Clearly, the last cunmilative frequency
number 45 is the same as the sum of all frequencies, that is, the nuber of apartments.

The frequency distribution in Fig. 1-2 may be pictured by a histogram shown in Fig. 1-3. A
histogram is simply a bar graph where the height of the bar gives the number of times the given number
appcarsin the list.  Similarly, the cumulative frequency distribution could be presented as a histogram,
the heights of the bars would be 8, 22, 29,...,45.

Number of Curmulative b
people Feequency | frequency i
1 8 8 2
9 14 22 =
3 7 29 8 |
4 12 41 L
5 3 44 aE
6 1 45 n

Sum 45 ° T T T T T ﬁ

1 2 3 4 5 6
Fig. 1-2 Fig. 1-3

EXAMPLE 1.2 Supposc the 6:00 p.m. temperatures (in degrees Fahrenheit) for a 35-day period arc as follows:
72 78 86 93 106 107 98 82 81 77 §7 82
91 95 92 8 76 78 73 81 86 92 93 84
107 99 94 8 81 77 73 76 80 88 91

Rather than find the frequency distribution of cach individual data item, it is morc uscful to construct a frequency
tablec which counts the number of times the obscrved temperaturc falls in a given class, i.c. an intcrval with certain
limits. This is donc in Fig. 1-4.

‘I'he numbers 70, 75. 80, ... are called the class beunduries or class limits. If a data item lalls on a
class boundary, it is usually assigned to the higher class; for example. the number 95° was placed in the
95-100 class. Sometimes a [requency table also lists each class value, i.e. the midpoint of the class
interval which serves as an approximation to the values in the interval.

Figure 1-5shows the histogram which corresponds to the [requency distribution in Fig. 1-4. It also
shows the frequency polygon, which is a line graph obtained by connecting the midpoints of the tops of
the rectangles in the histogram. QObserve that the line graph is extended to the class value 67.5 on the
left and to 112.5 on the right. In such a case, the sum of the areas of the rectangles equals the area
bounded by the frequency polygon and the x-axis.

Interval Netation, Number of Classes

The entrics forming a class can be denoted using interval notation.  Sincce a bracket indicates that a
classboundary belongs to an interval, but a parcnthesis means that it docs not, the classes in Fig. 1-3 can
be denoted by

[70.75), [75,80),..., [105,110)

respeetively.  Also, thereis no fixed rule for the number of classes that should be formed lor data.  The
fewer the number of classcs, the less specilic is the information displayed by the histogram, but a larger
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Class Class
bourndanes, | value, Cumulative
°F 2K Frequency| frequency

70-75 72.5 3 3 {0

75-80 71.5 6 9

80-85 | 82.5 8 17 1 Y

85-90 | 87.5 5 22 < !,-’ N\ A '\‘

90-95 92.5 7 29 a0 ) \

95-100 | 97.5 3 32 Wi L8 -
100-105 | 1025 0 32 i X - N
Ak i L Y75 2 b o= 6IS /70 75 80 85 90 95 IIII\/l(IS 10 . llIS

Sum 35 Temperature
Fig. 14 Fig. 1-5

number ol classes may defeat the purpose of grouping the data (see Problem 1.1). The rule of thumb is
that the number of classes should lie somewhere between 5 and 10.

Qualitative Data, Bar and Circular Graphs

Most data in this text will be numerical unless otherwise stated or implied. However, sometimes we
do come into contact with nonnumerical data, called qualitative data, such as gender (male or female),
major subject (English, Mathcmatics, Philosophy, .. .), placc of birth, and so on. Clcarly, a frequency
table can be formed for such data (but a cumulative frequency tablc would have no meaning). Instcad
ol'a histogram, such data may bc pictured as (a) a har graph and/or () a circular graph (also called a pie
graph or pie chart).

EXAMPLE 1.3 Suppose the students at a small Community College in Philadelphia are partitioned into live
eroups according to their home address: (1) Philadelphia. (2) suburbs of Philadelphia, (3) Pennsylvania (outside
Philadelphia and its suburbs), (4) New Jersey, and (5) elsewhere; and suppose the following is the frequency
distribution for the college during somc scimcster:

Philadclphia Suburbs PA NJ Elsewhcrc Sum

Number of students: 225 100 60 75 40 500

Draw («) the bar graph, and (b) the circular graph of the data.

(¢} Tigurc -6 shows a bar graph for the data. The length of cach bar is proportional to the number of studcnts
living in the area. The bar graph is not a horizental histogram. Specilically, the order of the data can be
interchanged in the bar graph, e.g. putting New Jersey before Pennsylvania, without essentially changing the
graph. This cannot be done with a histogram, since the data is numerical and has a given order. (A
histogram may be vicwed as a spccial kind of bar graph.)

(b) Figure I-7 shows acircular graph for the data. Il d; is the number of degrees in a “‘slice” (sector) correspond-
ing to a group with #; items out of SUM itcms, then

d; = (3;/SUM) (360)
[For cxample, Philadclphia is assigned a slicc with
[(225)/(500)](360) = 162 degrees

Clearly, the sum of the degrees assigned to the data must equal 360 degrees.
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%
0 50 100 150 200 250
1 ) ) ) ) %‘

Phitadelphia New

Jersey
Penngyivama I Pennsylvania
New Jersey I

Suburbs
Eisewhere I
Fig. 1-6 Fig. 1-7

1.3 MEASURES OF CENTRAL TENDENCY: MEAN AND MEDIAN

There arc various ways ol giving an overview ol data. Onc way is by the graphical descriptions
discusscd above. There arc also numcrical descriptions of data. Numbers such as the mean and
mcdian give, in some scnse, the central or middle valucs of the data.  Other numbers. such as variance
and standard dcviation, mcasurc the dispersion or sprcad of the data about the mecan. The central
tendencey of data is discussed in this section and dispersion in the following scction.

The data we discuss will come cither from a random samplc of a larger population or from the larger
population itscll.  We distinguish these two cascs using dilferent notation as follows:

1 = number of items in the sample, N = number of elements in the population
X (read: x-bar) = sample mean, 4 (read: mu) = population mean
§* = sample variance, o® = population variance

Note: Greek letters arc used with the population and are called paramerers.  Latin letters arc usced with
the samples and are called sraristics.

Mean
Supposc a samplc consists of the cight numbers:
7. 11, 11, & 12, 7, 6, 6
The sample mean ¥ is defined to be the sum of the values divided by the number of values; that is,

G THUA I +841247+646 68

8.5
8 g

Generally speaking, suppose x, X, ..., X, arc # numerical valucs of somc sample. Then:

XXX, X X
i i

Sample mean: x

(1.1)

Now supposc that the data arc organized into a [requency table; let there be & distines numerical
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values xj, X,, ..., X, occurring with respective frequencies f, f3,..., fr- Then the product f;x; gives
the sum of the x’s, f,x, gives the sum of the x,’s, and so on. Also,

fith+-+fi=n

the total number of data items. Hence, formula (7.7) can be rewritten as

fixvitfoxa+- 4 S 30 S (1)
Nttt 2 i ‘

Sample mean: X =

Conversely, formula (7.2) reduces to formula (7.7) in the special case k = n and all f; = 1.
For data organized into classes, (1.2) is applied with f; as the number of data items in the ith class
and x; as the ith class value.

EXAMPLE 1.4

(«) Consider the data of Example 1.1, of which the frequency distribution is given in Fig. 1-2. The mean is

. 8(1) + 14(2) + 7(3) + 12(4) +3(5) + 1(6) _ 126 a8
T 45 45 7

In other words, there is an average of 2.8 people living in an apartment.

(b) Consider the data of Example 1.2, of which the frequency distribution is given in Fig. 1-4. Using the class
values as approximations to the original values, we obtain

3(72.5) + 6(77.5) + 8(82.5) + 5(87.5) + 7(92.5) + 3(97.5) + 0(102.5) + 3(107.5) _ 3042.5
35 T

i.e. the mean 6:00 p.M. temperature is approximately 86.9 °F.

~ 86.9

X =

Remark: The formula for the population mean p is the same as the formula for the sample mean
X. That is, suppose x;, X5, ..., Xy are the N numerical values of the entire population. Then:

XpFxp by Y X

Population mean: p = v v

The reader may wonder why we give separate formulas for the sample mean x and population mean p,
since the formulas are the same. The reason is that the formulas will not be the same when we discuss
the sample variance s* and population variance o° in Section 1.4.

Median

Consider a list xq,x,,...,x, of n data values which are sorted in increasing order. The median of
the data, denoted by
X (read: x-tilde)

is defined to be the “middle value”. That is,

[(n+1)/2]th term when 7 is odd,

Median: ¥ = (n/2)th term + [(n/2) + 1]th term

2

when # is even.

Note that x is the average of the (s#/2)th and [(#/2)+ 1]th terms when # is even.
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Suppose, for example, the following two lists of sorted numbers are given:
List A: 11,11,16,17,25
ListB: 1,4,8,8,10,16,16,19

List A has five terms; its median X = 16, the middle or third term. List B has eight terms; its median
X = 9, the average of the fourth term (8) and the fifth term (10).

One property of the median X is that there are just as many numbers less than X as there are greater
than x.

The cumulative frequency distribution can be used to find the median of an arbitrary set of data.

EXAMPLE 1.5

() Consider the data in Fig. 1-2, which gives the number of tenants in 45 apartments. Here n = 45. The
cumulative frequency column tells us that the median X = 3, the 23rd value.

(b) Consider the data in Fig. 1-4 which gives the 6:00 p.m. temperatures for a 35-day period. The median X = 87.5,
the approximate 18th value.

Comparison of Mean and Median

Although the mean and median each locate, in some sense, the center of the data, the mean is
sensitive to the magnitude of the values on either side of it, whereas the median is sensitive only to the
number of values on either side of it.

EXAMPLE 1.6 The owner of a small company has 15 employees. Five employees earn $25,000 per year, seven
earn $30,000, three earn $40,000, and the owner’s annual salary is $153,000. (&) Find the mean and median salaries
of all 16 persons in the company. (b) Find the mean and median salaries if the owner’s salary is increased by
$80,000.

(«) The mean salary is

525,000 + 7 - 30,000 + 3 - 40,000 + 153,000
16

X =

608,000
16

Since there are 16 persons, the median is the average of the eighth (12—‘5) and ninth (12—6 + 1) salaries when the
salaries are arranged in increasing order from left to right. The eighth and ninth salaries are each
$30,000. Therefore, the median is

— $38,000

X = $30,000

(b) The new mean salary is

608,000 + 80,000 688,000
16 16

The median is still $30,000, the average of the eighth and ninth salaries, which did not change. Hence, the
mean moves in the direction of the increased salary, but the median does not change.

— $43,000

X =

1.4 MEASURES OF DISPERSION: VARIANCE AND STANDARD DEVIATION
Consider the following two samples of numerical values:
List A: 12,10, 9, 9,10
List B: 5,10,16,15, 4

For both A and B, the sample mean is ¥ = 10. However, observe that the values in A are clustered
more closely about the mean than the values in B. To distinguish between A and B in this regard, we
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define a measure of the dispersion or spread of the values about the mean, called the sample variance, and
its square root, called the sample standard deviation.

Let X be the sample mean of the n values x, x,,...,x,. The difference x; — X is called the deviation
of the data value about the mean X; it is positive or negative according as x; is greater or less than
%. The sample variance s> is defined as follows:

2 2 -2 -2
Sample variance: s° = bn ) 1% n)? 1+ (% %) = Z(ZL lx) (1.3)

The sample standard deviation s is the nonnegative square root of the sample variance; that is:

Sample standard deviation: s = Ve (1.4)

Since each squared deviation is nonnegative, so is s>. Moreover s° is zero precisely when each data
value x; is equal to X. The more spread out the data values are, the larger the sample variance and
standard deviation will be.

EXAMPLE 1.7 Consider the lists A and B above.
(«) Inlist A, whose sample mean is x = 10, the deviations of the five data are as follows:
12-10=2, 10-10=0, 9-10=-1, 9-10=-1, 10-10=0
The squares of the deviations are then
22=4, 0°=0, (-1)*=1, (-1)*=1, 0*°=0
Alson—1=5—-1=4. Thus the sample variance s* and standard deviation s are as follows:

I AN B £ R S

and s=v15~122

(b) In list B, we obtain the following:
o 6 10)* + (10 — 10)* + (16 — 10)* + (15 — 10)> + (4 — 10)?

5-1
:25+0+16+25+36:£:30.5
4 4
and s =+v30.5~=5.52

Note that B, which exhibits more dispersion than A, has a much larger variance and standard deviation than A.

The following is another formula for the sample variance; that is, it is equivalent to (/.3):

2 _ ZX?* (in)z/”

n—1

Sample variance: s

(1.5)

Although formula (/.5) may look more complicated than formula (1.3), it is actually more convenient to
use than formula (1.3), especially when the data are given in tabular form. In particular, this formula
can be used without calculating the sample mean X.

EXAMPLE 1.8 Consider the following values:
3, 5 & 9, 10, 12, 13, 15, 20
Find: (a) the sample mean x and (b) the sample variance s>.
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First construct the following table:

Sum
X; 3 5 ] 9 10 12 13 15 20 95
x? 9 25 64 81 100 144 169 225 400 1217

() By formula (1.7), where n =9,
x= (Z xl)/n —95/9 ~ 10.56

(b) Here we use formula (1.5) withn=9 and n—1=8:

o 1217 (95)°/9 _ 1217 —1002.7778
- 8 - s

Note that if we used formula (/.3) we would need to subtract x =10.56 from each x; before squaring.

~ 26.78

Remark: The formula for the population variance o is not the same as the formula for the

sample variance s> in that, when computing ¢*, we divide by N and not N —1. That is, suppose
X1,Xy,...,Xxy are the N numerical values of the entire population and suppose p is the population
mean. Then:

2 2 2
Population variance: ¢ = (o =)+ o =)t (o — )
) N

_ > (i —p)’
N

Population standard deviation: o = \/o?

Some texts do define s* using # rather than n — 1. The reason that n — 1 is usually used for the sample
variance s° is that one wants to use s> as an estimate of the population variance ¢°>. One can prove that
using » rather than n — 1 for s* tends to underestimate o”.

Sample Variance with a Frequency Distribution

For n data items organized into a frequency distribution consisting of k& distinct values xy, x5, ..., x;
with respective frequencies f}, f,..., f;, the product fi(x; — 5c)2 gives the sum of the squares of the
deviations of each x; from x. Also, fi + 5+ -+ fr =n. Hence we can rewrite formulas (/.3) and
(1.5) as follows:

N2 2 —\2 vl =\2
Sample variance: s° = Sl = X) + ol = X) F o 4 Sl — %) = 2 Jilxi = ) (1.6)

ittt )1 o) -1

s S ()Y S
(/)1

and Sample variance: s (1.7)

If the data are organized into classes, we use the ith class value for x; in the above formulas (1.6) and
(1.7).
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EXAMPLE 1.9 Consider the data in Example 1.1, which gives the number of tenants in 45 apartments. By
Example 1.4(a), the sample mean is x = 2.8. Find the sample variance s° and the sample standard deviation s.

First extend the frequency distribution table of the data in Fig. 1-2 to obtain the table in Fig. 1-8. We
then obtain, using formula (1.7),

2430 - (126)°/45

m 1.75 and s~ 132

Note n =45 and n — 1 = 44.

Number of | Frequency,
people, x, £ fix | x| fix}
1 8 8 1 8
2 14 28 4 56
3 7 21 9 63
4 12 48 | 16 | 192
5 3 15| 25 75
6 6|36 | 36
Sums 45 126 430
Fig. 1-8

EXAMPLE 1.10 Three hundred incoming students take a mathematics exam consisting of 75 multiple-choice
questions. Suppose the following is the distribution of the scores on the exam:

Test scores 5-15 15-25 25-35 35-45 45-55 55-65 65-75
Number of students 2 0 8 36 110 78 66

Find the sample mean X, variance 5%, and standard deviation s.
First enter the data in a table as in Fig. 1-9. Then, by formulas (/.2) and (1.7),

, 2
= -163’%00‘ =55 s = 244,200 2193’500) 3% 12274  and s~ 11.08
Class
Class |value, | Frequency,
limits | «x; £ fix; x? fix?
5-15| 10 2 201 100 200
15-25| 20 0 0] 400 0
25-35| 30 8 240 1 400 7,200
35-45| 40 36 1,440 | 1600 | 57,600
45-55| 50 110 5,500 | 2500 | 275,000
55-65] 60 78 4,680 | 3600 | 280,800
65-75| 170 66 4,620 | 4900 | 323,400
Sums 300 16,500 944,200

Fig. 19
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1.5 MEASURES OF POSITION: QUARTILES AND PERCENTILES

The preceding two sections discussed numerical measures of central tendency and of dispersion for a
sample of data values. Now we consider numerical measures of position within the values when they
are arranged in increasing order.

Quartiles

The median X of # data values arranged in increasing order has been defined as a number for which
at most half the values are less than X and at most half are greater than X. Here, “half”” means n/2 if n
is even and (n — 1)/2 if nis odd. The first quartile, O, is defined as the median of the first half of the
values, and the third quartile, O3, is the median of the second half. Hence about one-quarter of the data
values are less than Q) and three-quarters are greater than O,. Similarly, about three-quarters are less
than Qs, and one-quarter are greater than Q3. The second quartile, Q,, is defined to be the median x.

EXAMPLE 1.11 Consider the following ten numerical values:
2 53 47011 2 3 8

Find Q,, Q,, and Q5 for the data.
First arrange the values in increasing order:

02233457811
Since n= 10, the median X = Q, is the average of the fifth and sixth values:

3+4
=——=35
Q2 2

0, is the median of the first five values, which are 0, 2, 2, 3, 3, and Q5 is the median of the last five values, which are
4,5, 7,8 11; hence

Ql =2 and Q3:7

Percentiles

Suppose n data values are arranged in increasing order. The kth percentile, denoted by Py, is a
number for which at most k& percent of the values are less than P, and at most (100 — k) percent are
greater than P;. Specifically, P is defined as follows.

First compute kn/100 and break it into its integer part 7 and its decimal part D; that is, set

kn
214D
100
(I + 1)th value when D /0
Then: Py = 4 Ith value + (I + 1)th value

> when D =0

EXAMPLE 1.12 Suppose 50 data values are arranged in increasing order. Find (a) P;s and (b) Ps,.
(@) Given n=50, k=35. Thus

kn  35(50)
100 = 100 =17.5=17+0.5
Here, I =17 and D =0.5. Since D # 0 and 7 +1 =18,

P35 = 18th value
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() Given n =50, k =30. Thus
kn 0(50)
T 15— 1540
100 100 *

Here, I = 15 and D = 0. Since D =0,

15th value + 16th value

P3y = )

EXAMPLE 1.13 Consider the following 50 values, listed in order, column by column:
10 20 35 44 55 64 75 81 87 99
11 22 36 48 56 68 76 82 89 101
13 23 38 49 57 69 76 & 90 102
15 23 41 50 60 70 78 83 94 105
18 30 44 S0 63 73 8 85 96 107

Find P;5 and Pj,.

According to Example 1.12,

P35 = 18th value = 49
15th value + 16th value 4 +44
2 2

Py = 44

EXAMPLE 1.14 Consider the 50 data values in Example 1.13. Find (&) P,s, (b) Psy, (¢) P75. Compare these
values with Q;, 0,, and Qs, respectively.

(@) Given n =50, k=25. Thus
Kn _2500) _ 15512105
100 100

Note D =0.5+# 0, and 7 + 1 =13. Hence
P,5 = 13th value = 38
0, is the median of the first 25 values, which is the 13th value or 38. Hence Q; = Pys.

() Given n= 50, k =50. Thus
kn 0(50)
0= 100 — 25=25+4+0
Since D =0,
25th value + 26th value 63 + 64
2 T2
0, is the median of the 50 values, which is the same as Psq. That is, O, = Psy.

(¢) Given n= 50, k=75. Thus

Py = =63.5

kn _ 75(50)
100 100
Note D =0.5+# 0, and 7 +1 =138. Hence

P;5 = 38th value = 83

=375=37+05

Q5 is the median of the last 25 values, which is the 13th of these values, or 83. Hence Q3 = Pys.
Remark: The results in Example 1.14 are true for any set of numerical values; that is:
01 = Pos, 0> = Ps, Q5 = Pys

In other words, the percentiles form a generalization of the quartiles.
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Five-Number Summary

The 5-number suminary of a collection of numerical data consists of the lowest value L, the quartiles
01,0, 03, and the highest value H. Thus the 5-number summary of the S0 values in Example 1.13
follows:

L =10, 0, =38, 0, =063.5, Q5 = 83, H =107
(The quartiles were obtained in Example 1.14.) We note that each of the four intervals

[L,O1], [Q1,02], [02,0s], [Qs 1]

will contain about 25% (one-quarter) of the data items.

1.6 MEASURES OF COMPARISON: STANDARD UNITS AND COEFFICIENT OF
VARIATION

Sometimes we want to compare data which come from different samples or populations. This is
sometimes done using standard units and/or the coefficient of variation.

Standard Units

Suppose x is a value coming from a sample (or population) with mean X (or p) and standard
deviation s (or o). Then the value of x in standard units, denoted by z, is defined as follows:

X—X X—u

Standard units: z =
K3 o

Standard units tell the number of standard deviations a given value lies above or below the mean of
its sample (or population). It can also be used to compare values from different samples (or popula-
tions).

EXAMPLE 1.15 Student A got a score of 85 in a test whose scores had mean 79 and standard deviation 8.
Student B got a score of 74 in a test whose scores had a mean of 70 and standard deviation 5. Which student
got a “‘higher score”?
The standard scores for students A and B are, respectively,
& -79 6 74—-70 4

ZA = 3 g =0.75 and Zp =

Thus student B did better than student A, even though his actual score, 74, was less than 85.

Coefficient of Variation

One major disadvantage of the standard deviation as a measure of variation or dispersion is that it
depends on the units of measurements and on the sample (or population).

Clearly, a variation of 2 pounds when measuring a weight of 40 pounds represents a different effect
than the same variation of 2 pounds when measuring a weight of 160 pounds. This effect is measured
by the relative variation, defined by:

. .. Variation
Relative variation =

Average

Thus, for the above data, there is a relative variation of 2/40 = 0.05 = S percent in the first case, but a
relative variation of 2/160 = 0.0125 = 1.25 percent in the second case.
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Now suppose the variation is the standard deviation s (or o) and the average is the mean X (or w);
then the relative variation is called the coefficient of variation, denoted by V and usually expressed as a
percentage. That is:

Coefficient of variation: V= i(lOO percent) or V= g(100 percent)
X p

EXAMPLE 1.16 Suppose measurements of an item with a metric micrometer A had a mean of 3.25mm and a

standard deviation of 0.01 mm, and suppose measurements of another item with an English micrometer B had a

mean of 0.80in and a standard deviation of 0.002in. Which micrometer is relatively “more” precise?
Calculating the two coefficients of variation yields

= % (100 percent) = 0.31 percent and Vg= 0.002 (100 percent) = 0.25 percent

14 —
A 0.80

Thus micrometer B is more precise.

1.7 ADDITIONAL DESCRIPTIONS OF DATA

There are additional descriptions of data, besides the mean, median, variance, and standard devia-
tion. Some of them will be discussed in this section.

Mode

The mode of a list of numerical data is the value which occurs most often and more than once. The
mode may not exist (e.g. every value may occur only once), and if it does exist it may not be unique.
Geometrically, the mode is the highest point in the histogram or the frequency polygon.

Consider, for example, the following three lists:

List A: 2, 3, 3
ListB: 2, 3, 5 7, & 9 11, 13
ListC: 2, 3, 3 3 5 7, 17, 7, 8

List A has the unique mode 7; it is said to be unimodal. List B has no mode. List C has two modes, 3
and 7; it is said to be bimodal.

The mode also applies to nonnumerical (qualitative) data. For example, the mode of the data in
Example 1.3 is Philadelphia. Geometrically, it is the item with the longest bar in the bar graph or the
largest sector in the circular graph.

The mode of grouped data is usually the class value of the class with the greatest frequency. For
example, the mode of the grouped temperature data in Example 1.2 is the class value 82.5 °F.

Range Interval, Range, and Midrange

The range interval of a set of numerical data is the smallest interval containing the data or, in other
words, the interval whose endpoints are the smallest and largest values. Thus the range interval of
the above list A is the interval [2, 9]; we also say the data lies between 2 and 9. The range intervals of
the lists B and C are, respectively, [2, 13] and [2, &].

The range of a set of numerical data is the difference between the largest and smallest values or, in
other words, the length of the range interval. Thus the ranges of the above lists A, B, and C are,
respectively, 7, 11, and 6.
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The midrange of a set of numerical data is the average of the smallest and largest values or, in other
words, the midpoint of the range interval. Thus the midranges of the above lists A, B, and C are,
respectively, 5.5, 7.5, and 5.

Weighted Mean

Sometimes numerical data x,x,,...,x, are assigned respective weights w; wy,..., w,. For
example, each weight may be the frequency that an item occurs, or the probability that the item occurs,
or some measure of the “importance” of the item. The weighted mean, denoted by x,,, is defined as
follows:

. Xiwy + Xowy + -+ X, W X;W;
Weighted mean:  x, = 1 ~22 n ”:Z g

Wi Wy 4wy 2 Wi

Observe that the weighted mean formula is the same as the sample mean formula (7.2) when the weights
represent frequencies.

Grand Mean

Suppose we want to find the overall mean of a collection of data where the data has been partitioned
into ¢ sets, where:
ny, ny, ..., n, are the numbers of elements in the sets

X1, Xo, ..., X, are the means of the corresponding sets

Then the grand mean of the total collection of data, denoted by X (read: x-double bar), is defined as
follows:

mX) +mXy + X, Y mX;

Grand mean: X —
mot 2on

One may view the grand mean as a special case of the weighted mean.

EXAMPLE 1.17 A philosophy class contains 10 freshmen, 20 sophomores, 15 juniors, and 5 seniors. The class is
given an exam where the freshmen average 75, the sophomores 78, the juniors 80, and the seniors 82. Find the
mean grade for the class.

Use the grand mean formula with

n = 10, ny = 20, ny = 15, ny = 5, X = 757 Xy = 78, X3 = 80, X4 = 82

This yields
10(75) +20(78) + 15(80) + 5(82) 3920
10+20+15+5 50

That is, 78.4 is the grand mean grade for the class.

=784

X=

1.8 BIVARIATE DATA, SCATTERPLOTS

Quite often in statistics it is desired to determine the relationship, if any, between two variables such
as age and weight, weight and height, years of education and salary, or amount of daily exercise and
cholesterol level. Letting x and y denote the two variables. The data will consist of a list of pairs of
numerical values:

(xlayl)a (x27y2)5 (x3ay3)a"'v(xmyn)

where the first values correspond to the variable x and the second values correspond to y.
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As with a single variable, we can describe such bivariate data both graphically and numerically.
Our primary concern is to determine whether there is a mathematical relationship, such as a linear
relationship, between the data.

It should be keptinmind that a statistical relationship between two variables does not necessarily imply
that there is a causal relationship between them. For example, a strong relationship between weight and
height does not imply that one variable causes the other. Specifically, eating more does usually increase
the weight ofa person, but it does not usually mean that there will be an increase in the height of the person.

This section will give geometrical descriptions of bivariate data. The next section will discuss
numerical descriptions of such data.

Cartesian Plane R?

The notation R? is used to denote the collection of all ordered pairs (e, b) of real numbers. (By
definition, (@, b) = (¢, d) if and only if @« = cand b = d.) Just as we can identify R with points on a line
as in Fig. 1-1, so can we identify R? with points in the plane. This identification, discussed below, is
called the cartesian plane (named after the French mathematician René Descartes (1596-1650)), the
coordinate plane, or simply the plane R*.

Two perpendicular lines Z; and L, are chosen in the plane; the first line Z; is pictured horizontally
and the second line L, is pictured vertically. The point of intersection of the lines is called the origin
and is denoted by 0. These lines, called axes, are now viewed as number lines, each with zero at the
common origin and with the positive direction to the right on Z; and upward on L,. Also, L, is usually
called the x-axis and L, the y-axis (see Fig. 1-10). Normally, we choose the same unit length on both
axes, but this is not an absolute requirement.

Now each point P in the plane corresponds to a pair of real numbers (a, b), called the coordinazes of
P, as pictured in Fig. 1-10; that is, where the vertical line through P intersects the x-axis at « and where
the horizontal line through P intersects the y-axis at b. (We will frequently write P(a, b) when we want
to indicate a point P and its coordinates @ and b.) Note that this correspondence is one-to-one, i.e. each
point P corresponds to a unique ordered pair (&, b), and vice versa. Thus, in this context, the terms
point and ordered pair of real numbers are used interchangeably.

The two axes partition the plane into four regions, called quadrants, which are usually numbered
using the Roman numerals I, II, I1I, and IV, as pictured in Fig. 1-11. That is:

Quadrant I: ~ Both coordinates are positive, (+,+).

Quadrant IT:  First coordinate negative, second positive (—, +).
Quadrant ITII:  Both coordinates are negative, (—, —).

Quadrant IV:  First coordinate positive, second negative, (+,—).

Thus the quadrants are numbered counterclockwise from the upper-right-hand position.

3 Axis 4
Quadrant 1T Quadrant I
Vb (— 3 +) (+’ +)
0 x Axis
R ® P(a,b)
i
] Quadrant T Quadrant TV
: ) +-)
! B,
0 a x

Fig. 1-10 Plane R? Fig. 1-11 Quadrants
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EXAMPLE 1.18 Locate and find the quadrant containing each of the following points in the plane R%:
A(2,-5), B(—5,2), C(-3,-17), D(4,4), E(0,6), F(-17,0)

To locate the point P(x,y), start at the origin, go x directed units along the x-axis and then y directed units
parallel to the y-axis. The final point is P(x, y). Figure 1-12 shows the given points in the plane. Thus D(4,4) is
in quadrant I, B(—5,2) in quadrant IT, C(—3, —7) in quadrant III, and 4(—2, 5) in quadrant IV. The points E(0, 6)
and F(—7,0) lie on the axes, so they do not belong to any quadrant.

V&
@ £(0,6)
T D(4,4)
B(S5,2) T
F(-7,0) 0] x
1 4¢3
ce3,-n L
Fig. 1-12

Scatterplots

Consider a list of pairs of numerical values representing variables x and y. The scatzerplot of the
data is simply a picture of the pairs of values as points in a coordinate plane R*>. The picture sometimes
indicates a relationship between the points, as illustrated in the following examples.

EXAMPLE 1.19 Consider the following data, where x denotes the respective number of branches that 10 different
banks have in some metropolitan area and y denotes the corresponding share of the total deposits held by the banks:

x 198 186 116 &9 120 109 28 58 34 31
y 227 16.6 15.9 12.5 10.2 6.8 6.8 40 27 2.8

The scatterplot of the data appears in Fig. 1-13. The picture of the points indicates, roughly speaking, that the
market share increases as the number of branches increases. We then say that x and y have a pesitive cerrelation.

24 |-
®
20 |-
\G\O\
o 16 - ® ®
3
= 12F ®
i ®
5 i
2 ® ®
41 ®
%
il I 5 il i 5 I i il I
0 40 80 120 160 200
Number of branches

Fig. 1-13
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EXAMPLE 1.20 Consider the following data, where x denotes the average daily temperature in degrees Fahrenheit
and y denotes the corresponding daily natural gas consumption in cubic feet:

x,°F 50 45 40 38 32 40 55
», 13 2.5 5.0 6.2 7.4 &3 4.7 1.8

The scatterplot of the data appears in Fig. 1-14. The picture of the points indicates, roughly speaking, that the gas
consumption decreases as the temperature increases. We then say that x and y have a negative cerrelation.

s
=
T

Y

=}

g st -

g ®

a gl ®

@ o °

B 4|~

E

=1 " ®

z 2 ®
ol , . ; ;

30 40 50 60

Temperature, °F

Fig. 1-14

EXAMPLE 1.21 Consider the following data, where x denotes the average daily temperature in degrees Fahrenheit
over a 10-day period and y denotes the corresponding daily stock index average (in 1998):

x 63 72 76 70 71 65 70 74 68 61
y 8385 8330 8325 8320 8330 8325 8280 8280 8300 8265

The scatterplot of the data appears in Fig. 1-15. The picture of the points indicate that there is no apparent
relationship between x and y.

Stock average
oo
&
o
[]
°
°

Temperature, °F

Fig. 1-15

1.9 CORRELATION COEFFICIENT

Scatterplots indicate graphically whether there is a linear relationship between two variables x and
¥y. A numeric indicator of such a linear relationship is the sample correlation coefficient r of x and y,
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which is defined as follows:

TR
Vo - 2 S0

Sample correlation coefficient: r

(1.8)

We assume that the denominator in formula (7.8) is not zero. It can be shown that the correlation
coeflicient r has the following properties:

1 —-1<r<l

(2) r>0if y tends to increase as x increases and r < 0 if y tends to decrease as x increases

(3) The stronger the linear relationship between x and y, the closer r is to —1 or 1; the weaker the linear
relationship between x and y, the closer # is to 0

An alternative formula for computing # is given below; we then illustrate the above properties of » with
examples.
Formula (1.8) can be written in the more compact form as

P (1.9)
S5Sy

where s, and s, are the sample standard deviations of x and y, respectively [see formulas (/.3) and (/.4)],

and where s,,, called the sample covariance of x and y, is defined by

2 — 90— ))

Sxy = — (1.10)
An alternative formula for computing r follows:
2oxiy — Qo x) Qo yi)/n (1.11)

e S - (S

This formula is very convenient to use after forming a table with the values of x;, y;, x%, 2 X;y;, and their
sums, as illustrated below.

EXAMPLE 1.22 Find the correlation coefficient r for the data in () Example 1.19, () Example 1.20, (¢) Example
1.21.

(#) Construct the table in Fig. 1-16. Then use formula (/.1/) and that the number of points is » = 10 to obtain:
13,105.3 — (969)(101)/10

e ~0.8938
\/127,723 - (969)2/10\/1427.56 — (101)*/10

Here r is close to 1, which is expected since the scatterplot Fig. 1-13 indicates a strong positive linear relation-
ship between x and y.

(b) Construct the table in Fig. 1-17. By formula (1.11), with n =7,
. 1431.8 — (300)(35.9)/7
\/13.213 - (300)2/7\/218.67 —(35.9)%/7

~ —0.9562

Here r is close to —1, and the scatterplot Fig. 1-14 does indicate a strong negative linear relationship between
x and y.
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X Yi xiz J’i2 X V;
198 | 227 | 39,204 515.29| 44946
186 | 16.6 | 34,596| 275.56| 3087.6 - -
16| 159 | 13456| 252.81| 1844.4 L N B i X
89| 125 | 7.921| 156.25| 11125 50 25) 25001 6.25] 125.0
120 | 10.2| 14,400| 104.04| 12240 451 5.0 20251 2500 | 225.0
109| 68| 11,881| 4624 7412 40| 6.2] 1,600 | 3844 | 2480
x| 68 84l 4624|1904 38| 7.4 1,444 | 5476 | 281.2
8| 40| 3364| 1600 2320 321 83 1,024 6889 2656
ul 271 116l 729l oLs 40| 47| 1,600 | 22.09| 188.0
31| 28 os1| 784 868 55| 18| 3,025| 324| 990
Sums | 969 [101.0 | 127,723 | 1427.56[13,105.3 Sums | 300 | 359 | 13,218 | 218.67 | 1431.8
Fig. 1-16 Fig. 1-17
(¢) Construct the table in Fig. 1-18. By formula (7.11), with n = 10,
2,286,555 — (690)(33,140)/10
(690)( )/ ~ —0.0706

=
\/47,816 - (690)2/10\/109,836,700 — (33,140)%/10

Here ris close to 0, which is expected since the scatterplot Fig. 1-15 indicates no linear relationship between x
and y.

2 2
xi Vi A i XY

63 | 3,385 3,969| 11,458,225 213,255
72 | 3,330| 5,184| 11,0885001 239,760
76 | 3,325| 5,776| 11,055,625| 252,700
70 | 3,320| 4,900| 11,022,400{ 232,400
71 | 3,330| 5,041| 11,088,900{ 236,430
65 | 3,325 4,225| 11,055,625 216,125
70 | 3,280| 4,900| 10,758,400 229,600
74 | 3,280| 5,476| 10,758,400 242,720
68 | 3,300| 4,624| 10,890,000] 224,400
61 | 3,265( 3,721| 10,660,225, 199,165
Sums | 690 |33,140|47,816|109,836,700] 2,286,555

Fig. 1-18

1.10 METHODS OF LEAST SQUARES, REGRESSION LINE, CURVE FITTING

Suppose a scatterplot of the data points (x;,y;) indicates a linear relationship between variables x
and y or, alternatively, suppose the correlation coefficient » of x and y is close to 1 or —1. Then the next
step is to find a line L that, in some sense, fits the data. The line L we choose is called the least-squares
line. We discuss this line in this section, and then we discuss more general types of curve fitting.

Least-Squares Line

Consider a given set of data points P;(x;, y;) and any (nonvertical) linear equation L. Let y} denote
the y value of the point on L corresponding to x;. Furthermore, let d; = y; — y¥, the difference between
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the actual value of y and the value of y on the curve or, in other words, the vertical (directed) distance
between the point P; and the line L as shown in Fig. 1-19. The sum

YO0 A R

is called the squares error between the line L and the data points.

The least-squares line or the line of best fit or the regression line of y on x is, by definition, the line L
whose squares error is as small as possible. It can be shown that such a line L exists and is unique. Let
& denote the y-intercept of the line L and let b denote its slope; that is, let

y=a+bx (1.12)

be the equation of L. Then & and b can be obtained from the following two equations in the two
unknowns & and b, where #n is the number of points:

na+ (3 x)b =3y

) (1.13)
(et ()b = X v,
In particular, the slope b and y-intercept & can also be obtained from the following:
b:r;—y and a— - bx (1.14)

The second equation in (1.74) tells us that (x, y) lies on the regression line L, since
y=@—bx)+bx=a+bx

The first equation in (/./4) then tells us that the point (X + 5.,y +rs,) is also on L, as in Fig. 1-20.

(®+s,ytrs,)

L L
X o x
)

Fig. 1-19 Fig. 1-20

Remark: Recall that the above line Z. which minimizes the squares of the vertical distances from
the given points P; to L is called the regression line of y on x; it is usually used when one views y as a
function of x. There also exists a line L’ which minimizes the squares of the horizontal distances of the
points P; from L'; it is called the regression line of x on y. Given any two variables, the data usually
indicates that one of them depends upon the other; we then let x denote the independent variable and let
y denote the dependent variable. For example, suppose the variables are age and height. We normally
assume height is a function of age, so we would let x denote age and y denote height. Accordingly, our
least-squares lines will be regression lines of y on x, unless otherwise stated.
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EXAMPLE 1.23 Find the line of best fit for the scatterplots in (&) Fig. 1-13, (b) Fig. 1-14.
() By Fig. 1-16 and Example 1.22(a),
r=0.8938, X=1969/10 =96.9, 7=101.0/10 = 10.1
Using formulas (/.3) and (/.4), we obtain

.- \/127,723 9(969) /0_ 3070 and . \/1427.56 9(101) J10 _ ¢ e
Substituting these values in (I.14), we get

(0.8938)(6.7285)
61.3070

Thus the line L of best fit is

b= =00981 and  a=10.1— (0.0981)(96.9) = 0.5941

y=0.5941 +0.0981x

To graph L, we need only plot two points on L, and then draw the line through these points. Here we plot

(0,4) = (0,0.5941)  and  (x,7) = (96.9,10.1)

(approximately), and then draw L, as shown in Fig. 1-21(a).

y4 =0.5941 +0.0981x y 4 =17.8100-0.2959x
(30,8.933)

244 °

X :3:‘:

g 8 (42.8571, 5.1286)

4 T T

H 2z 4r

=
sk

0 40 80 120 160 200 Ty T—/\’ 30 40 50 60 X
Number of branches Temperature, °F
(@) ®)

Fig. 1-21
(b) By Fig. 1-17 and Example 1.22(b),
r = —0.9562, Xx=1300/7=42.8571, 7=1359/7=75.1286
Using formulas (/.3) and (/.4), we obtain
13,218 — (300)%/7 218.67 — (35.9)/7
5y = \/% =77552  and s, = \/% — 23998
Substituting these values in (I.14), we get

0.9562)(2.
_ “”f?%g%) — 02059  and  a—5.1286 — (—0.2959)(42.8571) = 17.8100

Thus the line L of best fit is

y = 17.8100 — 0.2959x

The graph of L, obtained by plotting (30, 8.933) and (42.8571, 5.1286) (approximately) and drawing the line through

these points, is shown in Fig. 1.21(b).
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Curve Fitting

Sometimes the scatterplot does not indicate a linear relationship between the variables x and y, but
one may visualize some other standard (well-known) curve y = f(x) which may approximate the data,
called an approximate curve. Several such standard curves, where letters other than x and y denote
constants, follow:

(1) Parabolic curve: Y = ay + &1 X + 4y x°
(2) Polynomial curve: y=—ay+ax+ax -+ a4y
1 1
3) H boli : = —= bx
3) yperbolic curve y=, T or 5 &+ bx
(4) Exponential curve: y = ab* or logy = a¢ + @1x
(5) Geometric curve: y= ax’ or logy = loge+ blogx

Pictures of some of these standard curves appear in Fig. 1-22.

_———/ \
(@) Parabolic (b) Exponential (¢) Hyperbolic
Fig. 1-22

It is generally not easy to decide which curve to use for a given set of data points. On the other
hand, it is usually easier to determine a linear relationship by looking at the scatterplot or by using
the correlation coefficient. Thus it is standard procedure to find the scatterplot of transformed data.
Specifically:

() If log y versus x indicates a linear relationship, use the exponential curve (4).
(b) 1If 1/y versus x indicates a linear relationship, use the hyperbolic curve (3).
(¢) If log y versus log x indicates a linear relationship, use the power curve (5).

Once one decides upon the kind of curve that is to be used, then the particular curve that one uses is
the one that minimizes the squares error. We state this formally:

Definition: Consider a collection of curves and a given set of data points. The best-fitting or least-
squares curve C in the collection is the curve which minimizes the sum

Sdi=di +ds+---+di

(where d; denotes the vertical distance from a data point P;(x;, y;) to the curve C).

Just as there are formulas to compute the constants @ and b in the regression line L for a set of
data points, so there are formulas to compute the constants in the best-fitting curve C in any of
the above types (collections) of curves. Further discussion of curve fitting appears in the problem
sections.
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Solved Probiems

FREQUENCY DISTRIBUTIONS, DISPLAYING DATA

1.1

132

1.3.

Consider the following [requency distribution which gives the number £ of students who got x
correct answers on a 20-gucstion exam:

X (correct answers) 9 10 12 13 14 15 16 17 18 19 20
J (number of students) 1 2 1 2 7 2 1 7 2 6 4

Display the data in a histogram and a frequency polygon.

The histogram appears in FFig. 1-23.  The frequency polygon also appears in FFig. 1-23; it is obtained
from the histogram by connecting the midpoints of the tops of the rectangles in the histogram.

f(Students)
_..-“".....

74 of / :
. \

9 ® 1 12 13 14 15 16 17 18 19 20
x (Correct answers)

Fig. 1-23

Consider the following twenty data items:
3 5 3 4 4 7 6 S 2 4
2 5, S 6 4 3 S 4 S 5,

{a) Construct a frequency distribution ( /) and a cumulative distribution (c/’) of the data.
(b) Display the data in a histogram.

(@) Construct the table in [Fig. 1-24(a). Herc we show the tally count, which is used to find the frequency
of each number. That is, as we run through the data list, we add a slash each time the number
appears. and a line through flour slashes indicates a fifth time the number appeared.

(b) The histogram is shown in Fig. 1-24(d).

The lollowing scores were obtained in a statistics exam:

74 80 65 85 95 72 76 72 93 84
75 75 60 74 75 63 78 87 90 70
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1.4.

7 -
6 -
x |Tally | f | ¢f 5l
217 |21 2 )
3 |lwm |3]s !
a4 | | 510 3
s | mnl|7 |7 .|
6| 2w
7 |4 1|20 T
0 _,V 2 3 4 ; 6 7
b 4
(a) )
Fig. 1-24

Find the frequency distribution when the data are classified into l'our classes 68-70, 70-80, 80-949,
99-100, and display thc results in a histogram. (II'a pumber [alls on a class boundary, put it in
the class to the right of the number.)

The frequency distribution, including the tally count, appears in Fig. 1-25(«) and the histogram appears
in Fig. [-25(b).

w0f e
sl

Class | Tatly | Frequency "

60-70 | # 3 %

70-80 | ## ## 10 w4

80-90 | M L

90-100 | # 3
Bk 60 70 80 %0 100

Scaces
(@ ®»

Fig. 1-25
The yearly rainfall, measured to the nearest tenth of a centimeter, for a 30-year period [ollows:

423 357 476 31.2 283 370 413 324 413 293

343 352 430 363 357 41.5 432 307 384 465

432  31.7 368 43.6 452 328 307 362 347 353
Classify the data into 10 classes, [28, 30), [30, 32),.. ., [44, 46), [46, 48), and display the results in
a histogram.

The frequency distribution of the classification, where x; denotes the class value and f; denotes the
frequency, follows:

Class 28-30 30-32  32-34  34-36 36-38 38-40 40-42 4244 44-46 4648

X 29 31 33 35 37 39 41 43 45 47

fi & 4 & 6 4 I 3 5 1 2

The histogram ofthe distribution appcars in Fig. 1-26.
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al.
ne
E\""’ Stem Leqf
i 5 9
AN 6 3856 1
7 6 70519 4
! 8 9 2 5 2
¢ _/L 2; 3‘1 3‘3 3‘5 3‘7 3‘9 4’] . 4‘3 4‘5 4‘7 9 7 0 2
Class value
Fig. 1-26 Fig. 1-27

1.5. Construct a stem-and-leaf display for the following exam scores:

63 68 59 66 76 82 70 71 74 85
97 65 89 90 77 6l 75 79 92 82

The stein-and-leal display appears in Fig. 1-27. Specifically, we use a place value, in this case the tens
digit, as the ““stem™ and the unit digits as “leaves™. The display gives the following lrequency distribution:

Class intcrval |50--60) |60-70) |70-80) |80-90) [99-100)
Class value x; S5 65 75 85 95
Frequency f; | S 7 4 3

Note that the class value is the midpoint between the steins.
1.6. Construct a dotplot to obtain the frequency distribution for the lollowing class values of exam
scorcs:
65 70 60 65 75 80 70 70 75 85
95 65 90 90 75 60 75 80 90 80
(The dotplot is somctimes uscd instcad of a tally count.)

The dotplot appears in Fig. 1-28. Specifically, we mark off the class values on a horizontal axis, and
then record the occurrence of a class value by a dot over the mark denoting the class value on the axis. The
frequency distribution follows:

Class value 60 65 70 /5 80 85 920 95

Frequency 2 3 3 4 3 1 3 L
[ ]

[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
1 L 1 1 1 1 1 |
60 65 70 75 80 85 90 95

Exam scotes

Fig. 1-28
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MEAN, MEDIAN, VARIANCE, STANDARD DEVIATION

1.7. Find the sample mean x, median X, variance s°, and standard deviation s for the data:

4 6 6 17,9 10

Use formula (1.3) to obtain s>.

There are n» = 6 numbers. Hence,
¥_4+6+6+7+9+10_42_7

6 6

The median is the average of the third and fourth numbers:

647
=2 _65
YT

By formula (7.3),

P W66+ (-7 (97 + (10 - 7)’

5
9+1+1+0+4+9 24
— =—=438
5 5
s=V4.8~2.19

1.8. Find the sample mean x, median X, variance 5%, and standard deviation s for the data:
& 7, 12, 5 6 1 4
Use formula (1.5) to obtain s°.

There are n = 7 numbers. Hence,

8+7+12+5+6+7+4 49
7 7

To find the median, first arrange the numbers in increasing order:

7

X =

4, 5 6 7, 7, 8 12
The median is the fourth number: X = 7.

To apply formula (1.5) for s°, we first construct the following table from the given data:

Sum
X ] 7 12 5 6 7 4 49
X2 64 49 144 25 36 49 16 383

Then, by formula (1.5),

1.9. Find the sample mean x, median X, variance s°, and standard deviation s for the number x of
correct scores in Problem 1.1.
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First compute the table in Fig. 1-29. Then, by formula (1.2)
_Zfixi_560_l6

DA
The 35 scores x; (including repetitions) are arranged in increasing order in Fig. 1-29. The median X is the
18th score; hence ¥ = 17.  Using formula (1.7) for s* we get

2 X fd — (8 )/ 30 f; 9278 — (560)°/35
A1 34

s = \/? ~ 3.06

X

s 9.35

x; £ 1ix x? fix?
9 1 9 81 81
10 2 20 100 200
12 1 12 144 144
13 2 26 169 338
14 7 98 196 1372
15 2 30 225 450
16 1 16 256 256
17 7 119 289 2023
18 2 36 324 648
19 6 154 361 2166
20 4 80 400 1600
Sums | 35 560 9278
Fig. 1-29

1.10. Find the sample mean x, median X, variance s°, and standard deviation s for the scores obtained

in a statistics exam in Problem 1.3.

Letting x; denote the class value of the ith class, compute the table in Fig. 1-30. Then, by formula
(1.2),
1570

=785
Y770

There are 20 scores; hence the median X is the average of the 10th and 11th class values. Therefore

7575

75
2

=

Using formula (1.7) for s° we get
o _ 124900 - (1570)*/20

~ 87.11, s=9.33

19
Class Class
limits value, x, | f; fix xf ﬁx?

60-70 65 3 195 | 4225 | 12,675
70-80 75 10 750 | 5625 | 56,250
80-90 85 4 340 | 7225 | 28,900
90-100 95 3 285 | 9025 | 27,075
Sums| 20 1570 124,900

Fig. 1-30
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QUARTILES AND PERCENTILES

1.11. Consider the following data:
2, 1, 4, 4 6 1, 8 15 12, 7, 3 16, 1, 2, 11, 5 15 4

bl bl

() Find the first quartile Q;, second quartile Q,, and third quartile Q; for the data.
(b) Find the S-number summary of the data.

(«) First arrange the data in numerical order:
1, 1, 2, 2, 3 4, 4, 4, 5 6 7, 7, 8 11, 12, 15 15 16
0, is the median X, and since there are 18 values X is the average of the 9th and 10th values. Thus

_5+6

=——=055
0: ==

Q; is the median of the values to the left of X. There are nine of these, so Q; is the fifth
one. Thus Q; = 3.

Q5 is the median of the values to the right of X. There are also nine of these, so Qs is the fifth
one. Thus Q3 = 11.

(b) The S-number summary consists of the lowest value L, the quartiles Q;, Q,, Q3, and the highest value
H. Thus:

L=1, 0;=3 0,=55 05;=11, H=16

1.12. Consider the following data:

5 6 7 7 9 10 12 15 15 20
21 22 25 27 28 32 34 34 35 40
41 48 S1 56 57 65 75 76 78 &0
| &4 &8 1] &9 90 91 92 93 97

Find the percentiles (&) P,y, (b) P, (¢) Pys.
There are 40 data points, and they are arranged in numerical order. To determine the kth percentile,
we first break up An/100 into its integer and decimal parts.
(@) n=40,k=21. Thus
kn 21-40
100 100

The integer part is 8 and the decimal part is 0.4. Hence,

—84=8+04

Py = 9th value = 15

(b) n=40,k=40. Thus
kn 4040
100 100

Here, the integer part is 16 and the decimal part is zero. Hence,

=16=16+0

16th value + 17th value _32+34

2 2 33

Py =

(¢) n=40,k=75 Thus
k_n _75-40
100 100

=30=30+0
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The integer part is 30 and the decimal part is zero, so

30th value + 31st value 80 - 81 5
75 = > i = 80.5

For the 40 data points in Problem 1.12, verify that
(@ O =Py, (b)) Oy =P, () Q3 = Pys.
() O is the median of the first 20 data points, which is the average of the 10th and 11th values:

20+ 21
0, = ; =20.5

For P,s we first compute (25-40)/100 = 10 = 10 + 0. Hence Py is also the average of the 10th and
11th values.

(b) Q, is the median of all 40 data points, which is the average of the 20th and 21st values:

40+ 41
0, =

For Psg we first compute (50 - 40)/100 = 20 = 20 + 0. Hence Psy is also the average of the 20th and
21st values.

=40.5

(¢) Qs is the median of the last 20 values, or the average of the 30th and 31st values:

which is the value of P;; determined in Problem 1.12.

MISCELLANEOUS PROBLEMS INVOLVING ONE VARIABLE

1.14.

1.15.

Find the mode, range, and midrange of the data in:
(«) Problem 1.1, (b) Problem 1.4, (¢) Problem 1.11

The mode is the value (or class value) which occurs most often (and more than once), the range is the
difference between the largest and smallest values, and the midrange is the average of the smallest and
largest values. Accordingly:

() Mode =17, range =20 — 9 = 11, midrange = (20 +9)/2 = 14.5
(b) Mode = 35, range = 47 — 29 = 18, midrange = (47 + 29)/2 = 38
(¢) Mode = 4, range = 16 — 1 = 15, midrange = (16 +1)/2 = 8.5

An English class for foreign students consists of 20 French students, 25 Italian students, and 15
Spanish students. On an exam, the French students average 78, the Italian students 75, and the
Spanish students 76. Find the mean grade for the class.

Here we use the formula for the grand mean x (page 15) with
n =20, =25 ny=15 x,=78 x, =75, x3=176
This yields

20(78) +25(75) + 15(76) _ 4575
20125+ 15 "~ 60

That is, 76.25 is the mean grade for the class.

=76.25

Bl
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1.16.

1.17.

Student A received a score of 91 in a test whose scores had mean 82 and standard deviation
6. Student B received a score of &7 in another test whose scores had mean 80 and standard
deviation 4. Which student got a “higher score’?

Transform the grades into standard units using

X —X

z=
N

91—-82 9
=— 2321'5 and zp 7]

Thus, relatively speaking, B did better than A.

& -8 7
= 7171.75

This yields: Z4

Suppose measurements of an item with a metric micrometer A yield a mean of 4.20mm and a
standard deviation of 0.01Smm, and suppose measurements of another item with an English
micrometer B yield a mean of 1.10 inches and a standard deviation of 0.005 inches. Which
micrometer is relatively “more” precise?

Calculate the two coefficients of variation. This yields:

015 .005
_ % (100%) = 036% and Vg = 229 (100%) = 0.45%

v
A 1.10
Thus micrometer A is more precise.

BIVARIATE DATA

1.18.

Estimate the correlation coefficient r for each data set shown in the scatterplots in Fig. 1.31.

The correlation coefficient r lies in the interval [—1,1]. Moreover, r is close to 1 if the data are
approximately linear with positive slope, r is close to —1 if the data are approximately linear with negative
slope, and r is close to O if there is no relationship between the points. Accordingly:

(o) risclose to 1, say r = 0.9, since there appears to be a strong linear relationship between the points with
positive slope.
(b) r =0 since there appears to be no relationship between the points.

(¢) risclose to —1, say r & —0.9, since there appears to be a strong linear relationship between the points
but with negative slope.

4 ° 4 L4 e a
° ®e °
° ® ° e °
[} e L4 [ [}
: * ® e ¢ e o e
. L4 ° [
o -0 o o
(a) ® (©
Fig. 1-31

1.19. Consider the following list of data values:
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(@) Plot the data in a scatterplot. (¢) Find L, the least-squares line y = & + bx.
(b) Compute the correlation coefficient r. (#) Graph L on the scatterplot in Part (a).
(«) The scatterplot (with L) is shown in Fig. 1-32(a).

(b) First complete the table in Fig. 1-32(b). Then, by formula (1.11), with n = 5,

r— 162 —[(29)(36)]/5 _ s
\/209 - (29)2/5\/328 _(36))5 VA0.8Ves8

(c) First compute the standard deviations s, and s, of x and p, respectively. Using formulas (/.4) and
(1.5), we get

—8833

2
Sy = \/7209 — Q295 _ 3.1937,

2
s, = 22806 /5_y1yn3
] 1

Y

Substituting r, s,, s, into formula (/.14) for the slope b of the least-squares line L gives

rs,  (—0.8833)(4.1473)
=22 L 114
b=% 3.1937 11470

To determine the y-intercept & of L, we first compute
X=29/5=58 and y=36/5=172
Then, by formula (1.14),
a=7j5—bx="72—(—-1.1470)(5.8) = 13.8526
Hence L is the following equation:
y = 13.8526 — 1.1470x
Alternatively, we can find « and b using the normal equations in formula (/./3) with n = 5:
na+y xb=>3%y or Sa+ 29b= 36
Sxa+ Y a=3xp 294 + 2096 = 162

(These equations would be used if we did not also want 7, sy, s,, ¥, and j.)

(#) To graph L, we find two points on L and draw the line through them. One of the two points is
(%,5) =(5.8,7.2)

(which is on any least-squares line). Amnother point is (10, 2.3826), which is obtained by substituting
x = 10 in the regression equation and solving for y. The line L appears in the scatterplot in Fig. 1.32(a).

Y&

s x |y [ x2|y?|xy
4| 8] 16| 64] 32

°r 20 12| 4|144| 24
4t ° 10| 4|100| 16| 40
.l . X024 10| 25[100| 50
L 2| 64| 4| 16

ol 2 4 6 s 10 = Sums| 29 | 36 [ 209]328 [ 162

() ®)
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1.20. Repeat Problem 1.19 for the following data:

(«) The scatterplot (with L) is shown in Fig. 1-33(a).

(b) First complete the table in Fig. 1-33(b). Then, by formula (/./7), where n = 4,

()

117 — [(15)(25)]/4

23.25

o \/75 . (15)2/4\/189 —(25)%/4 ~ V1875v32.75

(¢) First compute the standard deviations s, and s, of x and y, respectively.

(1.5), we get

ey

75 — (15)%/4

3 =25 and

—

Y

=0.9382

33

Using formulas (/.4) and

2y,
\/w — 3304

Substituting , s,,s, into formula (1./4) for the slope b of the least-squares line L gives

rs,  (0.9675)(4.03)

b=§: 25

To determine the y-intercept & of L, we first compute

5
i‘:l—: 3.75 and
4

Then, by formula (1.14),

y

25

=124

=—=06.25
4

a=7—bx=625—(124)(3.75) = 1.60

Hence L is the following equation:

y=1.60 + 1.24x

Alternatively, we can find « and b by solving the normal equations in formula (7.13) with n = 4:
4a+15b= 25
1544756 =117

na+ 3 xb =73y
Yoxa+ > x=>xp

(These equations would be used if we did not also want 7, sy, s,, X, and 7.)

To graph L, we find two points on L and draw the line through them.
Another point is (0, 1.60), the y-intercept.

(%,7) = (3.75,6.25).
in Fig. 1-33(a).

V&

12

10

One point is

The line L appears in the scatterplot

Sum

Fig. 1-33

x y | x2 | y2 | xy
1 3 1 9 3
3 4| 9| 16| 12
4 8|16 | 64| 32
71 10]49 |100| 70

15| 25 | 75 | 289 | 117

®)
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1.21.  Find the sample covariance s,, of x and y for the data in (&) Problem 1.19, () Problem 1.20.
The sample covariance s,, is obtained from the formula

B — X)) —7)

Sy n—1

(«) We have:

So = [(4—58)(8—72) +(2—58)(12—7.2) + (10 — 5.8)(4 — 7.2)
+(5-58)(10 - 7.2) + (8 — 5.8)(2 — 7.2)]/4
= [~1.44 — 1824 — 13.44 — 224 — 11.44]/4
= —468/4=—117

We note that the variances s, and s, are always nonnegative, but the covariance sy, can be negative,
which indicates that y tends to decrease as x increases.

(b) We have:
Sy =[(1—-3.75)(3 — 6.25) + (3 — 3.75)(4 — 6.75)(4 — 3.75)(6 — 8.25) + (7 — 3.75)(10 — 6.25)]/3
= [8.9375 +2.0625 — 0.5625 + 12.1875]/3
=22.625/3 = 7.5417

The covariance here is positive, which indicates that y tends to increase as x increases.

1.22. Let W denote the number of American women graduating with a doctoral degree in mathematics
in a given year. Suppose that, for certain years, W has the following values:

Year 1980 1985 1990 1995

W 28 36 40 45

Assuming that the increase, year by year, is approximately linear and that it will increase linearly
in the near future, estimate W for the years 2000, 2003, and 2005.

The estimation uses the least-squares line L, that is, the line y = & + bx of best fit for the data (where x
denotes the year and y denotes the value of W). The unknowns &« and b will be determined by the following
nermal equations in formula (1.13):

na+ (3ox)b =2y
(Cx)a+ (Cx7)b =3 xy

(We do not use formula (7./4) for &« and b since we do not need the correlation coefficient » nor s,, s

Y X,
and y.)

The sums in the above system are obtained by computing the table in Fig. 1-34(a). Substitution in the
normal equations, with n = 4, yields:
4a+ 3506 = 149 or E;: 4a+ 3506 = 149
3504 + 30,7506 = 13,175 E;: 704+ 6150b = 2635
Eliminate & by forming the equation £ = —70E, +4E,. This gives

1006 =110 or b=1.1
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1.23.

Vi
50 |-
40 |-
X Y x2 Xy 30} Z
80| 28 | 6,400| 2,240
85| 36 | 7,225 3,060 o
90| 40 | 8,100 | 3,600 ol
95| 45 | 9,025| 4,275
Sum 350 149 30’750 13’175 _0_/\/ 19l80 19185 19I90 19I95 2(}!00 20!05 >
(a) ®)
Fig. 1-34

Substitute » = 1.1 in the first equation E; to obtain « = —59. Thus

y=-59+1.1x (1)

is the line L. The original points and the line L are plotted in Fig. 1-34(b).

Substitute 100, 103, and 105 in (/) to obtain 51, 54.3, and 56.5, respectively. Thus one would expect
that, approximately, W = 51, W = 54, and W = 57 women will receive doctoral degrees in the years 2000,
2003, and 2005, respectively.

Find the least-squares parabola C for the following data:

Plot C and the data points in the plane R*.

The parabola C has the form y = a + bx + ¢x* where the unknowns a, b, ¢ are obtained from the
following normal equations (which are analogous to the normal equations for the least-squares line L in
formula (1.13)):

na -+ (3 x)b+ (L at)e =3y
(> x)a + (Z xz)b + (Z x3)c =Sy
(Cx?)a+ ()b + (D x')e ="

The sums in the system are obtained by computing the table in Fig. 1-35(a). Substitution in the normal

equations, with n = 6, yields:
6a+ 34b+ 252¢= 35
344+ 252b6+ 2098 = 183
2524 + 2098b + 18 564¢ = 1225

Solving the system yields

12845 4179 1279
Thus y =3.48 + 1.70x — 0.173x°

is the required parabola C. The given data points and C are plotted in Fig. 1-35(b).
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Y
12
x | y | x2| x3 x4 xy | x2y 10[-
1 5 1 1 1 5 5 sl
3 7 9| 27 81| 21 63
S| 8| 25| 125 625| 40| 200 sr $
6 71 36| 216 | 1,296 | 42| 252 4
9 S| 81| 729 6,561 | 45| 405 .l
10 3 1100 |1000/10,000| 30| 300
Sum | 34 | 35 2522098 [18,564 | 183 | 1225 . YT i
(@) ®
Fig. 1-35

1.24. Consider the following data which indicates exponential growth:

1.25.

x 1 2 3 4 5 6

y 6 18 55 160 485 1460

Find the least-squares exponential curve C for the data, and plot the data points and C on the
plane R

The curve C has the form y — ab™ where « and b are unknowns.
yields

The logarithm (to base 10) of y = ab™

logy =loga+ xlogh =o' +b'x

where @’ = loga and b’ =logh. Thus we seek the least-squares line L for the following data:

x 1 2 3 4 5 6

log y 0.7782 1.2553 1.7404 2.2041 2.6857 3.1644

Using the normal equations (I.13) for L, we get

«’ = 03028, b’ =0.4767
The antiderivatives of «’ and b’ yield, approximately,
a=20, b=3.0

Thus y = 2(3%) is the required exponential curve C. The data points and C are plotted in Fig. 1-36.

Derive the normal equations (/.13) for the least-squares line L for n data points P;(x;, y;).
[Our solution uses calculus.]

We want to minimize the least-squares error

D:Z'[?:Z[Vi*("+bxi)]2:Z["erxi*yi]z
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which may be viewed as a function of « and 5. The minimum may be obtained by setting the partial
derivatives D, and D, of D with respect to « and b, respectively, equal to zero. The partial derivatives
follow:

D,=>"2(a+ bx; — y;) and Dy = 2« +bx; — yi)x;
Setting D, = 0 and D; = 0, we obtain the required equations
na+ (3xi)b =3 y;
(Cx)a+ (3 XHb =3 xpi

Supplementary Problems

FREQUENCY DISTRIBUTIONS, DISPLAYING DATA

1.26.

1.27.

The following distribution gives the number of hours of overtime during one month for the employees of a
company:

Overtime, h 0 1 2 3 4 5 6 7 8 9 10

Employees 10 2 4 2 6 4 2 4 6 2 g

Display the data in a histogram.

The frequency distribution of the weekly wages in dollars of a group of unskilled workers follows:

Weekly wages, $ 140-160 160-180  180-200 200-220  220-240  240-260 260-280

Number of workers 18 24 32 20 8 6 2

Display the data in a (&) histogram, (b) frequency polygon.
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1.28. The amounts of 45 personal loans from a loan company follow:

$700 $450 $725 $1125 $675 $1650 $750 $400 $1050
$500 $750 $850 $1250 $725 $475 $925 $1050 $925
$850 $625 $900 $1750 $700 $825 $550 $925 $850
$475 $750 $550 $725 $575 $575 $1450 $700 $450
$700 $1650 $925 $500 $675 $1300 $1125 $775 $850
() Group the data into $200 classes, beginning with $400, and construct a frequency and cumulative
frequency distribution for the grouped data.

(b) Display the frequency distribution in a histogram.

1.29. During a 30-day period, the daily number of station wagons rented by an automobile rental agency was as
follows:
7 10 6 7 9 4 7 9 9 g 5 5 7 b

6 9 7 12 7 9 10 4 7 5 9 8 9 5 7
(«) Construct a dotplot (defined in Problem 1.6) of the data.
(b) Find its frequency and cumulative frequency distribution.

(¢) Display the frequency distribution in a histogram.

1.30. A foreign automobile dealer sells English, French, German, Japanese, and Korean automobiles. The
number of such automobiles sold in a month follow:

Country English French German Japanese Korean

Number 5 3 12 20 10

Display the data in a () (horizontal) bar graph, (b) circular graph.

1.31. The following data are weights of the men (M) and women (W) in an exercise class.
122 (W) 117 (W) 117 (W) 167 (M) 114 (W)
195 (M) 145 (M) 158 (M) 158 (M) 190 (M)
110 (W) 134 (W) 165 (M) 104 (W) 132 (W)
107 (W) 105 (W) 181 (M) 142 (W) 123 (W)
155 (M) 155 (M) 172 (M) 149 (M) 120 (W)
140 (W) 163 (M) 125 (W) 130 (W) 150 (M)
187 (M) 147 (M) 118 (W) 159 (M) 160 (M)
115 (W) 175 (M) 125 (W) 177 (M) 121 (W)
(«) Construct a stem-and-leaf display (defined in Problem 1.5) of the data with the tens and hundreds digits
as the stem and the units digit as the leaf.

(b) Construct a stem-and-leaf display of the data as in part (), but put the leaves for the men’s weights to
the right of the stem and the leaves for the women’s weights to the left of the stem.

MEAN, MEDIAN, MODE, MIDRANGE, VARIANCE, AND STANDARD DEVIATION

1.32. The prices of a pound of coffee in seven stores are:
$5.58, $6.18, $5.84, $5.75, $5.67, $5.95, $5.62.

Find the («) mean price, (b) median price.
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1.33.

1.34.

1.35.

1.36.

1.37.

1.38.

1.39.

1.40.

For a given week, the average daily temperature was 35°,33°,30°,36°,40°,37°,38°. Find the («) mean
temperature, (b) median temperature.

During a given month, ten salespeople in an automobile dealership sold 13, 17, 10, 18, 17,9, 17, 13, 15, 14
cars, respectively. Find the («) mean, (b) median, (c) mode, (#) midrange.

Find the mean, median, mode, and midrange for the data in («) Problem 1.26, (») Problem 1.29.

Use the class value to find the mean, median, mode, and midrange for the data in («) Problem 1.27,
(b) Problem 1.28.

The students in a mathematics class are divided into four groups: () much greater than the median, (b) little
above the median, (¢) little below the median, (#) much below the median. On which group should the
teacher concentrate in order to increase the median of the class? Mean of the class?

Find the variance s*> and standard deviation s for the data in («) Problem 1.26, () Problem 1.29.

Use the class value to find the variance s> and standard deviation s for the data in (a) Problem 1.27,
(b) Problem 1.28.

Find the variance s*> and standard deviation s for the data in («) Problem 1.32, () Problem 1.33.

QUARTILES AND PERCENTILES

1.41.

1.42.

1.43.

1.44.

1.45.

Find the quartiles Q;, Q,, Qs for the following data: 15, 17, 17, 20, 21, 21, 25, 27, 30, 31, 35.

Find the S-number summary L, Q,, Q,, O3, H for the data in Problem 1.41.

Find the S-number summary L, Q,, Q,, O3, H for the data in Problem 1.29.

Find P4y, Psq, and Pgs for the following test scores:

55 60 68 73 76 &4 88
57 62 70 75 77 &4 90
58 64 71 75 79 &5 91
58 66 71 76 80 &7 93
58 66 72 76 82 88 95

With reference to the data in Problem 1.31, find Pgy, P75, and Po; for (a) the men’s weights, (b) the women’s
weights, (c) the men’s and women’s weights combined.

MISCELLANEOUS PROBLEMS INVOLVING ONE VARIABLE

1.46.

The students at a small school are divided into four groups: A, B, C, D. The number # of students in each
group and the mean score x of each group on an exam follow:

Ain=80,5=78%  B:in=60,x=74 C:n=85%=17 D:n=175, % =80

Find the mean grade of the school.
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1.47. Four students, A, B, C, D, received the following scores on exams with the following respective means x and
standard deviations s:
A received 88, where x = 85,5 = 4; C received 90, where x = 86,5 = 5;
B received 85, where x = 82,5 = 3; D received 85, where x = 82,5 =2
Rank the students by finding their respective standard scores z 4, zp, z¢, Zp-
1.48. Three micrometers, A, B, C, yield the following respective means X and standard deviations s:
A: x=123,5=0.2; B: x=62,5=0.5 C:x=48 s=04
Rank the micrometers by finding their respective coefficients of variation.

BIVARIATE DATA

1.49. The following table lists one person’s oxygen utilization in units of liters per minute for times of ¢ minutes
into an exercise routine and ¢ minutes following the routine:

¢t minutes 0 4 12 16 26

liters/minute during exercise 0.2 0.4 0.9 1.2 3.0

liters/minute following exercise 3.0 1.0 0.5 0.4 0.2
Let x = the oxygen rate during the exercise and y = the rate after the exercise. Find () the covariance S,,,
(b) the correlation coefficient r.

1.50. Consider thedata in Problem 1.49. (a) Plot x against y in a scatterplot. (b) Find the least-squares line L
for the data and graph L on the scatterplot in (a). (c¢) Find the least-squares hyperbolic curve C (which has
the form y = 1/(a + bx) or 1/y = & + bx) for the data, and plot C on the scatterplot in («). (Hint: Find the
least-squares line for the data points (x;, 1/y;).) (4) Which curve, L or C, best fits the data?

1.51. The following table lists average male weight in pounds and height in inches for certain ages which range
from 1 to 21.

Age 1 3 6 10 13 16 21
Weight 20 30 45 60 95 140 155
Height 28 36 44 50 60 66 70
Find the correlation coefficient  for: (a) age and weight, (b) age and height, (c) weight and height.

1.52. Let x = weight, y = height for the data in Problem 1.51. (&) Plot x against y in a scatterplot. (b) Find the
line L of best fit. (¢) Graph L on the scatterplot in (a).

1.53. Repeat Problem 1.52, but let x = height and y = weight.
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1.54. Find the Icast-squarcs cxponcatial curve y = ab* for the following data:

LSS. Derive the following nornnal equations for the Icast-squarcs parabola y = « + bx + ¢x? for a sct of » data
points Pi{x;,y;):

na+ (L x)b+ (X F)e=3y
(Cx)at ()b + (DY) =y
(E A+ () +(Tx)e ="y

[This problem requires calculus as in Problem 1.25.]

Answers to Supplementary Problems

1.26. The histogram is shown in Fig. [-37.

10 —
s =
£
!
=
2}
A s 10
Overtime hours
fig. 1-37

L.27. The histogram and frequency polygon arc shown in Fig. 1-38.

J A

0 120 140 160 180 200 220 240 260 280 300

Wapges
Fig. 1-38
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1.28. (@) The frequency distribution (where the wage is divided by $100 for notational convenicncee) follows:

Amount = $100 4-6 6-8 8-10  10-12 12-14 14-16  16-18

Number of loans Ll 14 10 4 2 1 3

() The histogram is shown in Fig. 1-39.

14 —_—

12

Number of loans

4|
2_)‘ —’_H_‘
400 600 BOO 1000 1200 1400 1600 1800

Dollar amount of loan

Fig. 1-39

1.29. (@) The dotplot is shown in Fig. 1-40(¢).

(h) The frequency and cumulative frequency distributions follow:

Daily number of wagons 4 5 6 7 8 9 10 1l 12
Frequency 3 4 2 8 3 ] 2 0 1
Cutnulative frequency 3) 7 9 L7 20 27 29 29 30

(¢) The histogram is shown in Fig. 1-40(0).
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1.30. Sce [ig. 1-41.

) English
Eaglish [ Korean
French [

German 7] German
Japanese [ ] Japanese
Korean [T
R S T R TR
(a) @
Fig. 1-41
1.31.  See Fig. 1-42.
‘Women Men
10754 457 (10
110577854 4587750 |1
12125301 10352 |12
131402 204 |13
1405729 2014579
i5/55889¢ 15/ 55889¢
1613570 1613570
171527 17527
18171 18| 71
19150 19150
(a) &)
Fig. 142

L.32.  (a) $580. () 85.75

1.33. (a)35.67° (b) 36.5°

134, (a) 143, (b) 14.5, (¢} 17. (d) 13

L35. (@) X =492, x =5, mode =0, midrange=5; (b)) £ =7.3, X =7, mode =7, midrange =8

136.  (2) = $190.36, X = $190, mode= $190, midrange =$219;
(b) x = 8842.22, X = $700, mode= $700, midrange =$1100

1.37.  Group (¢) to increase the median. Likely (») and (¢) 10 increase the mean

1.38. (a) s> = 12.97 hours squarcd, s = 3.60 hours; (b) s7 =400, s =2.00

1.39.  (a) s* = 858.58 dollars squared, s = $29.30; (4) s° = 112,040.40 dollars squarcd, s = $334.72
140. () s =0.0218, s = 0.1476, (b) & = 2.3654, s = 1.538

L4l Q) =17,0,=21,05,=130

142, L=15, 01 =17.0;=21,0y = 30, H = 35
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143, L=4,0,=60,=7,0,=9H=12
1.44. P4. = 7157 P5. = 75, PSS = 88

1.45. (&) Py = 166, P75 = 176, Poy = 190; (b) Py = 121.5, P15 = 127.5, Po; — 140;
(C) P6. = 152.5,P75 = 161,57P93 = 187

1.46. x=77.4167

147. zp=15,25=10,zc = 0.8,z4 = 0.75

[N

148. V,=087%, Ve =0.83%,Vz = 0.81%

1.49. (a)s,, =—0.82, (b)) r = —0.64

1.50. (&) See Fig. 1-43, which also shows L and C. (b) y = 1.78 — 0.66x, (¢) y = 1/1.6x, (d) C seems a better fit
1.51. («) r=0.98, (b) r =0.98, (c) r = 0.97

1.52. (@) and (c) are shown in Fig. 1.44. (b) y = 28.55 +0.28x

1.53. (@) and (c) are shown in Fig. 1-45. (b) y = —88.98 + 3.30x

1.54. y=3(29
Y4 by
70 b
o 3 60 | ®
5 100, 56.55
5 _‘E:m’ 50 F ( )
w4 Q
o H
&2 o 40f (50, 42.55)
§ E "gn
e S 30}
i = ¢
B 1 2 -
10 F
0 o] 20 40 6 80 100 120 140 160 :x
During exercise Weight, pounds
Fig. 1-43 Fig. 1-44
Yap
160 |-
140 |-
120 |-
g (60, 109.02)
§ 100 |- e
B
g s
B
= 6ol
40|
20|
(30,10.02)
0 10 20 30 40 50 60 70 i
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Fig. 1-45



Chapter 2

Sets and Counting

2.1 INTRODUCTION

The concept of a set lies at the foundations of mathematics and, in particular, probability and
statistics. This concept formalizes the idea of grouping objects together and viewing them as a single
entity. This chapter introduces this notion of a set and three basic operations on sets: union, intersection,
and complement. We then discuss methods of counting the elements in a set or the logical possibilities
of some event without necessarily enumerating each element or each case.

2.2 SETS AND ELEMENTS, SUBSETS

A set may be viewed as any well-defined collection of objects, called the elements or members of the
set. We usually use capital letters; 4, B, X, Y, ... to denote sets, and lower-case letters, &, b, x, y, ... to
denote elements of sets. Synonyms for set are class, collection, and family.

The statement that an element & belongs to a set S is written

ac S

(Here ¢ is a symbol meaning ““is an element of ”.) We also write &, b € S when both & and b belong to
S. If every element of a set 4 also belongs to a set B, that is, if @« € 4 implies &« € B, then 4 is called a
subset of B, or A is said to be contained in B, written

ACB or B> A4

Two sets are equal if they both have the same elements or, equivalently, if each is contained in the
other. That is:

A—=B if and only if ACB and BC A4

The negations of @ € 4, 4 C B, and A = B are written a¢ A, A £ B, and 4 # B, respectively.

TS

Remark 1: It is common practice in mathematics to put a vertical line
through a symbol to indicate the opposite or negative meaning of the symbol.

or slanted line */”

Remark 2: The statement 4 C B does not exclude the possibility that 4 = B. In fact, for any set 4,
we have 4 C A since, trivially, every element in 4 belongs to 4. However, if 4 C Band 4 # B, then we
say that A is a proper subset of A (sometimes written 4 C B).

Specifying Sets

There are essentially two ways to specify a particular set. One way, if possible, is to list its
elements. For example,

A=1{1,3,571,9}

means 4 is the set consisting of the numbers 1, 3, 5, 7, and 9. Note that the elements of the set are
separated by commas and enclosed in braces { }. This is called the tabular form or roster method of a
set.

45
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The second way, called the set-builder form or property method, is to state those properties which
characterize the elements in the set, that is, properties held by the members of the set but not by
nonmembers. Consider, for example, the expression

B = {x:xis an even integer, x > 0}
which is read:
“Bis the set of x such that x is an even integer and x > 0”

It denotes the set B whose elements are the positive even integers. A letter, usually x, is used to denote a
typical member of the set; the colon is read as “such that” and the comma as “and”.

EXAMPLE 2.1
() The above set A can also be written as
A = {x:xis an odd positive integer, x < 10}
We cannot list all the elements of the above set B, but we frequently specify the set by writing
B=1{2,4,6,...}

where we assume everyone knows what we mean. Observe that 9 € A but 9¢ B. Also 6 € B, but 6¢ A.

(b) Consider the sets
A=1{1,3,57,9}, B=1{1,2,3,4,5}, C={3,5}

Then C C A4 and C C B, since 3 and 5, the elements of C, are also members of 4 and B. On the other hand,
AEZ B,since 7€ A, but 7¢ B, and BZ A4, since2€ Bbut2¢ 4.

(¢) Suppose a die is tossed. The possible “number” or “points” which appear on the uppermost face of the die
belongs to the set {1, 2, 3, 4, 5, 6}. Now suppose a die is tossed and an even number appears. Then the
outcome is a member of the set {2, 4, 6} which is a (proper) subset of the set {1, 2, 3, 4, 5, 6} of all possible
outcomes.

The following theorem applies.

Theorem 2.1: Let A, B, C be any sets. Then:

(i) AC4
(i) fAC Band BC 4, then 4 =B
(iii)) f4CBand BC C,the 4 CC

Some sets occur very often in mathematics, so we have special symbols for them. The following
special symbols will be used:

P = set of counting numbers or positive integers: 1,2,3,...

N = set of natural numbers or nonnegative integers: 0,1,2,...
Z = set of integers: ...,—2,—1,0,1,2,...

R = set of real numbers

Thus we have PC N C Z C R.

Universal Set, Empty Set

All sets under investigation in any application of set theory are assumed to be contained in some
large fixed set called the universal set or universe. We denote this set by U unless otherwise specified.
Given a universal set U and a property P, there may be no elements in U which have the property
P. The set with no elements is called the empry set or null set, and is denoted by (. There is only one
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empty set: If S and T are both empty, then S = T since they have exactly the same elements, namely,
none. The empty set (J is also regarded as a subset of every other set. Accordingly, we have

FcAcU

for any set A4.

EXAMPLE 2.2

() In plane geometry, the universal set consists of all the points in the plane. In human population studies the
universal set consists of all the people in the world.

(b) Consider the set
S = {x: xis a positive integer, x> = 3}

Then S has no elements since no positive integer has the required property. Thus, S = &, the empty set.

Disjoint Sets

Two sets 4 and B are said to be disjoint if they have no elements in common. Consider, for
example, the sets

A:{I,Z}, B:{2a4a6}a C:{4;5;6;7}

Note that 4 and B are not disjoint, since each contains the element 2, and B and C are not disjoint since
each contains the element 4, among others. On the other hand, 4 and C are disjoint since they have no
element in common. We note that if 4 and B are disjoint, then neither is a subset of the other (unless
one is the empty set).

2.3 VENN DIAGRAMS

A Venn diagram is a pictorial representation of sets where sets are represented by enclosed areas in
the plane. The universal set U is represented by the points in a rectangle, and the other sets are
represented by disks lying within the rectangle. If 4 C B, then the disk representing 4 will be entirely
within the disk representing B, as in Fig. 2-1(a). If 4 and B are disjoint, i.e. have no elements in
common, then the disk representing 4 will be separated from the disk representing B, as in Fig. 2-1(b).

On the other hand, if 4 and B are two arbitrary sets, it is possible that some elements are in 4 but
not B, some elements are in B but not A4, some are in both 4 and B, and some are in neither 4 nor B;
hence, in general, we represent 4 and B as in Fig. 2-1(¢).

U U
(a)AEB (b) A and B are disjoint (o)
Fig. 2-1

2.4 SET OPERATIONS

This section defines a number of set operations, including the basic operations of union, intersection,
and complement.
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Union and Intersection

T'he wrion of two scts 4 and B, denoted by 4 U B, is the sct of all clements which belong to 4 or to B;
that is,
AUB={x:x€A4 or x¢€B}

Here “or” is uscd in the scnsc of and/or. Figurc 2-2(«) is a Venn diagram in which 4 U B is shadcd.
The intersection of two sets 4 and B, dcnoted by 4 N B, is the sct of all clements which belong to
both 4 and B; that s,
ANB={x:x€4 and x¢€ B}

Figurc 2-2(h) is a Venn diagram in which 4 N B is shaded.

Recall that scis 4 and B arc said to be disjoint il they have no clements in commuon or, using the
above notation, il 4N B= (J, thcemptysct. 168 = 4U Band 4N B = (J, then S is called the disjoins
union of 4 and B.

0 Y

(@) A U B is shaded (54 N Bisshaded

Fig. 22

EXAMPLE 2.3

(@) Let A={1,2,34}, B={4,56},C={1,3,57}. Then
AUB=1{1,2,3,4,56}, AUC={1,23,4,57}, BUC={1,3,4,5,6,7)
AN B ={4), ANC=1{1,3}, BNC = {5}

(6) Lct A and F dcenote, respectively, the sct of malce students and the sct of femalce students in a college C. Then
MUF=C
since each student in C belongs Lo either M or #. Alo,
MNF=(
since no student belongs Lo both M and #. Thus C is the disjoint union of M and #.
The operation of sctinclusion is closcly related to the operations of union and interscction. as shown
by the following thcorem.
Theorem 2.2: "I'hc following arc cquivalent: 4 C B, 4ANB =4, AUB = B.

This thcorcm is proved in Problem 2.10. @ther conditions cquivalent to 4 € B arc given in
Problem 2.67.

Complements, Difference, Symmetric Difference

Recall that all scis under consideration at a particular time arc subscts of a fixed universal sct
U. Thc absolute complement or, simply, complement of a sct 4, denoted by 4° is the sct of clements
in U which do not belong to A; that is

AL ={x:xe U x4 4}
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Some texis denote the complement of 4 by A’ or A. Figure 2-3(a) is a Venn diagram in which 4° is
shaded.

The relative complement of a sct B with respeet to a set 4 or, simply, the difference of A and B,
dcnoted by A\B, is the sct of clements which belong to 4 bul not to B; that is,

A\B={x:x€ 4, x¢ B}

The sct A\B is rcad “A minus B”. Many tcxis denotc A\B by 4 — B or 4 ~ B. Figurc 2-3(h) is a
Venn diagram in which 4\B is shaded.

The symnetric difference of scis A and B, denoted by A @ B, consists of thosc clements which belong
1o A or B bul not both. That is,

A® B=(AUB)\(ANB) or, cquivalenlly, A4® B = (A\B) U (B\A)

Figurc 2-3(¢} is a Venn diagram in which A4 & B is shaded.

(a) 4%isshaded (b) A\B is shaded (c) A ® Bisshaded

Fig. 2-3

EXAMPLE 2.4 Lct U =P ={l,2,3,...} be thc universal sct.and lct

A=1{1,23,4}, B={3,4,5,6,7}, ¢ =1{6,7,8,9}, E'=4§2,4,6,.:}
(Here £ is the sct of cven positive intcgers.) Then
M= 6: T wac); B ={1,2,89,10,...}, £S5 =135 5o f
That is, £° is the set of odd integers.  Also,
A\B={1,2}, B\C = {3,4.5}, B\A ={5,6,7}, C\B = {8§,9}, C\E ={7,9}
Morcover, Ae B={12,56,7} and BaC=1{3,4,58.9}

Nete that 4@ B= (A\B)U (B\A4) and B C = (B\C) U (C\B).

Algebra ef Sets
Sets under the opcrations of union, interscction, and complement satis(y various laws (identitics)

which arc listed in Table 2-1.  In lact, we formally state this result:

Theorem 2.3: Scts satisfy the laws in Table 2-1.
Each of the laws in Tablc 2-1 follows from an equivalent logical law. Coasider, for example, the
prool ol Dc Morgan’s law:

(AUB ' ={x:xg(dorB)}={x:x¢A4 and x¢B}=AUBE
Ilere we use the equivalent (De Morgan’s) logical law:
~(pVg)=-pA-g

where -+ means “not”, V means “or”’, and A means “‘and”.
Somctimes Venn diagrams arc uscd to illustrate the laws in Table 2-1 (cf. Problem 2.11).
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Table 2-1 Laws of the algebra of sets

Idempotent Laws

la. AUA=A 1b. ANA=A
Associative Laws
2¢. (AUB)UC=AU(BUC) 2b. (ANB)NC=A4AN(BNC)
Commutative Laws
3. AUB=BUA 3b. ANB=BNA
Distributive Laws
4da. AUBNC)=(4AUB)N(AUC) 4. AN(BUC)=(ANBUANC)
Identity Laws
Sa. AU =A 5b. ANU=4
6a. AUU=U 6b. AN =
Involution Law
7. (A =4
Complement Laws
8a. AUA=U 8. ANA =g
9. U= 9%. O =U
De Morgan’s Laws
10a. (AUB)=ANB° 106. (ANB)* = A“UB
Duality

The identities in Table 2-1 are arranged in pairs, as, for example, 2& and 2b. We now consider the
principle behind this arrangement. Let £ be an equation of set algebra. The dual E* of E is the
equation obtained by replacing each occurrence of U, N, U, J in E by N, U, &, U, respectively. For
example, the dual of

(UNA)U(BNA)=A is (FuA)N(BUA)=A4

Observe that the pairs of laws in Table 2-1 are duals of each other. It is a fact of set algebra, called the
principle of duality, that, if any equation E is an identity, then its dual £* is also an identity.

2.5 FINITE AND COUNTABLE SETS

Sets can be finite or infinite. A set A4 is finite if it is empty or if it consists of exactly n elements,
where n is a positive integer. Otherwise a set is said to be infinite.

EXAMPLE 2.5

(a) Let A denote the set of letters in the English alphabet. Then A is finite; it has 26 elements. Let D denote the
set of the days of the week:

D = {Monday, Tuesday,...,Sunday}
Then D is also finite; it has 7 elements.

() Let R= {x: xisariver ontheearth}. Although it may be difficult to count the number of rivers on the earth,
R is still a finite set.
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(¢) Let Y denote the set of positive even integers, that is, ¥ = {2,4,6,...}. Then Y is an infinite set.

(@) Let I be the unit interval, that is
I={x:0<x<1}

Then I is also an infinite set.

Countable Sets

A setis countableifitis finite or if its elements can be listed in the form ofa sequence, in which case it
is said to be countably infinite; otherwise it is said to be uncountable. The above set Y of even integers is
countably infinite, whereas it can be proven that the unit interval I is uncountable.

2.6 COUNTING ELEMENTS IN FINITE SETS, INCLUSION-EXCLUSION PRINCIPLE

The notation #(S) or |S] is used to denote the number of elements in a set S. Thus n(4) = 26,
where A consists of the letters in the English alphabet and n(D) = 7 where D consists of the days in a
week. Also, n(¥) = 0, since the empty set has no elements.

The following lemma applies.

Lemma 2.4: Suppose 4 and B are finite disjoint sets. Then 4 U B is finite and
(AU B) =n(A4) + n(B)

Proof: In counting the elements of 4 U B, first count those that are in 4. There are n(A) of
these. The only other elements in 4 U B are those that are in B but not in 4. But since 4 and B
are disjoint, no element of B is in A4, so there are n(B) elements in B which are not in 4. Therefore,
n(A U B) = n(A) + n(B), as claimed.

Given any sets 4 and B, we note that A4 is the disjoint union of the sets A\B and AN B
(Problem 2.66). Thus Lemma 2.4 gives us the following useful result.
Theorem 2.5: Suppose A and B are finite sets. Then
n(A\B) =n(A4) —n(A N B)

That is, the number of elements in 4\B, that is, elements in 4 lying outside of B, is equal to the
number of elements in 4 minus the number of elements in both 4 and B.

Inclusion—Exclusion Principles
There is also a formula for #(A4 U B) even when they are not disjoint, called the inclusion—exclusion

principle. Namely:

Theorem (Inclusion—Exclusion Principle) 2.6: Suppose 4 and B are finite sets. Then AN Band AU B
are finite and
#(AUB)=n(A)+n(B) —n(ANB)

That is, we find the number of elements in 4 or B (or both) by first adding n(A4) and n(B) (inclusion)
and then subtracting n(4 N B) (exclusion), since its elements were counted twice.

We can apply this result to get a similar result for three sets.

Corollary 2.7: Suppose 4, B, C are finite sets. Then 4 U BU C is finite and
n(AUBUC)=n(4)+nB) +n(C)—n(ANB) —n(ANC)—nBNC)+nANBNC)

Mathematical induction (Section 2.9) may be used to further generalize this result to any finite
number of finite sets.
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EXAMPLE 2.6 Suppose list 4 contains the 30 students in a mathematics class and list B contains the 35 students in
an English class, and suppose there are 20 names on both lists. Find the number of students:

() on list 4 or B, (¢) only on list B,
(b) only on list 4, (#) on exactly one of the two lists.
() We seek n(4 U B). By Theorem 2.6,
n(AUB) =n(A) +n(B) —n(ANB)=30+35-20=45
In other words, we combine the two lists and then cross out the 20 names which appear twice.

(b) List A contains 30 names and 20 of them are on list B; hence 30 — 20 = names are only on list 4. That is, by
Theorem 2.9,
n(A\B) = n(4) —n(4NB)=30-20=10

(¢) Similarly, there are 35 — 20 = 15 names only on list B. That is,
n(B\A) =n(B) —n(ANB) =35-20=15

(@) By (b) and (c), there are 10 + 15 = 25 names on exactly one of the two lists. In other words n(A ® B) = 25.

2.7 PRODUCT SETS

Let A and B be two sets. The product set of A and B, denoted by A x B (read: 4 cross B), consists
of all ordered pairs (a, b) where @ € 4 and b € B; that is,

AxB={(a,b):ac A, bc B}

The product of a set with itself, say 4 x A, is denoted by 4°.
We note that two ordered pairs (e, b) and (¢, o) are equal if and only if their first elements @ and ¢ are
equal and their second elements b and o are equal. That is:

(a,b) = (c,d) if and only if a=c and b=d

EXAMPLE 2.7

(a) The reader is familiar with the cartesian plane R> = R x R as discussed in Section 1.8. Here each point P in
the plane represents an ordered pair (a, b) of real numbers, and vice versa.

(b) Let A={1,2,3} and B = {a,b}. Then
Ax B=1{(1,q), (1,b), (2,4), (2,D), (3,a), (3,0)}

The following theorem applies.

Theorem 2.8: Suppose 4 and B are finite. Then A4 x B is finite and
(A x B) =n(A) - n(B)

The proof follows from the fact that, for each & € 4, there will be n(B) ordered pairs in 4 x B,
beginning with a. Hence altogether there will be n(A4) x n(B) ordered pairs in 4 x B. That is,
n(A x B) = n(A) - n(B), as claimed.

Observe that in Example 2.7(b) we have n(A4) = 3, n(B) = 2, and, as expected from Theorem 2.8,
n(4 xB)=3(2) =6.

The concept of a product set is extended to any finite number of sets in a natural way. The product
set of sets 4y, A,,...,A,,, written

Ay X Ay X -+ X A4, or HAi
i=1
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is the set of all m-tuples (@;, @, ...,a,) where @; € A, @, € A,,..., &, € A,,. Furthermore, the above
Theorem 2.8 may easily be extended, by induction, to the product of m sets; that is,

n(Ay x Ay X -+ x Ay) = n(A1)n(4z) .. .n(An)

2.8 CLASSES OF SETS, POWER SETS, PARTITIONS

Given a set S, we may wish to talk about some of its subsets. Thus we would be considering a “‘set
of sets”. Whenever such a situation arises, to avoid confusion, we will speak of a class of sets or a
collection of sets. If we wish to consider some of the sets in a given class of sets, then we will use the
term subclass or subcollection.

EXAMPLE 2.8 Suppose S =1{1,2,3,4}. Let .»/ be the class of subsets of S which contain exactly three elements
of §. Then
o/ =[{1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}]

The elements of ./ arethe sets {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, and {2, 3, 4}.
Let # be the class of subsets of S which contain 2 and two other elements of S. Then

#=1{1,2,3}, {1,2,4}, {2,3,4}]
The elements of 4 are {1, 2, 3}, {1, 2, 4}, and {2, 3, 4}. Thus &4 is a subclass of »/. (To avoid confusion, we will
usually enclose the sets of a class in brackets instead of braces.)
Power Sets

For a given set S, we may consider the class of all subsets of S. This class is called the power set of
S, and it will be denoted by £(S). If S is finite, then so is 2(S). In fact, the number of elements in
#(S) is 2 raised to the power of S; that is,

n(2(S)) = 2"

(For this reason, the power set of S is sometimes denoted by 25 ]

EXAMPLE 2.9 Suppose S = {1,2,3}. Then
2(8) = [ {1}, {2}, {3}, {1,2},{1,3},{2,3}, S|
Note that the empty set & belongs to 2(S), since ¢ is a subset of S. Similarly, S belongs to 2(S). As expected

from the above remark, 2(S) has 2° = 8§ elements.

Partitions

Let S be a nonempty set. A partition of S is a subdivision of S into nonoverlapping, nonempty
subsets. Precisely, a partition of S is a collection {4;} of nonempty subsets of S such that:

(i) FEach & in S belongs to one of the 4;.
(ii) The sets of {4;} are mutually disjoint; that is, if
Ai ?1 Aj the AlﬂAJ:@

The subsets in a partition are called cells. Figure 2-4 is a Venn diagram of a partition of the rectangular
set S of points into five cells, 4, A,, A3, A4, A4s.

EXAMPLE 2.10 Consider the following collections of subsets of S = {1,2,3,...,8,9}:
@) [{1, 3,5}, {2, 6}, {4, & 9}]

(i) [{L 3.5}, {2, 4,6, 8}, {5 7, 9]]
(i) [{1, 3,55, {2, 4, 6, 8}, {7,9}]
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Fig. 2-4

Then (i) is not a partition of S since 7 in S does not belong to any of the subsets. Furthermore, (ii) is not a partition
of S since {1, 3, 5} and {5, 7, 9} are not disjoint. On the other hand, (iii) is a partition of S.

Indexed Classes of Sets

When we speak of an indexed class of sets { A;: i € I} or simply {A4;}, we mean that there is a set 4;
assigned to each element i € I. The set 7 is called the indexing set and the sets 4; are said to be indexed
by I. When the indexing set is the set P of positive integers, the indexed class {4, 4,, ...} is called a
sequence of sets. By the union of these 4;, denoted by | J;.; 4; (or simply | J; 4;), we mean the set of
elements each belonging to at least one of the 4;; and by the intersection of the 4;, denoted by (), ; 4; (or
simply (; 4;), we mean the set of elements each belonging to every 4,. We also write

ce oo
UAi:AiUAZU‘” and ﬂAi:AlmAzm"‘
i=1 =l

for the union and intersection, respectively, of a sequence of sets.

Definition: A nonempty class .o/ of subsets of U is called an algebra (c-algebra) of sets if it has the
following two properties:

(i) The complement of any set in .o/ belongs to .«7.
(i) The union of any finite (countable) number of sets in .o/ belongs to .«7.

That is, .« is closed under complements and finite (countable) unions.

It is simple to show (Problem 2.32) that any algebra (o-algebra) of sets contains U and ¢ and is
closed under finite (countable) intersections.

2.9 MATHEMATICAL INDUCTION

An essential property of the set P ={1,2, 3, ...} of positive integers which is used in many proofs
follows:

Principle of Mathematical Induction I: Let 4(n) be an assertion about the set P of positive integers, i.e.
A(n) is true or false for each integer n > 1. Suppose A(n) has the following two properties:

(i) A(1) is true.
(i) A(n+ 1) is true whenever 4(n) is true.
Then A(n) is true for every positive integer.

We shall not prove this principle. In fact, this principle is usually given as one of the axioms when
P is developed axiomatically.

EXAMPLE 2.11 Let A(n) be the assertion that the sum of the first # odd numbers is #%; that is:

An): 14345+ +@Qn—1)=n
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(The nth odd number is 27 — 1 and the next odd number is 2n + 1.) Observe that 4(n) is true for n = 1 since
A): 1=17
Assuming A4(n) is true, we add 21 + 1 to both sides of 4(n), obtaining
14345+ +4C2n—1D+Qu+1)=n*+Q2n+1)=(n+1)

However, this is A(n+ 1). That is, A(n+ 1) is true assuming A(n) is true. By the principle of mathematical
induction, A(n) is true for all n > 1.

There is another form of the principle of mathematical induction which is sometimes more con-
venient to use. Although it appears different, it is really equivalent to the above principle of induction.

Principle of Mathematical Induction IT: Let A4(n) be an assertion about the set P of positive integers
with the following two properties:

(i) A(1) is true.
(i) A(n) is true whenever A(k) is true for 1 <k < n.

Then A(n) is true for every positive integer.

Remark: Sometimes one wants to prove that an assertion 4 is true for a set of integers of the form
{0, a+1 a+2,..}

where @& is any integer, possibly 0. This can be done by simply replacing 1 by & in either of the above
principles of mathematical induction.

2.10 COUNTING PRINCIPLES

Combinatorial analysis, which includes the study of permutations and combinations, is concerned
with determining the number of logical possibilities of some event without necessarily identifying every
case. There are two basic counting principles used throughout. One involves addition and the other
multiplication.

Sum Rule Principle

The first counting principle follows:

Sum Rule Principle:  Suppose some event E can occur in m ways and a second event F can occur in
n ways, and suppose both events cannot occur simultaneously. Then E or F can occur in m + n
ways.

This principle can be stated in terms of sets and it is simply a restatement of Lemma 2.4.

Sumn Rule Principle: Suppose A and B are disjoint sets. Then

n(AUB) =n(A)+n(B)

Clearly, the principle can be extended to three or more events. Specifically, suppose an event E;
can occur in n; ways, an event £, can occur in n, ways, an event £5 can occur in n3 ways, and so on, and
suppose no two of the events can occur at the same time. Then one of the events can occur in
n +n +ny+ - ways.
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Product Rule Principle

The second counting principle follows:

[CHAP. 2

can occur in mn ways.

Product Rule Principle: Suppose there is an event £ which can occur in m ways and, independent
of this event, there is a second event F' which can occur in # ways.

Then combinations of £ and F

This principle can also be stated in terms of sets and it is simply a restatement of Theorem 2.8.

Product Rule Principle: Suppose A and B are finite sets. Then
n(A x B) = n(A) - n(B)

Clearly, this principle can also be extended to three or more sets.

Specifically, suppose an event £

can occur in #; ways, then an event E, can occur in 7, ways, then an even F5 can occur in #3 ways, and so
on. Then all of the events can occur in the order indicated in #; - n; - ny - - - ways.

EXAMPLE 2.12

(@) Suppose a college has 3 different history courses, 4 different literature courses, and 2 different science courses

(with no prerequisites).

(1) There are n =3 + 4 + 2 =9 ways to choose 1 of the courses.
(2) There are n = 3(4)(2) = 24 ways to choose one of each of the courses.

(b) Suppose Airline A has three daily flights between Boston and Chicago, and Airline B has two daily flights

between Boston and Chicago.

(1) There are n =3 +2 =5 ways to fly from Boston to Chicago.
(2) There are n=3(2) =6 ways to fly Airline A from Boston to Chicago, and then Airline B from

Chicago back to Boston.

(3) There are n = 5(5) = 25 ways to fly from Boston to Chicago, and then back again.

2.11 FACTORIAL NOTATION, BINOMIAL COEFFICIENTS

This section introduces some mathematical notation which is frequently used in combinatorics.

Factorial Notation

The product of the positive integers from 1 to # inclusive is denoted by #! (read “n factorial™).

That is,

al=1-2-3-...-(n—2)(n—Dn

In other words, #! is defined by

=1 and =n-(n—1)

It is also convenient to define 0! = 1.

EXAMPLE 2.13
(@ 2=1-2=2, 3I=1.2.3=6 4=1.2.3.4=24,
SI—=5.41=5.24=120, 6/=6-5=6-120=720

g 8.7.6 12-11-10-9 12!
(b) EZT:SJ:SQ 12~11~10:T:W,

12-11-10

1-2-3

1 121
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_nan=1)---n—r+1)n—r)(n—r—1)---3-2.1 _ xl
© nln—=1)(n—r+1)= n—r)n—r—1)---3-2-1 HCED

n! 1 n!
(n—r)  An—r)

nn—1)---(n—r+1)
1-2:3---(r— 1)

:n(nfl)m(nfrJrl)‘%:

Stirling’s Approximation to n!

A direct evaluation of n! when #n is very large is impossible, even with modern-day computers.
Accordingly, one frequently uses the approximation formula

nl ~V2mnte™

(Heree = 2.71828....) The symbol ~ means that, as n gets larger and larger (that is, as n — 00), the ratio
of both sides approaches 1.

Binomial Coefficients

n P . .
The symbol < ) (read “nC#” or “n choose r”’), where r and n are positive integers with r < n, is
r

defined as follows:

<;:> _n(n— 11)(271*3 2)(’ ("1)"” D o (by Example 2.13) <':> S—

But # — (n — r) = r; hence we have the following important relation:

( " ) = (n) or, in other words, if @ + b = n then <n> = <n>
n—r ¥ a b

EXAMPLE 2.14

-6 <12>_12~11~10~9~8:792

8 8.7 9 9-8.
@ (2>:ﬁ:28 <4>:1-2 5)""1.2.3.45
10 10-9-8 13 13
(g)*m*m (1)*T*13
Note that (n) has exactly r factors in both the numerator and the denominator.
P
10 .
() Compute < 7). This can be done two ways:
10 10-9-8-7-6-5-4 10 10 10-9-8
<7>:1~2~3-4~5~6~7:120 o <7>:<3):1-2-3:120

Observe that the second method (which uses 7 + 3 = 10) saves space and time.

Binomial Coefficients and Pascal’s Triangle

The number < ) are called the binomial coefficients, since they appear as the coefficients in the
r

expansion of (@ + b)". Specifically, one can prove (Problem 2.59):

Theorem 2.9: (& + )" = Z <:> o Fpt
e
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The coefficients of the successive powers of @ + b can be arranged in a triangular array of numbers,
called Pascal’s triangle, as pictured in Fig. 2-5. The numbers in Pascal’s triangle have the following
interesting properties:

(1) The first and last number in each row is 1.
(2) Every other number in the array can be obtained by adding the two numbers appearing directly
above it. For example, 10 =4 + 6, 15 =5+ 10, 20 = 10 + 10.

(a+b) = 1 1
(a+b) = a + b 11
(a+b) = a®+ 2ab + b 1 2 1
(a+b) = & + 3d% + 3ab® + b 13 3 1
(a+b) = a* + 4% + 6a%* + 4abd + b* 1 4 6 4 1
(a+b)> = & + 5a% + 10a%* + 10a%6® + S5ab* + b° 1 5 Qa0 10 5 1
(a+b)f = &%+ 6a°b + 154 + 20a°® + 15a%* + 6ab® + B° 1 6 1@y 15 6 1
Fig. 2-5

Since the numbers appearing in Pascal’s triangle are the binomial coefficients, property (2) comes
from the following theorem (proved in Problem 2.40):

Theorem 2.10: <n+1)< " >+<n>
¥ r—1 F

2.12 PERMUTATIONS

Any arrangement of a set of # objects in a given order is called a permutation of the objects (taken
all at a time). Any arrangement of any » < n of those objects in a given order is called an r-permutation
or a permutation of the n objects taken r at & time. Consider, for example, the set of letters a, b, c,
and . Then:

(1) Dbdca, dcba, and acdb are permutations of the four letters (taken all at a time);
(2) bad, adb, cbd, and bca are permutations of the four letters taken three at a time;
(3) ad, cb, da, and bd are permutations of the four letters taken two at a time.

The number of permutations of # objects taken r at a time is denoted by
P(n,r), Py, Pn, P, or (n),

We shall use P(n,r). Before we derive the general formula for P(n,r) we consider a particular case.

EXAMPLE 2.15 Find the number of permutations of six objects, say A, B, C, D, E, F, taken three at a time. In
other words, find the number of “three-letter words” using only the given six letters without repetitions.
Let the general three-letter word be represented by the following three boxes:

U U L

Now the first letter can be chosen in six different ways; following this, the second letter can be chosen in five different
ways; and, following this, the last letter can be chosen in four different ways. Write each number in its appropriate
box as follows:

¢]

Thus by the fundamental principle of counting there are 6 - 5 - 4 = 120 possible three-letter words without repetitions
from the six letters, or there are 120 permutations of six objects taken three at a time:

P(6,3) = 120
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Derivation of the Formula for P(a, r)

The derivation of the formula for the number of permutations of # objects taken r at a time, or the
number of r-permutations of n objects, P(n,r), follows the procedure in the preceding example. The
first element in an r-permutation of # objects can be chosen in n different ways; following this, the second
element in the permutation can be chosen in # — 1 ways; and, following this, the third element in the
permutation can be chosen in # — 2 ways. Continuing in this manner, we have that the rth (last) element
in the r-permutation can be chosen inn — (¥ — 1) =n — ¥ + 1 ways. Thus, by the fundamental principle
of counting, we have

Pnr)=nn—1)n—-2)---(n—r+1)
By Example 2.13(¢), we see that

Cye(n s :n(nfl)(an)--(nfrJr1)~(nfr)!: n!
nn—1)n—2) +1) I CED]
Thus we have proven:
n!
Theorem 2.11:  P(n,r) = eI

In the special case in which r = n, we have
Pn,n) =nn—1)(n—2)---3-2-1=n!
Accordingly,
Corollary 2.12: There are n! permutations of n objects (taken all at a time).

For example, there are 3! = 1 -2 -3 = 6 permutations of the three letters &, b, and c¢. These are

abc, ach, bac, bca, cab, cha

Permutations with repetitions

Frequently we want to know the number of permutations of a multiset; that is, a set of objects some
of which are alike. We will let

P(n;n17n27 s )nr)
denote the number of permutations of # objects of which n; are alike, n, are alike, .. ., n, are alike. The
general formula follows:
n!
Theorem 2.13:  P(n;ny,ny,...,n) = ————
nln!.. .0t

We indicate the proof of the above theorem by a particular example. Suppose we want to form all
possible five-letter “words” using the letters from the word “BABBY”. Now there are 5! = 120 per-
mutations of the objects By, A, B,, B;, Y, where the three Bs are distinguished. Observe that the
following six permutations

B,B,B;AY,  B,B;B;AY,  B;B;B,AY,  B;B;B,AY,  B,B;B,AY,  B;B,B,AY

produce the same word when the subscripts are removed. The 6 comes from the fact that there are

31=3.2-1=6 different ways of placing the three Bs in the first three positions in the permuta-

tion. This is true for each set of three positions in which the Bs can appear. Accordingly there are
st 120

different five-letter words that can be formed using the letters from the word “BABBY”".



60 SETS AND COUNTING [CHAP. 2

EXAMPLE 2.16 Find the number m of seven-letter words that can be formed using the letters of the word
“BENZENE”.

We seek the number of permutations of seven objects of which three are alike (the three Es) and two are alike
(the two Ns). By Theorem 2.13,

7.6
— 420
3

m= P(7,3,2) :3'—'2':

—_

5.4.3.2-1
2-1-2-1

Ordered Samples

Many problems in combinatorial analysis and, in particular, probability and statistics are concerned
with choosing an element from a set S containing # elements (or a card from a deck or a person from a
population). When we choose one element after another from the set S, say » times, we call the choice
an ordered sample of size r. We consider two cases:

(1) Sampling with replacement

Here the element is replaced in the set S before the next element is chosen. Since there are n different
ways to choose each element (repetitions are allowed), the product rule principle tells us that there are

r times

—_—— -
n‘n‘n“‘n:n)

different ordered samples with replacement of size r.
(2) Saempling without replacement

Here the element is not replaced in the set S before the next element is chosen. Thus there are no
repetitions in the ordered sample. Accordingly, an ordered sample of size r without replacement is
simply an #-permutation of the elements in the set .S with n elements. Thus there are

n!
(n—r)!

different ordered samples without replacement of size # from a population (set) with n elements. In
other words, by the product rule, the first element can be chosen in n ways, the second in n — 1 ways, and
so on.

Pnyr)=nn—1)n—-2)--m—r+1)=

EXAMPLE 2.17 Three cards are chosen in succession from a deck with 52 cards. Find the number of ways this
can be done (#) with replacement, (b) without replacement.

(@) Since each card is replaced before the next card is chosen, each card can be chosen in 52 ways. Thus there are
52(52)(52) = 52° = 140,608
different ordered samples of size » = 3 with replacement.

(b) Since there is no replacement, the first card can be chosen in 52 ways, the second card in 51 ways, and the last
card in 50 ways. Thus there are

P(52,3) = 52(51)(50) = 132,600

different ordered samples of size » = 3 without replacement.

2.13 COMBINATIONS

Suppose we have a collection of n objects. A combination of these n objects taken r at a time is any
selection of r of the objects where order doesn’t count. In other words, an r-combination of a set of n
objects is any subset of r elements. For example, the combinations of the letters a, b, ¢, d taken three at
a time are

{a,b,c}, {a,b,d}, {a,c,d} {bc d} or simply abc, abd, acd, bcd
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Observe that the following combinations are equal:
abc, ach, bac, bca, cab, cha

That is, each denotes the same set {a, b, c}.
The number of combinations of # objects taken # at a time is denoted by

C(n,r)

The symbols ,C,, C,,, and C; also appear in various texts. Before we give the general formula for
C(n,r), we consider a special case.

EXAMPLE 2.18 Find the number of combinations of four objects, &, b, ¢, 4, taken three at a time.

Each combination consisting of three objects determines 3! = 6 permutations of the objects in the combination
as pictured in Fig. 2-6. Thus the number of combinations multiplied by 3! equals the number of permuta-
tions. That is:

P(4,3
3!

But P(4,3) =4-3-2=24and 3! =6. Thus C(4,3) = 4, which is noted in Fig. 2-6.

=

C(4,3)-31=P4,3) or C(43)=

Combinations Permutations
abc abc, ach, bac, bea, cab, cha
abd abd, adb, bad, bda, dab, dba
acd acd, adce, cad, cda, dac, dea
bed bed, bde, cbd, cdb, dbc, deb
Fig. 2-6

Formula for C(n, r)

Since any combination of n objects taken r at a time determines # permutations of the objects in the
combination, we can conclude that

P(n,r) =1 C(n,r)

Thus we obtain

P(n,r !
Theorem 2.14: C(n,r) = (n,”) = ( . )
7! rl(n—r)!

!
Recall that the binomial coefficient (n) was defined to be #. Thus:
r r

Tn—1)!
cor ()

We shall use C(n,r) and <n> interchangeably.
¥

EXAMPLE 2.19

(«) Find the number m of committees of three that can be formed from eight people. Each committee is,
essentially, a combination of the eight people taken three at a time. Thus

m=C(8,3) = <§> :%: 56
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() A farmer buys three cows, two pigs, and four hens from a man who has six cows, five pigs, and eight
hens. How many choices does the farmer have?

. (6 .. (5 . (8
The farmer can choose the cows in <3> ways, the pigs in < 2) ways, and the hens in ( 4) ways. Hence

altogether he can choose the animals in
6\ (5\ (8 6-5-4 5487
3/)\2)\4) 1231212

EXAMPLE 220 Find the number m of ways that 9 toys can be divided between 4 children if the youngest is to
receive 3 toys and each of the others 2 toys.

There are C(9,3) = 84 ways to first choose 3 toys for the youngest. Then there are C(6,2) = 15 ways to
choose 2 of the remaining 6 toys forthe oldest. Next, there are C(4,2) = 6 ways to choose 2 of the remaining 4 toys
for the second oldest. The third oldest receives the remaining 2 toys. Thus, by the product rule,

m = 84(15)(6) = 7560

225:20.10.70: 14,000 ways

+~

Alternately, by Problem 2.123,

m = 7560

9!
312020010

2.14 TREE DIAGRAMS

A tree diagram is a device used to enumerate all the possible outcomes of a sequence of experiments
or events where each event can occur in a finite number of ways. The construction of tree diagrams is
illustrated in the following example.

EXAMPLE 2.21

(«) Find the product set 4 x B x C where 4 = {1,2}, B = {a,b,c}, and C = {3,4}.

The tree diagram for the set 4 x B x C appears in Fig. 2-7. Observe that the tree is constructed from left to
right, and that the number of branches at each point corresponds to the number of possible outcomes of the
next event. Each endpoint of the tree is labeled by the corresponding element of 4 x B x C. As expected
from Theorem 2.8, 4 x B x C contains n = 2(3)(2) = 12 elements.

3 (1,43)

a<4 (1,a,4)

3 (1,53

! b<4 (1,5, 4)
3 (L3

C<4 (1,2, 4)

3 (2,43

a<4 @, : 4)

3 (2,b,3)

: b<4 (2,b,4)
3 (2,63

c<4 2, ¢, 4)

Fig. 2-7
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(b)

Marc and Erik are to play a tennis tournament. The first person to win two games in a row or who wins a
total of three games wins the tournament. Find the number of ways the tournament can occur.

The tree diagram showing the possible outcomes of the tournament appears in Fig. 2-8.  Specifically, there
are 10 endpoints, which correspond to the 10 ways that the tournament can occur:

MM, MEMM, MEMEM, MEMEE, MEE, EMM, EMEMM, EMEME, EMEE, EE

The path from the beginning of the tree to the endpoint describes who won which game in the individual
tournament.

PR
E<:<E<I:<E

Fig. 2-8

Solved Problems

SETS, SUBSETS

2.1.

2.2

2.3.

List the elements of the following sets, where P = {1,2,3,...}:
(@) A={x:xcP, 3<x<T}, (¢ C={x:xecP,x+4=3},
(b)) B={x:xcP, xiseven, x <9}, (/) D= {x:x¢cP, xisamultiple of 5}

(@) A consists of the positive integers between 3 and 7; hence A = {4,5,6}.
(b) B consists of the even positive integers less than 9; hence B = {2, 4, 6, 8}.

(¢) There are no positive integers which satisfy the condition x + 4 = 3; hence C contains no elements. In
other words C = (7, the empty set.

() D is infinite, so we cannot list all its elements. However, sometimes we can write
D ={5,10,15,20,...} assuming everyone understands that we mean the multiples of 5.

Show that 4 = {2,3,4,5} is not a subset of B= {x:x € P, x is even}.

Itis necessary to show that at least one element in 4 does not belong to B. Now 3 € A4 and, since B
consists of even numbers, 3 ¢ B; hence A is not a subset of B.

Show that 4 = {2,3,4,5} is a proper subset of C = {1,2,3,...,8,9}.

Each element of 4 belongs to C so A CC. On the other hand, 1€ C but 1¢ 4. Hence
A # C. Therefore A4 is a proper subset of C.
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Prove Theorem 2.1(iii): If A C Band BC C, then 4 C C.

We must show that each element in A4 also belongsto C. Letx € 4. Now A C Bimplies x € B. But

B C C; hence x € C. We have shown that x € 4 implies x € C, that is, that A C C.

SET OPERATIONS

2.5.

2.6.

2.7.

2.8.

Let U ={1,2,...,9} be the universal set, and let
A4=1{1,2,3,450 C=1567809 E=1{2468)
B:{4)5)6)7} D:{173757779} F:{175)9}

Find:
(@) AUBand ANB (¢) AUCand ANC () FEUEand ENE

() BUDand BND () DUEand DNE (f) DUFand DNF

Recall that the union XY U Y consists of those elements in either .Y or Y (or both), and that the
intersection X' N Y consists of those elements in both X and Y.

(@) AUB=1{1,2,3,4,5,6,7} ANB=1{4,5}
() BUD=1{1,3,4,5,6,7,9} BND=1{57}
() AuC=1{1,2,3,4,56,7,89}=U ANC=1{5}
(@) DUE=1{1,2,3,456789=U DNE=(
() EUE=1{2,4,6,8} =E ENE=1{2,4,68 =E
(/) DUF=/{1,3,57,9}=0D DNF={1,59}=F
Observe that F C D; so by Theorem 2.2 we must have DU F =D and DNF = F.

Consider the sets in the preceding Problem 2.5. Find:
(@) A4°, B, D°, E° () A\B, B\A4, D\E, F\D (¢c) A®B,Ca®D,EaF

(#) The complement X° consists of those elements in the universal set &/ which do not belong to
X. Hence:

A°=16,7,89}, B°=1{1,2,3,8,9}, D =1{2,4,6,8} =E, E°=1{1,3,5,7,9}=D
(b) The difference Y\Y consists of the elements in .Y which do not belong to Y. Hence:
A\B={1,2,3}, B\A = {6,7}, D\E = {1,3,5,7,9} = D, F\D=(
(¢) The symmetric difference .Y @ Y consists of the elements in X or Y but not in both Y and ¥. Hence:

A®B=1{1,2,367}, CaD={1,3,89}, E®F=1{2468159 =EUF

Show that we can have 4N B = 4N C without B = C.
Let A = {1,2}, B=1{2,3}, and C={2,4}. Then ANB= {2} and ANC = {2}. Accordingly,

ANB=ANCbut B#C

Prove: B\A = BN A°. Thus the set operation of difference can be written in terms of the
operations of intersection and complementation.

B\A={x:xcB, x¢ A} ={x:x€ B, xc A} =BnA°
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29. Prove (ANB)CAC (AUB)and (ANB)C BC (4UB).

Since cvery clement in 4 N Bisin both 4 and B, itis certainly truc that if x € (4 N B) then x € 4; hence
(AN B) C 4. Furthcrmore, if x € 4, then x € (AUB) (by thc dcfinition of AUB), so 4 C (4 UB).
Putting these together gives (4 N B) C 4 C (AU B). Similarly, (AN B)C B C (4UB).

2.18. Prove Thecorem 2.2: The following arc cquivalent: A C B, ANB= A, and AUB = B.

Suppose A C B and let x€ A Then x€ B, hence xe .4NB and 4 C ANB. By Problem 2.9,
(ANB)C A. Therefore ANB=A. On the other hand, suppose 4ANB=A and let x€ A. Then
x € (AN AB); hence x € A and x € B. Therefore, 4 C B. Both results show that 4 C B is equivalent to
ANB=A.

Supposc again that A CB. Letx € (A4UB). Then x4 orx € B. If x € 4, then x € B becausc
ACB. In either case, xe B. Therefore AUBC B. By Problem 29, BC AUB. Therefore
AUB=B. Now suppose AUB=258 and let xe A. Then x€ A UB by delinition of union of sets.
Hence x €« B= AU B. Therefore A C B. Beth results show that A C B is equivaleni to AU B = B.

Thus 4 € B, AUB= 4 and 4 UB = B arc cquivalent.

VENN DIAGRAMS, ALGEBRA OF SETS, DUALITY

2.11. Illustratc Dc Morgan’s Law (4 U B) = A° N B° (proved in Scction 2.5) using Venn diagrams.

Shade the area outside 4 U Bin a Venn diagram of sets 4 and B. This is shown in Fig. 2-9(«); hence
the shaded area represents (AU B)°. Now shade the area outside 4 in a Venn diagram of 4 and B with
strokesin onc direction (///), and then shade the area outside Bwith strokes in another dircction (\\\). This
is shown in Fig. 2-9(6); hence the cross-hatched area (area where both lines are present) represents the
intersection of 4° and &°, ie. A“NA°. Both (AU B)° and A°N B are represented by the same area;
thus the Venn diagrams indicate (4 U B)° = 4°N & (We emphasize that a Venn diagram is not a formal
proof, but it can indicatc relationships between scts.)

$

(a) ®
Fig. 2-9

:i\xmu

>

2.12. Prove the Distributive Law: 4 N (BUC) = (A NB)U (AN C) (Theorem 2.3(40)).
By thc dcfinitions of union and intcrscction.

AN(BUC)={x:x€4, xe BUC}
={x:x€4. x€B or x€A4 xeC}=ANBUANC)

Here we usc the analogous logical law p A (g V r) = (p A q)V (p A r) where A denotes “and” and Vv denotes

I3 3

0T =
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2.13. Prove (AU B)\(AN B) = (A\B) U (B\4). (Thus either one may be used to define the symmetric
difference 4 ® B.)

Using Y\Y = Y N Y and the laws in Table 2-1, including De Morgan’s laws, we obtain:
(AUBN\ANB)=(AUB)N(ANB) =(AUB)N (A UB)
=(AUA)UANBYU(BNA)U (BN B
=guAnNBYuBNAYUY
=(ANB)uU (BN A = (4\B) U (B\A)

2.14. Write the dual of each set equation:

(@ (UNnAU(BNA)=A (©) ANU)N(QUAT) =g
(b) (AUBUC) =(4AUC)N(4AUB) M) (ANU)YNA=Q

Interchange U and N and also U/ and (¥ in each set equation:

@ (TGuAdnBuUA=A © AUUUNA)=U
b)) (ANBNC)Y=(ANC)uU(4nB)F @) (Augfud=U

FINITE SETS AND THE COUNTING PRINCIPLE

2.15. Determine which of the following sets are finite:
(@) A = {seasons in the year} (/) D = {odd integers}
(b) B = {states in the Union} (e) E = {positive integral divisors of 12}
(¢) C = {positive integers less than 1} (f) F = {cats living in the United States}
(o) A is finite since there are four seasons in the year, i.e. n(4) = 4.
(b) B is finite because there are 50 states in the Union, i.e. n(B) = 50.
(¢) There are no positive integers less than 1; hence C is empty. Thus C is finite and n(C) = 0.
(#) D is infinite.
(e) The positive integer divisors of 12 are 1, 2, 3, 4, 6, and 12. Hence FE is finite and »n(E) = 6.

(f) Although it may be difficult to find the number of cats living in the United States, there is still a finite
number of them at any point in time. Hence F is finite.

2.16. Suppose 50 science students are polled to see whether or not they have studied French (F) or
German () yielding the following data: 25 studied French, 20 studied German, S studied
both. Find the number of the students who studied: () only French, (b) French or German,
(¢) neither language.

() Here 25 studied French, and 5 of them also studied German; hence 25 — 5 = 20 students only studied
French. That is, by Theorem 2.5,

n(F\G)=n(F) —n(FNG)=25-5=20
(b) By the inclusion-exclusion principle, Theorem 2.6,
n(FUG)=n(F)+n(G) —n(FNG)=25+20-5=40
(¢) Since 40 studied French or German, 50 — 40 = 10 studied neither language.
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2.17. In a survey of 60 people, it was found that:

25 read Newsweek magazine 9 read both Newsweek and Fortune
26 read Time 11 read both Newsweek and Time
26 read Fortune & read both Time and Fortune

3 read all three magazines

(#) Find the number of people who read at least one of the three magazines.

(b) Fill in the correct number of people in each of the eight regions of the Venn diagram in
Fig. 2-10(a@) where N, T, and F denote the set of people who read Newsweek, Time, and
Fortune, respectively.

(¢) Find the number of people who read exactly one magazine.

(#) We want n(N U T U F), by Corollary 2.7:

n(NUTUF)=n(N)+n(T)+n(F)—n(NNT)—n(NNF)—n(TNF)+n(NNTNF)
=25+264+26—11-9—-8+3=52

(b) The required Venn diagram in Fig. 2-10(b) is obtained as follows:

3 read all three magazines

11 — 3 = 8 read Newsweek and Time but not all three magazines
9 — 3 = 6 read Newsweek and Fertune but not all three magazines
& — 3 = 5 read Time and Fertune but not all three magazines
25— 8— 6 — 3 = 8 rcad only Newsweek

26 — 8 — 5 — 3 =10 read only Time

26 — 6 —5—3 =12 read only Fertune

60 — 52 = 8 read no magazine at all

(¢) 8+ 10+ 12 =30 read only one magazine.

(a) ®)
Fig. 2-10

2.18. Prove Theorem 2.6: If A4 and B are finite sets, then AUB and AN B are finite and
n(AUB) =n(A)+n(B) —n(4N B).

If 4 and B are finite, then clearly 4 N B and 4 U B are finite.
Suppose we count the element of 4 and then count the elements of B. Then every element in 4 N B
would be counted twice, once in 4 and once in B. Hence

n(AUB) =n(4)+n(B) —n(ANB)
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Alternatively (Problem 2.66), A4 is the disjoint union of 4\B and A N B, B is the disjoint union of B\A
and AN B, and 4 U B is the disjoint union of 4\B, A N B, and B\A. Therefore, by Lemma 2.4,

n(A U B) = n(A\B) +n(4 N B) + n(B\A)
= n(A\B) +n(AN B)+n(B\A) + n(ANB) —n(4 NB)
n(A) + n(B) — n(4 N B).

Show that each set is countable: (&) set Z of integers, (b) P x P.

A set S is countable if («) S is finite or (b) the element of S can be listed in the form of a sequence or, in
other words, there is a one-to-one correspondence between the positive integers (counting numbers)
P={1,2,3,...} and S. Neither set is finite.

() The following shows a one-to-one correspondence between P and Z.:
Counting numbers P: 1 2 3 4 5 6 7 b

1 1 ¢ ¢ L ¢ 1
Integers Z: 0 1 -1 2 =2 3 -3 4

That is, n € P corresponds to either n/2, when n is even, or (I —n)/2, when n is odd. Thus Z is
countable.

(b) Figure 2-11 shows that P x P can be written as an infinite sequence as follows:

(LD, (21, (1,2), (13) (2.2),

Specifically, the sequence is determined by “following the arrows” in Fig. 2-11.

(1, 1) (1,2) —(1,3) (1,4 ——> = =«

2,0 2,2) 2,3 2,4

ARV ayd

G0 3.2 (3.3) 3.9 Te
“D “4.2 4.3 44 cee

S

Fig. 2-11

PRODUCT SETS

2.20.

2.21.

Find x and y given that (3x, x —2y)=(6, —8).

Two ordered pairs are equal if and only if the corresponding components are equal. Hence we obtain
the equations 3x = 6 and x — 2y = —8 from which x =2, y = 5.
Let A ={1,2,3} and B= {a,b}. Find (#) 4 x B, (b) B x A.

() A x B consists of all ordered pairs with the first component from 4 and the second component from
B. Thus

Ax B={(1,a), (1,b), (2,a), (2,b), (3,4), (3,b)}



CHAP. 2] SETS AND COUNTING 69

(b) Here the first component is from B and the second component is from A4:

BxA=1{(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)}

222. LetA = {a b c,d}and B= {x,y,z}. Determine the number of elementsin (a) 4 x B, (b) B x A,
(c) A°, (1) B*.

Here n(A) = 4 and n(B) = 3. To obtain the number of elements in each product set, multiply the
number of elements in each set in the product:

(@) n(4dxB)=4(3)=12
(b) n(Bx A)=3(4)=12
(© n(4’) =4(4)(4) = 64
(4 n(B)=3"=81

2.23. Each toss of a coin will yield either a head or a tail. Let C = {H,T} denote the set of out-
comes. Find C*, n(C3), and explain what C* represents.

Since n(C) = 2, we have n(C3) —=2° =8 Omnitting certain commas and parentheses for notational
convenience,

C* = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

C? represents all possible sequences of outcomes of three tosses of the coin.

2.24. Prove: A x (BNC)=(AxB)N (4 x C).
Ax(BNC)={(x,y):x€ A4,y BNC}
={(x,y):x€ A,y BycC}
={(x,»): (v, y) €AxB, (x,y) € Ax C}
=(AxB)NAxC)

CLASSES OF SETS, PARTITIONS

2.25. Find the elements of the set 4 = [{1,2,3}, {4, 5}, {6,7, 8}].

A is a class of sets; its elements are the sets {1, 2, 3}, {4, 5}, and {6, 7, 8}.

2.26. Determine the power set (A4) of 4 = {a, b, ¢, d}.
The elements of #(A4) are the subsets of 4. Hence
P(A)= (A, {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}, {a,b}, {a,c}, {a,d}, {b,c}, {b,d},
{c.d}, {a}, {8}, {c}, {4}, O]
As expected, 2(4) has 2' = 16 elements.

2.27. Let S={ab,c,d e [ ,g}. Determine which of the following are partitions of S:

(‘) Pl - [{"6’6}9 {b}a {dag}] (C) P; = [{‘;bae)g}> {C}? {d) f }]
(b) P, =[{aeg} {cd} {be []] (d) Py=[{abcde [ g}
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(«) Py is not a partition of S since /€ S does not belong to any of the cells.
(b) P, is not a partition of S since e € S belongs to two of the cells.
(¢) P isa partition of S since each element in S belongs to exactly one cell.

(d) P, is a partition of S into one cell, S itself.

2.28. Find all partitions of S = {a, b, ¢, d}.

Note first that each partition of S contains either 1, 2, 3, or 4 distinct cells. The partitions are as

follows:
(1) {‘7b7c7d}]
(2 [{a}, {b,c. 4}, [{b}, {a,c,d}], [{c}, {a,b,d}], [{d}, {a.b,c}],

[
|
[{‘7b}7 {C,J}L [{‘7C}7 {b7d}]7 [{‘>d}> {b,C}]
|
|
[

() [{a}, {8}, {c.M}], [{a}, {c}, {0,4}], [{a}, {4}, {b,c}],
{0}, {c}, {ad}], [{o}, {4}, {ac}], [{c}, {4}, {a,5}].
@ e}, {8}, {c}, {d}].

There are 15 different partitions of S.

229. Let P={1,2,3 ...} and, for each n ¢ P, let
A, = {x: xis a multiple of n} = {n, 2n, 3n,...}
Find (a) 43N A4s, (b) 44N Ag, (©) U;c g Ai» where O = {2,3,5,7,11,...} is the set of prime numbers.

(«) Those numbers which are multiples of both 3 and 5 are the multiples of 15; hence 45 N A5 = A;5.
() The multiples of 12 and no other numbers belong to both A4 and Ag; hence A4 N 4y = A ,.

(¢) Every positive integer except 1 is a multiple of at least one prime number; hence

U4 =1234.1=P\{1}

ic®

2.30. Prove: Let {4;:i ¢ I} be an indexed class of sets and let iy € /. Then

(4 c4,<4

iel iel

Let x € ();c; 4;; then x € 4; foreveryi € I. In particular, x € A4;,. Hence[);c;4; € 4;,. Now let
y€ A,. Sinceig €I, y€\c;4;. Hence 4, CU,., 4.

2.31. Prove (De Morgan’s law): For any indexed class {4, : i € I}, we have (; 4;)° =, 45.

Using the definitions of union and intersection of indexed classes of sets:

(Uid) = {x:x¢ U A} ={x:x¢ 4, for every i}
= {x:x¢€ A4; for every i} =), 4;

2.32. Let .« be an algebra (o-algebra) of subsets of U. Show that: (#) U and ¢J belong to .«7; and (b)
.7 is closed under finite (countable) intersections.
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Recall that ./ is closed under complements and finite (countable) unions.

(#) Since »/ is nonempty, there is a set 4 € »/. Hence the complement A° € ./, and the union
U=AUA" € s/. Also the complement J = U € #/.

(b) Let {4;} be a finite (countable) class of sets belonging to #/. By De Morgan’s law (Problem 2.31)
(U, 47)° = 4F° =N; 4;- Hence [); 4; belongs to ./, as required.

MATHEMATICAL INDUCTION

2.33. Prove the assertion A(n) that the sum of the first n positive integers is 1n(n + 1); that is,

An): 1 +243+--+n=4nmn+1)

The assertion holds for » = 1 since
A):1=410+1)=1
Assuming A4(n) is true, we add n+ 1 to both sides of A(n), obtaining
14243+ +n+n+1)=3nn+1+(n+1)
ta(n+1)+2(n+1)]
Hn+1)(n+2)]

which is 4(n+1). That is, A(n+ 1) is true whenever A(n) is true. By the principle of induction, A(n) is
true for all n.

2.34. Prove the following assertion (for n > 0):
Am): 142427+ 2% 2= g
A(0) is true since 1 =2! — 1. Assuming A(n) is true, we add 2""! to both sides of A(n), obtaining
1428 422 g 2m =l gy g
=202" —1
— o2

whichis A(n+1). Thus 4(n + 1) is true whenever A(n)istrue. By the principle of induction, A(n) is true
for all n > 0.

FACTORIAL NOTATION, BINOMIAL COEFFICIENTS

2.35. Compute: (a) 4!, 5!, 6!, 7!, 8!, 9!, (b) 50!
() Use (n+ 1)! = (n+ 1)n! after calculating 4! and 5!:

4=1.2.3.4=24, 71 = 7(6!) = 7(720) = 5040
Sl=1-2-3-4.5=75(24) =120, 8 = 8(7!) = 8(5040) = 40,320
61 = 6(51) = 6(120) = 720, 91 = 9(81) = 9(40,320) = 362,380

(b) Since n is very large, we use Stirling’s approximation that n! ~ y/2ann"e™ (where e = 2.718). Thus

50! ~ V1007 50% " = N

Evaluating N using a calculator, we get N = 3.04 x 10%* (which has 65 digits).
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Alternatively, using (base 10) logarithms, we get

log N = log(v100750%% )

=1log 100 + {logr + 501og 50 — 50loge
—1(2) +1(0.4972) + 50(1.6990) — 50(0.4343)
= 64.4836

The antilog yiclds N = 3.04 x 10%.

2.36. Com te()B! (b) i
o . ute:. (&) — -—
P 1 10!
131 13-12-11-10-9-8-7-6-5-4-3-2-1
@ M~ TT 9876353321 o 12=1%

Alternatively, this could be solved as follows:
131 13-12-11!
1 11!

"o 7! 11

100 10-9-8-7' 10-9-8 720

2.37. Compute: (@) <136>, (b) <142>

Recall that there are as many factors in the numerator as in the denominator.

(a) (16>:l6~15-14:560 (b) <12>:12~11~10‘9:495

=13-12=156

(b)

3 1-2-3 4 1.2-3-4
8 9
2.38. Compute: (@) < 5), (b) <7>

8 8-7-6-5-4 8 8 8-7-6
— — 56 . si —5= = = =
() <5> 7345 or, since &-5=3, (5) <3> 17353 56

9 9 9-8
(b) Since 9 —7=2, <7> <2> T3 3

17 16 16
2.39. Prove: <6> = <5) + <6>

Now 16+16—16!+16! Multiply the first fracti b6dh dbll btai
s 6 ) =511 T arior ultiply the first fraction by = an the second by 17 to obtain

the same denominator in both fractions; and then add:

16)  (16) _ 616 11161 _ 616! 11.16!

5 6) 6-5-11 6-11-100  6-111 6! 11!

6-16+11-16 _ (6+11)-161 _17-16! _ 170 _ (17
611 611 eIl 611l \6

2.40. Prove Theorem 2.10: <n+ 1) = < " 1) + <n>
r P ;

(The technique in this proof is similar to that of the preceding problem.)
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! !
Now <r f 1) + <:L) = =L 21” E—y + . (1,117 o To obtain the same denominator in both
. . . . ’ . - 1
fractions, multiply the first fraction by " and the second fraction by niril Hence
7 n—r
n . n\ 7l . (n—r+1)-n
r—1 r) =D n—r+ D) (n—r+1) - (n—r)

7 n! (n—r+1)-n
a—r+ 1) An—r+1)
realt(n—r+1)-n  [r+m—r+1)-n

(n—r+1)!  rAm—r+ 1)
(et (1) (41
7r!(n7r+1)!7r!(n7r+l)!7< r )

COUNTING PRINCIPLES

2.41.

2.42.

2.43.

2.44.

Suppose a bookcase shelf has 6 mathematics texts, 3 physics texts, 4 chemistry texts, and S
computer science texts. Find the number n of ways a student can choose: (&) one of the texts,
(b) one of each type of text.

() Here the sum rule applies; hence n =6 +3 + 4+ 5 =18.

(b) Here the product rule applies; hence n =6-3 -4 -5 = 360.

A restaurant has a menu with 3 appetizers, 4 entrées, and 2 desserts. Find the number # of ways
a customer can order an appetizer, entrée, and dessert.

Here the product rule applies, since the customer orders one of each. Thusn=3-4-2 =24,

A history class contains 7 male students and S female students. Find the number #n of ways that
the class can elect: (#) a class representative, (b) two class representatives, one male and one
female, (¢) a president and a vice-president.

() Here the sum rule is used; hence n =7+ 5 = 12.

(b) Here the product rule is used; hence n = 7- 5 = 35.

(¢) There are 12 ways to elect the president and then 11 ways to elect the vice-president. Thus
n=12-11 =132

There are four bus lines from city A to city B and three bus lines from city B to city C. Find
the number 7 of ways a person can travel by bus: (&) from A to C by way of B, (b) round-trip from
A to C by way of B, (¢) round-trip from A to C by way of B, without using a bus line more
than once.

(«) There are 4 ways to go from A to B, and 3 ways from B to C; hence, by the product rule, n =4 -3 = 12.

(b) There are 12 ways to go from A to C by way of B, and 12 ways to return. Thus, by the product rule,
n=12-12 = 144

(¢) The person will travel from A to B to C to B to A. Enter these letters with connecting arrows as
follows:

A-B-C-=B-A

There are 4 ways to go from A to B and 3 ways to go from B to C. Since a bus line is not to be used
more than once, there are only 2 ways to go from C back to B and only 3 ways to go from B back
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to A. Enter these numbers above the corresponding arrows as follows:
ALBALCEBLA
Thus, by the product rule,n =4-3-2-3 =72.

PERMUTATIONS, ORDERED SAMPLES

2.45.

2.46.

2.47.

2.48.

State the essential difference between permutations and combinations, with examples.

Order counts with permutations, such as words, sitting in a row, or electing a president, vice-president,
and treasurer. Order does not count with combinations, such as committees or teams (without counting
positions). The product rule is usually used with permutations since the choice for each of the ordered
positions may be viewed as a sequence of events.

A family has 3 boys and 2 girls. (&) Find the number of ways they can sit in a row. (b) How
many ways are there if the boys and girls are each to sit together?

(«) The five children can sitinarowin 5-4-3-2-1=5!=120 ways.

(b) There are two ways to distribute them according to sex: BBBGG or GGGBB. In each case, the boys
cansitin3-2-1= 3! = 6 ways, and thegirlscansitin 2 - 1 = 2! = 2 ways. Thus, altogether, there are
2.3.2=2.6-2 =24 ways.

Suppose repetitions are not allowed. (@) Find the number # of three-digit numbers that can be
formed from the digits 2, 3, 5, 6, 7, and 9. (b) How many of them are even? (c¢) How many of
them exceed 400?

There are 6 digits, and the three-digit number may be pictured by __, _ , . In each case, write down
the number of ways that one can fill each of the positions.

(«) There are 6 ways to fill the first position, 5 ways to fill the second position, and 4 ways to fill the third
position. This may be pictured by: 6 , 5, 4. Thusn=6-5-4=120.

Alternatively, n is the number of permutations of 6 things taken 3 at a time, so

n=P6,3)=6-5-4=120

(b) Since the numbers must be even, the last digit must be either 2 or 4. Thus the third position is filled
first and it can be done in 2 ways. Then there are now 5 ways to fill the middle position and 4 ways to
fill the first position. This may be pictured by: 4 , 5, 2 . Thus4.5-2 =120 of the numbers are
even.

(¢) Since the numbers must exceed 400, they must begin with 5, 6, 7, or 9. Thus we first fill the first
position, which can be done in 4 ways. Then there are 5 ways to fill the second position and 4 ways to
fill the third position. This may be pictured by: 4 , 5, 4 . Thus 4-5-4 =80 of the numbers
exceed 400.

Find the number # of distinct permutations that can be formed from all the letters of each word:
(e) THEM, (b) UNUSUAL, (¢) SOCIOLOGICAL.

This problem concerns permutations with repetitions.
() n=4!=24, since there are 4 letters and no repetitions.

7!
(b) n= = 840, since there are 7 letters of which 3 are U.
12!

(¢) n= m, since there are 12 letters of which 3 are O, 2 are C, 2 are I, and 2 are L.
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2.49.

2.50.

A class contains & students. Find the number of ordered samples of size 3: (&) with replacement,
(b) without replacement.

(«) Eachstudentin the ordered sample can be chosen in 8 ways; hence there are 8 - 8 - 8 = 8% = 512 samples
of size 3 with replacement.

(b) The first student in the sample can be chosen in 8 ways, the second in 7 ways, and the last in 6
ways. Thus there are 8 - 7.6 = 336 samples of size 3 without replacement.

Find # if: (&) P(n,2) = 72, (b) 2P(n,2) + 50 = P(2n,2).
(@) P(n,2)=n(n—1)=n*>—n hencen® —n=720rn" —n—72=00r (n—9)(n+8 =0.
Since n must be positive, the only answer is n = 9.
(5) P(n,2)=n(n—1) =n*> —n and P2n,2) = 2n(2n — 1) = 4n®> — 2n. Hence
22 —n)+50=4n"—2n or 20— 2n+50=4n>—2n or S0=2n* or W =25

Since n must be positive, the only answer is n = 5.

COMBINATIONS, PARTITIONS

2.51.

2.52.

2.53.

A class contains 10 students with 6 men and 4 women. Find the number # of ways:

(#) a 4-member committee can be selected from the students,
(b) a4-member committee with 2 men and 2 women can be selected,

(¢) the class can elect a president, vice-president, treasurer, and secretary.

(«) This concerns combinations, not permutations, since order does not count. There are “10 choose 4”
such committees. That is,

— C(10.4) = <10> 10- 39

4.
(b) The 2 men can be chosen from the 6 men in ( ) ways, and the 2 women can be chosen from the 4

7

8-
=21
2-1 0

women in <3> ways. Thus, by the product rule,

6\ (4 6-5 4.3
= - . 7 _15(6) = ,
n <2> <2> =577 15(6) = 90 ways

(¢) This concerns permutations, not combinations, since order does count. Thus

= P(6,4)=6-5-4.3=1360

A box contains 7 blue socks and S red socks. Find the number n of ways two socks can be
drawn from the box if: (&) they can be any color, (b) they must be the same color.
(«) Thereare ““12 choose 2” ways to select 2 of the 12 socks. That is,

12)_12.11

(b) There are C(7,2) = 21 ways to choose 2 of the 7 blue socks, and C(5,2) = 10 ways to choose 2 of the 5
red socks. By the sum rule, n = 21 + 10 = 31.

Let 4, B, ...,J be 10 given points in the plane R? such that no three of the points lie on the same
line. Find the number 7 of:

(@) lines in R? where each line contains two of the points,
(b) lines in R? containing 4 and one of the other points,

(¢) triangles whose vertices come from the given points,
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(#) triangles whose vertices are 4 and two of the other points.

Since order does not count, this problem involves combinations.
(«) Each pair of points determines a line; hence

1
n = “10 choose 2 = C(10,2) = (20) — 66

(b) We need only choose one of the 9 remaining points; hence n = 9.

(¢) Each triple of points determines a triangle; hence
10
n = “10 choose 3" = C(10, 3) = 5 )= 120

(#) We need only choose two of the 9 remaining points; hence n = C(9,2) = 36.

There are 12 students in a class. Find the number # of ways that 12 students can take three
different tests if four students are to take each test.

There are C(12,4) = 495 ways to choose four students to take the first test; following this, there are
C(8,4) = 70 ways to choose four students to take the second test. The remaining students take the third
test. Thus n = 70(495) = 34,650.

Find the number #n of ways 12 students can be partitioned into three teams A4y, A,, 43, so that
each team contains four students. (Compare with preceding Problem 2.54.)

Let A denote one of the students. There are C(11,3) = 165 ways to choose three other students to be
on the same team as 4. Now let B be a student who is not on the same team as 4. Then there are
C(7,3) = 35 ways to choose three from the remaining students to be on the same team as B. The remaining
four students form the third team. Thus n = 35(165) = 5925.

Alternatively, each partition [4;, A>, 43] can be arranged in 3! = 6 ways as an ordered partition. By
the preceding Problem 2.54, there are 34,650 such ordered partitions. Thus n = 34650/6 = 5925.

TREE DIAGRAMS

2.56.

2.57.

Construct the tree diagram that gives the permutations of {a, b, c}.

The tree diagram appears in Fig. 2-12. The six paths from the root of the tree yield the six permuta-
tions:

abc, ach, bac, bca, cab, cha

Jack has time to play roulette at most five times. At each play he wins or loses $1. He begins
with $1 and will stop playing before the five times if he loses all his money or if he wins $3, that is,

b
a<c

[+

b

a Eod
b<c }
b
<,

Fig. 2-12
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if he has $4. Find the number of ways the betting can occur, and find the number of times he
will stop before betting five times.

Construct the appropriate tree diagram, as shown in Fig. 2-13.  Each number in the diagram denotes
the number of dollars he has at that moment of time. The betting can occur in 11 ways, and Jack will stop
betting before the five times are up in only three of the cases.

MISCELLANEOUS PROBLEMS

2.58. Prove the binomial theorem 2.9: (& + b)" = Z <’;> D
r=0

The theorem is true for n = 1, since

1
52 (o= (o (Jovass-tann

=0

We assume the theorem holds for (« + b)" and prove it is true for (a + b)""".

(a+ by = (a+b)(a+b)"

_ (l+b) |:‘n + (T)ﬂnilb‘k cee (rfl)‘nfwrlbr—l + (’:>‘n—rbr+ e (T)lbn—l +bn}

Now the term in the product which contains 4" is obtained from

b|:( n )an7r+lbr71:| +d|:(n)dnirbr:| :( n )dn7r+lbr+ (n)anfrqtlbr
r—1 r r—1 r
) (e
r—1 r

But, by Theorem 2.10 < " 1) + <n) = <n+1>. Thus the term containing & s
r— r 7

1
<n+ )4"7’+1b’. Note that (a+ b)(a + b)" is a polynomial of degree n+ 1 in b. Consequently,

7
n+l
1
(a+b)"" = (atb)(ath) = g <n + >a”"“b’

r=0 !

which was to be proved.
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4 4 4 4 4
P : =16
o (o) (1) () ()1 (6)
Note 16 = 2* = (1 +1)*. Expanding (1 + 1)*, using the binomial theorem, yields:
_ a_ (NN (Mo (M (M (H e
oment= (s (B (e (e ()
(4 4 4 4 4
o) T\ ) TG T

Let n and ny, n,,...,n, be nonnegative integers such that n; +#n, +---+n, =n. The multi-
nominal coefficients are denoted and defined by:

n n!
n ony, ... n) n'm---n!

Compute the following multinomial coefficients:

6 g 10
(a) <3,2,1>’ (b) <4,2,2,0)’ () <5,3,2,2>

6 6 6.5:.4.3.2.1
@ <3,2,1>:3!2!1!:3.2.1-2-1.1:60

8 8! $.7-6-5-4.3.2.1
— — — 42
®) <4,2,2,0> a0 332121211 2

(¢) The expression < ) has no meaning, since 5 +3 +2 + 2 # 10.

5,3,2,2

Supplementary Problems

SETS AND SUBSETS

2.61.

2.62.

List the elements of the following sets if the universal set is U = {a,b,¢,...,»,z}. Furthermore, identify
which of the sets, if any, are equal.

A = {x:xisa vowel} C = {x: x precedes f in the alphabet}

B = {x:xis aletter in the word “little”} D = {x:xis a letter in the word “‘zitle”’}

Let 4={1,2,...,8,9}, B=1{2,4,6,8}, C={1,3,5,7,9}, D=1{3,4,5}, and E={3,5}. Which of the
above sets can equal a set .Y under each of the following conditions?

(«) X and B are disjoint () YCAbutXY¢gC

b)) YCDbutX¢ B M) YCChbutXYQZ 4

SET OPERATIONS

Problems 2.63-2.66 refer to the universal set U = {1,2,3,...,8,9} and the sets:

2.63.

2.64.

A:{l727576}7 B:{27577}? C:{173757779}

Find: (@) ANBand ANC, (b)) AUB and BUC, (c) A° and C*.

Find: () A\B and A\C, (b)) A® Band 4 ®C.
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2.65.

2.66.

2.67.

2.68.

2.69.

Find: (a) (4 U C\B, (b) (AU BY, (c) (B® C)\A.

Let 4 and B be any sets. Prove:

(#) A is the disjoint union of A\B and 4 N B.
(b) AU B is the disjoint union of 4\B, A N B, and B\ 4.

Prove the following:
(@) AC Bifandonlyif ANB° = . (¢) ACBifandonlyif B°C A4°.
() ACBifandonlyif AAUB=U. (#) AC Bif and only if A\B = .

(Compare results with Theorem 2.2.)

Prove the absorption laws: (a) AU(ANB) =4, (b)) AN(AUB) = A.

The formula 4\B = 4 U B® defines the difference operation in terms of the operations of intersection and
complement. Find a formula that defines the union 4 U B in terms of the operations of intersection and
complement.

VENN DIAGRAMS, ALGEBRA OF SETS, DUALITY

2.70.

2.71.

2.72.

The Venn diagram in Fig. 2-14 shows sets 4, B, C. Shade the following sets:
(o) A\(BUC), b) AN (BNC), () (AuC)n(BUC).

A
ava
o

Fig. 2-14

Write the dual of each equation:

(@) AU(ANB)=A4, B)(ANB)UANBUANBYU(A NBY)=U

Use the laws in Table 2-1 to prove (A NB)U (AN B°) = 4.

FINITE SETS AND THE COUNTING PRINCIPLE

2.73.

2.74.

Determine which of the following sets are finite:

(«) lines parallel to the x-axis, (¢) animals living on the earth,
(b) letters in the English alphabet, (#) circles through the origin (0, 0).

Given n(U) = 20, n(4) = 12, n(B) =9, n(A N B) = 4, find:
(@) n(AU B), (b) n(A°), () n(B), (@) n(A\B), () n().
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Among 120 freshmen at a college, 40 take mathematics, 50 take English, and 15 take both mathematics and
English. Find the number of freshmen who:

(a) do not take mathematics, (#) take English, but not mathematics,
(b) take mathematics or English, (e) take exactly one of the two subjects,
(¢) take mathematics, but not English, (f) take neither mathematics nor English.

A survey on a sample of 25 new cars being sold at a local auto dealer was conducted to see which of three
popular options, air-conditioning (A4), radio (R), and power windows (W), were already installed. The
survey found:

15 had air-conditioning 5 had air-conditioning and power windows
12 had radio 9 had air-conditioning and radio
11 had power windows 4 had radio and power windows

3 had all three options

Find the number of cars that had: (a) only power windows, (b) only air-conditioning, (c) only radio, (#) radio
and power windows but not air-conditioning, (e) air-conditioning and radio, but not power windows, ( /)
only one of the options, (g) none of the options.

Use Theorem 2.6 to prove Corollary 2.7: Suppose 4, B, C are finite sets. Then 4 UB U C is finite and
nAUBUC)=n(d) +n(B) +n(C)—n(ANB)—n(ANC)—n(BNC)+nANBNC)

PRODUCT SETS

2.78.

2.79.

2.80.

2.81.

Find x and yif: (&) (x +2,3) = (7.2x+y), () (y —3,2x+1)=(x+2,y+4).
Let A = {a,b} and B={1,2,3}. Find: («) A x B, (b) B x A.

Let C={H, T}, the set of possible outcomes if a coin is tossed. Find: (a) C*=CxC,
b)C'=CxCxCxC.

Suppose n(A4) = 3, and n(B) = 5. Find the number of elements in: («) A x B, B x A, (b) 4>, B>, A*, B*;
() Ax Ax Bx A.

CLASSES OF SETS, PARTITIONS

2.82.

2.83.

2.84.

2.85.

2.86.

Find the power set #(A4) of A = {a,b,c,d,e}.

Let S ={1,2,3,4,5,6}. Determine whether each of the following is a partition of S:

(@) [{1, 3,5} {2, 4}, {3, 6}] (@) [{1}, {3, 6}, {2, 4, 5}, {3, 6}]
() [{1, 53, {2}, {3, 6}] (e) [{1,2,3,4,5,6}]
(© [ 53, {2}, {4}, {3, 6}] ) ({13, {23, {33, {4}, {5}, {6}]

Find all partitions of S = {1,2,3}.

For each positive integer n € P, let A, = {n,2n,3n, ...}, the multiples of n. Find: (a) 4, N 44, (b) AN Ag,
(¢) AsU Az, (@) AsN Ay, (e) A, U Ay, where s, t € P, (f) A;N Ay, where s, t € P.

Prove: If J C P is infinite, then N(4;: i € J) = (J. (Here the 4; are the sets in Problem 2.85.)
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2.87.

2.88.

2.89.

2.90.

2.91.

Let [4,,4,,...,4,,) and [B}, B,, ..., B,] be partitions of S. Show that the collection of sets
[4;N B;; i=1,...,m, j=1...,l\@

(where the empty set (J is deleted), is also a partition of S, called the cress partition.

Prove: For any indexed class of sets {A4;:ic I} and any set B: (a) BU(();4;)=;(BUA,;),
) BN (U; 4;) = U (BN 4,).

Prove (De Morgan’s law): ((; 4;)° = U, 45.

Show that each of the following is an algebra of subsets of U: (a) o/ = {QJ, U}, (b) #={T, 4, A", U},
(¢) 2(U), the power set of U.

Let .o/ and # be algebras (c-algebras) of subsets of /. Prove that the intersection .»/ N 4 is also an algebra
(o-algebra) of subsets of U.

MATHEMATICAL INDUCTION

2.92.

2.93.

2.94.

2.95.

Prove: 2+4+6+---+2n=n(n+1).

Prove: 1+4+7+ -+ (B3n—2) = 2n(3n — 1).

Prove: 12+22+32+~~+n2:%(2n+1).

Prove that, for n > 4: (&) n! > 2%; (b) 2" > n%; (¢) n* > 2n + 5.

FACTORIAL NOTATION AND BINOMIAL COEFFICIENTS

2.96.

2.97.

2.98.

2.99.

2.100.

Find: (a) 10!, 11!, 12!, (b) 60! (Hint: Use Stirling’s approximation to n!.)

(n+1)! n! (n—1)! (n—r+1)!
Oy Oy @a

Evaluate: (a) (g), ) (;/), (©) <124>: ¢ <i>, (e) (?2): o) Gz)

Show that:

@ (0) (1) () (5) e (0) =2

0 (3)- ()0 (0)- () ()

Evaluate the following multinomial coefficients (defined in Problem 2.58):

@ (2§ 1)’ ) (4,3?1,0)’ © (322) “ (4»3?“)

Simplify: («) p

COUNTING PRINCIPLES, SUM AND PRODUCT RULES

2.101.

A store sells clothes for men. It has 3 different kinds of jackets, 6 different kinds of shirts, and 4 different
kinds of pants. Find the number of ways a person can buy: («) one of the items for a present, (b) one of
each of theitems for a present.
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2.102.

2.103.

2.104.

2.105.

SETS AND COUNTING [CHAP. 2

A restaurant has, on its dessert menu, 4 kinds of cakes, 3 kinds of cookies, and 5 kinds of ice cream. Find
the number of ways a person can select: («) one of the desserts, (b) one of each kind of dessert.

A class contains 8 male students, and 6 female students. Find the number of ways that the class can elect:
() a class representative, (b) two class representatives, one male and one female, (c) a president and a vice-
president.

There are 6 roads between A and B and 4 roads between B and C. Find the number of ways a person can
drive: (@) from A to C by way of B, (b) round-trip from A to C by way of B, (¢) round-trip from A to C by
way of B without using the same road more than once.

Suppose a code consists of two letters followed by a digit. Find the number of: (a) codes, (b) codes with
distinct letters, (¢) codes with the same letters.

PERMUTATIONS, ORDERED SAMPLES

2.106.

2.107.

2.108.

2.109.

2.110.

Find the number n of ways a judge can award first, second, and third places in a contest with 18 contestants.

Find the number n of ways 6 people can ride a toboggan where: («) anyone can drive, (b) one of three must
drive.

Find the number »n of permutations that can be formed from all the letters of each word: (¢) QUEUE,
(b)) COMMITTEE, (c) PROPOSITION, (/) BASEBALL.

A box contains 10 light bulbs. Find the number n of ordered samples of size 3: () with replacement,
(b) without replacement.

A class contains 6 students. Find the number n of ordered samples of size 4: (a) with replacement,
(b) without replacement.

COMBINATIONS, PARTITIONS

2.111.

2.112.

2.113.

2.114.

2.115.

2.116.

2.117.

2.118.

2.119.

A class contains 9 boys and 3 girls. Find the number of ways a teacher can select a committee of 4.

Repeat Problem 2.111, but where: () there are to be 2 boys and 2 girls, (b) there is to be exactly one girl,
(c) there is to be at least one girl.

A box contains 6 blue socks and 4 white socks. Find the number of ways two socks can be drawn from the
box where: (#) there are no restrictions, (b) they are different colors, (¢) they are to be the same color.

A woman has 11 close friends. Find the number of ways she can invite 5 of them to dinner.

Repeat Problem 2.114, but where: (&) two of the friends are married and will not attend separately, (b) two of
the friends are not on speaking terms and will not attend together.

A student is to answer 8 out of 10 questions on an exam. Find the number of choices.

Repeat Problem 2.116, but where: («) the first three questions must be answered, (b) at least 4 of the first 5
questions must be answered.

There are 9 students in a class. Find the number of ways the students can take three tests if 3 students are to
take each test.

There are 9 students in a class. Find the number of ways the students can be partitioned into three teams
containing 3 students each. (Compare with Problem 2.118.)
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2.120. Find the number of ways 9 toys may be divided among four children if the youngest is to receive 3 toys and
each of the others 2 toys.

TREE DIAGRAMS

2.121. Teams A and B play in the World Series of baseball, where the team that first wins four games wins the
series. Find the number #n of ways the series can occur given that 4 wins the first game and that the team
that wins the second game also wins the fourth game, and list the n» ways the series can occur.

2.122. Suppose 4, B,...,F in Fig. 2-15 denote islands, and the lines connecting them bridges. A man begins at 4
and walks from island to island. He stops for lunch when he cannot continue to walk without crossing the
same bridge twice. (&) Construct the appropriate tree diagram, and find the number of ways he can take
his walk before eating lunch. (b) At which islands can he eat his lunch?

@@

Fig. 2-15
MISCELLANEOUS PROBLEMS
2.123. Suppose n objects are partitioned into » ordered cells with ny, n,, ..., n, elements. Show that the number of
such ordered partitions is
n!

ntnm!nm!. . on!

2.124. There are n married couples at a party. («) Find the number of (unordered) pairs at the party. (b) Find
the number of handshakes if each person shakes hands with every other person other than his or her spouse.

Answers to Supplementary Problems

26l. A={a,e,i,o,u},B=D={lite},C={a, b,c d e}
2.62. (a) C, E; (b) D, E; (¢) B; (d) none

263. (@) ANB=1{2,5},ANC={5;®) AUB=1{1,2,56,7}, BUC ={1,2,3,5,7,9};
(C) AC = {3747 77879}5 CC = {27 47 678}

2.64. (&) AB={1,6}, A\C=1{2,6}:(b) A®B=1{1,6,7}, AdC=12,6,7,9}

2.65. (#) {1,3 6,9}, (b) (3.4, 89} () (3.9)
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2.69. AUB= (AN B

2.70. Sce Fig 2-16.

& e /)

{a) (€)] {©)
Fig. 2-16

271, (@)AN(AUB)=4, (0)(AUB)N(AUB)N(AUB)N(AUB)=Q
273, (b). (d), (¢)
274. (@) 17, (b) 8. () 11, (d) 8, () 0
2.75.  (a) 80, () 75, {c) 25, (<)) 35, () 60, (J) 45
2.76. (@) 5, (b)Y 4. (&) 2 (D 1. (e) 6. (F) 11, (g)2
278. @x=5yv="7,0)x=8,y=13
279. Ax B={al,e2,43,h1,h2,b3}, Bx A= {la,1h,2a,2b,3a,3b}
280. C'={HH HT,TH,TT}.
C'= {HHHH, HHHT, HHTH, HHTT, HTHH, HUHT, HI'TH, HTTT, THHH, THHT, THTH,
THIT, TTHH, TTHT, TITH, TITT}
281 (a) 15, 15,9, 25; (b) 45, 27

2.82. P(A) = (@ a,b, ¢, d,e,ab.ac.ad,ae,be, bd be,cd,ce,de,abc,abd, ube. acd, ace, ade, bed, bee, bde, cde,
abcd, abee, abde, acde, bede, A Note n(P(a)) = 2° = 32.

2.83. () and (b): no. Others: yes.

2.84. [S) [{L.2h {31, [{1. 3% {2} [§2. 3} (UL [{1} {2} {3}

2.85. (&) Ajq. (b) Ay (€) As. (d) A2e. () As, ([} Aa

2.96. (a)3.628.800; 39.916.800; 479.001.600. (b) log(60!)=81.92 so 60!=6.59 x 0%
297, (@n+1, () — 1) =i —n, ) Un0r+)(n+2)], D n—r)n—r+1)
2.98.  (#) 10, () 35.(c) 9L, (@) IS, (¢} 1140, () 816

2.99. Hint: (@) cxpand (1 + 1), (») cxpand (1 — 1)"

2100, (a) 60, (b) 280, (¢) 560, (4) not defined
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2.101.

2.102.

2.103.

2.104.

2.105.

2.106.

2.107.

2.108.

2.109.

2.110.

2.111.

2.112.

2.113.

2.114.

2.115.

2.116.

2.117.

2.118.

2.119.

2.120.

2.121.

2.122.

2.124.

(a) 13, (b) 72
(a) 12, (b) 60
() 14, (D) 48, (c) 182
(a) 24, (b) 576, (¢) 360
(a) 6760, (b) 6500, (c) 260
n=18-17-16 = 4896
() 6! = 720, (b) 3 - 5! = 360
9! 11! 8!
(#) 30, () 57557 = 45360, (€) 373757 = 1.663.200, (@) 55757 = 5040
(@) 10° = 1000, (b)) 10-9 -8 = 720
(@) 6' = 1296, (b)) 6-5-4-3 =360
C(12,4) = 495

(a) C(9,2)- C(3,2) = 108, (b) C(9,3)- C(3,1) = 252,
(6) 9+ 108 + 252 = 369 or C(12,4) — C(9,4) = 495 — 126 = 369

(a) C(10,2) = 45, (b) 6 - 4 =24, (¢) C(6,2) + C(4,2) = 21 or 45 — 24 = 21
C(11,5) = 462

(a) 210, (b) 252

C(10,8) = C(10,2) = 45

(@) C(7,5)=C(7,2) =21, (b)25+10=35

1680

280

7560

Construct the appropriate tree diagram asin Fig. 2-17. Note that the tree begins at A, the winner of the
first game, and that there is only one choice in the fourth game, the winner of the second game. The
diagram shows that n = 15 and that the series can occur in the following 15 ways:

AAAA, AABAA, AABABA, AABABBA, AABABBB, ABABAA, ABABABA, ABABABB,
ABABBAA, ABABBAB, ABABBB, ABBBAAA, ABBBAAB, ABBBAB, ABBBB

() See Fig. 2-18. There are 11 ways to take his walk. (b) B, D, or E

(@) C(2n,2) = 2n(2n — 1)/2, (b) C(2n,2) —n=2n12n—1)/2 —n
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Fig. 2-17
D B
C E F D




Chapter 3

Basic Probability

31 INTRODUCTION

Probability theory is the mathematical modeling of the phenomenon of chance or randomness. Ifa
coin is tossed in a random manner, it can land heads or tails, but we do not know which of these will
occur on a single toss. However, suppose we let s be the number of times heads appears when the coin
is tossed s times.  As n increases, the ratio f = s/n, called the relative frequency of the outcome, becomes
more stable. If the coin is perfectly balanced, then we expect that the coin will land heads approximately
S0 percent of the time or, in other words, the relative frequency will approach 1/2. Alternatively,
assuming the coin is perfectly balanced, we can arrive at the value 1/2 deductively. That is, any side
of the coin is as likely to occur as the other; hence the chances of getting a head is one in two, which
means the probability of getting a head is 1/2. Although the specific outcome on any one toss is
unknown, the behavior over the long run is determined. This stable long-run behavior of random
phenomena forms the basis of probability theory.

Consider another experiment, the tossing of a six-sided die (Fig. 3-1) and observing the
number of dots, or pips, that appear on the top side. Suppose the experiment is repeated n times
and let s be the number of times 4 dots appear on top. Again, as n increases, the relative frequency
f =s/n of the outcome 4 becomes more stable. Assuming the die is perfectly balanced, we would
expect that the stable or long-run value of this ratio is 1/6, and we say the probability of getting a 4
is 1/6.

Alternatively, we can arrive at the value 1/6 deductively. That is, with a perfectly balanced die,
any one side of the die is as likely as any other to occur on top. Thus the chance of getting a 4 is one in
six or, in other words, the probability of getting a 4is 1/6. Again, although the specific outcome on any
one toss is unknown, the behavior over the long run is determined.

Fig. 3-1

The historical development of probability theory is similar to the above discussion. That is,
letting £ denote an event, an outcome of an experiment, there were two ways to obtain the probability
p of E:

(@) Classical (a priori) definition: Suppose an event E can occur in s ways out of a total of # equally
likely possible ways. Then p = s/n.

(D) Frequency (& posteriori) definition: Suppose after n repetitions, where » is very large, an event E
occurs s times. Then p = s/a.

&7
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Both of the above definitions have serious flaws. The classical definition is essentially circular, since
the idea of “equally likely” is the same as that of “‘with equal probability” which has not been
defined. The frequency definition is not well-defined since “very large” has not been defined.

The modern treatment of probability theory is axiomatic, using set theory. Specifically, a math-
ematical model of an experiment is obtained by arbitrarily assigning probabilities to all the events, except
that the assignments must satisfy certain axioms listed below. Naturally, the reliability of our math-
ematical model for a given experiment depends upon the closeness of the assigned probabilities to the
actual limiting relative frequencies. This then gives rise to problems of testing and reliability, which
form the subject matter of statistics.

3.2 SAMPLE SPACE AND EVENTS

The set S of all possible outcomes of a given experiment is called the sample space. A particular
outcome, i.e. an element in S, is called a sample point. An event A is a set of outcomes or, in other
words, a subset of the sample space S. In particular, the set {a} consisting of a single sample point
a ¢ Sis called an elementary event. Furthermore, the empty set ¢J and S itself are subsets of S and so
are events; (J is sometimes called the impossible event or the null event.

Since an event is a set, we can combine events to form new events using the various set operations:

(1) AU B is the event that occurs iff 4 occurs or B occurs (or both).
(2) AN B is the event that occurs iff 4 occurs and B occurs.
(3) A°, the complement of A, also written A, is the event that occurs iff 4 does not occur.

Two events A and B are called mutually exclusive if they are disjoint, that is, if AN B =(J. In other
words, 4 and B are mutually exclusive iff they cannot occur simultaneously. Three or more events are
mutually exclusive if every two of them are mutually exclusive.

EXAMPLE 3.1

() Experiment: Toss a die and observe the number (of dots) that appears on top.
The sample space S consists of the six possible numbers; that is,

S=1{1,2,3 4,56}

Let 4 be the event that an even number occurs, B that an odd number occurs, and C that a prime number
occurs; that is, let

A:{27 47 6}7 B:{1737 5}7 C:{27 37 5}
Then

AUC =1{2,3 4,5, 6} is the event that an even or a prime number occurs.
BN C = {3, 5} is the event that an odd prime number occurs.

C® ={1, 4, 6} is the event that a prime number does not occur.

Note that 4 and B are mutually exclusive: A N B = (. In other words, an even number and an odd number
cannot occur simultaneously.

(b) Experiment: Toss a coin three times and observe the sequence of heads () and tails (7") that appears.
The sample space S consists of the following eight elements:

S ={HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
Let A be the event that two or more heads appear consecutively, and B that all the tosses are the same; that is, let
A={HHH, HHT, THH} and  B={HHH, TTT}

Then A N B = {HHH} is the elementary event in which only heads appear. The event that five heads appear is
the empty set (.
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(¢) Experiment: Toss a coin until a head appears. and then count the number of times the coin is tossed.
The sample spacc of this experiment is S = {I,2,3,....00}. Herc oo refers to thecase when a head never
appcars, and the coin is tossed an infinitc number of times.  Since cvery positive integer is an clement of S, the
samplc spacc is infinitc. In fact, this is an cxamplc of a samplc spacc which is cecwitabl y infinite.

(d) Expcriment: Lct a pencil drop, head first. into a rectangular box and notc the point at the bottom of the box
that the peneil first touches. Hcere S consists of all the points on the bottom of the box.  Let the rectangular
arca in Fig. 3-2 represent these points. Let 4 and B be the events that the pencil drops into the corresponding
areas illustrated in Fig. 3-2.

Remark: The sample space S in Example 3.1(d) is an example ol'a continuous sample space. (A
sample space S is centinueus if it is an interval or a product of intervals.) Tn such a case, only special
subscts (called measurahle scts) will be cvents.  On the other hand, il the sample space S is diserere, that
is, if S is finitc or countably infinite, then cvery subsct of S is an cvent.

Fig. 3-2

EXAMPLE 3.2: Toss of a pair of dice A pair of dice is tossed and the two numbers appearing on the top are
recorded. There are six possible nuinbers, 1.2,...,6, on each die. Thus § consists of the pairs efnumbers from |
to 6,and hence #(S) = 6-6 = 36. Figure 3-3 shows these 36 pairs of numbers arranged in an array where therows
are labeled by the first die and (he columns by the second die. Let A be the event that the sum ofthe two numbers is
6. and let B be the event that the largest of the two numbers is 4. That is, let

A={(1,5), (2,4), (3>3), (4,2), (5.)} B={(1,4), (2,4), (3,4), (4,4), (4.3), (4.2), (4,1)}

Thesc cvents arc pictured in Fig. 3-3.  Then the event ©*4 and B™ coasists of thosc pairs of intcgers whosc sum is 6
and whosc largest number is 4 or, in other words, the interscction of 4 and B.  Thus

ANB={(2,4), (4.2)}

Similarly, “4 or B”, the sum is 6 or the largest is 4, shaded in Fig. 3-3, is the union A U B.

N 1 Y SN

s) (16

Wy 2)  (W3)

@1n @2 (@3) @25 @6

Gy G2 G5 (3.6)
@' 1) ﬁ _2;7 “3 @9 “5 @6
v,

G/ 2 3 GH G (56

&) 62 63 (6D 659 (66

FEON00

Fig. 3-3
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EXAMPLE 3.3: Deck of cards A card is drawn from an ordinary dcck of 52 cards which is pictured in
Fig. 3-4{a). Thc samplc spacc S consists of the four suirs, clubs (C), diamonds (D), hcarts (H), and spadcs (S),
where each suit contains 13 card:s which are numbered 2 to 10, andjack (J), queen (@), king (K). and ace (A). The
hearts (H) and diamonds (D) are red cards, and the spades (S) and clubs (C) are black cards. Figure 3-4()) pictures
52 points which represent the deck S of cards in the obvious way. Let £ be the event of a pictuure card, that is,
a jack (J). queen (Q). or king (K), and lct F be the cvent of a heart.  Then £nF = {JH,QH,KH}. as shaded in
Fig. 34(b).

4 Suitks
Clubs Diamonds  Hearts Spades C b H S
'S ~ = o N ~ —
A’ ~ fA’ ~ rA' B /A;\ A * *
r N # s [l ™ K . .
- -
I mwr | | e | (Ve | | 1 come | Q E
loe | floe | [low loe J -
08 0w —
e\ e e fie Tl =
|78 1¢ i 74
68 R | [e® ] [e¢ 8
(58 \ AL AL ] ] (2% 7
48 | jAe | 42 J e 6
frrmmn  vm— v — g
20 2¢ 2 2¢
® * v ¢ : '
N ¢ o ¢ } e
L Y ) { LI * F
Black Red Red Black
(a) ®
Fig. 3-4

3.3 AXIOMS OF PROBABILITY

Let S be a sample space, let € be the class of all cvents, and let 2 be a real-valued function defined
on %. Then Pis called a prohability function, and P(A) is called the prohability of the event A when the
following axioms hold:

[P;] For any cvent A. we have P(4) > 0.

[P3] For the certain event S, we have P(S) = .

[P;] For any two disjoint cvents A and B, we have

P(AUB) = P(A) + P(B)
[P3] For any infinitc scquence of mutually disjoint cvents A, 4, A, ..., wc have
P(AUAHUAU..)=P(A4) + P(42) + P(A3) + ...

Moreover, when P does satisl'y the above axioms, the sample space S will be called a probability space.

The first axiom statcs that the probability of any cvent is nonncgative, and the second axiom statcs
that the certain or surc cvent S has probability 1. The next remarks concern the two axioms [P;] and
[P3]. The axiom [P3] Fformalizes the natural assumption that if 4 and B arc two disjoint cvents then the
probability of cither of them occurring is the sum of their individual probabilitics.  Using mathcmatical
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induction, we can then extend this additive property for two sets to any finite number of disjoint events;
that is, for any mutually disjoint sets 4;, 4,, ..., A4,, we have

P4 UAyU---UA,) = P(4;) + P(4y) +---+ P(4,) (*)
We emphasize that [P3] does not follow from [P;], even though (*) is true for every positive

integer n. However, if the sample space S is finite, then only [P5] is needed, that is, [P3] is superfluous.

Theorems on Probability Spaces

The following theorems follow directly from our axioms, and will be proved in Problems 3.20-3.25.

Theorem 3.1: The impossible event or, in other words, the empty set (J, has probability zero; that is,

P(2) = 0.

The next theorem, called the complement rule, formalizes our intuition that if we hit a target, say,
p = 1/3 of the times, then we miss the target 1 — p = 2/3 of the times. (Recall 4° denotes the comple-
ment of the set A.)
Theorem 3.2 (complement rule): For any event 4, we have

P(A°)=1—P(A)

The next theorem tells us that the probability of any event must lie between 0 and 1. That is:
Theorem 3.3: For any event 4, we have 0 < P(4) < 1.

The following theorem applies to the case that one event is a subset of another event.
Theorem 3.4: If 4 C B, then P(A4) < P(B).

The following theorem concerns two arbitrary events.
Theorem 3.5: For any two events 4 and B, we have

P(A\B) = P(4) — P(AN B)

The next theorem, called the general addition rule, or simply addition rule, is similar to the inclusion—
exclusion principle for sets.

Theorem (addition rule) 3.6: For any two events 4 and B,
P(AUB) = P(4) + P(B) — P(AN B)
Applying the above theorem twice (Problem 3.26), we obtain:
Corollary 3.7: For any events, 4, B, C, we have

P(AUBUC) = P(4) + P(B) + P(C) — P(ANB) — P(ANC) — P(BNC) + P(AN BN C)

Clearly, like the analogous inclusion—exclusion principle for sets, the addition rule can be extended
to any finite number of sets.
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34 FINITE PROBABILITY SPACES

Consider a sample space S and the class  of all events. (If S is finite then we assume, unless
otherwise stated, that all subsets of S are events.) As noted above, S becomes a probability space by
assigning probabilities to the events in € so that they satisfy the probability axioms. This section shows
how this is usually done for finite sample spaces. The next section discusses infinite sample spaces.

Finite Equiprobable Spaces

Suppose S is a finite sample space with # elements, and suppose the physical characteristics of the
experiment suggest that the various outcomes of the experiment be assigned equal probabilities. Then
S becomes a probability space, called a finite equiprobable space, if each point in S is assigned the
probability 1/n and if each event 4 containing » points is assigned the probability »/n. In other words,

P(4)

~ number of elements in 4 n(A4)
~ number of elements in S n(S)

number of ways that the event 4 can occur
~ number of ways that the sample space S can occur

or P(A)

We emphasize that the above formula for P(A4) can only be used with respect to an equiprobable space,
and cannot be used in general.
We state the above result formally.

Theorem 3.8: Let S be a finite sample space and, for any subset 4 of S, let P(4) = n(A4)/n(S). Then P
satisfies axioms [P1], [P,], and [Ps].

The expression “‘at random” will be used only with respect to an equiprobable space; formally, the
statement ‘“‘choose a point at random from a set S”’ shall mean that S is an equiprobable space where
each point in S has the same probability.

EXAMPLE 3.4

(@) A card may be selected at random from an ordinary deck of 52 playing cards (see Fig. 3-4). Consider the
events:
A = {card is a heart} and B = {card is a face card}

(A face card is a jack (J), queen (Q), or king (K).) We compute P(4), P(B), and P(4A N B). Since we have an
equiprobable space,

number of hearts 13 1 number of face cards 12 3
P A B e — P B) = —
() number of cards 52 4’ (B)

number of cards 52 13

P(ANB) = number of heart face cards 3

number of cards T2

Suppose we want the probability that the card is a heart or a face card, that is, suppose we want P(4 U B). We
can count the number of such cards and use Theorem 3.8, or use the above data and Theorem 3.6, to obtain

1 3 3 22 11
P(AUB)ZP(A)‘FP(B)*P(AHB):Z‘Fﬁ*ﬁzs—z:%

(b) Suppose a student is selected at random from 80 students where 30 are taking mathematics, 20 are taking
chemistry, and 10 are taking mathematics and chemistry. Find the probability p that the student is taking
mathematics (M) or chemistry (C).

Since the space is equiprobable, we have:

30 3 20
C

10 1
)=n=y PO=%

P(M and C):P(MHC):EZE

P(M !
4 7
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Thus, by the addition rule (Theorem 3.6),

31 1 1
Finite Probability Spaces
Let S be a finite sample space, say S = {a;, &, ..., a,}. A finite probability space, or finite

probability model, is obtained by assigning to each point &; in S a real number p;, called the probability
of a;, satisfying the following properties:

(1) Each p; is nonnegative, that is, p; > 0.
(2) The sum of the p; is 1, thatis, py +p, +---+p, = 1.

The probability P(A) of an event A is defined to be the sum of the probabilities of the points in 4. For
notational convenience, we write P(a;) instead of P({a;}).

Sometimes the points in a finite sample space S and their assigned probabilities are given in the form
of a table as follows:

Outcome ' ' e a,

Probability D1 D2 s Dn

Such a table is called a probability distribution.
The fact that P(A), the sum of the probabilities of the points in 4, does define a probability space is
stated formally below (and proved in Problem 3.30).

Theorem 3.9: The above function P(A4) satisfies the axioms [P1], [P,], and [P3].

EXAMPLE 3.5

(@) Experiment: Let three coins be tossed and the number of heads observed. (Compare with Example
3.1(b).) Then the sample space is S = {0,1,2,3}. The following assignments on the elements of S defines
a probability space:

Outcome 0 1 2 3

Probability s 38 38 18

That is, each probability is nonnegative, and the sum of the probabilities is 1. Let 4 be the event that at least
one head appears, and let B be the event that all heads or all tails appear; that is, let

A=1{1,2,3} and B=1{0,3}
Then, by definition

P(A) = P(1) + PQ) + PB) =3 + 243 =1
and PB)=P0) + PB) =5+ 5 =1

(b) Three horses 4, B, C are in a race; A4 is twice as likely to win as B, and B is twice as likely to win as C. Find
their respective probabilities of winning, that is find P(4), P(B), P(C).
Let P(C) = p. Since B is twice as likely to win as C, P(B) = 2p; and since 4 is twice as likely to win as B,
P(4) = 2P(B) = 2(2p) = 4p. Now the sum of the probabilities must be 1; hence
1

pt2p+dp=1 or Ip=1 or  p=s
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Accordingly,

Question: What is the probability that B or C wins, that is, P({B, C})? By definition

_3

P({B, C}) = P(B) + P(C) = %

+
3.5 INFINITE SAMPLE SPACES

This section considers infinite sample spaces S. There are two cases, the case where S is countably
infinite, and the case where S is uncountable. We note that a finite or a countably infinite probability
space S is said to be discrete. Moreover, an uncountable space .S which consists of a continnum of
points, such as an interval or product of intervals, is said to be continuous.

Countably Infinite Sample Spaces
Suppose S is a countably infinite sample space; say
S = {(11, ay, dz, }

Then, as in the finite case, we obtain a probability space by assigning each &; € S a real number p;, called
its probability, such that:

(1) Each p; is nonnegative, that is, p; > 0.
(2) The sum of the p; is equal to 1, that is
P1+P2+P3+“‘:ZP1‘:1
i=1

The probability P(A4) of an event A is then the sum of the probabilities of its points.

EXAMPLE 3.6 Consider the sample space S = {1, 2, 3, ..., ce} of the experiment of tossing a coin until a head
appears; here n denotes the number of times the coin is tossed. A probability space is obtained by setting

Consider the events:

A = {n is at most 3} and B = {nis even}

Then
11 1 7
PA :Pl 23 —t - _— =
(4)=P(1,23)=5+7+35=3
P(B) = P(2,4,6,8 )—1+1+1+
- 7 ? ? ? *4 42 43
Note P(B) is a geometric series with « = 1/4 and r = 1/4; hence
a _1/4 1

P(B) =

1—r 3/4 3
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Uncountable Spaces

The only uncountable sample spaces S which we will consider here arc those with some finite
gecometrical mcasurcment /n(S) such as length. arca, or volume, and in which a point is sclected at
random. Thc probability ol an cvent A4, ic. that the sclected point belongs to 4, is then the ratio of
m{A) 10 m(S); that is,

P(A) — length of 4

_area of A
~ length of S

~areaol S

~ volume of 4
~ volume of S

or  P(4) or P(A)

Such a probability spacc is said 1o bc wniferm.

EXAMPLE 3.7 On the rcal linc R, points ¢ and b arc sclecied at random such that —2 < H < 0and 0 <a <3, as
shown in Fig. 3-5(a). Find the probability p that the distance  between o and b is greater than 3.

The sample spacc S consists of the ordered pairs (¢. 6) and so forms the rcctangular rcgion shown in
Fig. 3-5(b). On the other hand, the sct A of points (@, #) for which & = @ — b > 3 counsists of thosc points which lic
below the linc x — y = 3, and hence lorm the shaded region in Fig. 3-5(6). Thus

arcaof 4 2 |
=P =—— — — — —
4 (4) arcaol § 6 3
F q,
2_
s
X +
-2 0 2 4
S/'_ A
r" . o o
D P
(a) )
Fig. 3-5

3.6 CLASSICAL BIRTHDAY PROBLEM

“The classical birthday problem concerns the probability p that » people have distinct birthdays. In
solving this problem, we assume that a person’s birthday can fall on any day with the same probability
and that #» < 365.

Since there are # people and 365 different days, there are 365" ways in which the » people can have
their birthdays. On the other hand, if the # persons are to have distinct birthdays, then the first person
can be born on any of the 365 days, the second person can be born on the remaining 364 days, the third
person can be born on the remaining 363 days, etc. T'hus there are 365364 -363 - --- - (365 —n+ 1)
ways the n persons can have distinct birthdays. The probability p that at least two people have the same
birthday follows:

p = | — the probability that no two people have the same birthday

365-364-363- - - (365 —n+ 1)
365"

The valucs of p where 7 is a multiple of 10 up to 60 Lollow:

7 10 20 30 40 50 60

P 0.117 0.411 0.706 0.891 0970 0.994




96 BASIC PROBABILITY [CHAP. 3

We also note that p = 0.476 for n = 22 and that p = 0.507 for n = 23. Accordingly:

In a group of 23 people, it is more likely that at least two of them have the
same birthday than that they all have distinct birthdays.

The above table also tells us that, in a group of 60 or more people, the probability that two or more of
them have the same birthday exceeds 99 percent.

3.7 EXPECTATION

Games of chance involving probability are very popular throughout the world. Mathematical
expectation, defined and discussed in this section, is the measure which decides the fairness of such a
game of chance.

Suppose a game has n outcomes &, &,, ..., &, with corresponding probabilities py, ps, ..., Pp.
where p; + p, + - -+ + p, = 1, and suppose the payoft to the player on outcome @; is w;, where a positive
w; is a win for the player, and a negative w; a loss. Then the quantity

E=wp +wypp+---twp,

is called the mathematical expectation or expected value for the player.

The expectation E is the amount that the player can expect to “win”’ on the average each time the
game is played. If E is positive, then the game is in the player’s favor; if E is negative, then the game is
biased against the player, that is, negative expected winnings represent losses. On the other hand,
suppose the expectation £ = 0. Then the game is said to be fair, and a player’s winnings and losses
should be about equal when the fair game is played a large number of times. Of course, when playing a
lottery or gambling in a casino, E is almost always negative.

EXAMPLE 3.8

(@) There are three envelopes containing $100, $200, and $6000, respectively. A player selects an envelope and
keeps what is in it. Find the expected winnings E of the player.
The player chooses an envelope at random; hence each envelope has probability of 1/3 of being chosen.

Accordingly,
1 1 1
E= 100<§> + 200(5) + 6000<§> = 2,100

That is, the expected winnings of the player is $2100.

(b) A player tosses two fair dice. If the sum is 7 or 11, the player wins $7, otherwise the player loses $2. Deter-
mine the expected value £ of the game.
The sample space S consists of the 36 pairs of numbers pictured in Fig. 3-3. Eight of them will resultin a
sum of 7 or 11, namely,

(1,6), (2,5), (3,4), (4,3), (5,2), (6,1), (5,6), (6,5)
and 36 — 8 = 28 will not. Thus

8 . 28
p(Torll) = % and P (neither 7 nor 11) = %

E:7(%) +(—2)(%) =0

Thus the game is fair, and the player should break even over the long run.

Therefore,
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Solved Probiems

SAMPLE SPACES AND EVENTS

3.L

3.2.

Let A and B be events.  Find an expression and cxhibit the Venn diagram for the cvents:
(a) 4 but not B. (h) ncither A nor B. (¢) cither 4 or B, but not both.

(@)

(»)

(c)

Since 4 but net B occurs, shade the arca of 4 outside of B, as in Fig. 3-6(¢). Note that 8%, the
complcment of B, occurs, since B docs not occur; hence 4 and B° occur.  In other words the cvent is
ANB.

“Neither 4 nor B™ mcans “not 4 and not B~ or A°NB°. By Dc Morgan’s law, this is also thc sct
(4 U B)®; hence shadc the arca outside ol A and B, ic. outsidc 4 U B, as in Fig. 3-6(b).

Since 4 or B, but not both, occurs, shadc the arca of 4 and B, cxcept where they intersect, as in
Fig. 3-6(c). Thc cvent is cquivalent to the occurrence of 4 but not B or Bbutnot 4. Thus the cvent is
(AN B)U (BN A®).

{ 8 ¢

()4 but not B (b) Neither.4 nor 8 (c) 4 or B,butrotboth

Fig. 36

Let A, B, C be events. Find an expression and exhibit the Venn diagram for the events:
(a) A and B but not C occurs, (5) only A occurs.

(@)

)

Since A and B but not C occurs, shadc the intersection of 4 and B which lics outside of C. as in
Fig. 3-7(a). Thc cvent consists of the clements in A4, in B, and in C° (not in C), that is, the cvent is the
interscction 4 N BN C*.

Since only A is 10 occur, shadc the arca of 4 which lies outside of Band C, as in Fig. 3-7(). Theevent
consists of theelements in A, in 8° (notin B}, and in C® (not in ), that is, the event is the intcrsection
ANBNC.

A A
AN | ED
VAR,

A4 ang Bbutnot C occurs Only 4 occurs
(a) (©)

vig. 3-7
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3.3.

34.
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Let a coin and a die be tossed; and let the sample space S consist of the 12 elements:
S={HIl, H2, H3, H4, HS, H6, T1, T2, T3, T4, T5, T6}
(o) Express explicitly the following events:

A = {heads and an even number appears},

B = {a prime number appears}, C = {tails and an odd number appears}
(b) Express explicitly the events that: (i) 4 or B occurs, (ii) B and C occur, (iii) only B occurs.
(¢) Which pair of the events 4, B, and C are mutually exclusive?
(«) The elements of 4 are those elements of S consisting of an H and an even number:

A ={H2, H4, H6}
The elements of B are those points in S whose second component is a prime number:
B ={H2, H3, H5, T2, T3, T5}

The elements of C are those points in S consisting of a T and an odd number: C = {T1, T3, T5}.
() () AuB={H2, H4, H6, H3, H5, T2, T3, T5}

(i) BNC={T3, TS}

(i) BN A NC® = {H3, H5, T2}

(¢) A and C are mutually exclusive, since A N C = 7.

A pair of dice is tossed and the two numbers appearing on the top are recorded. Recall that S
consists of 36 pairs of numbers, which are pictured in Fig. 3-3. Find the number of elements in
each of the following events:

(¢) A = {two numbers are equal} (¢) C = {5 appears on first die}
() B = {sum is 10 or more} (/) D = {5 appears on at least one die}

Use Fig. 3-3 to help count the number of elements in each of the events:

@ A=1{(1,1), (2.2), ..., (6,6)}, 50 n(4) —6.
) B=1{(6,4), (55), (4,6), (6,5), (5,6), (6,6)}, so n(B) = 6.
(o0 C=1{(51), (52), ..., (5,6)}, son(C)=6.

(#) There are six pairs with 5 as the first element, and six pairs with 5 as the second element. However,
(5, 5) appears in both places. Hence

n(D)=6+6—-1=11
Alternatively, count the pairs in Fig. 3-3 which are in D to get n(D) = 11.

FINITE EQUIPROBABLE SPACES

35.

Determine the probability p of each event:

(@) An even number appears in the toss of a fair die.

(b) One or more heads appear in the toss of three fair coins.

(¢) A red marble appears in random drawing of one marble from a box containing four white,
three red, and five blue marbles.
Each sample space S is an equiprobable space. Hence, for each event E, use

__ number of elements in £ n(E)
"~ number of elements in S n(S)

P(E)
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3.6.

3.7.

38.

3.9.

3.10.

(#) The event can occur in three ways, 2, 4, or 6, out of 6 cases; hence p =3/6 = 1/2.

(b) Assuming the coins are distinguished, there are 8 cases:

HHH, HHT, HTH, HTT, THH, THT, TTH, TTT

Only the last case is not favorable; hence p = 7/8.
(¢) There are 4 + 3 + 5 = 12 marbles of which 3 are red; hence p =3/12 = 1/4.

A single card is drawn from an ordinary deck S of 52 cards (see Fig. 3-4). Find the probability p
that the card is: (@) a king, (b) a face card (jack, queen, or king), (¢) a red card (heart or diamond),
() a red face card.

Here n(S) = 52.
(#) There are four kings; hence p = 4/52 = 1/13.
(b) There are 4(3) = 12 face cards; hence p = 12/52 = 3/13.
(¢) There are 13 hearts and 13 diamonds; hence p = 26/52 = 1/2.
(#) There are six face cards which are red; hence p = 6/52 = 3/26.

Consider the sample space S and events 4, B, C in Problem 3.3, where a coin and a die are
tossed. Suppose the coin and die are fair; hence S is an equiprobable space. Find:
(o) P(4), P(B), P(C), (b) P(AUB), P(BNC), P(BNA°NC°).

Since S is an equiprobable space, use P(E) = n(E)/n(S). Here n(S) = 12. So we need only count
the number of elements in the given set.

(@) P(4)=3/12, P(B)=6/12, P(C)=13/12.
(b) P(AUB)=8/12, P(BNC)=2/12, P(BNA°NC)=3/12.

A box contains two white sox and two blue sox. Two sox are drawn at random. Find the
probability p they are a match (same color).

There are C(4,2) = <3> = 6 ways to draw two of the sox. Only two pairs will yield a match. Thus
p=2/6=1/3.

Five horses are in a race. Audrey picks two of the horses at random, and bets on them. Find
the probability p that Audrey picked the winner.

There are C(5,2) = <§> = 10 ways to pick two of the horses. Four of the pairs will contain the

winner. Thus p =4/10 =2/5.

A class contains 10 men and 20 women, of which half the men and half the women have brown
eyes. Find the probability p that a person chosen at random is a man or has brown eyes.

Let A = {men}, B= {brown eyes}. We seek P(4 UB). We have

0 1 15 1 5 1
PUA)=z5=5. PB) =33 PANB ==

30 2 30 6
Thus, by Theorem 3.6 (addition rule),

P(AUB) = P(A)+ P(B) — P(ANB) ==+



100

BASIC PROBABILITY [CHAP. 3

FINITE PROBABILITY SPACES

3.11.

3.12.

3.13.

3.14.

A sample space S consists of four elements; that is, S = {&;, &,, #;, @,}. Under which of the
following functions does S become a probability space?

(0 Pla)-3 Pla)-5 Ple)-T Pl -z
() Pla)-5  Pla)-% Pla)- 5 Ple) -3
2 4 4 2
() Pla)=3 Pla)—7 Pla)—g  Pla)-g
2 4 ? g g
0 Pla)=3 Pla)-7 Pla)-1  Pla)=0
2 4 4
(«) Since the sum of the values on the sample points is greater than one, the function does not define S as a

probability space.

()
(©

()

A coin is weighted so that heads is twice as likely to appear as tails.

Since P(a3) is negative, the function does not define S as a probability space.

Since each value is nonnegative and the sum of the values is one, the function does define S as a
probability space.

The values are nonnegative and add up to one; hence the function does define S as a probability space.

Find P(T) and P(H).

Let P(T)=p; then P(H) =2p. Now set the sum of the probabilities equal to one, that is, set
p+2p=1Thenp=1/3. Thus P(H)=1/3 and P(T) =2/3.

Suppose 4 and B are events with P(4) = 0.6, P(B) = 0.3 and P(4 N B) = 0.2. Find the prob-
ability that:

(a)
()
(a)
()
(©)

(@)

A does not occur. (¢) A or B occurs.

B does not occur. (f) Neither 4 nor B occurs.
By the complement rule, P(not 4) = P(A°) =1— P(4) = 0.4
By the complement rule, P(not B)= P(B°) =1— P(B) = 0.7
By the addition rule,
P(A or B)= P(AUB) = P(A) + P(B) — P(ANB)
=0.6+03-02=0.7

Recall (Fig. 3-6(b)) that neither 4 nor B is the complement of 4 U B. Therefore,

P (neither 4 nor B) = P((AUB)*)=1—-P(4UB)=1-0.7=0.3

A die is weighted so that the outcomes produce the following probability distribution:

Outcome 1 2 3 4 5 6
Probability 0.1 0.3 0.2 0.1 0.1 0.2
Consider the events:
A = {even number}, B=1{2,34,5}, C={x:x<3} D={x:x>T17}

Find the following probabilities: (a) P(A), (b) P(B), (c) P(C), (d) P(D).
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3.18.

3.16.

3.17.

FFor any cvent £, find P(£) by summing the probabilitics of the clements in £.
(@) A={2,4,6},50 P(4)=03+0.1+02=0.6
(h) PB)=03+02+0.1+0.1=0.7
(¢} C={1,2},s0 P(C)=0.1 +0.3=0.4
(d) D=, the empty set. Hence P’(D) =0

For the data in Problem 3.14, find: (a) P(4 N B),(h) P(AUC), (¢) P(BNC).
First {ind the elements in the event. and then add the probabilities of the elements.

(@ ANB={2,4},50 P(ANB)=03+0.1=04

h AVC={1,2,3,4,5} ={6}°. 50 P(AUC)=1-02=0.8

(¢} BNC={2},s0 P(BNC)=0.3

Find the probability p of an cvent F il the odds that I occurs arc a to b.

The odds that £ occursare given by the ratio p: (I —p). Hence

- :% or bp=a—uap or ap+bp=a or  p= =

The odds that an cvent £ occurs arc 3 to 2. Find the probability of .
Let p = P(£). Set the odds equal to p: (1 — p) to obtain

3
L—E or 2p=3-3p or 5p=3 or p=$

Altcrnatively, usc the formula in Problem 3.16 to dircctly obtain p = a/(a+ b) =3 /(3 +2) = 3/5.

UNCOUNTABLE UNIFORM SPACES

3.18. A point is chosen at random inside a rectangle measuring 3 inches by S inches.

probability p that the point is at least one inch [rom the edge.

101

Find the

Let S denote the sct of points inside the rectangle, and let A denote the sct of points at lcast onc
inch rom the edge. § and A are pictured in Fig. 3-8(¢). Note that A4 is a rectangudar area measuring

1 inch by 3 inches. Thus:
_areaold4 1.3 3 1

P=dcaots 3.5 1B 5

5!!
< b (myn+1) (m+1,n+1)
r Y F 3
" s ; \
h A
3,' 1“ = A 1II S
r Y
" \ /
v
{m,n) (m+1,n)
(a)4 isshaded (b) A isshaded

Fig. 3-8
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3.19.
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Consider the plane R?, and let X denote the subset of points with integer coordinates. A coin
of radius 1/4 is tossed randomly on the plane. Find the probability that the coin covers a point
of X.

Let S denote the set of points inside a square with corners
(m, n), (m,n+1), (m+1,n), (m+1,n+1)

where m and n are integers. Let A denote the set of points in S with distance less than 1/4 from any
corner point, as pictured in Fig. 3-8(b). Note that the area of 4 is equal to the area inside a circle of radius
1/4.  Suppose the center of the coin falls in . Then the coin will cover a point in X if and only if its center
falls in A. Accordingly,

o area of A _ w(1/4)? _ T 02
area of S 1 16

(Nete: We cannot take S to be all of R?, since the area of R? is infinite.)

PROOFS OF THEOREMS

3.20.

3.21.

3.22.

3.23.

Prove Theorem 3.1: P(J) =0

For any event 4, we have A U (J = 4, where 4 and (¥ are disjoint. Using [Ps], we get
P(4) = P(AU D) = P(4) + P(D)

Adding —P(4) to both sides gives P(f) = 0.

Prove Theorem 3.2 (complement rule): P(4A°) =1 — P(A).
S =AU A where A and A4° are disjoint. By [P,], P(S) = 1. Thus, using [P;], we get
1 = P(S) = P(A U A£) = P(4) + P(A)

Adding —P(A) to both sides gives us P(A°) =1 — P(A).

Prove Theorem 3.3: 0 < P(4) < 1.

By [P,], P(4) > 0. Hence we need only show that P(4) < 1. Since S = A4 U A", where 4 and 4° are
disjoint, we get

1= P(S) = P(4 U A) = P(4) + P(A)

Adding —P(A%) to both sides gives us P(4) =1 — P(A%). Since P(A°) > 0, we get P(4) < 1, as required.

Prove Theorem 3.4: If A C B, then P(4) < P(B).
If A C B, then, as indicated by Fig. 3-9(a), B= 4 U (B\4), where 4 and B\A are disjoint. Hence
P(B) = P(A) + P(B\4)

By [P;], we have P(B\A) > 0; hence P(4) < P(B).
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g

A B A B
B is shaded A is shaded A U B is shaded
(@ ® ()
Fig. 39

3.24. Provc Thecorem 3.5: P(A\B) = P(4) — P(4 N B).

As indicated by Fig. 3-9(b), A = (4\B)U (4 N B), where A\B and AN B are disjoint. Accordingly,
by |Ps].
P(A4) = P(A\B) + P(AN B)

rom which our result follows.

3.25. Prove Theorem (addition rule) 3.6: For any events 4 and B,
P(4UB) = P(A)+ P(B) — P(AN B)

As indicated by Fig. 3-9(¢), AU B=(A\B)U B, whcrc A\B and B arc disjoint scts. Thus, using
Thcorcm 3.5,

P(AUB) = P(4\B) + P(B) = P(4) — P(A(\ B)+ P(B)
P(A) + P(B) — (4N B)

3.26. Provc Corollary 3.7: For any cvents A4, B, C,
P(AUBUC)=P(A)+ P(B) + P(C) — PANB)— PANC)— P(BNC)+ PANBNC)
Let D=BUC. Then AND=AN(BUC)=(4ANB)U(4NC) and
P(AND)=PANB)+ P(ANC) - P(ANBNANC)=P(ANB)+P(ANC) - P(ANBNC)
Thus

P(AUBUC) =P(AU D) = P(A) + (D) — (AN D)
= P(A4) + P(B) + P(C) — P(BNC) — |P(ANB) + P(ANC) — P(ANBN C)
= P(A) + P(B) + P(C)— P(BNC) — P(ANB)— P(ANC) + P(ANBNC)

EXPECFTATION

3.27. A player tosses two fair coins. He wins $2 if 2 heads occur, and $1 if 1 head occurs. On the
other hand, he loses $3 if no heads occur.  Find the expeeted value I of the game.  Is the game
fair? (Thec gamc is [air. favorable, or unfavorable 1o the player according as £ = 0, £ > 0. or
L£<0)

The sample space $ = {HH, HT, TH, TT} where each outcome has probability 1/4. The player wins
$2 in the first casc, S1 in the sccond and third cascs, and loscs $3 in the last case.  Thus

o)1) 1))

Thus the game is favorable te the player. (Specifically, he will win, on the average, 25 cents per play, e.g. il
he plays 100 times, then he will likely win about $25.)
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3.28. A casino lets you play the following game.

BASIC PROBABILITY

[CHAP. 3

You pick a card at random from an ordinary deck of

52 cards (Fig. 3-4). Ifitis an ace, you win $10; otherwise you lose $1. Find the expected value

E of your playing.

There are 4 aces, and 52 — 4 = 48 cards which are not aces. Thus you win $10 with probability

4/52 = 1/13, and lose $1 with probability 48/52 = 12/13. Therefore,

1 12 2
E= 10(3) — 1(E) =5~ —0.15

That is, if you play the game many times, you will lose, on the average, 15 cents per game.

MISCELLANEOUS PROBLEMS

3.29. Show that axiom [P;] follows from axiom [P3].

3.30.

First we show that P((¥) = 0 using [P3] instead of [P3]. We have = & + & + & +
empty sets are disjoint. Say P((J) = «. Then, by [P}],

PO =P+ T+ T +--)=P(D) + (D) + P(D) + -
However, zero is the only real number & satisfying
a—atatat -

Therefore, P() = 0.

... where the

Suppose 4 and B are disjoint. Then A4, B, J, J, ... are disjoint, and AUB=AUBUQZUJU....

Hence, by [P}],

P(AUB)=P(AUBUQZUZU:--) = P(4) + P(B) + P(J) + P(T) + -~
=P(A)+P(B)+0+0+---=P(A) + P(B)

which is [Ps].

Prove Theorem 3.9. Suppose S = {a;, &, ..., &,} and each a; is assigned the probability p;

where: (i) p; > 0, and (ii) >_p; = 1. For any event 4, let
Then P satisfies: (@) [P1], (D) [P], (c¢) [P3).
(«) Each p; > 0; hence P(4) = Y p; > 0.
(b) Every a; € S; hence PS)=pi+pr+-+p.=1
(¢) Suppose 4 and B are disjoint, and
P(4) =3 (p;:a; € 4), P(B) =) "(pr: ax € B)
Then the a;’s and a;’s are distinct. Therefore:
P(AUB) =% (p,:p, € AUB)
=2 (p a4 € A)+3(p, : 4 € B) = P(4) + P(B)
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3.31.

3.32.

Let S = {a;,a,,...,8,} and T = {b,,b,,...,b,} be finite probability spaces. Let the number
p; = P(a;)P(b;) be assigned to the ordered pair (a;,b;) in the product set
SxT={(s,t):s€S,t€ T}. Show that the py; define a probability space on § x T; that is,
show that: (i) the p; are nonnegative, and (ii) the sum of the p;; equals one. This is called the
product probability space. (We emphasize that this is not the only probability function that can
be defined on the product set S x T.)

Since P(a;), P(b;) > 0, for each i and each j, p; = P(a;)P(b;) > 0. Furthermore,
putpot - Aputpantpn -t tpyttpatpottpy
= P(a))P(by) + -+ P(ay)P(b,) + --- + P(a;)P(by) +--- + P(a;)P(b,)
= P(0))[P(by)) + -+ P(b,)] + - + P(a)[P(by) + -+ P(b,)]
=Play) -1+ +Pla) - 1=Play)+---+ Play) =1

A die is tossed 100 times. The following table lists the six numbers and the frequency with which
each number appeared:

Number 1 2 3 4 5 6

Frequency 14 17 20 18 15 16

() Find the relative frequency f of each of the following events:
A = {3 appears}, B = {5 appears}, C = {even number appears}
(b) Find a probability model for the data.

number of successes

(@) The relative frequency f = total number of trials: Thus:
20 15 17+ 18+ 16
=—=02 =——=0.15 fo=——+———=0.
Ji=190 =020 Jemqp =00 e 100 052

(b) The geometric symmetry of the die indicates that we first assume an equal probability space. Statistics
is then used to decide whether or not the given data supports the assumption of a fair die.

Supplementary Problems

SAMPLE SPACES AND EVENTS

3.33.

3.34.

3.35.

Let 4 and B be events. Find an expression and exhibit the Venn diagram for the event that:
(a) A or not B occurs, (b) only 4 occurs.

Let 4, B, and C be events. Find an expression and exhibit the Venn diagram for the event that:
(a) A and B but not C occur, (¢) none of the events occurs,
(b) 4 or C, but not B, occur, (#) at least two of the events occur.

A penny, a dime, and a die are tossed.

(#) Describe a suitable sample space S, and find n(S).

(b) Express explicitly the following events:
A = {two heads and an even number}, B = {2 appears}
C = {exactly one head and an odd number}

(¢) Express explicitly the events: (i) A and B, (ii) only B, (iii) B and C.
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FINITE EQUIPROBABLE SPACES

3.36.

3.37.

3.38.

3.39.

3.40.

3.41.

Determine the probability of each event:

(a) An odd number appears in the toss of a fair die.

(b) One or more heads appear in the toss of four fair coins.
(¢) One or both numbers exceed 4 in the toss of two fair die.

(#) A red or a face card appears when a card is randomly selected from a 52-card deck.

A student is chosen at random to represent a class with five freshmen, eight sophomores, three juniors, and
two seniors. Find the probability that the student is: («) a sophomore, () a junior, (¢) a junior or a senior.

Of 10 girls in a class, 3 have blue eyes. Two of the girls are chosen at random. Find the probability that:
() both have blue eyes, (b) neither has blue eyes, (¢) at least one has blue eyes, (#) exactly one has blue eyes.

Three bolts and three nuts are in a box. Two parts arechosen at random. Find the probability that one is
a bolt and one is a nut.

A box contains two white sox, two blue sox, and two red sox. Two sox are drawn at random. Find the
probability they are a match (same color).

Of 120 students, 60 are studying French, 50 are studying Spanish, and 20 are studying both French and
Spanish. A student is chosen at random. Find the probability that the student is studying: («) French or
Spanish, (b) neither French nor Spanish, (¢) only French, (#) exactly one of the two languages.

FINITE PROBABILITY SPACES

3.42.

3.43.

3.44.

3.45.

3.46.

3.47.

Under which of the following functions does S = {a;, a,, a5} become a probability space?

(a) P(‘l):%>P(42):%>P(‘3):%7 (0) P(ﬂl):évP(%):gvP(%):%,
(b) P(a) =% Play) =—1%, Play) =3 (4) Pa) =0, Play) =4, P(ag) =3

A coin is weighted so that heads is three times as likely to appear as tails. Find P(H) and P(T).

Three students A4, B, and C are in a swimming race. 4 and Bhave the same probability of winning and each
is twice as likely to win as C. Find the probability that: («) B wins, (b) C wins, (¢) B or C wins.

Suppose A and B are events with P(4) = 0.7, P(B) = 0.5 and P(4 N B) = 0.4. Find the probability that:

() A does not occur. (¢) A but not B occurs.
(b) A or B occurs. (#) Neither 4 nor B occurs.

Consider the following probability distribution:

Outcome 1 2 3 4 5 6

Probability 0.1 0.4 0.1 0.1 0.2 0.1

Find the following probabilities, where:
A = {even number}, B={2,3,4,5}, c=1{1,2}
(@) P(A), P(B), P(C), (b) P(ANB), P(4UC), P(BNC).

Find the probability of an event £ if the odds that it will occur are: () 2 to 1, (b) 5 to 11.
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3.48.

In a swimming race, the odds that 4 will win are 2 to 3 and the odds that B will win are 1 to 4. Find the
probability p and the odds that: («) A or B will win, (b) neither 4 nor B will win.

NONCOUNTABLE UNKFORM SPACES

3.49. A point is chosen at random inside a circle. Find the probability p that the point is closer to the center of
the circle than to its radius.

3.50. A point A4 is selected at random inside an equilateral triangle whose side length is 3. Find the probability p
that the distance of 4 from any corner is greater than 1.

3.51. A coin of diameter 1/2 is tossed randomly onto the plane R%. Find the probability p that the coin does not
intersect any line of the form: () x = &, where k is an integer, (b) x + y = k, where & is an integer.

3.52. A point X is selected at random from a line segment 4 B with midpoint O. Find the probability p that the
line segments A.Y, Y B, and AO can form a triangle.

EXPECTATION

3.53. You have won a contest. Your prize is to select one of four envelopes and keep what is in it. One
envelope contains a check for $100, another for $200, another for $400, and another for $2000. What is
the mathematical expectation £ of your winnings?

3.54. A game consists of tossing a fair die. A player wins if the number is even and loses if the number is
odd. The winning or losing (dollar) payoff is equal to the number appearing. Find the player’s math-
ematical expectation E.

3.55. A mathematics professor gives an “‘extra-credit” problem on a test. If it is done correctly, 15 points are
added to the test score, and if it is done partially correctly, 5 points are added; otherwise 5 points are
subtracted. Suppose a student’s probability of getting the problem completely right is 1/4, and only
partially correct is 1/2. Find the student’s mathematical expectation E for extra credit.

3.56. A game consists of tossing a fair coin four times. A player wins $3 if two or more heads appear; otherwise

the player loses $4. Find the expected value £ of the game.

MISCELLANEOUS PROBLEMS

3.57.

3.58.

A die is tossed 50 times. The following table gives the six numbers and their frequency of occurrence:

Number 1 2 3 4 5 6

Frequency 7 9 g 7 9 10

Find the relative frequency of each event:
(«) 4 appears, (b) an odd number appears, (c¢) a prime number, 2, 3, or 5, appears.

Use mathematical induction to prove: For any events A;, 4,...,A,,
P(AjU--UA) = P(A) = > PA;NA)+ > PA;NANA) == P(A NN A4,)
i i<j i<j<k

Remark: This result generalizes Theorem 3.6 (addition rule) for two sets, and Corollary 3.7 for
three sets.
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Answers to Supplementary Problems
() AUB, (b) ANB

(@) ANBNCS, () (AUC)NB, (¢c) (AUBUB) =A°NB" NC",
@) ANBUANC)U(BNC)

(@) n(S)=24,8={HT}x{HT}x{1,2,....6}
(b) A= {HH2, HH4, HH6}, B={HH2 HT2, TH2, TT2}, C = {HT1,HT3, HT5, TH1, TH3, THS}
(o) () HH2, (i) HT2, TH2, TT2, (i) &

(a) 3/6, (b) 15/16, (c) 20/36, () 32/52
(«) 8/18, (b) 3/18, (c) 5/18

(a) 1/15, (b) 7/15, () 8/15, () 715
3/5

1/5

(@) 3/4, (b) 1/4, (c) 1/3, (4) 7/12

(c) and (d)

P(H)=13/4, P(T)=1/4

(@) 2/5, (b) 1/5, (0) 3/5

(«) 0.3, () 0.8, (c) 0.2, (4) 0.2

(«) 0.6, 0.8, 0.5, (b) 0.5, 0.7, 0.4
(@) 2/3, (b) 5/16

() p = 2/5; odds 310 2, (b) p = 3/5; odds 2 to 3
1/4

1-2x/(9V3) =1 —2V3x/27

(@) 172, (b) 1 —V2/2

12

$675

$0.50

5

13/16 ~ $0.81

(a) 7/50, (b) 24/50, (c) 26/50



Chapter 4

Conditional Probability and Independence

41 INTRODUCTION

The notions of conditional probability and independence will be motivated by two well-known
examples.

Gender Gap

Suppose candidate A receives 52 percent of the entire vote, but only 46 percent of the female vote.
Let P(A) denote the probability that a random person voted for 4, but let P(A4|W) denote the prob-
ability that a random woman voted for A. Then

P(4) =052 but  P(A|W) =0.46

P(A|W) is called the condition probability of 4 given W; note that P(A4|W) only looks at the
reduced sample space consisting of women. The fact that P(A4) / P(A|W) is called the ‘“gender
gap” in politics. On the other hand, suppose P(4) = P(A|W); then we say that voting for A4 is
independent of the gender of the voter.

Insurance Rates

Auto insurance rates usually depend on the probability that a random person will be involved in an
accident. It is well known that male drivers under 25 years old get into more accidents than the general
public. That is, letting P(4) denote the probability of an accident and letting E denote male drivers
under 25 years old, the data tells us that

P(A4) < P(A|E)

Again we use the notation P(A4|E) to denote the probability of an accident 4 given that the driver E is
male and under 25 years old.

This chapter formally defines conditional probability and independence. We also cover finite
stochastic processes, Bayes’ Theorem, and independent repeated trials.

4.2 CONDITIONAL PROBABILITY

Suppose E is an event in a sample space S with P(E) > 0. The probability that an event A occurs
once E has occurred or, specifically, the conditional probability of A given E, written P(A|E), is defined as
follows:

P(ANE)

As pictured in the Venn diagram in Fig. 4-1, P(4|E) measures, in a certain sense, the relative probability
of A with respect to the reduced space E.

109
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Fig. 4-1

[CHAP. 4

Now supposc S is an cauiprobable spacc. and we let 12(A4) denote the number of clements in the

cvent A. Then

pang) =MAOE) gy ME) P(ANE) (AN E)

n(s) ' a(s)’ BQ P(A|E) =

We statc this result formally.

P(E)  n(E)

Theorem 4.1: Supposc S is an cquiprobablc spacc and 4 and B arc cvents. Then

number of elements in ANE  n{ANE)
number of elements in £~ n(E)

P(A|E) =

EXAMPLE 4.1

(@ A pair of fair dicc is tosscd. The samplc spacc S consists of the 36 ordcred pairs («, b), where a and b can be
any ofthe intcgers from | to 6 (sce Fig. 3-3).  Thus the probability ofany point is 1/36. Find the probability

that onc of the dic is 2 if the sum is 6.  That is, find P(A|E) where

E = {sum is 6} and A = {2 appcars on at Icast onc dic}
Also find P(4).
Now £ consists of live elements, specifically

E={(1,5),(2,4),(3,3),(4,2).(5, 1)}

Two of them, (2,4) and (4,2), belong to 4; that is, AN E = {(2,4),(4,2)}. By Theorem 4.1, P(A|E) = 2/5.

On the other hand. A consists of 1] clements, specifically.

A= {(2' I)u (21 2), (2, ‘;): (2v4)a (2’ 5)1 (216)1 (1,2)‘ (3» 2)1 (472)a (5,2), (6,2)}
and § consists of 36 elements; hence (4) = 11/36.

(b) A couplc has two children; the samplce spacc is S = {dd,bg.gb.gg} with probability 1/4 for cach point. Find
the probability p that both children are boys ifit is known that: (i) at least one of the children is a boy, (ii) the

older child is a boy.

(i) Here the reduccd sample space consists of three elements. {b0,bg.gb}; hence p =1/3.
(i) Hcre the reduced sample space consists of two clements, {6b,6g}; henece p = 1/2.

Mul¢iplication Theorem for Conditional Probability

Supposc A and B arc cvents in a sample space S with P(4) > 0. By dciinition of conditional

probability,
P(4N B)
P(4)

Multiplying both sides by P(A) gives us the lollowing useful result:

P(B|4)

Theorem 4.2 (multiplication theorem for conditional probability):

P(A N B) = P(A)P(B|4)
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The multiplication theorem gives us a formula for the probability that events 4 and B both
occur. It can be extended to three or more events. For three events, we get:

Corollary 43: P(ANBNC)= P(A4)P(B|A)P(C|A N B)

That is, the probability that 4, B, and C occur is equal to the product of (i) the probability that 4
occurs, (i) the probability that B occurs, assuming that 4 occurred, and (iii) the probability that C
occurs, assuming that 4 and B have occurred.

EXAMPLE 4.2 A lot contains 12 items, of which 4 are defective. Three items are drawn at random from the lot,

one after the other. Find the probability p that all three are nondefective.

The probability that the first item is nondefective is %, since eight of 12 items are nondefective. If the first item

is nondefective, then the probability that the next item is nondefective is %, since only seven of the remaining 11

items are nondefective. If the first two items are nondefective, then the probability that the last item is nondefective

is &, since only 6 of the remaining 10 items are now nondefective. Thus by the multiplication theoren,

10
& 7 6 14

pzﬁ~ﬁ~mzﬁz0‘25

4.3 FINITE STOCHASTIC PROCESSES AND TREE DIAGRAMS

Consider a (finite) stochastic process, that is, a finite sequence of experiments where each experiment
has a finite number of outcomes with given probabilities. A convenient way of describing such a process
is by means of a labeled tree diagram, as illustrated below. The multiplication theorem (Theorem 4.2)
can then be used to compute the probability of an event which is represented by a given path of the tree.

EXAMPLE 4.3

(@) Suppose the following three boxes are given:
Box X has 10 light bulbs, of which four are defective.
Box Y has 6 light bulbs, of which one is defective.
Box Z has 8 light bulbs, of which three are defective.

A box is chosen at random, and then a bulb is randomly selected from the chosen box. Findthe probability p
that the bulb is nondefective.
Here we perform a sequence of two experiments:

(i) Select one of the three boxes.
(i) Select a bulb which is either defective (D) or nondefective (N).

The tree diagram in Fig. 4-2 describes this process and gives the probability of each branch of the tree. The
multiplication theorem tells us that the probability of a given path of the tree is the product of the probabilities

0pd | bt

-
Wi
N ~
iaf o
ool o0
2 U =
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of cach branch of the path. [IFor cxamplc, the probability of sclecting box X and then a nondefective bulb &V

from box X is
13 1
335 5
Since there arc three disjoint paths whichlcad to a nondcfective bulb &, the sum of the probabilitics of these
paths gives os the required probability. Namely,

13 1.5 15 247
=— -t otz 5s=—-~0.686
357367387300 0%
(6) Consider the stochastic process in part («). If a nondcfective bulb & is choscn. find the probability that the
bulk camc from box Z. In other words. find P(Z|N), the conditional probability of box Z given a non-

defective bulb M.

Now box Z and a nondefective bulb N can only occur on thc bottom path, which has probability
I. 5§ % . S 247
ITT that 15, P(ZNN) = Furthcrnore, by (@) we have P(N) =350

conditional probability,

p=~F(N)

Thus, by the definition of

1 2
PEON) _ 5/24 75 _ o0

FAwa= P(N)  247/360 247

In other words, wedivide the probability of the snccessful path by the probability of the reduced sample space
consisting of all the paths Icading to N.

44 TOTAL PROBABILITY AND BAYES' FORMULA

Suppose a set S is the union of mutually disjointsubsets 4. 4,,....4,, and suppose I is any subset
ol §. Then, as illustrated in Fig. 4-3 for the case n = 3,

F=ENS=EN(A4UAd,U---UA4,)=(ENA)UENA)U - U(ENA,)

Morcovecr, the » subscts on the right in the above cquation arc also mutually disjoint.

4, 4; 4
| ——

E

e

S
¥ig. 4-3
Now suppose S is a sample space and the above subsets A4, A5,...,A4,, I are events. Since the
£ N A4, arcdisjoint, we get
P(E)=P(ENA)+P(ENA) -+ P(ENA,)
Using the multiplication theorem lor conditional probability, we also get
P(ENA) = P4 N E) = P(4)P(F|4;)

Thus we arrive at the following tlieorem.

Theorem 4.4 (total probability): [et £ be an cvent in a sample space S, and let 4, 4,,...,4, be
mutually disjoint cvents whose union is S.  Then

P(E) = P(4,) P(E|A)) + P(42)P(E

Ay) + -+ P(4,)P(E

AI!)
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The equation in Theorem 4.4 is called the /aw of total probability. Note that the sets A}, 4,,..., 4,
are pairwise disjoint and their union is all of S. That is, the 4s form a partition of S.

EXAMPLE 4.4 A factory uses three machines .Y, Y, Z to produce certain items. Suppose:

(1) Machine .Y produces 50 percent of the items, of which 3 percent are defective.
(2) Machine Y produces 30 percent of the items, of which 4 percent are defective.

(3) Machine Z produces 20 percent of the items, of which 5 percent are defective.

Find the probability p that a randomly selected item is defective.
Let D denote the event that an item is defective. Then, by the law of total probability,

P(D) = P(X)P(D|X) + P(Y)P(D|Y) + P(Z)P(D|Z)
= (0.50)(0.03) + (0.30)(0.04) + (0.20)(0.05) = 0.037 = 3.7 percent

Bayes’ Theorem

Suppose the events A, 4,,..., 4, do form a partition of the sample space S, and E is any event.
Then, for k=1,2 ... s the multiplication theorem for conditional probability tells us that
P(A,NE)= P(Ax)P(E|A;). Therefore,

P(4x NE)  P(Ar)P(E|Ag)

B ==3@ ~— r®)

Using the law of total probability (Theorem 4.4) for the denominator P(E), we arrive at the next
theorem.

Theorem 4.5 (Bayes’ formula): Let £ be an event in a sample space S, and let 4, 4, ..., 4, be disjoint
events whose union is S. Then, for k=1,2,...,n,

P(Ar)P(E|4y)

P(A4|E) = P(A)P(E|A,) + P(A,)P(E|4,) + -+ + P(A4,)P(E|A,)

The above equation is called Bayes’ rule or Bayes’ formula, after the English mathematician Thomas
Bayes (1702-61). If we think of the events 4, A,, ..., 4, as possible causes of the event E, then Bayes’
formula enables us to determine the probability that a particular one of the 4s occurred, given that £
occurred.

EXAMPLE 4.5 Consider the factory in Example 44. Suppose a defective item is found among the output. Find
the probability that it came from each of the machines, that is, find P(X|D), P(Y|D), and P(Z|D).
Recall that P(D) = P(X)P(D|X) + P(Y)P(D|Y)+ P(Z)P(D|Z) = 0.037. Therefore, by Bayes’ formula,

P(X)P(D|X) _ (0.50)(0.03) _ 15

P(X|D) = P0D) =007 T i 40.5 percent
oy P(Y)P(DIY)  (030)(0.04) 12
P(Y|D) = P0D) =007 "3~ 32.5 percent
_ P(Z)P(D|Z) _ (0.20)(0.05) 10 _ _
P(Z|D) = POD) =007 —3- 27.0 percent

Stochastic Interpretation of Total Probability and Bayes’ Formula

Frequently, problems involving the total probability law and Bayes’ formula can be interpreted as a
two-step stochastic process. Figure 4-4 gives the stochastic tree corresponding to Fig. 4-3, where the
first step in the tree involves the events 4, 4,, A3, which partition .S, and the second step involves the
arbitrary event E.
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PEAY
P(4y)

Pldy) p PE|4y)
2

Pdy)
4 PE|45) z

Fig. 4-4

Suppose we want P(E). Using the tree diagram, we obtain
P(E) = P(41)P(E|4,) + P(4,) P(E|4,) + P(A43) P(E|4;)
Furthermore, for k = 1,2, 3,

P ) = PN E) _ P(4)P(E|4,)

P(E) P(E)
. P(4,)P(E|4y)
P(A)P(E|A4,) + P(Ay) P(E|Ay) + P(A43)P(E|4;)

Observe that the above two formulas are simply the total probability law and Bayes’ formula, for the
case n = 3. The stochastic approach also applies to any positive integer #. (See Problem 4.12.)

4.5 INDEPENDENT EVENTS

Events 4 and B in probability space S are said to be independent if the occurrence of one of them
does not influence the occurrence of the other. More specifically, B is independent of A if P(B) is the
same as P(B|A). Now, substituting P(B) for P(B|4) in the multiplication Theorem 4.2, that is,
P(AN B) = P(A)P(B|A), yields:

P(4 1 B) — P(4)P(B)

We formally use the above equation as our definition of independence.

Definition: Events 4 and B are independent if P(A N B) = P(A)P(B); otherwise they are dependent.

We emphasize that independence is a symmetric relation. In particular:

P(AN B) = P(A)P(B) implies both P(B|A4) = P(B) and P(A|B) = P(A4)

Note also that disjoint (mutually exclusive) events are not independent unless one of them has zero
probability. That is, suppose 4 N B = (J and A4 and B are independent. Then

P(4)P(B) = P(ANB)=0 and so P(4)=0 or PB)=0
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EXAMPLE 4.6 A fair coin is tossed three times, yielding the equiprobable space

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
Consider the events:

A = {first toss is heads} = {HHH, HHT, HTH, HTT}

B = {second toss is heads} = {HHH, HHT, THH, THT}
C = {exactly two heads in a row} = {HHT, THH}

Clearly A and B are independent events; this fact is verified below. On the other hand, the relationship between A
and C and between B and C is not obvious. We claim that 4 and C are independent, but that B and C are
dependent. Note that:

Also,

P(A 1 B) = P({HHH, HHT}) % P(ANC) = P((HHT}) = é P(BN C) = P({HHT, THH}) :%

Accordingly,
P(A)P(B) = % . % = % = P(ANB), s0 4 and B are independent
P(A)P(C) = % . % = % = PANC), s0 4 and C are independent
11 1
P(B)P(C) = 3178 #+ P(BNC), so B and C are dependent

Frequently, we will postulate that two events are independent, or the experiment itself will imply
that two events are independent.

EXAMPLE 4.7 The probability that A hits a target is %, and the probability that B hits the target is % Both shoot

at the target. Find the probability that at least one of them hits the target, i.e. that A or B (or both) hit the target.

Here P(4) =} and P(B) =Z, and we seek P(4 U B). Furthermore, we assume that 4 and B are independent

events; that is, that the probability that A4 or B hits the target is not influenced by what the other does. Therefore:

12 1
P(ANB)=P(A)P(B) = 13- 70
Accordingly, by the addition rule, Theorem 3.6,
1 2 1 1
= — P == - = ==
P(AUB)=P(A) + P(B) (AN B) 4+5 0 20

Independence of Three or More Events
Three events 4, B, C are independent if the following two conditions hold:
(1) They are pairwise independent; that is,
P(AN B) = P(A)P(B), P(ANC)= P(A)P(C), P(BNC) = P(B)P(C)
(2) P(ANBNC)=P(A)P(B)P(C)

Problem 4.17 shows that pairwise independence does not imply independence, that is, (1) does not imply
(2); and Problem 4.18 shows that (2) does not imply (1).
Independence of more than three events is defined analogously. Namely, the events Ay, 4,,..., 4,
are independent if any proper subset of them is independent and
P(A) 0 A1+ 1 4y) = PA)P(A) - P(A,)

Observe that induction is used in this definition.
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4.6 INDEPENDENT REPEATED TRIALS

Previously we discussed probability spaces which were associated with an experiment repeated
a finite number of times, such as the tossing of a coin three times. This concept of repetition is
formalized as follows:

Definition: Let S be a finite probability space. By the space of n independent repeated trials, we
mean the probability space S, consisting of ordered n-tuples of elements of S, with the
probability of an s-tuple defined to be the product of the probabilities of its components:

P((s1,52,- - ,82)) = P(s1)P(s2) - - P(sy,)

EXAMPLE 4.8 Suppose that whenever three horses &, b, ¢ race together, their respective probabilities of winning
are 1/2, 1/3, and 1/6. In other words:

1 1
s 3
If the horses race twice, then the sample space S, of the two repeated trials follows:

S, = {aa, ab, ac, ba, bb, bc, ca, cb, cc}

S ={a,b,c}, with Pla) Pb)= and P(c) :é

For notational convenience, we have written ac for the ordered pair (a, ¢). The probability of each point in S,
follows:

Plae) = Pla)Ple) = 5 (%) B R
Pat) = Pare) =5 () =g PeD -5 Pt =g
Plac) = Pla)Ple) = 3 (é) ~L - Pl -

L
12°

Thus the probability that ¢ wins the first race and & wins the second race is P(ca) =
Repeated Trials as a Stochastic Process

A repeated-trials process may also be viewed as a stochastic process whose tree diagram has the
following properties:

(i) Each branch point has the same outcomes.

(i) All branches leading to the same outcome have the same probability.

For example, the tree diagram for the repeated-trials process in Example 4.8 appears in Fig. 4-5.
Observe that:

(i) Each branch point has outcomes a, b, c. 1 a
.. . e 3 1
(i) All branches leading to outcome & have probability %, 2 2 3,
to outcome b have probability %, :
and to outcome ¢ have probability é 1 & c
2 1
. = a
These two properties are expected, as noted above. 1 27
2 b Sp
1
1 6 ¢
6 1 a
2 1
c 3

Fig. 4-5
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Solved Problems

CONDITIONAL PROBABILITY

4.1.

4.2.

4.3.

Three fair coins, a penny, a nickel, and a dime, are tossed. Find the probability p that they are
all heads if: (@) the penny is heads, (b) at least one of the coins is heads, (¢) the dime is tails.

The sample space has eight elements:
S ={HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

(#) If the penny is heads, the reduced sample space is 4 = {HHH, HHT, HTH, HTT}. Since the coins
are all heads in 1 of 4 cases, p = 1/4.

(b) If one or more of the coins is heads, the reduced sample space is
B={HHH,HHT,HTH,HTT, THH, THT, TTH}

Since the coins are all heads in 1 of 7 cases, p = 1/7.

(¢) If the dime is tails, the reduced sample space is C = {HTH,HTT, TTH, TTT}. None contains all
heads; hence p = 0.

A pair of fair dice is thrown. Find the probability p that the sum is 10 or greater if: (@) S appears
on the first die, (b) 5 appears on at least one die.

Figure 3-3 shows the 36 ways the pair of dice can be thrown.
() If a5 appears on the first die, then the reduced sample space has six elements:
4= {(57 1)7 (57 2)7 (57 3)7 (574)7 (57 5)7 (57 6)}
The sum is 10 or greater on two of the six outcomes: (5,5), (5,6). Hence p=2=1
(b) If a5 appears on at least one of the dice, then the reduced sample space has eleven elements:
B=1{(51),(5,2).(5,3),(5:4),(5,5), (5,6),(1,5), (2,5), (3,5), (4,5), (6,5)}
3

The sum is 10 or greater on three of the eleven outcomes: (5,5), (5,6), (6,5). Hence p = 3.

In a certain college town, 25 percent of the students failed mathematics, 15 percent failed
chemistry, and 10 percent failed both mathematics and chemistry. A student is selected at
random.

(a) 1If the student failed chemistry, what is the probability that he or she failed mathematics?
(b) If the student failed mathematics, what is the probability that he or she failed chemistry?
(¢) What is the probability that the student failed mathematics or chemistry?

() What is the probability that the student failed neither mathematics nor chemistry?

() The probability that a student failed mathematics, given that he or she failed chemistry, is

PIMNC) 010 2
P(M|C):TC)':WZ§

(b) The probability that a student failed chemistry, given that he or she failed mathematics is

_P(CNM) 010 2
POMY="50n ~025 5

(¢) By the addition rule (Theorem 3.6),
P(MUC) =P(M)+ P(C)— P(MNC)=025+0.15 — 0.10 = 0.30



118

44.

4.5.

4.6.

CONDITIONAL PROBABILITY AND INDEPENDENCE [CHAP. 4

(#) Students who failed neither mathematics nor chemistry form the complement of the set M U C; that is,
form the set (M U C)°. Hence

P(MUCY)=1-PMUC)=1—030=0.70

Let 4 and B be events with P(4) = 0.6, P(B) = 0.3, and P(4N B) =0.2. Find:
(a) P(A|B) and P(B|4), (b) P(AUB), (c) P(A%) and P(B").

() By definition of conditional probability,

P(ANB) 02

P(ANB) 02 1
P(B) 03 “P(4) 06 3

PlAIB) = P(4) 06 3

=2 PB)=

(b) By the addition rule, Theorem 3.6,
P(AUB)=P(A)+ P(B) — P(ANB)=0.6+0.3—02=0.7
(¢) By the complement rule,

P(AY)=1-P4A)=1-06=04 and PB)=1-PB)=1-03=0.7

Consider the data in Problem 4.4. Find: (&) P(A°|B%), (b) P(B°|A°).

First compute P(A°N B°). By De Morgan’s law, (4U B)" = A°N B°. Hence, by the complement
rule,
PASNB) = P(AUBS) =1— P(AUB) =107 =03

(@ P(AB) = 1)(;1)(_;;9)_ _ 8_?] _ %
P(AAB) 03

VI

() P(BA%) =

3
4

A class has 12 boys and 4 girls. Suppose three students are selected at random from the
class. Find the probability p that they are all boys.

The probability that the first student selected is a boy is 12/16 since there are 12 boys out of 16
students. If the first student is a boy, then the probability that the second is a boy is 11/15, since there
are 11 boys left out of 15 students. Finally, if the first two students selected were boys, then the probability
that the third student is a boy is 10/14, since there are 10 boys left out of 14 students. Thus, by the
multiplication theorem, the probability that all three are boys is

2111011

Another Method
There are C(16, 3) = 560 ways to select 3 students out of the 16 students, and C(12, 3) = 220 ways to select 3
boys out of 12 boys; hence
220 11
560 28
Another Method

If the students are selected one after the other, then there are 16 - 15 - 14 ways to select three students, and
12-11- 10 ways to select three boys; hence

C12-11-10 11
P=16-15-14 28



CHAP. 4] CONDITIONAL PROBABILITY AND INDEPENDENCE 119

4.7.

Find P(B|A) if: (a) A is a subset of B, (b) 4 and B are mutually exclusive (disjoint). (Assume
P(4) >0)

(@) If 4 is a subset of B (as pictured in Fig. 4-6(a)), then whenever 4 occurs B must occur; hence
P(B|4) = 1. Alternatively, if 4 is a subset of B, then 4 N B = A4; hence

_P(AﬂB)_P(A) B
PBIA) = =5y P

(b) If A and B are mutually exclusive, i.e. disjoint (as pictured in Fig. 4-6(b)), then whenever A4 occurs B
cannot occur; hence P(B|4) = 0. Alternatively, if A and B are disjoint, then 4 N B = J; hence

PANB) P& 0
PO = =500 =P )"

O) O
(@ACB B)ANB=

Fig. 4-6

FINITE STOCHASTIC PROCESSES

4.8.

Let X, Y, Z be three coins in a box. Suppose X is a fair coin, Y is two-headed, and Z is
weighted so that the probability of heads is 1/3. A coin is selected at random and is tossed.
(@) Find the probability that heads appears, that is, find P(H).

(b) If heads appears, find the probability that it is the fair coin X, that is, find P(X|h).

(¢) If tails appears, find the probability it is the coin Z, that is, find P(Z|T).

Construct the corresponding two-step stochastic tree diagram in Fig. 4-7(a).

() Heads appears along three of the paths; hence

1111
32 3 33 18
(b)) Note X and heads H appear only along the top path in Fig. 4-7(a); hence P(XNH)=
(1/3)(1/2) = 1/6. Thus
P(YNH) 1/6
PH)  11/18
(0 P(T)=1—PH)=1-11/18=7/18. Alternatively, tails appears along two of the paths and so

3

2 7

1 —_
33 18

Note that Z and tails 7 appear only along the bottom path in Fig. 4-7(a); accordingly, we have
P(ZzNT)=(1/3)(2/3) =2/9. Thus

11

PZNT) 2/9 4
P2 =5y ~718 7
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1 3
2 H 3 R
x<___ A=
1 1 T 1 w
3 2 3 9
1 1 3 R
w
1 1 1 2
3 3 H 5 R
— =—"_
2 T w
3
(@) ®)
Fig. 4-7

4.9. Suppose the following three boxes are given:

Box A contains 3 red and 5 white marbles.

Box B contains 2 red and 1 white marbles.

Box C contains 2 red and 3 white marbles.
A box is selected at random, and a marble is randomly drawn from the box. If the marble is red,
find the probability that it came from box A.

Construct the corresponding stochastic tree diagram asin Fig. 4-7(b). We seek P(A4|R), the probability
that 4 was selected, given that the marble is red. Thus it is necessary to find P(4 N R) and P(R). Note
that 4 and R only occur on the top path; hence P(4 N R) = (1/3)(3/8) = 1/8. There are three paths
leading to a red marble R; hence

13 12 12 173
P(R)fg.ngg.ngg.g ﬁNO.'-18
Thus
P(ANR 1/8 45
par) =PAOR) 18 B g

P(R)  173/360 173

4.10. Suppose the following two boxes are given:

Box A contains 3 red and 2 white marbles.

Box B contains 2 red and 5 white marbles.

2 R

Pl
5 3 w

4 8

1 P 4 R

2 3 W<
W
2 4 R

1 2 R

2 7 w
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A box is selected at random; a marble is drawn and put into the other box; then a marble is
drawn from the second box. Find the probability p that both marbles drawn are of the same
color.

Construct the corresponding stochastic tree diagram as in Fig. 4-8. Note that this is a three-step
stochastic process: (1) choosing a box, (2) choosing a marble, (3) choosing a second marble. Note that
if box A is selected and a red marble R is drawn and put into box B, then box B will have 3 red marbles
and S white marbles.

There are four paths which lead to two marbles of the same color; hence

133 123 122 151 901

e =———=0.5
p258+254+273+2721680036

LAW OF TOTAL PROBABILITY, BAYES’ RULE

4.11.

4.12.

In a certain city, 40 percent of the people consider themselves Conservatives (C), 35 percent
consider themselves to be Liberals (L), and 25 percent consider themselves to be Independents
(7). During a particular election, 45 percent of the Conservatives voted, 40 percent of the
Liberals voted, and 60 percent of the Independents voted. If a randomly selected person
voted, find the probability that the voter is (a) Conservative, (b) Liberal, (¢) Independent.

Let I denote the event that a person voted. We need P(V). By the law of total probability,
P(V)=P(C)P(V|C)+ P(LYP(V|L) + P(I)P(VI|I)
= (0.40)(0.45) + (0.35)(0.40) + (0.25)(0.60) = 0.47
By Bayes’ rule:
P(C)P(V|C) (0.40)(0.45) 18

(o P(CIV)= R ~ 38.3%
35)(0.4 4
(b) P(LIV)= P(L;f%/'” _0 33)57) 40) _ 3_7 ~29.8%
0.25)(0.60) 15
() PUIV)= P(I;fl(/)m) _{ 3{57 ) - T 31.9%

Suppose a student dormitory in a college consists of the following:

(1) 30 percent are freshmen of whom 10 percent own a car
(2) 40 percent are sophomores of whom 20 percent own a car
(3) 20 percent are juniors of whom 40 percent own a car
(4) 10 percent are seniors of whom 60 percent own a car
A student is randomly selected from the dormitory.
() Find the probability that the student owns a car.
(b) 1If the student owns a car, find the probability that the student is a junior.

Let A, B, C, D denote, respectively, the sets of freshmen, sophomores, juniors, and seniors, and let £
denote the set of students who own a car. Figure 4-9 is a stochastic tree describing the given data.

(#) We seek P(E). By the law of total probability

P(E) = (0.30)(0.10) + (0.40)(0.20) + (0.20)(0.40) + (0.10)(0.60)
=0.03 +0.08 + 0.08 +0.06 = 0.25 = 25%

(Alternatively, using Fig. 4-9, add the four paths to £ to obtain P(E) = 0.25 = 25%.)
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10% E
20% E
40% E
60% E

(b) We seek P(C|E). By Bayes’ formula:

PCIP(EIC) _ (020)(040) _ 8 _ .,

PICIE) = P(E) 025 25

Alternatively, using Fig. 4-9, divide the successful path containing C and E with probability

(20%) (40%) =8%
by the sum of the paths to £ with probability 25 percent to obtain P(C|E) = 32 percent.

4.13. 1In a certain college, 4 percent of the men and 1 percent of the women are taller than 6 feet.
Furthermore, 60 percent of the students are women. Suppose a randomly selected student is
taller than 6 feet. Find the probability that the student is a woman.

Let A = {students taller than 6 feet}. We seek P(W|A), the probability that a student is a woman
given that the student is taller than 6 feet. By Bayes’ formula,
PAW)YP(W) 1% - 60% 3

W = = =—=~0.
PWIA) = 5w 1 PADDPOD) ~ 1% 60% T 3% 30% 11~ 27

INDEPENDENT EVENTS

4.14. The probability that A hits a target is % and the probability that B hits a target is % They both
fire at the target. Find the probability that:
(a) A does not hit the target (¢) One of them hits the target

(b) Both hit the target (W) Neither hits the target

We are given P(4) =4 and P(B) =1 (and we assume the events are independent).
(@) P(not A) = P(4)=1-P(4)=1-1=12
(b) Since the events are independent,

11 1
P(4 and B) = P(ANB) = P(A) - P(B) == = = —
35 15
(¢) By the addition rule, Theorem 3.6,
11 1 7

(#) By De Morgan’s law, “Neither 4 nor B” is the complement of A U B. Hence

P(neither 4 nor B) = P((AUB))=1- P(AUB) =1 f% = 18—5
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4.15.

4.16.

4.17.

Consider the following events for a family with children:
A = (children of both sexes}, B = {at most one boy}

(#) Show that 4 and B are independent events if a family has three children.
(b) Show that 4 and B are dependent events if a family has only two children.

(#) We have the equiprobable space S = {bbb,bbg, bgb,bgg,gbb, gbg,ggb,ggg}. Here

A = {bbg,bgb,bgg, gbb,gbg,ggb}  so P(4d)=8=3
B = {bgg, gbg, ggb, ggg} S0 P(B)=%=1
ANB = {bgg, gbg, 2gb} so  P(ANB)=13
Since P(4)P(B) =3-1=3= P(4N B), 4 and B are independent.
(b) We have the equiprobable space S = {bb,bg,gb,gg}. Here
A= {bg,gb} s0 P(4) =1
B={bg,gh,ggt  so P(B) =3
AN B = {bg,gb} so  P(ANB) =}

Since P(A)P(B) # P(AN B), A and B are dependent.

Box A contains 5 red marbles and 3 blue marbles, and Box B contains 3 red and 2 blue. A
marble is drawn at random from each box.

(«) Find the probability p that both marbles are red.
(b) Find the probability p that one is red and one is blue.

(«) The probability of choosing a red marble from A is % and from B is —; Since the events are inde-

pendent,
53 3
PTg5 s
(b) The probability of choosing a red marble from 4 and a blue marble from B is p; = % . % = %. The
probability of choosing a blue marble from 4 and a red marble from B is p, = % . ; = %. Hence
oty — 1 n 9 19
PR TG T 50

Consider an equiprobable space S = {a, b, ¢, d}; hence each elementary event has the same
probability p = 1. Consider the events 4 = {a, d}, B = {b,d}, C = {c,d}.
(@) Show that 4, B, C are pairwise independent. (b) Show that A4, B, C are not independent.

(a) Here P(4) = P(B) = P(C) =4 Since AN B = {d},
P(A1B) = P({d}) = 1 = P(A)P(B)

Hence A and B are independent. Similarly, A and C are independent; and B and C are independent.

(b)) Here ANBNC = {d}, so P(ANBNC) =41 Therefore,

P(A)P(B)P(C) — % 2 PANBAC)

Accordingly, 4, B, C are not independent.
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4.18.

4.19.

CONDITIONAL PROBABILITY AND INDEPENDENCE [CHAP. 4

Consider an equiprobable space S = {1,2,3,4,5,6,7,8}; hence each elementary event has prob-
ability 1/8. Consider the events:

A={1,23,4}, B=1{23,4 5}, Cc=1{4,6128}

(#) Show that P(A N BNC) = P(4)P(B)P(C).
(b) Show that:

(i) P(4NB) # P(4)P(B)
(i) P(ANC) # P(A)P(C)
(i) P(BNC) # P(B)P(C)

() Here P(4) = P(B) = P(C) =3=1 Since ANBNC = {4},
P(ANBNC) =1=P(4)P(B)P(C)
(b) () AnB={3,4,5},s0 P(ANB)=43 But P(4)P(B) =% hence P(4 N B) # P(A)P(B).

) =
(i) ANC={4},s0 P(ANC)=1 But P(A)P(C) =% hence P(ANC) # P(4)P(C).
(i) BNC={4},s0 P(BNC) =4 But P(B)P(C) =1 hence P(BN C) # P(B)P(C).

Prove: If 4 and B are independent events, then 4° and B° are independent events.

Let P(A) = x and P(B) =y. Then P(A°)=1—x and P(B°)=1—yp. Since A and B are inde-
pendent, P(4A N B) = P(4)P(B) = xy. Furthermore,

P(AUB)=P(4)+ PB)— PANB)=x+y—xy
By De Morgan’s law, (4 U B)° = 4° N BS; hence
PANB)=P(AUB)‘)=1—PAUB)=1—x—y+xy
On the other hand,
PAYPB) =01 -x)1—p)=1—-x—p+=xy

Thus P(4°N B°) = P(A°)P(B®), and so A° and B° are independent.
In similar fashion, we can show that A and B°, as well as 4° and B, are independent.

REPEATED TRIALS
4.20. A fair coin is tossed three times. Find the probability that there will appear: (&) three heads, (b)

exactly two heads, (¢) exactly one head, (#) no heads.

Let H denote a head and T a tail on any toss. The three tosses can be modeled as an equiprobable
space in which there are eight possible outcomes:

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

However, since the result on any one toss does not depend on the result of any other toss, the three tosses
may be modeled as three independent trials in which P(H) =1 and P(T) =1 on any one trial. Then:

(a) P(three heads) = P(HHH) =1-1-1=1.
(b) P(exactly two heads) = (HHT or HTH or THH)
1

AN

372732 22
(¢) Asin (b), P(exactly one head) = P(exactly two tails) = 3.
(/) Asin (a), P(no heads) = P(TTT) =1
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4.21.

4.22.

4.23.

Whenever horses @&, b, ¢, d race together, their respective probabilities of winning are 0.2, 0.5, 0.1,
0.2. Thatis, S= {a,b,c,d}, where P(a) =0.2, P(b) =0.5, P(c) =0.1, and P(d) =0.2. They
race three times.

(#) Describe and find the number of elements in the product probability space S;.
(b) Find the probability that the same horse wins all three races.
(¢) Find the probability that e, b, ¢ each win one race.
(«) By definition, S3 =8 xS x S ={(x,»,2) : x,»,z€ S} and
P((x,,2)) = P(x)P()P(2)
Thus, in particular, S3 contains 43 = 64 elements.

(b) Writing xyz for (x,y,z), we seek the probability of the event

A = {aaa, bbb, ccc,ddd}
By definition
Plaaa) = (0.2)* = 0.008, P(cee) = (0.1)* = 0.001

P(bbb) = (0.5)° = 0.125,  P(ddd) = (0.2)° = 0.008
Thus P(A) = 0.0008 + 0.125 + 0.001 + 0.008 = 0.142.
(¢) We seek the probability of the event
B = {abc, ach,bac, bca,cab, cba}
Every element in B has the same probability

p=(0.2)(0.5)(0.1) = 0.01. Hence P(B) = 6(0.01) = 0.06.

A certain soccer team wins (W) with probability 0.6, loses (L) with probability 0.3, and ties
(T) with probability 0.1. The team plays three games over the weekend. (&) Determine
the elements of the event A that the team wins at least twice and does not lose; and find
P(A4). (b) Determine the elements of the event B that the team wins, loses, and ties in some
order; and find P(B).

(a) A consists of all ordered triples with at least two Ws and no Ls. Thus
A={WWW, WWT, WTW, TWW}
Furthermore,
P(4) = PP(WWW) + P(WWT) + P(WTW) + P(TWW)
= (0.6)(0.6)(0.6) + (0.6)(0.6)(0.1) + (0.6)(0.1)(0.6) + (0.1)(0.6)(0.6)
=0.216 + 0.036 + 0.036 + 0.036 = 0.324
(b) Here B={WLT,WTL,LWT,LTW,TWL, TLW}. Every element in B has probability

p=(06)(03)(0.1) =0.018;  hence  P(B) = 6(0.018) = 0.108

A certain type of missile hits its target with probability p = 0.3. Find the number of missiles that
should be fired so that there is at least an 80 percent probability of hitting the target.

The probability of missing the targetis 4 = 1 —p = 0.7. Hence the probability that » missiles miss the
target is (0.7)". Thus we seek the smallest n for which

1-(0.7)">0.8 or equivalently (0.7)" < 0.2
Compute:

07)' =07,  (0.7)* =049, (0.7 =0343,  (0.7)' =0.2401,  (0.7)° =0.16807

Thus at least five missiles should be fired.
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4.24.
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The probability that a man hits a target is 1/3. He fires at the target n = 6 times. (&) Describe

and find the number of elements in the sample space S. (b) Let E be the event that he hits

the target exactly k =2 times. List the elements of E and find the number n(E) of elements

in E. (¢) Find P(E).

(#) S consists of all 6-element sequences consisting of S’s (successes) and F’s (failures); hence S contains
2° — 64 elements.

(b) E consists of all sequences with two S’s and four F’s; hence E consists of the following elements:

SSFFFF, SFSFFF, SFFSFF, SFFFSF, SFFFFS, FSSFFF, FSFSFF, FSFFSF,
FSFFFS, FFSSFF, FFSFSF, FFSFFS, FFFSSF, FFFSES, FFFFSS

Observe that the list contains 15 elements. (This is expected since we are distributing & = 2 letters S
among the n = 6 positions in the sequence, and C(6,2) = 15.) Thus »n(E) = 15.
(¢) Here P(S) =1/3,s0 P(F) =1— P(S) =2/3. Thus each of the above sequences occurs with the same
probability
p=(1/3)%(2/3)" = 16/729

Hence P(E) = 15(16/729) = 80/243 ~ 33%.

Supplementary Problems

CONDITIONAL PROBABILITY

4.25.

4.26.

4.27.

4.28.

4.29.

4.30.

4.31.

A fair die is tossed. Consider events 4 = {2,4,6}, B=1{1,2}, C=1{1,2,3,4}. Find:
(#) P(A and B) and P(4 or C) (¢) P(A|C) and P(C|A)
(b) P(A|B) and P(B|A) (/) P(B|C) and P(C|B)

A pair of fair dice is tossed. If the faces appearing are different, find the probability that:

(«) The sum is even, (b) The sum exceeds 9.

Let 4 and B be events with P(4) = 0.6, P(B) = 0.3, P(ANB) =0.2. Find:
() P(AUB), (b)) P(A|B), (c) P(B|A).

Let A and B be events with P(4) =1, P(B) =1, and P(A4UB) = 1.
(«) Find P(A|B) and P(B|A). () Are 4 and B independent?

Two marbles are selected one after the other without replacement from a box containing 3 white marbles and
2 red marbles. Find:

(«) P(2 white), (b) P(2 white | first is white), (¢) P2 red), (@) P2 red | second is red).

Two marbles are selected one after the other with replacement from a box containing 3 white marbles and 2
red marbles. Find:

(«) P(2 white), (¢) P(2 white | first is white), (b) PQ red), (@) P2 red | second is red).

Two different digits are selected at random from the digits 1 through 5.
(«) If the sum is odd, what is the probability that 2 is one of the numbers selected?
(b) If 2 is one of the digits, what is the probability that the sum is odd?
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4.32.

4.33.

4.34.

4.35.

Three cards are drawn in succession (without replacement) from a 52-card deck. Find:

(«) P(3 aces | first card is an ace), (b) P(3 aces | first two cards are aces)

A die is weighted to yield the following probability distribution:

Number 1 2 3 4 5 6

Probability 0.2 0.1 0.1 0.3 0.1 0.2

Let 4 ={1,2,3}, B=1{2,3,5}, C={2,4,6}. Find:
(a) P(A). P(B), P(C) (b) P(A°), P(B%), P(C")
(c) P(A|B), P(B|4) (#) P(4]|C), P(C|A)

(e) P(B|C), P(C|B)

In a country club, 65 percent of the members play tennis, 40 percent play golf, and 20 percent play both
tennis and golf. A member is chosen at random.

() Find the probability that he plays neither tennis nor golf.

(b) If he plays tennis, find the probability that he plays golf.

(¢) If he plays golf, find the probability that he plays tennis.

In a certain college town, 25 percent of the boys and 10 percent of the girls are studying mathematics. The
girls constitute 60 percent of the student body. If a student is chosen at random and is studying math-
ematics, determine the probability that the student is a girl.

FINITE STOCHASTIC PROCESSES

4.36.

4.37.

4.38.

4.39.

4.40.

Two boxes are given as follows:

Box A contains 5 red marbles, 3 white marbles, and 8 blue marbles.

Box B contains 3 red marbles, and 5 white marbles.

A box is selected at random and a marble is randomly chosen. Find the probability that the marble is:
(a) red, (b) white, (¢) Dblue.

Refer to Problem 4.36. Find the probability that box A was selected if the marble is:
(a) red, (b) white, (¢) blue.
Two boxes are given as follows:

Box A contains 5 red marbles, 3 white marbles, and 8 blue marbles.

Box B contains 3 red marbles and 5 white marbles.

A fair die is tossed; if a 3 or 6 appears, a marble is randomly chosen from A, otherwise a marble is chosen
from B. Find the probability that the marble is: («) red, (b) white, (c) blue.

Refer to Problem 4.38. Find the probability that box A was selected if the marble is:
(«) red, (b) white, (¢) blue.

A box contains three coins, two of them fair and one two-headed. A coin is randomly selected and tossed
twice. If heads appear both times, what is the probability that the coin is two-headed?
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4.41.
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Two boxes are given as follows:
Box A contains 5 red marbles, and 3 white marbles.
Box B contains 1 red marble, and 2 white marbles.

A fair die is tossed; if a 3 or 6 appears, a marble is randomly chosen from B and put into A and a marble is
drawn from A, otherwise a marble is chosen from A and putinto B and a marble is drawn from B. Find the
probability that both marbles are: («) red, (b) white.

TOTAL PROBABILITY AND BAYES’ FORMULA

4.42.

4.43.

4.44.

4.45.

4.46.

4.47.

4.48.

A city is partitioned into districts 4, B, C having 20 percent, 40 percent, and 40 percent of the registered
voters, respectively. The registered voters listed as Democrats are 50 percent in 4, 25 percent in B, and 75
percent in C.

(«) If a registered voter is chosen randomly in the city, find the probability that the voter is listed as a
Democrat.

b) A registered voter from the city is chosen at random and found to be listed as a Democrat. Find the
2 y
probability that the voter came from district B.

Refer to Problem 4.42. Suppose a district is chosen at random, and then a registered voter is randomly
chosen from the district.

(o) Find the probability that the voter is listed as a Democrat.

(b) If the voter is listed as a Democrat, what is the probability that the voter came from district A?

Women in City College constitute 60 percent of the freshmen, 40 percent of the sophomores, 40 percent of
the juniors, and 45 percent of the seniors. The school population is 30 percent freshmen, 25 percent
sophomores, 25 percent juniors, and 20 percent seniors.

(«) If a student from City College is chosen at random, find the probability that the student is a woman.

(b) If a student is a woman, what is the probability that she is a sophomore?

Refer to Problem 4.44. Suppose one of the classes is chosen, and then a student is randomly chosen from
the class.

(o) Find the probability that the student is a woman.

(b) If the student is a woman, what is the probability that she is a sophomore?

A company produces light bulbs at three factories 4, B, C.

Factory 4 produces 40 percent of the total number of bulbs, of which 2 percent are defective.
Factory B produces 35 percent of the toal number of bulbs, of which 4 percent are defective.
Factory C produces 25 percent of the total number of bulbs, of which 3 percent are defective.

If a defective bulb is found among the total output, find the probability that it came from:
(a) factory 4, (b) factory B, (¢) factory C.

Refer to Problem 4.46. Suppose a factory is chosen at random, and one of its bulbs is randomly
selected. If the bulb is defective, find the probability that it came from:
(«) factory A, (b) factory B, (¢) factory C.

A test for Alzheimer’s disease is 95 percent effective in detecting the disease when it is present, but also gives
a positive result 10 percent of the time when it is not present (false positive). Suppose 4 percent of the
population over 65 years have Alzheimer’s disease.

() What is the probability that a person over 65 years chosen at random will test positively for the disease?
(b) Suppose a person over 65 tests positively. What is the probability that the person has the disease?

(¢) Suppose a person over 65 tests negatively. What is the probability that the person has the disease?
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INDEPENDENT EVENTS

4.49.

4.50.

4.51.

4.52.

4.53.

4.54.

4.55.

4.56.

4.57.

4.58.

Let A and B be independent events with P(4) = 03 and P(B) = 0.4. Find: (a) P(4N B) and P(A U B),
(b) P(A|B) and P(BJA).

Box A4 contains 5 red marbles and 3 blue marbles, and Box B contains 2 red and 3 blue. A marble is drawn
at random from each box.

(o) Find the probability p that both marbles are red.
(b) Find the probability p that one is red and one is blue.

Let A and B be events with P(4) = 0.3, P(4 UB) = 0.5, and P(B) = p. Find p if:
(«) A and B are disjoint, () A and B are independent, (¢) A is a subset of B.

The probability that A hits a target is % and the probability that B hits a target is % They each fire once at
the target. (&) Find the probability that they both hit the target. () Find the probability that the target is
hit exactly once. (c) If the target is hit only once, what is the probability that A hit the target?

The probability that A hits a target is % and the probability that B hits a target is % They each fire twice.
Find the probability that the target will be hit at least once?

The probabilities that three men hit a target are respectively 0.3, 0.5, and 0.4. Each fires once at the
target. (As usual, assume that the three events that each hits the target are independent.)

(«) Find the probability that they all hit the target.
(b) Find the probability that exactly one of them hits the target.
(¢) If only one hits the target, what is the probability that it was the first man?

Three fair coins are tossed. Consider the events:
A = {all heads or all tails}, B = {at least two heads}, C = {at most two heads}
Of the pairs (4, B), (4,C), and (B, C), which are independent?

Suppose A and B are independent events. Show that 4 and B° are independent, and that 4° and B are
independent.

Suppose 4, B, C are independent events. Show that:
(o) A°, B, C are independent; (b) A%, B, C are independent; (¢) A°, B, C° are independent.

Suppose 4, B, C are independent events. Show that 4 and BU C are independent.

REPEATED TRIALS

4.59.

4.60.

Whenever horses «, b, and ¢ race together, their respective probabilities of winning are 0.3, 0.5, and
0.2. They race three times.
() Find the probability that the same horse wins all three races.

(b) Find the probability that a, b, ¢ each win one race.

A team wins (W) with probability 0.5, loses (L) with probability 0.3, and ties (T) with probability 0.2. The
team plays twice. (#) Determine the sample space S and the probability of each elementary event.
(b) Find the probability that the team wins at least once.
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4.61.

4.62.

4.63.

4.25.

4.26.

4.27.

4.28.

4.29.

4.30.

4.31.

4.32.

4.33.

4.34.

4.35.

4.36.

4.37.

4.38.

4.39.

4.40.

4.41.

442.

4.43.
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A certain type of missile hits its target with probability p = % () If 3 missiles are fired, find the probability
that the target is hit at least once. (b) Find the number of missiles that should be fired so that there is at
least a 90 percent probability of hitting the target.

In any game, the probability that the Hornets (H) will defect the Rockets (R) is 0.6. Find the probability
that the Hornets will win a best-out-of-three series. (Assume no ties.)

The batting average of a baseball playeris .300. He comes tobat4 times. Find the probability that he will
get: (@) exactly two hits, (b) at least one hit.

Answers to Supplementary Problems

(a)

IS

) ©
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wp—
t2l=
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(=

OFSGE

@ 0.7, ®)3 ()3

(@33 (b)No

@ O O @3

@z Oi ©x @3

@ ®3

(#) 1/1275 = 0.08 percent, (b) 1/50 = 2 percent

(@) 0.4,03,06, (6)06,07,04, (3L @LL (L}
(@) 15 percent, (b) 20/65 ~ 30.1 percent, (c) 1 =50 percent
6/16 = 37.5 percent

() 11/32, (b) 13/32, (c) 8/32

(o) 5/11, (b)3/13, (o)1

(#) 17/48 =~ 35.4 percent, (b) 23/48 ~ 47.9 percent, (c) 8/48 ~ 16.7 percent
(@) 5/17 =~ 294 percent, (b) 3/23 =~ 13.0 percent, (c) |

2/3

(#) 61/216 =~ 28.2 percent, (b)499/1296 ~ 38.5 percent

() 50 percent, (b) 20 percent

(@) 50 percent, (b) %
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4.44. (a) 47 percent, (b) 10/47 = 21.3 percent

4.45. (a) 46.25 percent, (b) 21.6 percent

4.46. (a) 80/295 = 27.1 percent, (b) 140/295 = 47.5 percent, (c) 75/295 ~ 25.574 percent
447. @3 B3 (03

4.48. (@) 13.4 percent, (b) 28.36 percent, (c) 0.23 percent
449. (a)0.12,0.58, (b)0.3,0.4

450. @i %

4.51. («)02, ()3, (005

452. (o) %, (b) %, (c) %

453 1-i=3

4.54. (@) 6 percent, (b) 44 percent, (c) 9/44 = 20.45 percent
455. Only 4 and B are independent.

4.59. (a) P(aaa or bbb or ccc) = 0.26, (b) 6(0.03) =0.18

4.60. (a) S={WW, WL, WT, LW, LL, LT, TW, TL, TT}; 0.25, 0.15, 0.10, 0.15, 0.09, 0.06, 0.10, 0.06, 0.04
() 1-0.25=0.75

4.61. (a)1—(2/3)° =19/27, (b) (2/3)" < 10 percent s0 n > 6
4.62. P(HH or HRH or RHH) = 64.8 percent

4.63. (@) 6(0.44) = 26.5 percent, (b) 1 — PAIMMMM) = 76 percent



Chapter 5

Random Variables

51 INTRODUCTION

The topic of random variables is fundamental to probability and statistics. This chapter formally
defines a random variable and presents its basic properties. We end the chapter with the Law of Large
Numbers, on which much of probability and statistics is based.

A random variable is a special kind of function, so we recall some notation and definitions about
functions. Let S and T be sets. Suppose to each s € S there is assigned a unique element of T'; the
collection f* of such assignments is called a function from S into T, and is written f : S — T. We
write f(s) for the element of T that f assigns to s € S, and call f(s) the image of s under f or the
value of f at s. The image f(A) of any subset 4 of S, and the preimage f ' (B) of any subset B of T are
defined by:

f(4)={f(s):scAa}y and  f7'(B) = {s: [(s) B}

In words, f(A) consists of the images of points in 4, and f~'(B) consists of those points whose images
belong to B. In particular, the set f(S) of all the image points is called the range (or image) of the
function f.

5.2 RANDOM VARIABLES

Let S be the sample space of an experiment. Frequently, we wish to assign a specific number to
each outcome of the experiment, e.g. the sum of the numbers on a toss of a pair of dice, the number of
aces in a bridge hand, or the time (in hours) it takes for a light bulb to burn out. Such an assignment of
numerical values is called a random variable. Namely:

Definition: A rendom variable X on a sample space S is a rule that assigns a numerical value to each
outcome of S or, in other words, a function from S into the set R of real numbers.

Remark: If S is uncountable, then certain real-valued functions on .S are not random variables.
Specifically, X is a random variable if the preimage of every interval of R is an event of S. On the other
hand, if S is a sample space in which every subset is an event, then every real-valued function on S is a
random variable.

The notation Ry will be used to denote the set of numbers assigned by a random variable X, and we
refer to Ry as the range space. This chapter will mainly investigate discrete random variables, where the
range space Ry is finite or countable. Continuous random variables, where the range space is a con-
tinuum of numbers, such as an interval or a union of intervals, and which sometimes requires calculus,
will be treated near the end of the chapter.

EXAMPLE 5.1

(o) A fair coin is tossed three times and the sequence of heads (H) and tails (T) is observed. The sample space S
consists of the following eight elements:

S ={HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

132
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Let X assign to each point in S the largest number of successive heads that occurs. Thus:
X(TTT) =0, XY(HTH) = X(HTT) = X(THT) = X(TTH) =1
X(HHT) = X(THH) = 2, XY(HHH) =3

Then X is a random variable with range space

RX - {0) 172> 3}

(b) A pair of fair dice is tossed. The sample space S (pictured in Fig. 3-3) consists of the 36 ordered pairs (a, b),
where & and b can be any integers between 1 and 6; that is,

S={(1,1), (1,2), ..., (6,6)}
Let X assign to each point (a, 5) in S the maximum of the numbers, that is, X (a,b) = max(a,b). For example,
X(1,1)=1, X(2,3)=3, X(4,4) =4, X(6,5) =6, X(6,6) =6
Then X is a random variable and any number between 1 and 6 can occur. Therefore,
Ry =1{1,2,3,4,5,6}
Now let Y assign to each point (a,b) in S the sum of the numbers, that is, Y (a,b) =« +b. For example,
Y(1,1) =2, Y(2,3) =5, Y(4,4) =8, Y(6,5) =11, Y(6,6) =12
Then Y is a random variable with range space
Ry =1{2,3,...,12}
That is, no sum can be less than 2 and no sum can exceed 12.

(¢) A point is chosen at random in a circle C with radius r. Let X denote the distance of the point from the center
of the circle. Then X is a random variable and its range space is the closed interval with endpoints 0 and 7,
that is,

Ry = [0,}’]

Here X is a continuous random variable.

Sums and Products of Random Variables

Let X and Y be random variables on the same sample space S. Then X + Y, X + k, kX, and XY
are the functions on S defined by

(X4 Y)(s) = X(s) + Y(s),  (kX)(s) = kX(s)
(X +K)(s) = X(s) + &, (XY)(s) = X(5) Y(s)

More generally, for any polynomial or exponential function 4(x), we define 4(X) to be the function on S
defined by

[A(X)](s) = h[X(s)]

It can be shown that these are also random variables. (This is trivial in the case that every subset of S is
an event.)

The short notation P(X = &) and P(a < X < b) will be used, respectively, for the probability that
“X maps into @” and “X maps into the interval [a, b]”, that is:

P(X — &) = P({s € S: X(s) — o}
and Pa<X<b)=P{scS:a<X(s)<b}
Analogous meanings are given to
P(X < a), P(X =a,Y =0), Pla<X<b,c<Y <d)

and so on.
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5.3 PROBABILITY DISTRIBUTION OF A FINITE RANDOM VARIABLE
Suppose a random variable X assigns only a finite number of values to a sample space S, say
RX - {x17x27" '7xn}

(We assume x| < xp < -+ < x,.) Then X induces a function f which assigns probabilities to the points
in RX by

J(x) = P(X = x¢)

The set of ordered pairs [x;, f(x;)] is usually given by means of a table as follows:

X X Xy e Xy

f(x) S(x) f(x2) . S ()

This function f is called the probability distribution or, simply, the distribution of the random variable X
it has the following two properties:

M /6020, (i) Y1
k

Thus Ry with the above assignment of probabilities is a probability space.
Suppose S is a finite equiprobable space. Then the following theorem (proved in Problem 5.23)
applies.

Theorem 5.1: Let S be a finite equiprobable space, and let f be the distribution of a random variable
X on S with range space Ry = {x1,X,,...,X,}. Then:

flx) =

number of points in .S whose image is x;
number of points in S

Remark: It is convenient sometimes to extend a probability distribution /" to all real numbers by
defining

f(x) = P(X = x)

For x = x, this reduces to the above, whereas for other values of x we get f(x) = 0. Furthermore, we
can now write
i) f(x) =0, (i) > S =1

where the sum in (ii) may be viewed as taking place over all values of x. A graph of f(x) is called a
probability graph.

Notation: Sometimes we will use the pair [x;, p;] or [x;, P(x;)] or [x, P(X = x)] to denote a
probability distribution instead of using the functional notation [x, f(x)].

EXAMPLE 5.2 A coin is tossed three times yielding the sample space
S ={HHH,HHT,HTH, HTT, THH, THT, TTH, TTT}

Let .Y be the random variable which assigns to each point in S its largest number of successive heads as discussed in
Example 5.1(a). Then the range space is Ry = {0,1,2,3}. In particular, there exist:

(i) one point TTT, where X = 0, (iii) two points HHT and THH, where X = 2,
(ii) four points, HTH, HTT, THT, TTH, where X =1, (iv) ome point HHH, where .Y = 3.
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(@) Supposc the coin is fair. Then S is an 8-clement cquiprobable space.  Hence we can usc Theorem 5.1 to
obtarn the following distribution 7 of X:

(39
w

x 0 |
Tx) g ;

wl—

1.
R0

Therc are two ways to prescat the probability graph of X. Onc is by the bar chart shown in Fig. 5-1(a).
and the other is by the /wstogram shown in Fig. 5-1(h). Obscrve that the sumn of the lengths of the bars in the
bar chart is 1, whereas the sum of the arcas of the rectangles in the histogram is 1. Onc may vicw the
histogram as making the random variable continuous, wherc X = | mcans X lies betwecen 0.5 and L.5.

b=

R

10 o

0 1 2 3
(2) Barchart (b) Histogram

Fig. 5-1

(b) Suppose the coin is weighted so that P(H) =2/3 and P(H) = 1/3. Then § is net an cquiprobable space.
Spccifically, the probabilitics of the points in S arc as lollows:

- Ay 2 8 THH 122 4
PHAR)=3-3-3=3 FPIHA=333=%
2: %L 4 121 2

) == s = THT) == - Zsi =

AL 33 3% 27 P( ) 333 27
PHTH L P(TTH L e
HTH)=333=m FTH=333~%

211 2 111 1

POTT) =2-33=37 HITM=333%7

Since S is not an cquiprobable space. we cannot usc Theorem 5.1 to find the distribution f of X.  Thus we
find 1 directly:

f(0) = P(TIT) = 2]_?

1

f(2) = PUHET. THHY) =+ + 4 _

f(3) = P(HHH) =

3] o»

Accordingly, the following is the distribution f of X:

b 0 l 2 3

fixy | 127 1027 827 827
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EXAMPLE 5.3 Let S be the sample space when a pair of fair dice is tossed, and let .Y and Y be the random variable
on S in Example 5.1(b); namely, X denotes the maximum of the numbers appearing, i.e. X(a,b) = max(a, b), and Y
denotes the sum of the numbers, i.e. Y(a,b) =&+ b. Find the distribution f of X and the distribution g of
Y. Also exhibit their probability graphs.

Here S is an equiprobable space with 36 points, so we can use Theorem 5.1 and simply count the number of
points with the given numerical value.

First we compute the distribution f of X:
(1) One point (1, 1) has maximum value 1; hence /(1) = .

(2) Three points, (1, 2), (2, 2), (2, 1), have maximum value 2; hence F(2) = iﬁ

(3) Five points, (1, 3), (2, 3), (3, 3), (3, 2), (3, 1), have maximum value 3; hence f(3) = %.

Similarly,

-F f9-p f6-4

Accordingly, the following is the distribution f of X:

—
—

. 1 3 5 7 9
f(x) ¥ % % 1% 3%

|
=

Now we compute the distribution g of ¥:

(1) One point (1, 1) has sum 2; hence g(2) = <

=
(2) Two points, (1, 2), (2, 1), have sum 3; hence g(3) = %.

(3) Three points, (1, 3), (2, 2), (3, 1), have sum 4; hence g(4) = %
Similarly,

Accordingly, the following is the distribution g of ¥:

y |2 3 4 s 6 7 & 9 10 11 12
B | % % % % % ®w 2w w 0w "%

The probability bar charts of X and Y are pictured in Fig. 5-2.

5 36
36 4
36 [
2
| S | |
1 I |
1 2 3 4 5 6 2 3 4 5 6 7 8 § 10 U 12
Diswibution of X' Distribution of ¥
Fig. 5-2

54 EXPECTATION OF A FINITE RANDOM VARIABLE

Suppose X is a random variable whose distribution f is as follows:

X X1 Xp X3 e Xy

f(x) f(x1) f(x2) f(x3) . Sf(xn)
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Then the mathematical expectation or expected value or, simply, the expectation of X, denoted by E(X)
or simply E, is defined by

E=EX)=xf(x)) +5f(x) + -+ x5, f(x,) = Zl'if(-\'z')

Equivalently, when the notation [x;, p;] is used instead of [x, f(x)],

E=EX)=xip1 +xap2+ 0+ Xapu = ) NiDi

Roughly speaking, if the x; are numerical outcomes of an experiment, then E is the expected value
of the experiment.

EXAMPLE 5.4 A coin is tossed three times. Let .Y denote the largest number of successive heads.

(@) Suppose the coin is fair. The distribution of X appears in Example 5.2(«). Using this distribution we get

p=rn=o(2) 1(8) +2(2) +3(2) -1

is the expected maximum number of successive heads.

(b) Suppose the coin is weighted so that P(H)=3% and P(T)=1 The distribution of X appears in

Example 5.2(b). Using this distribution we get
1 10 8 8 50
pern-o(2) 1(20) () () - 2aren
is the expected maximum number of successive heads.

EXAMPLE 5.5 A pair of fair dice is tossed. Let .Y denote the maximum of the numbers appearing, i.e.
X(a,b) = max(a,b), and let Y denote the sum of the numbers appearing, i.e. Y(a,b) = a+b. The distribution
f of X is given in Example 5.3. Using the distribution of X, the expectation of X is computed as follows:

=S (3) o) o) (3) ) o)

The distribution g of Y is also given in Example 5.3. Using the distribution of Y, the expectation of Y is computed

as follows:
1 2 3 1 252
n\ ol — 2 “ = )\ =ZZ_7

EXAMPLE 5.6 A fair coin is tossed 6 times. Let X denote the number of heads occurring. One can show that
the distribution of X is as follows:

x 0o 1 2 3 4 s 6
O - - - - - -

Then the expected number of heads is

) 1(8) ) ) ) () )

This agrees with our intuition that, when a fair coin is repeatedly tossed, about half of them should be heads.
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EXAMPLE 5.7 A sample of size 3 is selected at random from a box containing 12 items, of which 3 are defective.
Let Y denote the number of defective items in the sample. Find the expected number E(Y) of defective items.
The sample space S consists of C(12, 3) = 220 distinct equally likely samples of size 3.  We note that there are:

C(9,3) = 84 samples with 0 defective items,
3.C(9,2) = 108 samples with 1 defective item,
C(3,2) -9 = 27 samples with 2 defective items,

C(3,3) = 1 sample with 3 defective items.

Since S is an equiprobable space, we can use Theorem 5.1 to obtain the following distribution f of .X:

x | o 1 2 3
fx) | 2 YN

Accordingly, the expected number of defective items in a sample is

84 108 27 1 165
—of 22 =2 L — ) ===0.75
£ 0(220) 1 <220> N 2(220) 3 (220) 220~ 7

The following theorems and corollary (proved in Problems 5.26-5.28) relate the notion of expecta-
tion to operations on random variables defined in Section 5.2.

Theorem 5.2: Let X be a random variable and let k be a real number. Then:

() EkX)=KkEX), (i) EX +k) = EX)+k

Theorem 5.3: Let X and Y be random variables on the same sample space S. Then
EX+Y)=EX)+E(Y).

A simple induction argument yields:

Corollary 5.4: Let X, X5,..., X,, be random variables on S. Then:

EX,+ X+ +X,)=EX)+EXy)+ -+ E(X,)

Expectation and Games of Chance

Consider a game of chance with n outcomes &;, @&,,...,a, with corresponding probabilities
P1s D2 - - -, P and suppose the payoff to the player for outcome e; is w; (where a positive w; is a win
for the player, and a negative w; a loss). Recall from Section 3.7 that the expectation of the player was
the quantity

E=wipy+wypy+ -+ w,p,
The assignment of the number w; to &; may be viewed as a random variable X, and the expected value

E(X) of X is the expectation E of the game. The game is fair if E = 0, favorable to the player if E is
positive, and unfavorable to the player if E is negative.
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EXAMPLE 5.8 A player tosses a fair die. If a prime number, 2, 3, or 5, occurs the player wins that number of
dollars, but if a nonprime number occurs the player loses that number of dollars. The distribution of the game
follows:

x 2 3 s -1 -4 6
O G

The negative numbers —1, —4, and —6 correspond to the fact that the player loses if a nonprime number
occurs. The expected value of the game is

R RURCRCRORC

Thus the game is unfavorable to the player, since the expected value E is negative.

Mean and Expected Value

Suppose X is a random variable on an equiprobable space S = {a;,#,,...,a,}, where X assigns
the value x; to @; and all the x;’s are distinct. Then each x; occurs with the same probability

p; = 1/n. Thus
1 1 1 X '”+*'n
n n n p

which is the average or mean value of the numbers x, X5,...,x,. In general, E(X) is the weighted
average of the possible values of X, where each value is weighted by its probability. For this reason
E(X) is also called the mean of the random variable X. Recall the mean was denoted by the Greek
letter 4. Thus we use the following notation for the expectation of X:

p=py = EX)

The mean is an important parameter for a probability distribution, and in Section 5.5 we introduce
another important parameter, called the standard deviation of X.

5.5 VARIANCE AND STANDARD DEVIATION

The mean of a random variable X measures, in a certain sense, the “average” value of X. The
concepts in this section, variance and standard deviation, measure the “spread” or ““dispersion” of X.
Consider a random variable X with mean p = E(X) and probability distribution

X X1 Xy X3 e Xy

f | ) f) fls) e (W)

The variance of X, denoted by Var(X), is defined by:
Var(X) = (x1 — p)° f(x1) + (xa — 1) f(%2) 4+ (3 — 1)’ f(x,)
= (i = m)f(x) = E((X — p)?)
The standard deviation of X, denoted by oy or simply o, is the nonnegative square root of Var(X); that is

oy =/ Var(X)

Accordingly, Var(X) = 0%. Both Var(X) and 0% or simply o are used to denote the variance of a
random variable Y.
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The next theorem gives us an alternate formula for calculating the variance of X.

Theorem 5.5: Var(X) = x1/(x1) + Bf(xg) + X f(x) — u?

=X X)) - = E(Y) 4
Proof: Using > x; f(x;) = p and > f(x;) = 1, we have
> (i w)f () = D (F 2+ ) (x0)
=N () 20 X x () + it X f(x)
=N ) =2+t = XS (x) —
which proves the theorem.

Remark: Both the variance Var(X¥) = ¢ and the standard deviation o measure the weighted
spread of the values x; about the mean yp; however, the standard deviation o has the same units as p.

EXAMPLE 5.9

() Let X denote the number of times heads occurs when a fair coin is tossed six times. The distribution of X
appears in Example 5.6, where its mean p = 3 is computed. The variance of .Y is computed as follows:

21 26 215 1
ar(X) = (0 — _ _ —3)—=15
Var(Y) = (0-3) 64+(1 3) 64+(2 3) 64+ +(6 3)64 1
1 6 15 20 15 6 1
) ati ) _ 2 2 2 2 2 2 LR
Alternatively : Var(X) =0 64+1 64+2 64+3 64+4 64+5 —64+6 17 37=15

Thus the standard deviation is ¢ = /1.5 & 1.225 (heads).

(b) Consider the random variable X in Example 5.7 where its mean p = 0.75 is computed. The variance of X is
computed as follows:

84 108 27

+1P e+ 2P s

1
Var(X) = 0> — +3 =

2 A
220 220 220 220’(0'75) =046

Thus the standard deviation is

o = /Var(X) = v0.46 = 0.66

EXAMPLE 5.10 A pair of fair dice is tossed. Let X denote the maximum of the numbers appearing, i.e.
X(a,b) = max(a,b), and let Y denote the sum of the numbers appearing, i.e. Y(a,b) = a+b. The distributions
of X and Y appear in Example 5.3, and their expectations were computed in Example 5.5, yielding

My = E(.Y) =45 and By = 7
Find the variance and standard deviation of (a) X, (b) Y.

(a) First we compute £(X?) as follows:

500 = £ 270 = 2 (55) + 2 (2) +3(5) - #(3) 2 (%) + ¢ (5)

791
=3 = 2197
Hence Var(Y) = E(X?) — p% =2197-1998=199 and oy =11.99 =14

(b) First we compute E(Y?) as follows:
1 2 1 1974
2 2 2 2 2
E(Y?) = 2o(p)=22(=) +3* =)+ -+ 122 = 2T _ 54,
() = 2 yiglvs) (36) 3 <36> ! (36) 36 s

Hence Var(Y) = E(Y?) — p% =548 —49 = 5.8 and oy =V58=24
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Remark: There are physical interpretations of the mean and variance. Suppose the x-axisis a thin
wire and at each point x; there is a unit with mass p;. Then, if a fulcrum or pivot is placed at the point p
(Fig. 5-3(a)), the system will balance. Hence, p is called the center of mass of the system of points
x;.  On the other hand, if the system were rotating about an axis through the mean p (Fig. 5-3(b)), then
the variance o” is a measure of the system’s resistance to stopping. In technical terms, o° is called the
moment of inertia of the system.

x
X % X3 t Fy 1 X
(@) ®)
Fig. 5-3

A basic property of the variance and standard deviation is given in the following theorem (proved in
Problem 5.29).
Theorem 5.6: Let X be a random variable, and let @« and b be constants. Then:

Var(aX + b) = & Var(X) and Ouxsy = |dloy

In particular, we have the following special cases, where k is a real number:
(i) Var(X + k) = Var(X) and hence oy, = oy.
(i) Var(kX) = k* Var(X) and hence oy = |k|oy.
Standardized Random Variable

Let X be a random variable with mean g and standard deviation o > 0. Then the standardized
random variable Z is defined by

Important properties of Z are contained in the next theorem (proved in Problem 5.31).

Theorem 5.7: The standardized random variable Z has mean p, = 0 and standard deviation o, = 1.

EXAMPLE 5.11 Suppose a random variable .Y has the following distribution:

x 2 4 6 g

() 01 02 03 04

(«) Compute the mean p and standard deviation o of Y.

(b) Find the probability distribution of Z = (X — u)/o, and show that pz =0 and o, =1, as predicted by
Theorem 5.7.

(#) First construct a data table as in Fig. 5-4(a). The total in the third column is the expected value of X; that is,
p=EX)=Y xf(x;)=6. Similarly, the total in the fifth column is the expected value of X?; that is
E(X?) = x2f(x;) = 40. Thus, by Theorem 5.5,

P =EXY) P =40-6"=4 and o=2
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(b) Using z = (x —6)/2 and f(z) = f(x), construct a data table for the random variable Z = (X —6)/2 as in
Fig. 5-4(b). The first two columns of the table form the distribution of Z. The total in the third column is
the expected value of Z; hence py = 0. The total in the fifth column is the expected value of Z%; hence
E(Z%)=1.0. Thus, by Theorem 5.5,

02 =E(Z*)—pt=1-0"=1 and o,=1

x | f@)| @) | ¥ | x3 ) z | f@| 7@ | 22 | 2@
2 101 02 4 04 -2101|-021| 4 04
4 102]| 08 16 3.2 -1102]| -02] 1 0.2
6 (03 1.8 | 36 | 10.8 0103 0] 0 0
8 104] 32 | 64| 25.6 1104 04 1 0.4
Totals 6.0 40.0 Totals 0 1.0
{a) &)
Fig. 5-4

5.6 JOINT DISTRIBUTION OF RANDOM VARIABLES
Let X and Y be random variables on the same sample space S with respective range spaces
RX:{.X],XZ,...,X”} and RY:{ylay27"'aym}

The joint distribution or joint probability function of X and Y is the function /4 on the product space
Ry X Ry defined by

h(xi, y) = P(X =x;, Y =y;) = P({s € S : X(s) = x;, Y(5) = ;})
The function 4 is usually given in the form of a table as in Fig. 5-5. The function 4 has the properties:
@ hix, 3) 20, (i) Y, X hlxy) =1
Thus & defines a probability space on the product Ry X Ry.

X 4 gt Y2 oo Ym Sum
X A, y) RO, )| oo B, v flxg)
Xy By yO RO 703 - (R0, Y )
xn h(xm yl) k(xn’ J’2) e k(xn’ ym) f(xn)

Sum | g(y) | &) | .- | &)
Fig. 5-5

The functions /" and g on the right side and the bottom side, respectively, of the joint distribution
table in Fig. 5-5 are defined by

flxi) = Zh(xi:yj) and gyy) = Zh(xi,y]')
J i

That is, f(x;) is the sum of the entries in the ith row and g(y;) is the sum of the entries in the jth
column. They are called the marginel distributions, and are, in fact, the (individual) distributions of X
and Y respectively (Problem 5.13).
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Now if X and Y are random variables with the above joint distribution (and respective means p -
and py), then the covariance of X and Y, denoted by Cov(X, Y), is defined by

Cov(X,Y) = > (v — )y — pr)h(xi, ) = E[(X — px) (Y — py)]
77

or equivalently (see Problem 5.30) by

Cov(X, Y) = Y i yh(xi, ;) — ppry = E(XY) — prypy

iLj
The correlation of X and Y, denoted by p(X, Y), is defined by
. Cov(X,T)
pXY)=——"—
OxyOy

The correlation p is dimensionless and has the following properties:

() pX,Y)=p(Y,X) (i) p(X,X) =1, p(X, —X) = —1
(i) —1<p<l1 (iv) plaX +bcY +d)=p(X,Y),ifa,c /0
We show below (Example 5.13) that pairs of random variables with identical (individual) distributions

can have distinct covariances and correlations. Thus Cov(X, Y) and p(X, Y) are measurements of the
way that X and Y are interrelated.

EXAMPLE 5.12 Let S be the sample space when a pair of fair dice is tossed, and let .Y and Y be the random
variables on S in Example 5.1(b); namely, X assigns the maximum of the numbers and Y assigns the sum of the
numbers to each point in S. The joint distribution of Y and Y appear in Fig. 5-6. The entry h(3,5) = %6 comes
from the fact that (3, 2) and (2, 3) are the only points in S whose maximum number is 3 and whose sum is 5; that is,

h(3,5) = P(X =3,Y = 5) = P({(3,2), (2,3)}) = 2/36

The other entries are obtained in a similar manner.

3 YI2l13|4|s5|6|7]8]9|10]11]12|Sum
1 |£|0|l0o|O0fO|O|O|O|[O]|O]|O/|%%
2 |0 |%|%|0l0O]O0O]JOlO]|O0O|O0O]|O|3%
3 lojo|2|l2|L]|o|loflofo]o]oO 3—:6
510]010]0 |55 4% |3 |3/ |3 |00
6 |0 [ 0|0 |00 |5 |%|% |5 |%|3% |3
Sum | 3¢ | % | 5 | 36 | 36 | 3 | 36 | 36 | 36 | 3% | 36
Fig. 5-6

Observe that the right side sum column does give the distribution f of X and the bottom sum row does give
the distribution of Y in Example 5.3.
We compute the covariance and correlation of X and Y. First we compute E(XY) as follows:

E(XY) = Z x; yih(xi, ;)

=1(2) (glg) +2(3) <%> +2(4) (%) 4+ 6(12) (%) = % ~34.2
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By Example 5.5, puy = 4.47 and py = 7, and by Example 5.10, oy = 1.4 and oy = 2.4; hence
Cov(X,Y) = E(XY) — pypy =342 — (447)(7) = 2.9
_Cov(Y,Y) 29

and (X, Y)= e TP TERY =0.86

EXAMPLE 5.13 Let ¥ and Y be random variables with joint distribution in Fig. 5-7(a), and let X’ and Y’ be
random variables with joint distribution in Fig. 5-7(b). Observe that X and X' have the same (individual) dis-
tribution, and Y and ¥’ have the same distribution as follows:

X 1 3 y 4 10
f(x) 3 3 g(y) 1 3
Distribution of X and X’ Distribution of ¥ and Y’
Note py = py =2 and py = py = 7.
14 | 10 sum| || 4 |10 [sum
AR RRE
3 || 3|3 3 | 303
Sum | 1 | ] Sum | 4 | 1
(@) )

Fig. 5-7
We show that Cov(Y,Y) # Cov(X',Y') and hence o(X,Y)# o(X',Y'). We first compute E(XY) and
E(X'Y') as follows:
E(XY)=1-45+1-10-§+3-4-1+3-10-1=14
E(X'Y)=1-4-04+1-10-14+3-4.143.10.0=11
Since py = py =2 and py = py =7,
Cov(X,Y)=E(XY)—puypy =0 and  Cov(X'Y')=EWX'Y') — pypy =3

Remark: The notion of a joint distribution /4 is extended to any finite number of random variables
X, Y,...,Z in the obvious way; that is, 4 is a function on the product set Ry x Ry X --- x R, defined by

h(xivyja"';zk)EP(X:xii yr:ij"vZZZk)

5.7 INDEPENDENT RANDOM VARIABLES
A finite number of random variables X, Y, ..., Z on a sample space S are said to be independent if
P(X = x;, Y:yj,...,Z:zk) =P(X = xi)P(Y:yj)“‘P(Z:zk)
for any values x;, y;,...,2;. In particular, X and Y are independent if

P(X =x;, Y =y)=PX =x)P(Y =)
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Now if X and Y have respective distributions f* and g, and joint distribution 4, then the above equation
can be written as

h(x;, Yj) = f(xi)g(y]')

In other words, X and Y are independent if each entry A(x;, y;) is the product of its marginal entries.

EXAMPLE 514 Let Y and Y be random variables with joint distribution in Fig. 5-8. Then Y and Y are
independent random variables since each entry in the joint distribution can be obtained by multiplying its marginal
entries. For example,

P(1,2) = P(X = 1)P(Y = 2) = (0.30)(0.20) = 0.06
P(1,3) = P(X = 1)P(Y = 3) = (0.30)(0.50) = 0.15
P(1,4) = P(X = 1)P(Y = 4) = (0.30)(0.30) = 0.09

and so on.

SN2 ]3] 4 |sum

I 10.06]0.15]0.09 0.30
2 |0.14]035]0210.70
Sum | 0.20]0.50]0.30

Fig. 5-8

EXAMPLE 5.15 A fair coin is tossed twice giving the equiprobable sample space S = {HH,HT, TH, TT}. LetY
and Y be random variables on S as follows.

() LetX =1if the first toss is a head, X = 0 otherwise; let ¥ = 1 if both tosses are heads, Y = 0 otherwise. The
joint distribution of X and Y appear in Fig. 5-9(«). X and Y are not independent. For example,
P(Y =0)=1and P(Y = 0) =3, but P(0,0) =1 # P(X =0)P(¥ =0).

() Again let X =1 if the first toss is a head, Y = 0 otherwise; but now let ¥ =1 if the second toss is a head,
Y = 0 otherwise. The joint distribution of .Y and Y appear in Fig. 5-9(b). Now X and Y are independent.
Specifically,

PX =x,Y=y)=PX =x)P(Y =y)

for all four entries.

Y Y
0| 1|Sum 0| 1|Sum
X D¢
0 12]0| 3 0 |5|a 2
11 1 111 1
L la]a] 2 Llala| 2
Sum| 7 | i Sum| 5 | 3
(@) ®
Fig. 5-9

The following theorems (proved in Problems 5.32-5.33) give important properties of independent
random variables which do not hold in general.
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Theorem 5.8: Let X and Y be independent random variables. Then:
(i) EXY)=EWX)E(Y)
(i) Var(X +Y) = Var(X) + Var(Y)
(i) Cov(X,Y)=0

Part (ii) in the above theorem generalizes as follows.

Theorem 5.9: Let X7, X>,...,X, be independent random variables. Then:
Var(X; + -+ X,) = Var(X;) + - - - + Var(X,)

58 FUNCTIONS OF A RANDOM VARIABLE

Let X and Y be random variables on the same sample space S. Then Y is said to be a function of X
if ¥ can be represented ¥ = ®(X) for some real-valued function ® of a real variable; that is, if
Y(s) = ®[X(s)] for every s € S. For example, kX, X%, X +k, and (X + k)* are all functions of X
with @®(x) = kx, x°, x+k, and (x + k)?, respectively. We have the following fundamental result
(proved in Problem 5.25).

Theorem 5.10: Let X and Y be random variables on the same sample space S with ¥ = ®(X). Then
E(Y) = > a(x)f(x)
i=1

where f* is the distribution function of X.

Similarly, a random variable Z is said to be a function of X and Y if Z can be represented
Z = ®(X,Y), where ® is a real-valued function of two real variables; that is, if

Z(s) = ®[X(s), Y(s)]

foreverys € S. Forexample, X + Y is a function of X and Y with ®(x,y) = x + y.
Corresponding to the above theorem we have the following analogous result.

Theorem 5.11: Let X, Y, Z be random variables on the same sample space S with Z = ®(X, Y). Then
E(Z) =) ®(x,y)h(xi,3))
ij
where 4 is the joint distribution of X and Y.
We note that the above two theorems have been used implicitly in the preceding discussion and

theorems. The proof of Theorem 5.11 will be given as a supplementary problem; it generalizes to a
function of #n random variables in the obvious way.

EXAMPLE 5.16

() Consider the random variables X and Y in Example 5.15(«). Let Z=X+7Y. Show that
E(Z) = E(X) + E(Y). Also, show that Var(Z) # Var(X) + Var(Y). (Thus Theorem 5.8 need not hold
for dependent random variables.)

Use the right marginal distribution in Fig. 5-9(a) for the distribution of X to obtain:

py = E(Y) = 0(%) +1 (%) = G) and  E(X?) =0° (%) + 12(%) :%

Var(Y) = E(X?) — pi =

11
43

N —
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Use the left marginal distribution in Fig. 5-9(a) for the distribution of ¥ to obtain:

MY:E(Y):OG)JHG) :% and E(Y2):O2G)+1QG) :%

1 1 3
Var(Y) = E(r) i =7 - te =12

The random variable Z = X + Y assumes the values 0, 1, 2 with respective probabilities %, %, %. Thus

1y =E(Z) = OG) +1 G) +2G) :% and  E(Z%) =0’ G) + 12(%) 427 G) :2

5 9 11
Ve —EZ) =L —_
ax(2) = E(Z) 1 =3 - 1e =12
Therefore,
EW) +E(Y) =2+1-3_ gz
’ 24 4
1 3 7 11
but Var(X) + Var(Y) = -+ —==—# — = Var(Z)

4716 167 16

(b) Consider the random variables X and Y in Example 5.15(6). Let Z=X+Y. Show that
E(Z) = E(X) + E(Y). Also, show that Var(Z) = Var(X) + Var(Y), which is expected since .Y and Y are
independent.

The marginal distributions in Fig. 5-9(b) give the distributions of X and Y and they are identical. Thus

E
o
Il
E
Il
=
b
=
Il
=
I~
-
|
(e}
/N
19| —
N——
+
—
VRS
| —
N——
Il
| —

E(X) = B(¥?) :02@ +12<%) -
1
3

The random variable Z = X + Y assumes the values 0, 1, 2 but now with respective probabilities %, %, %‘ Thus

uz:E(Z):0<%>+1<%>+2<%>:1 and E(Z2):02(%) 12(%) 22(%):%

3 1
Vm@):E@%7M%:§71:E
Therefore,
1 1
EX)+E(Y)= 3+t5= 1=E2)
1 1
and Var(¥) + Var(¥Y) = 7+ 7 =5 = Var(2)

5.9 DISCRETE RANDOM VARIABLES IN GENERAL

Now suppose X is a random variable on a sample space S with a countable infinite range space, say
Rg = {x1,x,,...}. As in the finite case, X induces a function f on Ry, called the distribution of X,
defined by
f(x) = PX = x;)

The distribution is frequently presented in a table as follows:

X Xy Xp X3

fx) | Sy flw) o ()
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The distribution f has the following two properties:

() f(x) =0 () 325 ) =1

Thus Ry with the above assignment of probabilities is a probability space.
The expectation E(X) and variance Var(X) of the above random variable X are defined by

E(X) = x1f(x1) +xp f(x2) + -+ ixif(xi)
P

o d

Var(X) = (v — u)f(0) + (60— p) () - = > (3 — w? ()

i=1

when the relevant series converge absolutely. It can be shown that Var(X) exists if and only if
p= E(X) and E(X?) both exist and that in this case the formula

Var(X) = E(X?) — 1

is valid just as in the finite case. When Var(X) exists, the standard deviation oy is defined as in the finite
case by

oy =/ Var(X)

The notions of joint distribution, independent random variables, and functions of random variables
carry over directly to the general case. It can be shown that if X and Y are defined on the same sample
space S and if Var(X) and Var(Y) both exist, then the series

Cov(X,Y) = > (x; — )y — py)h(xi, )
i,j

converges absolutely and the relation
Cov(X,Y) = Z x;yih(xi, ;) — pxpy = E(XY) — pypy
iJ
holds just as in the finite case.

Remark: To avoid technicalities we will establish many theorems in this chapter only for finite
random variables.

510 CONTINUOUS RANDOM VARIABLES

Suppose that X is a random variable on a sample space S whose range space Ry is a continuum of
numbers, such as an interval. Recall from the definition of a random variable that the set {a < X < b}
is an event in S and therefore the probability P(a < X < b) is well defined. We assume there is a
piecewise continuous function f: R — R such that P(a < X < b) is equal to the area under the graph
of f between x = @ and x = b, as shown in Fig. 5-10. In the language of calculus

b
Pla<X <)) =J f(x) dx
In this case X is said to be a continuous random variable. The function f is called the distribution or the
continuous probability function (or: density function) of X; it satisfies the conditions

oe

(i) f(x)>0 and (i) J f(x) dsz f(x)dx =1

R

—0e

That is, f is nonnegative and the total area under its graph is 1.
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a b
P(a < X < b)=ares of shaded region

Fig. 5-10

T'he expecrarion E(X) for a continuous random variable X is defined by
B0 = | /) dv
R

when it exists.  Functions of random variables arc defined just as in the discrete casc; and it can be
shown that il ¥ = ®(X). Then

B() = | ot/ ax
R
when the right side exists.  The variance Var(X) is defined by
Var(X) = B(XY ) = | (x = /() dv

when it exists. Just as in the discrete case, it can be shown that Var(X) exists if and only if u = E(X)
and E(X?) both cxist, and then

)

Var(X) = E(X?) — ? J.R X f(x) dx — 42

The standard deviarien oy is defined by o = /Var(X) when Var(X) exists.
We have already remarked that we will establish many results for finite random variables and take
them for granted in the general discrete case and in the continuous case.

EXAMPLE 5.17 Lel X be a random variable with the lollowing distribution function f:
1.
N =)z

o ={3

The graph of f appears in Fig. 5-11. Then

iro<x<2
clscwhere

P(1 € X < 1.5) = arca of shaded rcgion in diagram = T

(S 1
Bl

v

oA S e

Graph of

Fig. 5-11
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Using calculus we are able to compute the expectation, variance, and standard deviation of .Y as follows:

29 A 2
E(.YQ):J A1 (x) dx:J —x dx = [—:| =2
R 02 8
0
Var(_Y):E(Y2)7u2:27E:— and oy = %:l\ﬁ
9 9 3
Independent Continuous Random Variables
A finite number of continuous random variables, say X, Y, ..., Z, are said to be independent if for

any intervals [a,&], [6,0],..., [c,¢'],
Pa<X<a' b<Y<b,...c<Z<c)=Pa<X<a)Pb<Y<b)  Pc<Z<c

Observe that intervals play the same role in the continuous case as points did in the discrete case.

5.11 CUMULATIVE DISTRIBUTION FUNCTION

Let X be a random variable (discrete or continuous). The cumulative distribution function F of X is
the function F: R — R defined by

Fla)=P(X <a)

If X is a discrete random variable with distribution f, then F is the “‘step function” defined by

Fx)= 3 1)

x <x

If X is a continuous random variable with distribution f, then
o= | s

In either case, F' is monotonic increasing, that is,
F(a) < F(b) whenever a<bh
and the limit of F to the left is 0 and to the right is 1, that is,

Lim F(x)=0 and Lim F(x) =1

X——0e X——0e

On the other hand, suppose X is a continuous random variable with cumulative distribution function
F(x). Then the Fundamental Theorem of Calculus tells us that the probability density function f(x) of
X can be obtained from F(x) by differentiation, that is,

1) = SR~ ()

wherever the derivative exists.
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EXAMPLE 5.18

() Let X be a discrete random variable with the following distribution function f*

X -2 1 2 4
f(x) i

cal—

cal—
[S1C

The graph of the cumulative distribution function F of X appears in Fig. 5-12. Observe that F is a “step
function™ with a step at x; with height 7(x;).

1 Em—
|
1 |
! 5
i
T3 -2 -1 0 1 2 3 4 5 7
Graph of F
Fig. 5-12

() Let X be a continuous random variable with the following distribution function f:

fx f0<x<2
A b S5
Fx) = { 0 elsewhere

The cumulative distribution function F of X follows:

0 if x<0
F(x)= %x2 if0<x<2
1 if x>2
Here we use the fact that, for 0 < x <2,
N R 1,
F(x) 7L 22&274,3&

The graphs of /' and F appear in Fig. 5-13(«) and (b), respectively.

I
|
-1 ol 1 2
(a) Graph of () Graph of F
Fig. 5-13

v

F N
w b

512 CHEBYSHEV’S INEQUALITY AND THE LAW OF LARGE NUMBERS

The standard deviation o of a random variable X measures the weighted spread of the values of X
about the mean p. Therefore, for smaller o, we would expect that X will be closer to . A more
precise statement of this expectation is given by the following inequality, named after the Russian
mathematician P. L. Chebyshev (1821-94).
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Theorem 5.12 (Chebyshev’s inequality): Let X be a random variable with mean p and standard
deviation o. Then for any positive number &, the probability that a value of X lies
in the interval [p — ko, p + ko] is at least 1 — 1/k*. That is,

1
P(/LkaSXSqukcr)zlfﬁ

A proof of this important theorem is given in Problem 5.34. We illustrate the use of the inequality
in the next example.

EXAMPLE 5.19 Suppose .X is a random variable with mean p = 75 and standard deviation o = 5.
(#) What conclusion about X can be drawn from Chebyshev’s inequality for £ =2 and & = 3?
Setting & = 2, we get
p—ko=17-2(5=65 and p+ko=75+2(5) =85
Thus we can conclude from Chebyshev’s inequality that the probability that a value of X lies between 65 and 85
isatleast 1 — %2 = 3/4; that is,
P(65 < X < 85) 2%

By letting k£ = 3, we find that the probability that X lies between 60 and 90 is at least 1 — %2 =8/9.

(b) Estimate the probability that . lies between 75 — 20 = 55 and 75 + 20 = 95.
Set ko =20 and solve for k. Since o = 5, we get k-5 =20 and hence K =4. Thus, by Chebyshev’s

inequality,

1 15
55<XY<99)>1 - —==—=~0.9:-
P(SS<X <9521 5 =12~094

That is, the probability that X lies between 55 and 95 is at least 94 percent.

(¢) Determine an interval [a, b] about the mean for which the probability that X lies in the interval is at least 99
percent.
Set 1 — 1/k* = 0.99 and solve for k. We get

1-099=1/k* or k'=1/001=100 or k=10
Thus the interval is [75 — 10(5), 75 + 10(5)] = [25, 129].

Sample Mean and the Law of Large Numbers

The notion of n independent trials of a probability experiment was defined in Section 4.6. If X isa
random variable with mean p, then we can consider the numerical outcome of each particular trial to be
a random variable with the same mean as X. The random variable corresponding to the ith outcome
will be denoted by X; (i = 1,2,...,n). The average value of all n outcomes is also a random variable,
which we will denote by X,, and call the semple mean. That is,

Xt X+t X,
n

X,

The law of large numbers says that, as n increases, the probability that the value of the sample mean
X, is close to p approaches 1.

EXAMPLE 5.20 Suppose a die were tossed 5 times with outcomes
X =3, Xy =4, x3 =206, x4 =1, x;s =4
Then the corresponding value of the sample mean X is

3+4
X5 = 3t4+6+1+4 —13.6
5
For a fair die, the mean ¢ = 3.5. The law of large numbers tells us that, as n gets larger, there is a greater likelihood

that X, will get close to 3.5.
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A more technical statement of the law of large numbers follows.

Theorem 5.13 (law of large numbers) For any positive number «, no matter how small, the probability
that the sample mean X, has a value in the interval [p — o, p + o] approaches 1 as n
approaches infinity. That is,

Plpu—a<X,<pta)—1 as n— 0o

A proof of Theorem 5.13, based on Chebyshev’s inequality, is sketched in Problem 5.35. A stronger
version of the law of large numbers is given in more advanced treatments of probability theory.

The (strong) law of large numbers can also be used to show that if an event 4 occurs with prob-
ability p in a given model, then the average number of occurrences of 4 approaches p as the number of
(independent) trials increases.

Solved Problems

RANDOM VARIABLES AND EXPECTED VALUE

5.1. Suppose a random variable X takes on the values —3, —1, 2, and S with respective probabilities
2k—3  k+1 k-1 k-2
10 10 10 10

Determine the distribution of X.

Set the sum of the probabilities equal to 1, and solve for k, obtaining A = 3. Then put k£ = 3 into the
above probabilities, yielding 0.3, 0.4, 0.2, 0.1. Thus the distribution of .Y follows:

x -3 -1 2 5

P(X =x) 03 0.4 02 0.1

5.2. A fair coin is tossed four times. Let X denote the number of heads occurring. Find:
(@) the distribution f of X, (b) E(X), (c) the probability graph of X.

The sample space S is an equiprobable space consisting of 2* = 16 sequences with H’s and T’s.

(«) Since X is the number of heads, and each sequence consists of four elements, X takes on the values
of 0, 1,2, 3, 4; that is, Ry = {0,1,2,3,4}.
(i) One point, TTTT, has no heads; hence f(0) = .
(i) Four points, HTTT, THTT, TTHT, TTTH, have one head; hence /(1) = %
(iii) Six points, HHTT, HTHT, HTTH, THHT, THTH, TTHH, have two heads; hence f(2) = %.
(iv) Four points, HHHT, HHTH, HTHH, THHH, have one head; hence f (1) = %
(v) One point, HHHH, has four heads; hence f(4) = .

=1
The distribution f of .Y follows:

-
o
—
\S}
w
+

~
=
P
NaP
BN
sl
sl=
BN
BN
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The cxpected value £(X) is obtaincd by multiplying cach valuc of X by its probability and taking the

suim. Hcence
1 4 6 4 l
b =0 — — 2 — — — =2
E(X) 0(16)+1<16)+ (16)+3(16) '4(16)

This agrces with our intuition that, when a fair coin is repeatedly tossed, about half of them should be
hcads.

The probability bar chart of X appcars in Fig. 5-14(«), and thc probability histogram appcars in Fig.
S-14{p}. One may view the histogram as making the random variable continuous where X = 1
means X lies between 0.5 and 1.5.

=]
= |
=1

| i i

1 2 3 4 0 1 2 1 4

(a) Bar chart (b) Histogram

Fig. 5-14

5.3. A fair coin is tossed until a head or live tails occurs.  Find the cxpected number I of tosses ol
the coin.

The sample space $ consists of the six points

H, TH, TTH, TTTH, TTI'TH, TFTTH, TTTTJ

with respective probabilitics (independent trials)

B2 O O O O-

The random variable X of interest is the number of tosses in cach outcome. Thus

to| —

X(H) =1, X(TTH)=3, X(TTTTH)=S$
X(TH)=2, X(TTTH)=4, X(TTITT)=S5

These X values are assigned the following probabilities:

P(l)= PH) = é P(2) = P(TH) =§, P(3) = P(TTH) :%,

1 111
P#4) = P(TITTH) = — = T v e N
(4= P( )=1g»  P6)=P{TITTH, TTTIT}) TR T

Accordingly

ren=(3 2 3) o) <) -0
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5.4.

5.5.

A random sample with replacement of size n = 2 is chosen from the set {1, 2, 3}, yielding the
9-element equiprobable space

S=A{(11), (1,2), (1,3), (2,1), (2,2), (2,3), (3:1), (3,2), (3,3)}

(a) Let X denote the sum of the two numbers. Find the distribution f of X, and find the
expected value E(X).

(b) Let Y denote the minimum of the two numbers. Find the distribution g of Y, and find the
expected value E(Y).

(#) The random variable X assumes the values 2, 3,4, 5, 6; that is, Ry = {2,3,4,5,6}. We compute the
distribution f of X:
(i) One point (1, 1) has sum 2; hence f(2) = 1.
(ii) Two points, (1, 2), (2, 1), have sum 3; hence f(3) = 3.
(iii) Three points, (1, 3), (2, 2), (1, 3), have sum 4; hence f(4) =
(iv) Two points, (2, 3), (3, 2), have sum 5; hence f(5) = 3.
(v) One point (3, 3) has sum 6; hence (6) = 4.

\Ou

Thus the following is the distribution f of X

N=1[)
o=

N=l[¥]
V= [F%)

o=

(%)

The expected value E(Y) is obtained by multiplying each value of x by its probability and taking the

sum. Hence
E(X) :2(5) +3(§) +4(§) +5(§) +6(é) =4

(b) The random variable Y only assumes the values 1, 2, 3; that is, Ry = {1,2,3}. We compute the
distribution g of X:
(i) Five points, (1, 1), (1, 2), (1, 3), (2, 1), (3, 1), have minimum 1; hence g(1) = 3.
(ii) Three points, (2, 2), (2, 3), (3, 2), have minimum 2; hence g(2) = %.

(iii) One point (3, 3) has minimum 3; hence g(3) = %.

Thus the following is the distribution g of ¥

y | 1 2 3
| 35 3 3

The expected value E(Y) is obtained by multiplying each value of y by its probability and taking the

sum. Hence
5 3 1 12
E(Y)= 1(§) + 2(5) + 3(5) =35 ~ 1.33

A player tosses two fair coins. The player wins $2 if 2 heads occur, and $1 if 1 head occurs. On
the other hand, the player loses $3 if no heads occur.  Find the expected value E of the game. Is
the game fair? (The game is fair, favorable, or unfavorable to the player according as E = 0,

E>0o0r E<O0)
The sample space is S ={HH,HT,TH,TT} and each sample point has probability % Letting ¥

denote the player’s gain, we have

Y(HH) =$%2, X(HT)=X(TH)=$%1, X(TT)=-$3
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Thus the distribution of X and its expectation E are as follows:

P(X =x)

po s =a(3) 1(2) 3(2) 2= soas

Since E(X) > 0, the game is favorable to the player.

EN ()

R el
-

5.6. A box contains eight light bulbs of which three are defective. A bulb is selected from the box
and tested. If it is defective, another bulb is selected and tested, until a nondefective bulb is
chosen. Find the expected number E of bulbs chosen.

Writing D for defective and N for nondefective, the sample space S has the four elements

N, DN, DDN, DDDN

with respective probabilities

The number X of bulbs chosen has the values
XY(N) =1, XY(DN) =2, X(DDN) = 3, XY(DDDN) =4

with the above respective probabilities. Hence:
5 15 5 1 3
pern-1(3) (L) () (L) -2

5.7. Concentric circles of radius 1 and 3 inches are drawn on a circular target of radius 5, as pictured
in Fig. 5-15. A man receives 10, S, or 3 points according to whether he hits the target inside
the smaller circle, inside the middle annular region or inside the outer annular region, respect-
ively. Suppose the man hits the target with probability % and then is just as likely to hit one point
of the target as the other. Find the expected number E of points he scores each time he fires.

The probability of scoring 10, 5, 3 or 0 points follows:

£(10) = 1 area of 10 points 1 7r(1)2 1
; 2 areaof target 2 (52 50
#(5) = 1 area of 5 points 1 7(3)% — x(1)? 8
~ 2 area of target 2 x(5)> 50
73) = 1 area of 3 points 1 7(5)* — 7(3)? _ 16
2 area of target 2 x(5)> 50
1
10)=3 Fig. 5-15

1 8 16 1 98
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MEAN, VARIANCE, AND STANDARD DEVIATION

5.8. Find the mean p = E(X), variance o> = Var(X), and standard deviation ¢ = oy of each distri-
bution:

(a) x 3 8 12 ®) x 1 3 4 5
f(x)

0.4 0.1 02 03

wal—
=
=N
o
tad
N

Use the formulas,

p=E(X) = x1f(x1) +x2f(x2) + o X f () = 220 %, f(30)
E(X?) = (1) + 33 £(02) + -+ ¥ () = 3 221 ()
Alternatively, form a data table with columns labeled by x, 7(x), xf(x), %, x> f(x). The sum of the third
column is p = E(X) and the sum of the fifth column is £(X?). Then use the formulas
o? = Var(X) = E(X?) — /2 and o =oy = +/Var(X)
to obtain o = Var(Y) and o.

(«) Form the data table in Fig. 5-16(a) to get p = E(X) =7 and E(X?)=59. Alternatively, use the
formulas directly to obtain

w=3xf(x) = 3(%) + s(%) + 12(%) =7
E(XY) = 22 f(x) =3 (%) + 8 G) +12? (é) =59
Then:
o? = Var(X) = E(X*) — > =59 — 7> =10

o =1/Var(X) =110 =3.2

(b) Form the data table in Fig. 5-16(b) to get p = E(X) =3 and E(X?)=12. Alternatively, use the
formulas directly to obtain
r=20 % f(x;) =1(0.4) + 3(0.1) + 4(0.2) +5(0.3) =3

E(X?) =X 27 f(x:) = 1(0.4) +9(0.1) + 16(0.2) + 25(0.3) = 12
Then:
o’ =Var(X) = E(X}) —p?=12-9=3

o=4/Var(X) = V3i=17

x | f®] o) | ¥ |2 ) x |G| M@ | x* (X )
3 (1/3 1 9 3 1 104| 04 1| 04
8|12 4 64| 32 3 10.1 0.3 91 09
12 | 1/6 2 144 24 4 102] 08 16 | 3.2
Sums 7 59 5103 1.5 25| 7.5
Sums 3 12

(a) ®)

Fig. 5-16



158 RANDOM VARIABLES [CHAP. 5

5.9. Find the mean p = E(X), variance o> = Var(X), and standard deviation ¢ = oy of each distri-
bution:

@ |~ | 6 -4 3 12 & | 2 3 5 8

D; 0.3 0.1 0.4 0.2

cel—
o=
ocel—

B

Di

Here the distribution is presented using x; and p; instead of x and f(x). The following are the
analogous formulas:

n= E(.Y) =X1P + X2 D2 + o F XmPm = z XiPi
E(XQ) = x%pl +~\%P2 +ee +x}211p171 = Zl?pz

Then, as before,

o® = Var(X) = E(X?) — 1 and o= oy =/ Var(X)

(@) H:E(-Y):Z-‘cipi:%(%) -4(%) +3<%) +12<§) =1
E(X?) =3 x?p;, =36 G) + 16<%> +9<%> + 144(%) =335
0% = Var(X) = E(X?) — p* =33.5- 12 =325

o =14/ Var(X)= V32.5=5.7

(b) p=EX)=3 x;p; =2(0.3) +3(0.1) + 5(0.4) + 8(0.2) = 4.5
E(X?) =3 x7p; = 22(0.3) + 3%(0.1) + 52(0.4) + 82(0.2) = 24.9

Then:

Then:
o? =Var(X) = E(X?) — p® = 149 — (4.5)? = 5.35

o=1/Var(X)=v535=231

5.10. A fairdieis tossed. Let X denote twice the number appearing, and let ¥ be 1 or 3 according as
an odd or even number appears. Find the distribution and expectation of: (&) X, (b) Y.

The sample space is S = {1,2 3,4,5, 6} and each sample point has probability é.
() The images of the sample points are:
X(1) =2, X(2) =4, X(3) =6, X4) =8, X(5) =10, X(6) =12

As these are distinct, the distribution of X is

X; 2 4 6 8 10 12
Px) | ¢ § 5 § & %
Thus
2 4 6 8 10 12
E(X) =3 x; P(x;) *g+g+g+g+?+? 7

(b) The images of the sample points are:

Y(h=1, Y(2)=3, Y@ =1 Y@ =3  Y(5)=1, Y(6)=3
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The two Y-values, 1 and 3, are each assumed at three sample points. Hence we have the
distribution

¥V 1 3

P(y:) 3/6 3/6

Thus
3 9
E(Y) =X yiPy) =2 +2=2

5.11. Let X and Y be the random variable in Problem 5.10. Recallthat Z = X' + Y and W = XY are
random variables defined by

Z(s) = X(s) + Y(s) and W(s) = X(s)Y(s)
() Find the distribution and expectation of Z = X + Y. Verify that
EX+Y)=EX)+E(Y)
(b) Find the distribution and expectation of W = XY.

The sample space is still S = {1,2,3,4,5,6} and each sample point still has probability %
(@) Use Z(s) = (XY + Y)(s) = X(s) + Y(s) and the values of Y and Y from Problem 5.10 to obtain:

ZM =X +Y(1)=2+1=3  Z@A)=X@) + Y4 = 8+3=11
ZQ)=XQ2)+YQ)=4+3=7 ZGB)=X(5)+Y(5) =10+1=11
ZB)=XB)+YB)=6+1=7 Z(6)=X(6)+Y(6)=12+3=15

The image set is {3, 7, 11, 5}. The values 3 and 15 are each assumed at only one sample point and
hence have probability %; the values 7 and 11 are each assumed at two sample points and hence have
probability %. Thus the distribution of Z = X + Y is:

3 7 11 15

IR
Thus
3 14 22 15
E(X 1Y) = E(Z) = Sz Ple) =+ o+ o +—=9

Moreover, E(X +Y)=9=7+2= E(X) + E(Y).
(b) Use W(s) = XY(s) = X(s) Y(s) to obtain:

=6 W)=

2 6 10 12 24 36

1 1 1 1 1 1
P(w;) 5 5 % 5 5 3
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Thus

2 6 10 12 24 36
E(XY)=E(W)=Y_ wP(w)=Z+-+—+—=+=—

s s s sl

(Note: E(XY) = 15 # (7)(2) = E(X)E(Y).)

5.12. Let X be a random variable with distribution:

PX=x) | 03 05 02

Find the mean, variance, and standard deviation of X. Then find the distribution, mean,

variance, and standard deviation of the random variable ¥ = ®(X), where: (a) ®(x) = x°,

(b) ®(x) = 2%, (c) B(x) = x> + 3x + 4.
The formulas for py and E(X?) yield:
py = E(X) =3 x P(x) = 1(0.3) +2(0.5) + 3(0.2) = 1.9
E(X?) =3 22P(x;) = 12(0.3) + 22(0.5) + 3%(0.2) = 4.1

Then:
0® = Var(X) = E(X*) — i = 4.1 — (1.9)* = 0.49

o=4/Var(X) =v049=10.7

Generally speaking, the distribution of ¥ = ®(X) is as follows, where P(y) = P(x):

P(y) | 03 0.5 0.2

(o) Using 13 =1, 23 = 8, 3° = 27, the distribution of ¥ = X3 is as follows:

y 1 s 27

Py) | 03 05 02

Therefore:
py = E(Y) =3 ®(x,)P(x;) = 3 »:P(y;) = 1(0.3) + 8(0.5) + 27(0.2) = 9.7
E(Y?) =3 y2P(y;) = 12(0.3) + 82(0.5) + 27%(0.2) = 178.1
Then
o® =Var(Y) = E(Y?) — > = 178.1 — (9.7)> = 84.0

o =1/Var(Y) = V840 =9.17

(b) Using 2' =2, 2> = 4, 2> = 8, the distribution of ¥ = 2" is as follows:

Ply) | 03 05 02
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Therefore:
py = E(Y) =327P(y;) = 2(0.3) + 4(0.5) + 8(0.2) = 4.2
E(Y?) =3 yIP(y;) = 2%(0.3) + 47(0.5) + 82(0.2) = 41.2
Then:
o =Var(Y) = E(Y?) — > =41.2 - (42)* =236

o=1/Var(Y) = V23.6 = 4.86

(¢) Substitute x =1, 2, 3 in &(x) = x? +3x+4 to obtain ®(1) =8, &(2) = 14, &(3) =22. Then the
distribution of ¥ = X2 +3X + 4 is as follows:

y 8 14 2

Py) | 03 05 02

Therefore:
py = E(Y) =3 y,P(y;) = 8(0.3) + 14(0.5) + 22(0.2) = 13.9

E(Y?) =3 y2P(y;) = 87(0.3) + 14%(0.5) + 22%(0.2) = 214

Then:
o® = Var(Y) = E(Y?) — p*> =214 — (13.9)> = 20.8

o=4/Var(Y)=v20.8=4.56

JOINT DISTRIBUTIONS

5.13. Let X and Y be random variables with the joint distribution in Fig. 5-17.
(a) Find the distributions of X and Y.
(b) Find Cov(X, Y), i.e. the covariance of X and Y.
(¢) Find p(X,Y), i.e. the correlation of X and Y.
() Are X and Y independent random variables?

Yi_
x 3] 21 4| Sum

1 0110202 05
3 03101701 05
Sum | 04 03| 03

Fig. 5-17

() The marginal distribution on the right is the distribution of X, and the marginal distribution on the
bottom is the distribution of Y. Namely,

1 3 ¥ 3 2 4

() 05 05 &) 04 03 03

Distribution of .Y Distribution of Y
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(b) First compute py and py as follows:

my =32 % f(x;) = (1)(0.5) + (3)(0.5) =2
py =22 y;8() = (=3)(04) + (2)(0.3) + (4)(0.3) = 0.6
Next compute E(XY) as follows:
E(XY) =) x; 35 h(xi, ;)
= (D(=3)(0.1) + (1)(2)(0.2) + (1)(4)(0.2) + (3)(=3)(0.3) + (3)(2)(0.1) + (3)(4)(0.1) = 0

Then Cov(X,Y) = E(XY) — pyuy =0—(2)(0.6) = —1.2
(¢) First compute oy and oy as follows:

E(X?) =3 57 f(x;) = (1)(0.5) + (9)(0.5) = 5
2

0% =Var(X) = E(XY?) —pk =5 (2)* =1
o, =V1=1
and
E(Y?) =3 37 g(3) = (9)(0.4) + (4)(0.3) + (16)(0.3) = 9.6
0% =Var(Y) = E(Y?) — i3 = 9.6 — (0.6)* = 9.24
oy =1v9.24=3.0
Then
X, T) = Cov(Y,Y)  —12 _ o4

oxOy (1)(3.0)
(/) X and Y are not independent, since
P(X =1,Y =-3)# P(Y = )P(Y = -3)

i.e. the entry /(1,—3) = 0.1 is not equal to f(1)g(—3) = (0.5)(0.4) = 0.2, the product of its marginal
entries.

5.14. Let X and Y be independent random variables with the following distributions:

X 1 2 ¥ 5 10 15
f(x) 0.6 0.4 &) 0.2 0.5 0.3
Distribution of .Y Distribution of Y

Find the joint distribution 4 of X and Y.

Since .Y and Y are independent, the joint distribution / can be obtained from the marginal distributions
f and g. Specifically, first construct the joint distribution table with only the marginal distributions, as
shown in Fig. 5-18(a«). Then multiply the marginal entries to obtain the other entries; that is, set
h(x;, y;) = f(x;)g(y;). This yields the joint distribution of Y and Y appearing in Fig. 5-18(b).

Y Y
X 5110 15| Sum X 511015 Sum
1 0.6 I [012]030{0.18] 0.6
2 0.4 2 |0.08}020/012] 04
Sum | 6.2 | 0.5] 0.3 Sum | 02| 05] 03
(@ ®)

Fig. 5-18
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5.15. A fair coin is tossed three times. Let X equal 0 or 1 according as a head or a tail occurs on the
first toss, and let Y equal the total number of heads that occur.
(a) Find the distributions of X and Y.
(b) Find the joint distribution 4 of X and Y.
(¢) Determine whether X and Y are independent.
() Find Cov(X, Y).
() The sample space S consists of the following eight points, each with probability %
S ={HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

We have
X(HHH) =0, X(HHT) =0, X(HTH) =0, XYHTT) =0;

X(THH) =1, X(THT) =1, X(TTH) =1, X(TTT) =1
and
Y(HHH) = 3; Y(HHT) = 2, Y(HTH) = 2, Y(THH) = 2;

Y(HTT)=1, Y(THT)=1, Y(TTH)=1; Y(TTT)=0

Thus the distributions of X and Y are as follows:

X; 0 1 ¥ 0 1 2 3
f(x) 3 3 &) 5 3 3 3
Distribution of .Y Distribution of Y

(b) The joint distribution /2 of X and Y appears in Fig. 5-19. We obtain, for example, the entry /2(0,2)
using

h(0,2) = P(Y = 0, Y = 2) = P({HTH, HHT}) :%

The other entries are obtained similarly.

SNlol1]2]3]sum
o | 0|5 |5 |s]| 32
v g3 |s]0o]| 2
Sum| § [ 3|3 |3
Fig. 5-19

(¢) From the joint distribution, P(0,0) = 0; but

ce| —

P(X =0)= % and P(Y=0)=

Since 0 # <%> <é>, X and Y are not independent.

(#) We have:

y =3 i f(x) = 0(%) n 1(%) _ %

=) 1)) o) -3
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1 1

E(XY)=3 xpih(x;, ) = 1(1 ( ) < ) + terms with a factor 0 = 3
1
4

1 1/3
COV(Y )7)— (Y)) By by :-575(5) I

5.16. Let X be the random variable with the following distribution, and let ¥ = X?:

X -2 -1 1 2
f(x) ; i i i

(@) Find the distribution of Y.

(b) Find the joint distribution of X and Y.

(¢) Find Cov(X,Y) and p(X, Y).

(#) Determine whether X and Y are independent.

() Since Y = X, the random variable Y can only take on the values 4 and 1. Letting g denote the
dlstrlbutlon of Y, we have:
g4) =P(Y =4)=P(X=20r XY =-2)=P(X =2)+ P(X = -2) :%+%:%
Similarly, g(1) =1 Thus the distribution g of Y is as follows:
y 1 4
) 3 3

(b) The joint distribution /2 of X and Y appears in Fig. 5-20. Note that if X' = —2, then Y = 4; hence

h(—=2,1) =0 and /(—2,4) = f(~2) =1 The other entries are obtained in a similar way.
Y
X 1| 4 | Sum

=R EREE:

-t | Ylo| &

t | )]0 }

2 10| 3] 3
Sum | 1 !
Fig. 5-20

(©) We have:
pr = B(X) = D x f(x) = -2(%) -1 %) +1 (%) +2<%) =0
M:Mm:2mmr40>+

E(YY) = X xiph(xi,p;) = —8 (%
0

Cov(X,Y) = E(XY) — pypy =0 —
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(#) From the joint distribution, P(—2,1) = 0; but P(X = -2) = % and P(Y =1) = % Since
1

0+# <%> <§>, X and Y are not independent.

Remark: Although Y is a function of X and X and Y are not independent, this example
shows that it is still possible for the covariance and correlation to be 0, as always in the case when
X and Y are independent.

CHEBYSHEV’S INEQUALITY

517. Suppose a random variable X has mean p = 25 and standard deviation o = 2. Use Chebyshev’s
inequality to estimate: () P(X < 35), (b) P(X > 20).

() Recall Chebyshev’s inequality states:

1
Pp—ko<X<pu+ko)>1 =
Substitute p = 25, ¢ = 2 in u + ko and solve the equation 25 + 2k = 35 for i, getting & = 5. Then
1 1 24
l-—==1—-—===—==0.96
K2 25 25

Since p — ko =25 — 10 = 15, Chebyshev’s inequality gives
P(15< X <35)>096

The event corresponding to Y <35 contains as a subset the event corresponding to
15 < X <35. Therefore,

P(X <35)> P(15 < X < 35)>0.96
Thus the probability that X is less than or equal to 35 is at least 96 percent.
(b) Substitute u = 25, o0 = 2 in u — ko, and solve the equation 25 — 2k = 20 for k, getting £ =2.5. Then

1 1
2= &5

=0.84
Since p + 20 = 25 + 5 = 30, Chebyshev’s inequality gives
P20 < XY <30)>0.84

The event corresponding to Y >20 contains as a subset the event corresponding to
20 < X <30. Therefore,

P(XY >20)> P20 < XY <30) >0.84
which says that the probability that Y is greater than or equal to 20 is at least 84 percent.

Remark: This problem illustrates that Chebyshev’s inequality can be used to estimate
P(X < b) when b > u, and to estimate P(X > &) when & < p.

5.18. Let X be a random variable with mean p = 40 and standard deviation o = 5. Use Chebyshev’s
inequality to find a value b for which P(40 —b < X <40+ b) > 0.95.

First solve 1 — % =0.95 for k as follows:

1 , 1
005=0 o K =5=20 or k=+20=2V5

Then, by Chebyshev’s inequality, b = ko = 10v/5 ~ 23.4. Hence, P(16.6 < X < 63.6) > 0.95.



166 RANDOM VARIABLES [CHAP. 5

5.19. Let X be a random variable with mean x = 80 and unknown standard deviation o. Use
Chebyshev’s inequality to find a value of o for which P(75 < X £85) > 0.9.

First solve | ,iz= 0.9 for & as follows:
s
| 5 1
0.1l =— = =
or k o

Now, sincc 75 is 5 units to the left of x = 80 and 85 is 5 units to the right of g, we can solve cither
@ —ko=75o0r p+ ko= 385for . [rom the lattcr cquation, we gct

=10 or k=+10

80+ V10o =85 or o= ~ 158

2l

V1

MISCELLANEOUS PROBLEMS

5.20. Let X be a continuous random variable with disiribution:

e %.\‘—i—k Fé<x<)

0 clsewherce
(¢) Evaluaic k. () Find P(1 < X < 2).

(@) The graph of f is drawn in Fig. 5-2l(a4). Since f is a continuous probability function, the shaded
rcgion A must have arca I. Notc that A4 forms a trapczoid with parallcl bascs of lengths & and & + %,
and altitudec 3. Sctting the arca of 4 equal to | yicids:

1
12

5

Thus f(x)=x/6+ 1/12 for 0 < x < 3.

l(k—|—/{—|—%>(3):l or k=

|
|
I
|
|
|
|
|
|
1
|
|
|
3

(a)Grapb of f (b)P{l < X <2)=areaof B

Fig.5-21

(b) P(1 < X <2)is equal 1o the area of B, which is under the graph of f between x=1 and x =2 as
shown in Fig. 5-21(6). Using f(x) =x/6+1/12 for x =1 and x =2, we get

1.1 3 L. 1 5
3 f -1 and  f(2) = -

fy= 3
Hence l
3 9 |
P(l < X <2)=arca ofB=; (__+ﬁ>(l)=§

5.21. Let X be a continuous random variable whose distribution / is constant on an interval, say
{ = {a < x < b}, and 0 elsewhere; namely,

7(x) {k fa<x<h

0 elsewhere
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(Such a random variable is said to be unif orm/ y distributedon [} (&) Determine k. (b} Find the
mean g of X. (¢) Determine the cumulative distribution function £ of X.

(@) Thc graph of f appcars in Fig. 5-22(«). Thc rcgion shaded A must have arca |; hence
L
b—a
(b) If we view probability as weight or mass, and the mean as the center of gravity, then it is intuitively
clear that

k(b—a)=1 or k=

_a+tb
"=—3

the point midway between ¢ and . We verily this mathematically using calculus:

Y g
p=EX) = | af(x)dx = [ g [vw——z) a
_ b’ & _a—f-b
“2b—a) 2b—a) 2
f=* F=1
T — |
k| 1 4 | L
/=0 %‘*— b~a—${l =0 F=0 i ¢
a b a b
(@) Graph of f (a) Graph of F

Fig. 5-22

(¢} Recall that the cumulative distribution function F is defined by F(k) = P(X < k). Hence F(k) gives
the area under the graph of f te the left of x = 4. Since X is uniformly distributed on the interval
I ={a < x < b}, itis intuitive that the graph of £ should be as shown in Fig. S-22(b} i.e. £ = @ before
the point a, £ = 1 after the point b, and £ is linear between a and . We verify this mathematically
using calculus:

(i) For x<a,

Fx)

I
»
8
=2
S
(='%
z
I
| -
8
=
[«
=
I
L 3

(i) Fora<x<b,

& S t 1Y x-—a
HEY= ,[_o,f(!)d! - ‘L b—a = {b n]a “b-u
(i) For x > b,
Fx)=PXLx)>PXL<h)=F(b)=1 and also 1> p(Y < x)= F(x)

Thus F(x) > | and F(x) < I, and hence F(x) = 1.

5.22. Lct X be a random variable with distribution f.  The rth monzent M, of X is delinced by
M, = E(X) = 3 X £ (%)

Find the first live moments of X if X has the following distribution:

% —2 1 3

fx)

1 1
q ]

—
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Note that M is the mean of X, and M, is used in computing the variance and standard deviation
1 2 puting
of X))

Use the formula for M, to obtain:

PROOFS OF THEOREMS

Remark: In all proofs, X and Y are random variables with distributions f and g respectively and
joint distribution A.

5.23. Prove Theorem 5.1: Let S be an equiprobable space, and let X be a random variable on S with

range space Ry = {x;,x,,...,X,}. Then
number of points in S whose image is Xx;
pi= 1) = number of points in S
Let S have n points and let sy,s,,...,s, be the points in S with image x;, We wish to show that

p; = f(x;) = r/n. By definition,
p; = f(x;) = sum of the probabilities of the points in § whose image is x;
= P(s;) + P(sy) + -+ P(s,)
Since S is an equiprobable space, each of the » points in S has probability 1/n. Hence

r times

/_/‘

T 1 T
pi=f) ===t ==t

n n n n

5.24. Show that f(x;) = >; h(x;, ;) and g(y;) = > h(x;, 3;), i.e. that the marginal distributions are the
(individual) distributions of X and Y.

Let 4; = {Y = x;} and B; = {Y = y;}; that is, let 4, = Y '(x;) and B; = Yfl(yj). Thus the B; are
disjoint and S = J; B;. Hence

Ai=A4;nS=4;n(U; ) =U;(4:NB)

where the 4; N B; are also disjoint. Accordingly,

f(x) = PX = x;) = P(4;) :ZP(AiﬂBj)
J

= ZP(‘Y = X, Y = yj) = Zh(xhyj)
J

J

The proof for g is similar.
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5.25. Prove Theorem 5.10: Let X and Y be random variables on S with ¥ = ®(X). Then
E(Y)=>;®(x;)f(x;), where f is the distribution of X.

(Proof is given for the case X is discrete and finite.)
Suppose X takes on the values x;, ..., x, and that ®(x;) takes on the values yy,...,y, as i runs from 1
to n. Then clearly the possible values of ¥ = ®(X) are y,,...,,, and the distribution g of Y is given by

)= > flx)
{1:®0x)=y;}
Therefore

m m

Zng, Zyj Z f(x)

T ey
=) DY = fx)B(x
N A=

which proves the theorem.

5.26. Prove Theorem 5.2: Let X be a random variable and let & be a real number. Then:
(i) E(kX) =kE(X), (i) EX +k)=EX)+k.
(Proof is given for the general discrete case and the assumption that E(.Y) exists.)

(i) Now kX = &(Y) where ®(x) = kx. Therefore, by Theorem 5.10 (Problem 5.25)
X)) =Y knif(x) = /\Z x,f(x;) = kE(X)

(i) Here X +/k = ®(Y) where ®(x) = x + k. Therefore, using >, f(x;) =1,

E(XJrk):Z(xiJrk)f(x) Z +Zlf E(X)+k

t

5.27. Prove Theorem 5.3: Let X and Y be random variables on S. Then E(X + Y) = E(X) + E(Y).

(Proof is given for the general discrete case and the assumption that E(X) and E(Y) both exist.)
Now X + Y = ®(X, Y) where ®(x,y) = x +y. Therefore, by Theorem 5.10 (Problem 5.25),

E(X+Y) ZZ x; + y)h(xi, y;) ZZ\/: (x5, %) +ZZyjh (xi, ¥5)
Applying Problem 5.24 that f(x;) = >, h(x:, ;) and g(y;) = >, h(xi, y;), we get

EY +Y)=) xf +Zy,g y;) = E(X) + E(Y)

5.28. Prove Corollary 5.4: Let X7, X5,..., X, be random variables on S. Then
EXi+X,++X,)=EX)+EX,)+ - EX,)

(Proof is given for the general discrete case and the assumption that £(X;),..., E(X,) all exist.)
The proof is by induction on n. The case n =1 is trivial and the case n =2 is Theorem 5.3
(Problem 5.27). For n > 2, we apply the case n = 2 to get

EXy+ + X, +X,)=EX+ -+ X,.1) + E(X,)
By the inductive hypothesis, this becomes E(X}) + -+ E(X,_1) + E(X,).
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5.29. Prove Theorem 5.6: Var(aX + b) — & Var(X).

We prove separately that (i) Var(Y +k) = Var(Y) and (i) Var(kY) = & Var(x), from which the
theorem follows. By Theorem 52, py =py +hk and ey =kpy, Also > x; f(x;) = py and
S f(x;) =1. Hence

Var(X +k) = S2(x; + k)2 f(x) — pi + k&
= S f () + 2k Sxif () + KB f(x) — (my + K
= a7 £ (%) + 2kepy + K — (W + 2kpy + )

= Z zf(\l) l‘“ Vﬂl‘(_Y)

and Var(kX) = Y (kx;)*f (x;) — M%ﬂ' =2 T f(x) — (kpy )
— RN f () R = (D () - i) = I Var(X)

5.30. Show that:
COV(Xa Y):Z(xiiﬂ}()(yj xl?y] ley] l?y] — HxHy
ij
(Proof is given for the case that .Y and Y are discrete and finite.)
We have:

Z J’j/l(xi»yj') = Z ng(yj) = MKy, Z ?Ci/l(l‘i»}’j) = Z xif(l'i) = My, Z /l(-‘fnyj) =1
Lj J i L

ij

Therefore:

Z (% — HX)(J’J‘ - HY)h(xwyj)

L

= Z (X — pyyy — py X + prypoy Y (s, y7)

= Z x;yh(xs, y;) — by Z yih(xi, y;) — py Z xih(x;, yy) + px iy Z h(x:, ;)
By i by by

= Z xiyih(xi, ¥;) — Bty — Bty + Ryl

= Z -’Ci}’jh(-‘fz’»}’j) — KMy My

5.31. Prove Theorem 5.7: The standardized random variable Z has mean p, = 0 and standard devia-
tion o, = 1.

- X -
By definition Z = H
Theorem 5.2, we get g
X - X
Hz:E< “)7‘5(_7&) lE(X),ﬁ:ﬁ_ﬁzo
a a a

a g a

where X has mean p and standard deviation o > 0. Using E(X) = u and

Also, using Theorem 5.6, we get

(o2

Therefore, o7 = +/Var(Z) = V1 = 1.

Y- b 1 2
Var(Z):Var(Y M) :Var(zfﬁ> :—2Var(_‘():g—2:1
a a a a
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5.32. Prove Theorem 5.8: Let X and Y be independent random variables on S. Then:
(i) E(XY) = E(X)E(Y), (ii) Var(X +7Y) = Var(X) + Var(Y), (i) Cov(X,Y) =0.

and

(Proof is given for the case when X and Y are discrete and finite.)
Since X and Y are independent, 2(x;, ;) = f(x;)g(y;). Thus

E(XY) = Z xyh(x ) = > xyf (x)g;)
5 =
=22/ () 3 ygly) = ECE)
j
Cov(X, ¥) = E(YY) — pypy = ECOE(Y) — pypy =0
In order to prove (ii) we also need

:u‘X+Y::u‘X+:u‘Y> Z r h( l?y):szzf(xi)v Zy] z?y] nyg(y])
J

ij i

Hence

Var(X +Y) = 3 (5 + ) h(x ) — piey
:Z xfh(xi,yj)JrZ Z xyih(x;, ;) +Zyj Xp, Vi) — (1x + py)
=32l +2 3w Z 80) + Z Y180y = Wy = 2wy — iy
=D ¥ f(x) Mx+2y] — Wy = Var(X) + Var(Y)

5.33. Prove Theorem 5.9: Let X7, X5, ..., X, be independent random variables on S. Then

5.34.

Var(X; + X, + -+ X,) = Var(X)) + Var(X;) + - - - + Var(X,)

(Proof is given for the case when ;,..., X, are all discrete and finite.)

We take for granted the analogs of Problem 5.32 and Theorem 5.11 for » random variables.

Var(Y) -+ X,) = E((Y; + -+ Xp — pryoern,))
= (e X — sy )RR )

2
:Z(’Yl+"'+xn7}‘l'l 7...,'“],”) h(xX1,. .y %)

=> { Z Z XX+ Z Z Ky Ry, — 2 Z Z H,i'll}'}/l(-\'h-- <3 Xp)
1 J 1 7 i J

Var(X; + - ZMM +ZE 6 +ZZMM& 222#&;#3}
i
= Z E(X7) - Z (1,)? = Z Var(Y))
i=1 i=1

i=1

as required.

Prove Theorem 5.12 (Chebyshev’s inequality): For any & > 0,

1
P(p —ILJ<X<M+ILJ)>171—

Then:

where /i is the joint distribution of Xj,...,X,, and py, .,y = py, +---+ py,. Since the X; are pairwise
independent, 37 x;x;h(x1, ..., X,) = py py, for i #j. Hence
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5.35.

RANDOM VARIABLES [CHAP. 5

By definition
o = Var(X) = X(x;— )’y

Delete all terms from the summation for which x; is in the interval [ — ko, u + kol; that is, delete all terms
for which |x; — | < ko. Denote the summation of the remaining terms by »_ *(x; — 1)*p;. Then

o? > Yk (xi — p)’pi > YK g = K 0” Y *p, = PG P(|Y — p| > ko)
=121 — P(|X — p| < ko)) = k*d*[1 — P(u — ko < X < p + ko)
If o > 0, then dividing by k*0” gives

1 1
FZ]*P(}L*ICUSXS;A+/CU) or P(,ukaS_YS,qukcr)zlfk—Q

which proves Chebyshev’s inequality for o > 0. If o =0, then x; = u for all p; > 0, and

1
P(ufk~0§_Y§;A+/c~0):P(X:,u):1>1*k—2

which completes the proof.

Let X1, X3, ..., X, benindependent and identically distributed random variables, each with mean
p and variance o7, and let X, be the sample mean, that is,

XN+ X4+
X:1+2+ + Xy

n
n

(e) Prove the mean of X, is p and the variance is ¢°/n.
(b) Prove Theorem 5.13 (weak law of large numbers): For any a > 0,

Plu—a<X,<puta)—1 as n— 00
() Using Theorems 5.2 and 5.3, we get

‘YIJV"YQJF"‘JF.Y,,)
n

_ 1
M;,:E(Xn):E( ) :ZE(_Y1+‘Y2+-~-+X,,)

|-

[E(X1) + E(Xy) + - + E(X,)] =, =k

Now using Theorems 5.3 and 5.9, we get

n+n+m+n>

1
= ? VE].I'(‘YI + AYQ + e+ -Yn)

Var(X,) = Var< -

I’lO’2 0'2

1
= — [Var(Y,) + Var(X;) + - + Var(Y,)| = — = —
n nn
(b) The proof is based on an application of Chebyshev’s inequality to the random variable X,. First note
that by making the substitution ko = &, Chebyshev’s inequality can be written as

2
Plu-a<X<ptay>1-=
o
Applying Chebyshev’s inequality in the form above, we get

2

_ o

from which the desired result follows.
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Supplementary Problems

RANDOM VARIABLES AND EXPECTED VALUE

5.36.

5.37.

5.38.

5.39.

5.40.

5.41.

5.42.

5.43.

5.44.

5.45.

5.46.

5.47.

5.48.

Suppose a random variable .Y takes on the values —3, 2, 4, 7 with respective probabilities
k+1 2k —2 3k -5 k+2
10 ’ 10 ’ 10 10

Find the distribution and expected value of X.

A pair of dice is thrown. Let X denote the minimum of the two numbers which occur. Find the distribu-
tion and expectation of X.

A fair coin is tossed four times. Let Y denote the longest string of heads. Find the distribution and
expectation of Y. Also draw a probability bar chart and histogram of the distribution. (Compare with
the random variables .Y in Problem 5.2.)

A coin, weighted so that P(H) =3 and P(T) =1, is tossed three times. Let Y denote the number of heads

that appear. (#) Find the distribution of X. (b) Find E(X).

A coin, weighted so that P(H) = %and P(T) = % is tossed until a head or five tails occur. Find the expected
number £ of tosses of the coin.

The probability of team 4 winning any game is % Suppose 4 plays B in a tournament (and there are no
ties). The first team to win two games in a row or three games wins the tournament. Find the expected
number £ of games in the tournament.

A box contains 10 transistors of which two are defective. A transistor is selected from the box and tested
until a nondefective one is chosen. Find the expected number E of transistors to be chosen.

Solve the preceding Problem 5.42 in the case that three of the 10 items are defective.

Five cards are numbered 1 to 5. Two cards are drawn at random (without replacement). Let X denote the
sum of the numbers drawn. («) Find the distribution of X. (b) Find E(Y).

A lottery with 500 tickets gives one prize of $100, three prizes of $50 each, and five prizes of $25 each.
() Find the expected winnings of a ticket. (b) If a ticket costs $1, what is the expected value of the game?

A player tosses three fair coins. He wins $5 if 3 heads occur, $3 if two heads occur, and $1 if only one 1
head occurs. On the other hand, he loses $15 if three tails occur. Find the value of the game to the player.

A player tosses two fair coins. The player wins $3 if 2 heads occur, and $1 if 1 heads occurs. For the game
to be fair how much should the player lose if no heads occur?

A coin is weighted so that P(H) = p and hence P(T) =g=1—p. The coin is tossed until a head
appears. Let E denote the expected number of tosses. Prove £ = 1/p. (This is an example of an infinite
discrete random variable, and some knowledge of series is required.)
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MEAN, VARIANCE, AND STANDARD DEVIATION

5.49.

5.50.

5.51.

5.52.

5.53.

5.54.

Find the mean p, variance o2, and standard deviation o of each distribution:

(@) X 2 3 s (®) X -2 -1 7
f(x) i 1 i f(x) 3 5 i

Find the mean p, variance o2, and standard deviation o of each distribution:

(a) x -1 0 1 2 3 ® | =x 1 2 3 6 7

(%) 03 01 01 03 02 Ffx) | 02 01 03 01 03

Let X be a random variable with the following distribution:

x 1 3 4 5

(%) 04 01 02 03

(«) Find the mean, variance, and standard deviation of .Y.

(b) Find the distribution, mean, variance, and standard deviation of ¥ = Y242

Find the mean p, variance o, and standard deviation o of following two-point distribution where p + 4 = 1:

X a b

f(x) P«

Let X be a random variable with the following distribution:

x -1 1 2

Fx) 0.2 05 03

() Find the mean, variance, and standard deviation of .Y.

(b) Find the distribution, mean, variance, and standard deviation of the random variable ¥ = ®(Y),
where: (i) ¢(x) = x*, (i) o(x) = 3%, (iii) a(x) =2*".

Two cards are selected from a box which contains five cards numbered 1, 1, 2, 2, and 3. Let X denote the
sum and Y the maximum of the two numbers drawn. Find the distribution, mean, variance, and standard
deviation of the random variables: (a) X, (b) Y, (c)Z=X+ Y, (d) W = XY.

JOINT DISTRIBUTIONS, INDEPENDENT RANDOM VARIABLES

5.55.

5.56.

Consider the joint distribution of ¥ and Y in Fig. 5-23(«). Find: («) E(X) and E(Y), (b) Cov(X, Y),
(¢) oy,oy,and o(X, Y).

Consider the joint distribution of X and Y in Fig. 5-23(b). Find: («) E(X) and E(Y), (b) Cov(X,Y),
(C) Oy,0y, and p(.Y, )7)
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5.57.

5.58.

5.59.

5.60.

5.61.

5.62.

=4 2| 7| sum |21 4] 5 |sum
(NN SN S S 1 [o1fo02]0 |03]| 06
LI I T N S I N 2 |02]|01]|01]|0 | 04
Sum| 3| 2|} Sum [ 03 [ 03] 01| 03
(@ b

Fig. 5-23

Suppose X and Y are independent random variables with the following respective distributions:

X 1 2 y -2 5 8

F(x) 07 03 2() 0.3 05 02

Find the joint distribution of X and Y, and verify that Cov(.Y,Y) = 0.

Consider the joint distribution of X and Y in Fig. 5-24(a).
(a) Find E(X) and E(Y). (b) Determine whether X and Y are independent. (¢) Find Cov(X, Y).

Consider the joint distribution of X and Y in Fig. 5-24(6). (a) Find E(Y) and E(Y). (b) Determine
whether .Y and Y are independent. (c) Find the distribution, mean, and standard deviation of the random
variable Z =Y + Y.

N 2( 34| sm N 2-1]o| 1|2/ 3|sum
1 0.0610.15,0.09] 030 g 0.05|0.05(0.10]0 0.05]10.05] 0.30
2 0.141 035,021 0.70 1 0.10/0.05]0.05[0.10| 0 0.05( 0.35

Sum | 0.20]0.5010.30 2 0.030.12{0.07]0.06 | 0.03 | 0.04| 0.35

Sum | 0.18]0.22]0.22(0.16 | 0.08] 0.14
@ ®)
Fig. 5-24

A fair coin is tossed four times. Let X denote the number of heads occurring, and let ¥ denote the longest
string of heads occurring. (See Problems 5.2 and 5.38.)

(«) Determine the joint distribution of X and Y.
(b) Find Cov(X,Y) and (X, Y).

Two cards are selected at random from a box which contains five cards numbered 1, 1, 2, 2, and 3. LetY
denote the sum and Y the maximum of the two numbers drawn. (See Problem 5.54.) (a) Determine the
joint distribution of X and Y. (b) Find Cov(X,Y) and (X, Y).

A random sample with replacement of size n = 2 is chosen from the set {1,2,3,4,5}. Let X =0 if the
first number is even, and X =1 otherwise; and let ¥ =1 if the second number is odd, and Y =0
otherwise. (a) Show that the distributions for X and Y are identical. (b) Find the joint distribution of X
and Y. (c) Are X and Y independent?

Remark: It is always possible to find the distributions of .Y and Y from the joint distribution of .Y and
Y; but, in general, it is not possible to find the joint distribution from the individual distributions of Y
and Y. Some other information, such as knowing that Y and Y are independent, is needed to obtain the
joint distribution from the individual distributions.
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CHEBYSHEV’S INEQUALITY
5.63. Let.Y be arandom variable with mean p and standard deviation 0. Use Chebyshev’s inequality to estimate

Pp—30 <X <p+30).

5.64. If Z is the standard normal random variable with mean 0 and standard deviation 1, use Chebyshev’s
inequality to find a value & for which P(—b < X < b) > 0.9.

5.65. Let X be a random variable with mean 0 and standard deviation 1.5. Use Chebyshev’s inequality to
estimate P(—3 < X < 3).

5.66. Y is a random variable with mean p =70. For what value of o will Chebyshev’s inequality give
P(65< XY <75) >0.95?

5.67. X is a random variable with mean ¢ = 100 and standard deviation o = 10. Use Chebyshev’s inequality to
estimate (&) P(X > 120), (b) P(X < 75).

MISCELLANEOUS PROBLEMS

5.68. Let .Y be a continuous random variable with the following distribution:

f(x):{§ if 0<x<8

0 elsewhere
(@) Find: () PR<X<5), (i) PB<X<T), (i) PX >6).

(b) Determine and plot the graph of the cumulative distribution function F of X.

5.69. Let .Y be a continuous random variable with the following distribution:

kx if 0<x<5
S = {0 elsewhere

(#) Evaluate k. (b) Find: (i) P(1 < X <3), (i) P2 < X <4), (i) P(X < 3).

5.70. Plot the graph of the cumulative distribution function F of the random variable X" with the distribution:

X -3 2 6
/) I

5.71. Find the distribution function f(x) of the continuous random variable X with the cumulative distribution

function:
0 if x<0 0 if x<0

(@) F(x)={x if 0<x<1 (b)) F(x)={sinx if 0<x<x/2
1 if x>1 1 if x>ux/2

(Hint: f(x) = F'(x), the derivative of F(x), wherever it exists.)
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5.72.

5.73.

5.74.

5.36.

5.38.

5.39.

5.40.

5.41.

5.42.

5.43.

5.44.

5.45.

5.46.

5.47.

5.48.

5.49.

5.50.

5.51.

Show that oy =0 if and only if X is a censtant functien, that is, X(s) =k for every s € S, or simply
X=r

Suppose oy # 0. Show that #(X,X) =1 and (X, —-X) = —1.

Prove Theorem 5.11: Let X, Y, Z be random variables on S with Z = ®(X,Y). Then
E(Z) = Z (I)(xivyj)h(xhyj)

L

where / is the joint distribution of .Y and Y.

Answers to Supplementary Problems

The following notation will be used:

[x1,. .y X0 F(X1), ..., f(x,)] for the distribution f = {(x;, ()}
[x;; yj; row by row] for the joint distribution & = {[(x;, y;), h(x:, )]}

k=2;1-3,2,4,7;0.3,0.2,0.1,0.4], E(X) = 2.7

(1,2,3,4,5,6, L, & 1 5 3 L] E(Y)=91/36~25

(@) [0,1,2,34,2.,2.2, (b E(x)=225

E=211/81~=26

E=23/8~29
E=11/9~12
E=11/8~ 14

(a) [3,4,5,...,9;0.1,0.1,0.2,0.2,0.2,0.1,0.1], () E(X)=6

(a) 0.75, (b) —0.25

0.25

$5

Hint: Let y =5 ¢" = 1/(1 — q), so dy/dg =S ng" ' = 1/(1 — 4)*
(@) p=4,02=550=23 (B p=0,0=10,0=32

@ p=10"=24,0=15 () p=40,0>=56,0=237

(o) py =3, 0_21' =3, 0y =V3x1.7
®) [3,11,18,22; 0.4,0.1,0.2,0.3), puy = 12.5, 0% = 69.5, oy ~ 8.3
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5.52.

5.53.

5.54.

5.55.

5.56.

5.57.

5.58.

5.59.

5.60.

5.61.

5.62.

5.63.

5.64.

5.65.

5.66.

5.67.

5.68.

RANDOM VARIABLES

i —ap+ by, O =pala—b), o=l|a—0l\Dq

uy =09, 0% =109, oy=104

(@ [1,1,16;0.2,0.5 03], uy =55, 0% = 4725, oy = 6.87
() [13,90.2,0.5, 03], uy =467, 0% =521, oy =228
(©) [1,2, 802,05, 03], uy =3.6, 0% = 8.44, oy = 2.91

(@) [2,3,4,50.1,04,03, 02], uy = 3.6, 0% — 0.84, oy — 0.9

() [1,2,3;0.1,05,04], gy = 2.3, 0% = 0.41, oy = 0.64

(©) [3,5 6,7 80.1,04,0.1,02,02), uz =59, 0% =23, oz =15

(@) [2,6,8,12,15;0.1,0.4,0.1, 0.2, 0.2], p = 8.8, oy =176, o = 4.2

(@) E(Y) =3, E(Y) =1, (b)Cov(X,Y)=15, (c)oy=2, 0y =43, p(X,Y)=0.17

(@) E(X) =14, E(Y) =1, (b) Cov(X,Y)=—05, (c)oy =049, oy =3.1, o(X,Y) = 0.3
[1,2; -2, 5,8 021, 0.35, 0.14; 0.09, 0.15, 0.06]

(@) E(X)=1.7,E(Y)=3.1; (b) Yes; (c) Must equal 0 since X and Y are independent

(@) E(X) =1.05, E(Y) =0.16; (b) No;

(¢)[-2,-1,0,1,2,3,4,5; 005, 0.15, 0.18, 0.17, 0.22, 0.11, 0.08, 0.041],

nz =121, oz =v3.21=1.79

(@) 10,1,2,3,40,1,2,3,4%0,0,0,0 0, 0,0,0; 0, ;
(b) Cov(X,Y)=0.85, a(X,Y)=0.89

5 0,050, 0, 3%, £ 0,0,0,0, 7

gl
N

(a) [2,3,4,5:1,2,3;0.1,0,0: 0,04, 0; 0, 0.1, 0.2; 0, 0, 0.21]
(b) Cov(X,Y)=0.52, p(X,Y)=09

(@ [0, @) [0,1;0, 15555 %5 (o) Yes

P>1 ’31_2 ~ .89
b=V10~3.16
P>0.75
o=5/V20~1.12
(o) P>0.75, (b) P>0.84
0 ifx<0

(@i 51 ) F(x)=< x/8 if0<x<8.See Fig. 5-25(a)
1 ifx>8

[CHAP. 5



CHAP. 5] RANDOM VARIABLES 179

569. (ok=2% (b)) (i) (i)
5.70. See Fig. 5-25(b)

571. (o) f(x)=3x"if0< x< 1,0 elsewhere
(b) f(x) =cos xif 0 < x < 7/2, 0 elsewhere

7y
Ly i
1 o ———
1l |
2 |
—
I > E 4 1 4 3 L 4 i1 il :
ol 8 -3 0 3 6
(@ ®)



Chapter 6

Binomial and Normal Distributions

6.1 INTRODUCTION

This chapter will define and discuss several distributions which are widely used in many applications
of probability and statistics. Specifically, we investigate the binomial and normal distributions in
depth, and briefly discuss the Poisson and multinomial distributions. Furthermore, we indicate how
each distribution might be an appropriate probability model for some application.

The Central Limit Theorem, which plays a major role in probability and statistics, will also be
discussed in this chapter. We will see how this theorem is a generalization of the approximation of the
discrete binomial distribution by the continuous normal distribution.

6.2 BERNOULLI TRIALS, BINOMIAL DISTRIBUTION

Consider an experiment with only two outcomes, one called success (S) and the other called failure
(F). Independent repeated trials of such an experiment are called Bernoulli trials, named after the Swiss
mathematician Jakob Bernoulli (1654-1705). (We emphasize that the term “independent trials” means
that the outcome of any trial does not depend on the previous outcomes, such as tossing a coin.)

Let p denote the probability of success in a Bernoulli trial, and so 4 = 1 — p is the probability of
failure. A binomial experiment consists of a fixed number of Bernoulli trials. The notation

B(n, p)

will be used to denote a binomial experiment with # trials and probability p of success.
Frequently, we are interested in the number of successes in a binomial experiment and not in the
order in which they occur. The following theorem (proved in Problem 6.8) applies.

Theorem 6.1: The probability of exactly k success in a binomial experiment B(n, p) is given by

P(k) = P(k successes) = <Z>pkq"k

The probability of one or more successes is 1 — ¢”.

Here <:> is the binomial coefficient, which is defined and discussed in Chapter 2.
Observe that the probability of getting at least & successes, that is, kK or more successes, is given by
Pk) +Plk+ 1)+ Plk+2)+---+ P(n)
This follows from the fact that the events of getting k and k' successes are disjoint for k /# k'.

EXAMPLE 6.1

(#) A fair coin is tossed 6 times; call heads a success. This is a binomial experiment with n =6 and p = ¢ = %

(i) The probability that exactly two heads occurs (i.e. k = 2) is:

o (£)(3) () e

180
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(i) The probability of getting at least four heads (i.e. £ =4, 5, or 6) is:

6\ /1\'/1\* [6)\/1)' (1 6)/1\°
rere o= (5)(5) () (9)0) () (6)6)

15 6 1 11
64 N 64 N 64 32

(iii) The probability of getting no heads (i.e. all failures) is 4° = (%)6

headsis 1 — ¢' =14 =8~0.98.
(b) The probability that Ann hits a target is p = %; hence she misses with probability g =1 —p = % She fires seven
times. Find the probability that she hits the target: (i) exactly 3 times, (ii) at least one time.

= %, so the probability of one or more

(i) Here k£ = 3; hence the probability that she hits the target three times is:

7\/1) (2)" _ 560
PB) = (3) (§> <§> = 7187~ 026
(i) The probability that she never hits the target, that is, all failures, is 47 = (%)7 = 128/2187 ~ 0.06. Thus

the probability that she hits the target at least once is 1 — 4’ = 2059/2187 ~ 0.94 = 94 percent.

Binomial Distribution

Consider a binomial experiment B(#n, p). That is, B(n, p) consists of n independent repeated trials
with two outcomes, success or failure, and p is the probability of success and 4 = 1 — p is the probability
of failure. The number X of & successes is a random variable with the following distribution:

k 0 1 2 n
n n n— n — 7
Pk) | 4 (1)1 'p (2>4’ o p

This distribution for a binomial experiment B(n, p) is called the binomial distribution since it corresponds
to the successive terms of the binomial expansion:

n n n— n n— n
(4 +p) q”+<1)q 1p+<2>q PPt dp

Thus B(n, p) will also be used to denote the binomial distribution.
Properties of this distribution follow:

Theorem 6.2:
Binomial distribution B(n, p)

Mean or expected number of successes w=np
Variance 0% = npe
Standard deviation 0= ,/npq

EXAMPLE 6.2

() The probability that Bill hits a target is p = % He fires 100 times. Find the expected number p of times he

will hit the target and the standard deviation o.
Here p=1and so 4 =% Hence

—4

1 4
u:np:lOO~§:20 and o= /npg=4/100- 3

1
5
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(b) A fair dieis tossed 180 times. Find the expected number p of times a six appears and the standard deviation o.

Here p =1 and so 4 =2. Hence

p=rnp=180d) =30 and o= /mpg :\/180(%)(%):5

6.3 NORMAL DISTRIBUTION

The most important example of a continuous random variable X is the normal random variable,
whose density function has a bell-shaped graph. More precisely, there is a normal random variable X
for each pair of parameters o > 0 and p, where the corresponding density function is

oo [

Such a normal distribution with parameters p and o will be denoted by
N(p,0%)

If X is such a continuous random variable, then we say X is normally distributed or that X is N(p, 02).

Figure 6.1(a) shows how the bell-shaped normal curves change as p varies and o remains fixed; and
Figure 6-1(b) shows how the curves change as o varies and p remains fixed. Note that each curve
reaches its highest point at x = p and is symmetric about p. The inflection points, where the direction
of the bend of the curve changes, occur for x =y + o and x = p — 0.

-2 0 2
(a) Normal distributions with o fixed (o= 1) (b) Normal distributions with z fixed (¢ = 0)

v

bl 4

b

Fig. 6-1

Properties of the normal distribution follow:

Theorem 6.3:
Normal distribution N(y, %)

Mean or expected value m
Variance o
Standard deviation o

That is, the mean, variance, and standard deviation of the normal distribution N(p, 02) are p, o’,
and o, respectively. This is the reason that p and o are used as the parameters in the definition of the
above density function f(x).
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Standardized Normal )’istribution

Suppose X" is any normal distribution N(u, 02). Recall that the standardized random variable
corresponding to X" is
X —p
o

Z

In this casc 7 is also a normal distribution and 2 =0 and ¢ = 1, that is, Z is N(0,1). Thc density
function for Z is

whose graph is shown in Fig. 6-2.

y=¢@

2.15% 13.6%! 34.1% 34.1%!13.6% 2.15%
-3 -2 -1 0 1 2 i oz
Normal distribution N(0,1)
Fig. 6-2

Figure 6-2 also tells us that the percentage of the area under the standardized normal curve #(z) and
hence also under the corresponding density curve for the normal distribution X is as follows:

68.2 percent for -1<3<]1 and lor p—o<x<pu+o
95.4 percent for 2L €2 and for p—20<x<pu+20
99.7 percent for —3<:z<3 and flor p—30<x<u+3c

This gives risc to the so-called:

68-95-99.7 Rule

This rule says that in a normally distributed population, 68 percent (approximately) of the population
falls within onc standard dcviation of the mcan, 95 percent falls within (wo standard dcviations of the
mcan, and 99.7 percent falls within three standard deviations of the mcan.

6.4 EVALUATING NORMAIL PROBABILITIES

Consider any continuous random variable X on a sample space S with density function
S(x). Recall that {¢ < X < b} is an event in § and that the probability P« < X < b) is equal Lo the
area under the curve f/ between x =« and x = ). In the language of calculus,

b
Pla< X <bh) [ f(x) dy

a
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However, il X is a normal distribution, then we are ablc to evaluate such areas without calculus. We
show how to do this in this section in two steps: first with the standard normal distribution 7, and then
with any normal distribution X.

Evaluating Standard Normal Probabilities

Table A-1 (scc Appendix) gives the arca under the standard normal curve ¢ between 0 and z. where
0<z<4and zis given in steps 0o 0.01.  This arca is denoted by ®(z), as indicated by the picture in the
Lable.

EXAMPLE 6.3 Find: (¢) ®(1.26), (0) ©(9.34), (¢) B(1.8), (&) B(4.2).

(¢} To find ®(1.26), look on the left for the row labeled 1.2, and then look on the top for the column labeled
6. The catry in the table corresponding to row 1.2 and column 6 is .3962. Thus ©(1.26) = 0.3962.

(6) To tind ©(0.34), look on the left for the row labeled 0.3. aud then look on the top for the column labeled
4. The catry in the table corresponding to row 0.3 and column 4 is .1331.  Thus ©(0.34) = 0.1331.

(¢} To lind ©(1.8), look on the left for the row labeled 1.8. The first entry 4641 in the row corresponds to
1.8 =1.80. Thus ¢(1.8) = 0.4641.

(dt The value of &(z) for any z > 3.9 is 0.5000. Thus $(4.2) = 0.5000, even though 4.2 is not in the table.

Using l'able A-1 (see Appendix) and the symmetry of the curve, we can find P(z; < Z £ z3), the
arca under the curve between any two values z; and z,, as follows:

() + &(jn]) il a <
P(zy SZ £ zy) = ¥(z) — (1) if 0<z
(|z1]) — @(|z]) il z, <

Thesc cases are pictured in Fig. 6-3.

@ (2,) + @ (Iz,)) 2 @) -2 @)
@ (1z,)) - D (1z3)

v
v

v

z, 0 2z o] z 25 Zy z, [0
(@)z;<0<z, (b)0<z <2z, (€)z;<2z,<0
Fig. 6-3

Furthermore, using the fact that the total arca under the normal curve is 1 and hence hall the arca
is 4, we can also find the “tail cnd” of a one-sided probability as [ollows:

9 {0‘50004— ¢{z) i 0Lz

P(Z
( 0.5000 — &(|z,) if z, <0

IA

F

These two cascs arc pictured in Fig. 6-4(a). The complements of these cascs give the other one-sided
probability, picturcd in Fig. 6-4(5). Namcly,
05000 — &(z) il 0< 2z

The above cover all one-sided probabilitics.
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05+®(z) 0.5 (Iz,)) 0.5- @ (z,) 0.5+® (z,))

Iz z; 1o ol z z; 10
0<z z,<0 0<z 2,29

(@) P(Z<z) () P(Z2z)
Fig. 64

EXAMPLE 6.4 Find the following probabilitics for the standard nornal distribution Z:

(@ P(-05<Z<Ll) (¢) P0.2<Z<14) (€) P(Z > 16)
(b) P(-038<Z<172) (d) P(-15<Z<-07) (f) P(Z<-18)

(@)} Referring to Fig. 6-3(c),
P(—05<Z<11)=8(1.1) + $(0.5) =0.3643 + 0.1915 = 0.5558
(b) Rcferring to Fig. 6-3(a),
P(-0.38 < Z < 1.72) = B(1.72) + $(0.38) = 0.4573 + 0.1480 = 0.6053
(¢} Referring 10 Fig, 6-3()).
P02< Z <1.4) =3(1.4) —$(0.2) = 0.4192 — 0.0793 = 03399
(d) Rcferring to Fig. 6-3(¢).
P(—15<Z < -07) = B(1.5) — B(0.7) = 0.4332 — 0.2580 = 0.1752
(e} Rcfcrring to Fig. 6-4(b).
P(Z > 1.6) = 0.5~ @(1.6) = 05000 — 0.4452 = 0.0548
(f} Rcfcerring to Fig. 6-4(a),
P(Z < —1.8) =0.5 — ®(1.8) = 0.5000 — 0.4641 = 0.0359

Evaluating Arbitrary Normal Probabilities

Suppose X is a nermal distribution, say X is N([J,,Oz). To evalvate P(e < X < b), we usually
change @ and 4 into the standard units as [ollows:
a—u b—pu

and
g o

=2

=il

ta
L]

Then
Pla<X <£b0)=P(z; £ Z< )

which is the arca under the standard normal curve between z; and z,.

EXAMPLE 6.5 Suppose X is the nonmal distribution N(70,4). Thus X has mean g = 70 and standard deviation
o=V4=2. Find: (¢) P68 < X < 74), (b)) (72 < X <75), (c) (63 < X < 68), (d) P(X >T3).

With reference 1o Figs. 6-3 and 6-4, we make the lollowing compuiations.

(@) Transform a = 68, b = 74 into standard units as follows:

68 —p_ 6870 L _TA—p 7470

, n=—-=~-

g 2 . g 2

4
2| =

Therefore (Fig, 6-3(4)).
PO X <T4)=DP(—1 <Z<2)=3(2) +p(1) = 04772+ 0.3413 = 0.8184
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(b) Transform & = 72, b = 75 into standard units:
72 -0
- =1,
2

7570

2.5
2

21 Z) =

Therefore (Fig. 6-3(b)),
P(72<X <75 =P(1<Z<25) =925 —P(1) =0.4938 — 0.3413 = 0.1525
(¢) Transform « = 63, b = 68 into standard units:

63—70:73.5

6870
1 2 ? - -

-1
2

[N

2
Accordingly (Fig. 6-3(¢)),
P(63< XY <68) =P(-35<Z<—1)=3(3.5 — (1) = 0.4998 — 0.3413 = 0.1585
(#) Transform & = 73 into the standard unit z = (73 — 70)/2 = 1.5. Thus (Fig. 6.4(b)),
P(Y > 73) = P(Z>1.5) =0.5— &(1.5) = 0.5000 — 0.4332 = 0.0668

Remark: Any continuous random variable X, including the normal random variable, has the
property that
PX=a)=Pa<X<a)=0

Accordingly, for continuous data, such as heights, weights, and temperatures (whose measurements are
really approximations), we usually do not ask for the probability that X is “‘exactly & but ask for the
probability that X lies in some interval [a, b] or some interval [@ — ¢, & + €] centered at a. This is
illustrated in the next example.

EXAMPLE 6.6 Suppose the heights of American men are (approximately) normally distributed with mean p = 68
and standard deviation o = 2.5. Find the percentage of American men who are:

(#) between &« = 66 and b = 71 inches tall,
(b) between &« = 69.5 and b = 70.5 inches tall (that is, “approximately 70 inches” tall),
(¢) at least 6 feet (72 inches) tall.

(#) Transform & and b into standard units, obtaining;

6668 71— 68

1 25 = —0.80 and Zy) = =1.20

[N

Here z; < 0 < z,. Hence
P6<XY<T71)=P(-08<Z<12)=o(1.2)+ &(0.8)
= 0.3849 + 0.2881 = 0.6730

That is, approximately 67.3 percent of American men are between 66 and 71 inches tall
(b) Transform « and b into standard units, obtaining:

_69.5 68

70.5 — 68
a=—57—=06 and H=—To—=

2.5 !
Here 0 < z; < z,. Therefore,
P(69.5< XY <705)=P06<Z<1) =3o(1)—&(0.6)
=0.3413 — 0.2258 = 0.1155

That is, approximately 11.6 percent of American men are between 69.5 and 70.5 inches tall.
(¢) Transform & = 72 into standard units, obtaining z; = (72 — 68)/2.5 = 1.6. Here 0 < z;. Therefore,

P(X >72)=P(Z>1.6)=05— ®(1.6) = 0.5 — 0.4452 = 0.0548

That is, approximately 5.5 percent of American men are at least 6 feet tall.
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6.5 NORMAL APPROXIMATION OF THE BiNOMIAL DISTRIBUTION

The binomial probabilitics P(k) (;{)pkq" ¥ become increasingly difficult Lo compute as 7 gets

larger. However, there is a way to approximate P(k) by means ofa normal distribution when an exact
computation is impractical. This is the topic of this section.

Probability Histogram for B(n, p)

The probability histograms for B(10, 8.1}, B(10, 9.5), B(19, 8.7) are pictured in Fig. 6-5. (Rectan-
gles whose heights are less tban 9.#1 have been omitted.) Generally speaking, the histogram ol a
binomial distribution B(s,p) rises as &k approaches the mean 2 = np and falls off as & moves away
from ;2. Furthermore:

(1} For p= 0.5, the histogram is symmetric about the mean . as in Fig. 6-5(h).
(2) For p< 9.5, the graph is skewed to the right, as in Fig. 6-5(a).
(3) For p > 9.5, the graph is skewed to the left. as in Fig. 6-5(c).

04 04 04r
03| 03 03
02f 02 02

O1F olf 01

D'12%456 78910 00!2345678910

0

(a) B(10, 0.1) (6) B(10,0.5) (€)B(10,0.7)
Fig. 65

Consider now the following distribution for B(20, 9.7) where an asterisk (*) indicates that P(k) is
less than 0.01:

klo 1L - 8 9 10 L 12 13 14 15 16 17 18 9 20

PEYy[* * -« * 000 003 007 0.1 0d6 0.9 0.18 0.3 007 003 o001 *

The probability histogram lor B(29, 9.7) appears in Fig. 6-6.

Although p # 0.5, observe that the histogram lor B(29,0.7) is still nearly symmetric about
1= 28(9.7) = 14 for & between 8 and 20, and lor & outside that range, P(k) is practically 0. Further-
more, the standard deviation for B(29.0.7) is approximatcly ¢ =2, and hcnce the intcrval
[8,28] = [;1 — 30, 4 -+ 30].  These results arc typical for binomial distributions B(n,p) in which both
np and ng arc at lcast 5. We state these results morce formally:

Basic Property of the Binomial Probability Histogram

For np > 5 and g > 5, (be probability histogram for B(x,p) is ncarly symmectric about
w = np over the interval [u — 30, 1 + 30|, where o = /f1pq, and outside tbis interval P(k) ~ 0.
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Histogram of B(20, 0.7)
Distribution of (14, 4.2)
Fig. 66

Normal Approximation, Ceniral Limit Theorem

“The density curve for the normal distribution N(14, 4.2) is superimposed on the probability histo-
gram for the binomial distribution 8(20, 0.7) in Fig. 6-6. Here p = 14 and ¢ = V4.2, for both dis-
tributions. The fundamental relationship between the two distributions is as follows:

For any integer value of k& between p — 30 and u + 30, the area under the
normal curve between k& — 0.5 and & 4- 0.5 is approximately equal o0 P(k),
the area of the rectangle at &.

In other words:

The binomial probability P(k) for B(n, p) can be approximated by the normal
probability P(k —0.5 <X <k +0.5) for N(npnpq), provided ap > 5 and
ng > 5.

A theoretical justification lor the approximation of B{#,p) by N{11p, npq) is the lundamental Central
Limit Theorem which follows:

Central Limit Theorem 6.4: Let X |, X5, X, ... be a sequence of independent random variables with the
3 J J 5 . pJ
same distribution and with mean p and variance ¢”. Let

X, — v
7z _Ztn_ ¥
n U/\/?_l
where ¥, = (X, + X3+ --+ X,)/n. Then for large # and any interval

{a < x <D},
Pla<Z,.<h)mPla<op<h)
where ¢ is the standard nonmal distribution.
Recall that X,, was called the sample mean of the random variables X,..., X,. Thus Z, in the

abovc thcorem is the standardized sample mcan.  Roughly speaking, the Central Limit Theorem says
that in any scquence of repeated trials the distribution of the standardixcd sample mcan approaches the
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standard normal distribution as the number of trials increases. Other statements of the Central Limit
Theorem are given in Chapter 7.

Calculations Using the Normal Approximation

Let BP denote the binomial probability for B(n, p) and let NP denote the normal probability for
N(np,npg), where np > 5 and ng > 5. As noted above, for any integer value of k between p — 30 and
p©+ 30, we have:

BP(k) =~ NP(k—05<X<k+0.95)
Accordingly, for nonnegative integers n; and n,,
BP(n <k <n) =~ NP(n —05< X <n+0.5)
Analogous formulas are used for one-sided probabilities. That is,

BP(k <n)) =~ NP(X <n +0.5) and BP(k>n)) =~ NP(X >n; —0.9)

Remark: For the binomial distribution B(n, p), the binomial variable k lies between 0 and n. Thus
we should actually replace BP(k < ny) and BP(k > ny) by BP(0 <k < n) and BP(n; < k < n), respec-
tively, which yields the approximations

BP(0<k<n)~NP(—05<X <n +0.5) = NP(X <n; +0.5) — NP(X <—0.5)
and
BP(m <k<n)=NPm—-05<X<n+05)=NPX >n —0.5)— NP(X >n+0.5)

However, NP(X < —0.5) and NP(X > n+ 0.5) are very, very small and can be neglected. This is the
reason for the above one-sided approximations.

EXAMPLE 6.7 A fair coin is tossed 100 times. Find the probability P that heads occurs: () exactly 60 times,
(b) between 48 and 53 times inclusive, (¢) less than 45 times.
This is a binomial experiment B(n,p) with n = 100, p = 0.5, and ¢ =1 — p = 0.5. First we find
w=np=100(0.5) = 50, o = npg = 100(0.5)(0.5) = 25, $O c=5

(#) We can use the normal distribution to approximate the binomial probability P(60) since np =50 > 5 and
ng = 50> 5. We have
BP(60) ~ NP(59.5 < X < 60.5)
Transform & = 59.5 and b = 60.5 into standard units as follows:

59550 _60.5-50
- -

Here 0 < z; < z,. Therefore (Fig. 6-3(b)),
P = BP(60) ~ NP(59.5< X < 60.5) = NP(1.9< Z < 2.1)
— ®(2.1) — B(1.9) = 0.4821 — 0.4713 = 0.0108

z 1.9 and ) 2.1

Remark: This result agrees with the exact value of BP(60) to four decimal places. That is, to four
decimal places,
100

60
(b) We seek BP(48 < k < 53) or, assuming the data is continuous, NP(47.5 < X < 53.5). Transforming &« =47.5
and b = 53.5 into standard units yields:

47550
==

BP(60) = ( )(0.5)6'(0.5)4' =0.0108

53550

Z1 —0.5 and Zy = 5 0.7
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Here, z; < 0 < z,.  Accordingly (Fig. 6-3(a)),
P = BP(A8 <k < 53) ~ NP(47.5< X < 535) = NP(—0.5< Z < 0.7)
= ®(0.7) + ®(0.5) = 0.2580 + 0.1915 = 0.4495

(¢) We seek BP(k < 45) = BP(k < 44) or, approximately, NP(X < 44.5). Transforming « = 44.5 into standard
units yields

z = (44.5-50)/5 = —1.1
Here z; < 0. Accordingly (Fig. 6-4(a)),
P = BP(k < 44) ~ NP(X < 445) = NP(Z < —1.1)
=0.5—®(1.1) = 0.5 0.3643 = 0.1357

6.6 POISSON DISTRIBUTION

A discrete random variable X is said to have the Poisson distribution with parameter A > 0 if X takes
on nonnegative integer values £ = 0, 1,2, ... with respective probabilities
g2
P = £k N) = =
Such a distribution will be denoted by POI(X). (This distribution is named after Siméon Poisson (1781—
1840) who discovered it in the early part of the 19th century.)

The values of f(k; \) can be obtained using Table 6-1, which gives values of e * for various values of
A, or by using logarithms.

Table 6-1
Values of ¢
A 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
e 1.000  .905 .819 741 .670 .607 .549 497 449 407
A 1 2 3 4 5 6 7 g 9 10
e 368 135 0498 0183  .00674 00248 .000912 .000335 .000123 .000045

The Poisson distribution appears in many natural phenomena, such as the number of telephone calls
per minute at some switchboard, the number of misprints per page in a large text, and the number of «
particles emitted by a radioactive substance. Bar charts of the Poisson distribution for various values
of X appear in Fig. 6-7.

04—

0‘3-—

02|~

0.1;

0= oz 46 02 4 6 8 02 4 6 8 10 0 2 4 6 8 10 12 14 16
A=1 A=2 A=5 A=10

Poisson distribution for selected values of A

Fig. 6-7
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Properties of the Poisson distribution follow:

Theorem 6.5:
Poisson distribution with parameter A

Mean or expected value n=A
Variance 2 =A
Standard deviation o=V

Although the Poisson distribution is of independent interest, it also provides us with a close approxi-
mation of the binomial distribution for small & provided p is small and X = np; more specifically, if
n > 50 and np < 5 (Problem 6.34). This property is indicated in Table 6-2, which compares the bino-
mial and Poisson distributions for small values of & with n = 100, p = 1/100, and A\ = np = 1.

Table 6-2 Comparison of binomial and Poisson distributions with »=100,
p=1/100, and A = np = 1.

k 0 1 2 3 4 5

Binomial 0.366 0.370 0.185 0.0610 0.0149 0.0029

Poisson 0.368 0.368 0.184 0.0613 0.0153 0.00307

EXAMPLE 6.8 Suppose 2 percent of the items made by a factory are defective. Find the probability P that there
are 3 defective items in a sample of 100 items.

The binomial distribution with # = 100 and p = 0.2 applies. However, since p is small, we can use the Poisson
approximation with A =np =2. Thus

23e7?

= 8(0.135)/6 = 0.180

6.7 MULTINOMIAL DISTRIBUTION

The binomial distribution is generalized as follows. Suppose the sample space S of an experiment
& is partitioned into, say, s mutually exclusive events A4, 4,,...,A; with respective probabilities
Py Pas--os Ps. (Hencepy +py +---+p;=1.) Then:

Theorem 6.6: In n repeated trials, the probability that 4; occurs k| times, 4, occurs k, times, ..., and
A occurs k, times is equal to

n! ky k i
e Ttz o ophs
Tyl - k) PP s

where ky +hky+--- +k;=n.

The above numbers form the so-called multinomial distribution, since they are precisely the terms in
the expansion of (p; +p, + -+ p,)". Observe that if s = 2 then we obtain the binomial distribution,
discussed at the beginning of the chapter.

We note that implicitly there are s random variables X7, X5, . .., X connected with the repeated trials
of the above experiment &. Specifically, for i = 1,2, ... s, we define X; to be the number of times A4;
occurs when & is repeated s times. (Observe that the random variables are not independent, since
knowledge of any s — 1 of them gives the remaining one.)
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EXAMPLE 6.9 A fair die is tossed 8 times. Find the probability p of obtaining 5 and 6 exactly twice and the other
numbers exactly once.
Here we use the multinomial distribution to obtain:

8! INZ/INE /1N /1N /1) /1 35
— _ — — — —_ — = — R U. 6
2 = oo <6> (6) (6)(6)(6)(6) 5833~ 000

Solved Problems

BINOMIAL DISTRIBUTION

6.1. Compute P(k) for the binomial distribution B(#n, p) where:
(@) n:S,p:%,k:2 (b) n:IO,p:%,k:7 () n=28p %,k:S

o == () 3)

(b) Here ¢ = %, so P(7) = < 10)

(¢) Here q:%, so P(5) = (2)(

6.2. The probability that John hits a target is p = %. He firesn = 6 times. Find the probability that
he hits the target: (@) exactly 2 times, (b) more than 4 times, (c) at least once.

This is a binomial experiment with n =6, p = %, andg=1—p= %; hence use Theorem 6.1.
6
(a) P(2)= (2) (1/4)(3/4)" = 15(3%)/(4°) = 1215/4096 =~ 0.297

(b) John hits the target more than 4 times if he hits it 5 or 6 times. Hence

PUC>4) = (5) £ PO = ()46 + (13

= 18/4° + 1/4° = 19/4° = 19/4096 ~ 0.0046
(¢) Here 4° = (3/4)° = 729/4096 is the probability that John misses all six times; hence

P(one or more) = 1 — 729/4096 = 3367/4096 ~ (.82

6.3.  Suppose 20 percent of the items produced by a factory are defective. Suppose 4 items are chosen
at random. Find the probability that: (&) 2 are defective, (b) 3 are defective, (¢) none are
defective.

This is a binomial experiment with n =4, p = 02 and 4 =1 — p = 0.8; that is, B(4, 0.2). Hence use
Theorem 6.1.
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6.4.

6.5.

6.6.

4

(@) Here k=2 and P(2) = (2

)(0.2)2(0.5)2 ~ 0.1536.

() Here k=3 and P(3) = (‘3‘) (0.2)*(0.8) ~ 0.0256.

(¢) Here P(0) = 4" = (0.8)" = 0.4095. Hence P(Y >0) =1— P(0) =1 — 0.4095 = 0.5904

A family has six children. Find the probability P that there are: (&) three boys and three girls,
(b) fewer boys than girls. Assume that the probability of any particular child being a boy is %

Here n=6and p=¢q =1.

o 1= () () -3

(b) There are fewer boys than girls if there are zero, one or two boys. Hence:

P — P(0boys) + P(1 boy) + P(2 boys) — (%)Z (?) (%) (%)5 n (g) (%)26)4 :%

A certain type of missile hits its target with probability p = 0.3.  Find the number of missiles that
should be fired so that there is at least a 90 percent probability of hitting the target.

The probability of missing the targetis ¢ =1 — p = 0.7. Hence the probability that » missiles miss the
target is (0.7)". Thus we seek the smallest n for which

1—-(0.7)" > 09 or equivalently (0.7)" < 0.1
Compute:

07)' =07, (0.7)°=049, (07 =0343,  (0.7)" = 0.240,
07)° =0.168,  (0.7)*=0.118,  (0.7)° = 0.0823

Thus at least nine missiles should be fired.

The mathematics department has eight graduate assistants who are assigned the same office.
Each assistant is just as likely to study at home as in the office. Find the minimum number
m of desks that should be put in the office so that each assistant has a desk at least 90 percent of
the time.

This problem can be modeled as a binomial experiment where:

= number of assistants assigned to the office

n=2_8
p =1 = probability that an assistant will study in the office
n

Suppose there are k& desks in the office, where £ < 8. Then a graduate assistant will not have a desk if
X > k. Note that

PX>k)y=Pk+1)+Pk+2)+---+ P(8)
We want the smallest value of & for which P(Y > k) < 0.10.

Compute P(8), P(7), P(6), ... until the sum exceeds 10 percent. Using Theorem 6.1, with » = 8 and
p = q =14, we obtain:
P(8) = (1/2)" =1/256

P(7) =8(1/2)"(1/2) = 8/256
P(6) = 28(1/2)(1/2)* = 28/256
Now P(8) + P(7) + P(6) =37/256 > 10% but P(7) + P(8) < 10%. Thus m = 6 desks are neecded.
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6.7.

6.8.
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A man fires at a target n = 6 times and hits it k = 2 times. (&) List the different ways that this
can happen. (b) How many ways are there?

(a) List all sequences with two Ss (successes) and four Fs (failures):

SSFFFF, SFSFFF, SFFSFF, SFFFSF, SFFFFS, FSSFFF, FSFSFF, FSFESFE,
FSFFFS, FFSSFF, FFSFSF, FESFFS, FFFSSF, FFFSES, FFFESS

6
(b) There are 15 different ways as indicated by the list. Observe that this is equal to <2>, since we are
distributing k£ = 2 letters S among the n = 6 positions in the sequence.

Prove Theorem 6.1. The probability of exactly k successes in a binomial experiment B(n, p) is

given by P(k) = P(k successes) = <Z> 7 9" *. The probability of one or more successes is
1—4q".

The sample space of the n repeated trials consists of all n-tuples (i.e. n-element sequences) whose
components areeither S (success) or F (failure). Let 4 be the event of exactly k successes. Then A consists
of all n-tuples of which k£ components are S and » — k components are F. The number of such n#-tuples in
the event A is equal to the number of ways that & letters S can be distributed among the » components of an

n-tuple; hence 4 comsists of C(n, k) = (;ﬁ) sample points. The probability of each point in 4 is pkq"’k;
hence .

P) = (Z)pkf*k

In particular, the probability of no successes is

Thus the probability of one or more successes is 1 — ¢".

EXPECTED VALUE AND STANDARD DEVIATION

6.9.

Four fair coins are tossed. Let X denote the number of heads occurring. Calculate the
expected value of X directly, and compare with Theorem 6.2.

X is binomially distributed with n =4 and p = ¢ = 1. We have:

P(O):%7 Ply= PR =" PO)=

Thus the expected value is:

wr=a() () +(8) () ()

This agrees with Theorem 6.2, which states that £(X) =np = 4(%) =2
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6.10.

6.11.

6.12.

6.13.

6.14.

A family has eight children. (&) Determine the expected number of girls if male and female
children are equally probable. (b) Find the probability P that the expected number of girls does
occur.

() The number of girls is binomially distributed with » = 8 and p = ¢ = 0.5. By Theorem 6.2,
w=np==80.5)=4
(b) We seek the probability of 4 girls. By Theorem 6.1, with £ = 4,

P = P(4 girls) = <i>(o.5)4(0.5)4 ~ 027 =27%

The probability that a man hits a targetis p = 0.1. He fires# = 100 times. Find the expected
number E of times he will hit the target, and the standard deviation .

This is a binomial experiment B(n,p) where n= 100, p =0.1, and ¢ =1—p=109. Thus apply
Theorem 6.2 to obtain

E=np=1000.1)=10 and o= npg=+/1000.1)(0.9) =3

A fair die is tossed 300 times. Find the expected number E and the standard deviation o of the
number of 2’s.

The number of 2’s is binomially distributed with #» =300 and p = % Hence ¢ =1—-p :%, By
Theorem 6.2,

E:np:SOO(é) =50 and o= \/np —\/300(é) (g) = V41.67 =~ 6.45

A student takes an 18 question multiple-choice exam, with four choices per question. Suppose
one of the choices is obviously incorrect, and the student makes an “educated” guess of
the remaining choices. Find the expected number E of correct answers, and the standard
deviation o.

This is a binomial experiment B(n, p) where n =18, p = %, andg=1—p= % Hence

E:np:l8(%):6 and U—W—\/lii(%)(%)—z

Prove Theorem 6.2: Let X be the binomial random variable B(n,p). Then: (i) p = E(X) = np,
(i) Var(X) = nps.

On the sample space of » Bernoulli trials, let X; (fori = 1,2,...,n) be the random variable which has the
value 1 or 0 according as the ith trial is a success or a failure. Then each X, has the distribution

P(x) ¢« p

and the total number of successes is X = X; + X2+ -+ X,.

(i) For each i, we have



196 BINOMIAL AND NORMAL DISTRIBUTIONS [CHAP. 6

Using the linearity property of £ (Theorem 5.4 and Corollary 5.5), we have

EX)=EX;+ X+ +X,)
= E(X)) + E(X,) + -+ E(X,)

(i) For each i, we have
E(X?)=0(q)+ ’(p)=p
and

Var(Y) = E(X7) — [E(Y)) =p —p* =p(1 —p) = pa
The n random variables .Y; are independent. Therefore, by Theorem 5.9,
Var(X) = Var(X; + X, + -+ X))
= Var(X;) + Var(X;) + - -- + Var(X,)
=peq-+pa+t---+pag=npq

6.15. Give a direct proof of Theorem 6.2: Let X be the binomial random variable B(n,p). Then:
(D) p = E(X) = np, (ii) Var(X) = npq.

(i) Using the notation b(k;n,p) = P(k) = (”

k

Y):Zhb(lc;np Z/\_ilpq

k=0

)pkq“*k, we obtain:

_npz ”*1~ — qujzk

(we drop the term k = 0 since its value is zero, and we factor out np from each term). We let
s=k—1 in the above sum. As & runs through the values 1 to n, s runs through the values 0 to

n— 1 Thus
n—1
n—1 .
) = Sty S s 1) =
5=0 S'( ) 5=0
since, by the binomial theorem,
Zb =(pto=1"=1

s=0

(i) We first compute E (XQ) as follows:

Y2 = i K2b(k; n, p) Z K’ L’pkq" k

k=0
nfl 1 ke
=np E k k)!p’“ lq k

Again we let s = k — 1 and obtain

n—1 o
E(X?) —npz (s+1) ¥ ’q"ls—npz (s+ 1)b(s;n—1,p)
s=0 ( ) 5=0
n—1
But Z(s+1) S;n — Zsb yn—1,p) +st,n71p
s=| s=0

=(n—1)p+l=npt+l-—p=np+aq
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where we usc (i) to obtain (# — )p. Accordingly,
E(X?} = nplup + 4) = (1p)’ + npg
and Var(X) = E(Xz) w2 = (npf +npg (np)2 = npe

Thus the theorem is proved.

NORMAL DISTRIBUTION

6.16.

6.17.

6.18.

6.19.

The mean and standard devialion on an examination are g = 74 and o = 12, respectively. Find
the scores in standard units ol students receiving: (&) 65, (b) 74, (c¢) 86, () 92.

$— 5_ .
e LIl s O T — ~ 1.0

(i) == 2 = 2

Xx—pn 714-74 x—pu 92-74
— — [ i — — _5
o 7 0 iy o n !

h z=

The mcan and standard deviation on an cxamination are j» = 74 and ¢ = 12, respectively.  Find
the grades corresponding Lo standard scores: (a) —1, (h) 0.5, (¢) 1.25, (/) 1.75.

Solving = = I o x yiclds x = oz + p.  Thus:
a
(@) x=o=+p=(12)(-1)+74=62 (¢) x=0=+p=(12)(1.25)+ 74 = 89
(h) x=o0z+p=(12)(05)+74=280 (Y x=oz+p=(12)(1.75)+74 =95

Table A-1 (see Appendix) uses ®(z) to denole the area under the standard normal curve ¢
between 0 and z.  Find: (a) 9(1.47), (b) #(0.52), (¢) ¢©(1.1), (d) ®(4.1).

Use Table A-1 as follows:
(@) Tofind ®(1.47), look on the left for the row labeled 1.4. and then look on the top for the column labeled

7. The cntry in the table corresponding to row 1.4 and column 7 is 0.4292.  Hence ©(1.47) = 0.4292.

() Tofind ©(0.52), look on the lcft for the row labeled 0.5, and then look on the top for the column labeled
2. Theentry in the table corresponding te row 0.5 and column 2 is 0.1985. Hence €(0.52) = 0.1985.

(¢} To hnd &(1.1), look on the left for the row labeled 1.1. The first entry in this row is 0.3643 which
corresponds to [.1 = [.10. Hence & (1.1) = 0.3643.

(d) The value of &(z) for any z > 3.9is 0.5000. Thus ®(4.1) =0.5000 even though 4.1 is netin the table.

Lect Z be the random variable with standard normal distribution ¢. Dcterming the valuc of z il
(@) P(0 < Z < z) =04236, () P(Z < z) =0.7967, (c) P(z < Z < 2) = 0.1000.

(@) Hecrcz > 0. Thus draw a picturc of z and P(@ < Z < z) asin Fig. 6-8(«). Hcrc Tablc 6-1 can be used
dircetly.  The entry 0.4236 appcars to the right of row 1.4 and under column 3. Thus z = .43,

(@ ® ©
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(b) Note z must be positive since the probability is greater than 0.5. Thus draw z and P(Z <z) as in
Fig. 6-8(b). We have

B(z) = P0< Z<z) = P(Z < z) — 0.5 = 0.7967 — 0.5000 = 0.2967

Since 0.2967 appears in row 0.8 and column 3 in Table 6-1, we have z = 0.83.

(¢) Since ®(2) = 0.4772 > 0.1000, z must lic between 0 and 2. Thus draw z and P(z < Z <2) as in
Fig. 6-8(c). We have

D(z) = D(2) — P(z< Z<2)=10.4772 - 0.1000 = 0.3772
From Table 6-1, we get z = 1.16.

6.20. Let Z be the random variable with standard normal distribution ¢. Find:
() P0<Z<1.2%), () P(—0.73<Z<0), (c) P(Z=1.1).

(#) By definition ®(z) is the area under the curve ¢ between 0 and z. Therefore, using Table A-1,
P(0< Z<1.28) =®(1.28) = 0.3997
() By symmetry and Table A-1,
P(—0.73<Z<0)=P0<Z<0.73) = $(0.73) = 0.2673
(¢) The area under a single point « = 1.1 is 0; hence P(Z = 1.1) = 0.

6.21. Let Z be the random variable with standard normal distribution ¢. Find:
(&) P(—1.37<Z<0.82), (b) P(0.65<Z < 1.26), (¢) P(—1.04 < Z < —0.12).

Use the following formula (pictured in Fig. 6-3):
®(z2) + ®(|z1) if z;<0<z
Plzy < Z <zy) =X D(zy) — B(zy) if 0<z <z,
(lz1) = @(lzl)  if 2 <2 <0

(«) Since —1.37<0<0.82,
P(—137<72<0.82) = $(0.82) + ©(1.37)
=0.2939 +0.4147 = 0.7086
(b) Since 0 < 0.65 < 1.26,
P(0.65 < Z < 1.26) = ®(1.26) — $(0.65)
=0.3962 — 0.2422 = 0.1540
(¢) Since —1.04 < —0.12< 0,
P(-1.04<Z < —0.12) = (1.04) — $(0.12)
= 0.3508 — 0.0478 = 0.3030

6.22. Let Z be the random variable with standard normal distribution ¢. Find the following one-
sided probabilities: (a) P(Z < —0.7), (b) P(Z < 1.03), (¢) P(Z > 0.36), (d) P(Z > —1.1).
Figure 6-4 shows how to compute the one-sided probabilities.
(@) P(Z < —0.7)=0.5—®(0.7) = 0.5 — 0.2580 = 0.2420
(b) P(Z <1.03)=0.5+3(1.03) = 0.5+ 0.3485 = 0.8485
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(¢) P(Z>036) =05 —&(0.36) =0.5—0.1406 = 0.3594
() P(Z=-1.1)=05+@(—1.1) = 0.5 +0.3643 = 0.8643

6.23. Supposc thal the student IQ scorces form a normal distribution with mcan gz = 100 and standard
deviation ¢ = 20. Find the percentage of students whosc scorcs [all between:
(a) 80 and 120, (») 60 and 140, (c) 40 and 160, (/) 100 and 120, (e¢) over 160.

All the scores arcunits of the standard deviation o = 20 from the mean p = 100; hence we can usc the
68-95-99.7 rulc or Fig. 6.2 to obtain:

(@) 68 percent, (b)95 percent, (c¢) 97.7 percent
(o) %(68 percent) = 34 percent, (¢) %(0.3 percent) = 0.15 percent

6.24. Supposc the lecmperaturce T during May is normally distributed with mcan jz = 68 ° and standard
deviation ¢ = 6°. Find the probability p that the temperature during May is:
(«) between 70° and 80°, (&) less than 60°.

First convert the T values into Z valucs in standard units, then usc Table A-1 (scc Appendix).

(@) Wc have:
70° in standard units = (70 — 68)/6 = 0.33
80 ° in standard units = (80 — 68)/6 = 2.00

Here 0 < 0.33 < 2.00. Therefore (Fig. 6-9(a)).

p=P@0 < T < 80) = P(0.33 < Z < 2.00)
= 3(2.00) — $(0.33) = 0.4772 — 0.1293 = 0.3479
(b) We have:
60° in standard units = (60 — 68)/6 = —1.33

This is a onc-sided probability with —1.33 < 0. Using Fig. 6-9(b), symmctry, and that half thc area
under the curve is 0.5000, we obtain

p= P < 60)=P(Z<—-133) =P(£ > 133)
=0.5— ®(1.33) = 0.5000 — 0.4082 = 0.0918

0033 2 -133 0

(@) P(033<Z<200) ) P(Z<-1.33)

Fig. 6-9

6.25. Suppose the weights W ol 800 male students are normally distributed with mean @ = 140 pounds
and standard deviation ¢ = 10 pounds. Find the number VN of students with weights:
(#) between 138 and 148 pounds, (&) more than 152 pounds.

First convert the W valucs into Z valucs in standard units, then use Table A-1 (sce Appendix).

(@) Wc have:
138 in standard units = (138 — 140)/10 = —0.2
148 in standard units = (148 — 140)/10 = 0.8
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Herc - 0.2 <0 < 0.8. Thercfore (Fig. 6-10(a)).
P38 < 1w < 148) = P(—0.2 < £ < 0.8)
= B(0.8) + B(-0.2) = 0.2881 + 0.0793 = 0.3674
Thus N = 800(0.3674) ~ 294.
(/) We have:
152 in standard units = (152 — 140)/10 = 1.20

This is a one-sided probability with 0 < 1.20. Using Fig. 6-10(5) and that halfthe area under the curve
is 0.5000. we get

P(W > 152) = P(Z > 1.2) = 0.5 — &(1.2) = 0.5000 — 0.3849 = 0.1151
Thus N = 800(0.1151) = 92.

-020 08 0 1.2

(@) P(-02<Z<08) ) P(Z<12)

Fig. 6-10

NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

This scction of problems uses BP Lo denote the binomial probability and NP Lo denote the normal
probability.

6.26. A fair coin is tossed 12 limes. Determine the probability P that the number of heads occurring is
between 4 and 7 inclusive by using: () the binomial distribution, (b) the normal approximation Lo
the binomial distribution.

(a) Let heads denote a success. By Theorem 6.1, withn=12 andp=49 = %:
12\ /1\"/1\® 495 12\ /1
srw=(5)(3) (3) =me  270=(5)(2

" P ANA AN A R 12
wo=(5)(2) (2) =awe #o=(5)(

495 A 792 " 924 1 792 3003
4096 4096 4096 4096 4096

Hence P = = 0.7332.

(h) Here p=np= 12(%) =6 and o= /upg = 12(%) <%) = 1.73. Let X denote the number of

hcads occurring. We seek BP(4 < X < 7), which corrcsponds to the shaded arca in Fig. 6-11(a). On
the otherhand, if we assume that the data is continuous. in order to apply the binomial approximation,
we must find NP(3.5 < X < 7.5), as indicated in Fig. 6-11(a). Wec have:

3.5 in standard units = (3.5 —6)/1.73 = —1.45
7.5 in standard units = (7.5 — 6)/1.73 = 0.87
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025¢
020F
0A5F
oaof
0.05F
g Ul‘ié;;;ﬁ‘:’églllolllz ~145 ¢ 037 4
BPA=<X=<T) NP{-145=Z =<0387)
@) (&)
Fig. 6-11

Then. as indicated by [Fig. 6-11()),
P=NP3B5<X <75)=NP(—145<Z <087
= $(0.87) + ®(1.45) = 0.3087 + 0.4265 = 0.7343
(Notc that the relative error e = |(0.7332 — (.7343) /0.7332| = 0.0015 is Icss than 0.2 pcreent.)

6.27. A fair dic is tosscd 180 times. Dectermine the probability P that the lace 6 will appcar:
(&) between 29 and 32 times inclusive, (5} between 31 and 35 times inclusive,
(¢) less than 22 times.

This is a binomial experiment B(n,p) withn =180, p=}and g=1—p=2  Then

u:np:lS()(%):ﬂ] and o= \/1p :\/180(%)(2)25

Lct X denote the number of times the face 6 appcars.
(@) Wcseek BP(29 < X < 32) or. assuming the data is continuous. NP(28.5 < X < 32.5). We have:

28.5 in standard units = (28.5 — 30)/5 = - 0.3
32.5in standard units = (32.5-30)/5= 0.5

(This is the case z; < 0 < z,) Therefore (Fig. 6-3(a)).
P=NP(28.5< X <325) = NP(—03 < Z<0.5)
= ®(0.5) + 9(0.3) = 0.1915+ 0.1179 = 0.3094
(h) We seek BP(31 < X < 35) or. assuming 1hc data is continuous, N(30.5 < X < 35.5). We have:

30.5 in standard units = (30.5 — 30)/5 =0.1
35.5in standard units = (35.5— 30)/5 = 1.1

(This is the casc 0 < zy < z2) Therefore (Fig. 6-3(b)),
=NP(305 <X <355)=NP01 <Z < LI
— ®(1.1) — (0.1) = 0.3643 — 0.0398 = 0.3245

S

() Wesceck BP(X < 22) or, approximatcly, NP(X < 21.5). (Scc recmark in Scction 6.5 on the onc-sided
normal approximation.) Wtc have:

21.5 in standard units = (21.5 — 30)/5 = —1.7
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Therefore, using symmetry and that half the area under the normal curve is 0.5000, we get

P=NP(X <215 = NP(Z< —1.7)
=0.5000 — ®(1.7) = 0.5000 — 0.4554 = 0.0446

6.28. Assume that 4 percent of the population over 65 years old has Alzheimer’s disease. Suppose a
random sample of 9600 people over 65 is taken. Find the probability P that fewer than 400 of
them have the disease.

This is a binomial experiment B(n,p) with n = 9600, p = 0.04, and ¢ =1 — p = 0.96. Then
p=np=(9600)(0.04) =384  and o= /npg=+/(9600)(0.04)(0.96) = 19.2
Let X denote the number of people with Alzheimer’s disease.
We seek BP(X < 400) or, approximately, NP(X < 399.5). (See remark in Section 6.5 on the one-sided
normal approximation.) We have:
399.5 in standard units = (399.5 — 384)/19.2 = (.81
Therefore,
P=NP(X <399.5)= NP(Z < 0.81)
=0.5000 + (0.81) = 0.5000 + 0.2897 = 0.7897
POISSON DISTRIBUTION
6.29. Find: (a) e 2, (b) e 2.
Use Table 6-1 and the law of exponents.
(@ e =(e)(e™*) = (0.368)(0.741) = 0.273.
() e = (™) = (0.135)(0.607) = 0.0819.
e A
6.30. For the Poisson distribution f(k;\) = T find: (@) f(2;1), (b) f(3;1), () £(2;0.7).
Use Table 6-1 to obtain e ™.
e’ e 0368
1\3.,-0.5 —0.5
b) f(33) = AT ST =0.013.
7% (0.49)(0.497
© fon =00 (0490497) .,
2! 2
6.31. Suppose 300 misprints are distributed randomly throughout a book of 500 pages. Find the

probability P that a given page contains (&) exactly 2 misprints, (b) 2 or more misprints.

We view the number of misprints on one page as the number of successes in a sequence of Bernoulli
trials. Here n = 300 since there are 300 misprints, and P = 1/500, the probability that a misprint appears
on the given page. Since p is small, we use the Poisson approximation to the binomial distribution with
A=np=0.6.

(0.6)% %

(@) P=7(206)="—=

= (0.36)(0.549)/2 = 0.0988 ~ 0.1.



CHAP. 6] BINOMIAL AND NORMAL DISTRIBUTIONS 203

(b) We have:

) ) 6 0 06
P(0 misprints) = © )ole —=e % =0.549
—0.6
P(1 misprint) = % = (0.6)(0.549) = 0.329

Then P =1— P(0 or 1 misprint) = 1 — (0.549 + 0.329) = 0.122.

6.32. Show that the Poisson distribution f(k;\) is a probability distribution, that is,
NGO
k=0

By known results of analysis, e* = Z /\k/ k!. Hence

k=0
o) o) /\ke—/\ =)
D fN =) =t Y MK =t =1
k=0 k=0 : k=0

6.33. Prove Theorem 6.5: Let X be a random variable with the Poisson distribution f(k; X). Then:
() E(X) = ), (i) Var(X) = X\. Hence oy = V.

() Using f(k;\) = Ae™/k!, we obtain

o o /\kef/\ o /\kflef/\
EX)=> k-fllkA)=> k o :/\Z(kil)'
k=0 k=0 : k=1 :

(we drop the term & = 0 since its value is zero, and we factor out A from each term). Lets=%—11in
the above sum. As & runs through the values 1 to oe, s runs through the values 0 to ce. Thus

oce /\S€7A ce
E(X) :/\; 5 :/\;f(s;/\):/\

since Zf(s; A) =1, by Problem 6.36.
par

(i) We first compute E(X?). We have

Mg
!

00 00 00 /\kflef/\
E(XY) =Y PflsA)=> K - =AYk T
k=0 k=0 k=1 :

Again we let s = £ — 1 and obtain

E(X?) = A i(s +1) /\S:;A =A i (s+1)f(s; A)
But = .
i(3+1)f(3;)\) :isf(s;/\) = if(s;)\) =A+1
s=0 s=0 s=0

where we use (i) to obtain A and Problem 6.36 to obtain 1. Accordingly,
E(X)=AA+1) =X+
and Var(X) = E(X?) —p2 = A2+ A - A2 =

Thus the theorem is proved.
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6.34. Show that if p is small and # is large, then the binomial distribution B(n, p) is approximated by the
Poisson distribution POI(X) where \ = np, that is, using

BP(k) = <Z> Pt and (ks A) = Me k!

then BP(k) =~ f(k;\) where np = .
We have BP(0) = (1 —p)" = (1 — A/n)". Taking the natural logarithm of both sides,
In BP(0) = nIn(1 — A\/n)

The Taylor expansion of the natural logarithm is

2 3
ln(l+x):xf%+%f
A A AN
) nfl-=})=-">-"-"—%—%—--
n n 2nt 3
Therefore, if n is large
A AN
= — = A= —— -]
In BP(0) nln<1 n) P

and hence BP(0) ~e .
Furthermore, if p is very small and hence ¢4 ~ 1, we have

BP(k) (n—Fk+ l)p:/\f(kfl)p

A
BP(k—1) ke ke “k
A
That is, BP(k) =~ T BP(k —1). Thus, using BP(0) ~ e, we obtain BP(1) = e ™, BP(2) ~ A e /2 and,
v
by induction, BP(k) ~ e ™ /Kl = f(k; ).

MISCELLANEOUS PROBLEMS

6.35. The painted light bulbs produced by a company are 50 percent red, 30 percent green, and
20 percent blue. In a sample of S bulbs, find the probability P that 2 are red, 1 is green, and
2 are blue.
By Theorem 6.6 on the multinomial distribution,
51

! , )
P = 5 (0.5)(0.3)(02)° = 0.09

6.36. Show that the normal distribution

¥) =

oVv2mT
o )
is a continuous probability distribution, i.e. J f(x)dx = 1.
—oe
Substituting ¢ = (x — p)/o in J f(x) dx, we obtain the integral
- r e dr
\/2K —oe
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It suffices to show that 72 = 1. We have
= 21_,. r. e dt Jo. e ds = L” r. r. e ds dr

We introduce polar coordinates in the above double integral. Let s=r cos # and ¢ =r sin 6.
dsdi=rdrdf, 0<fH <27, and 0 <r < oe That is,

= 11271'] re 12 dr df
27 '

But L e 2 d [ e’ /2]

1 27
Hence I* = 7 J df =1 and the theorem is proved.

6.37. Prove Theorem 6.3: Let X be a random variable with the normal distribution

f(?t) _ 1 e*l/z(X—/L)Z/UZ

Then (i) E(X) = p and (ii) Var(X) = o®. Hence oy = 0.

1 o0 . .
(i) By definition, E(X) = > J xe 126/ gy Setting ¢ = (x — p) /o, we obtain
a
1 O 5 o O 1 > ) 2
E(X)=—— t+ ‘e*‘/th:—J e P+ J e dt
(¥) \/ﬂ Jfo. o 2 V2m )= V= V21 J—ce

205

Then

e ,
But g(¢) = te"? is an odd function, ie. g(—t) = —g(z); hence j te"/>dt = 0. Furthermore,

—0e

[ —2/2 . : g :
— e d: = 1, by the preceding problem. Accordingly, E(Y) = ——:0+ p -1 = pasclaimed.
Wi LO y the p gp gly, E(Y) a0t l=n
1 o ]
11 y definition, E(X*) = 7 x‘e /e x.  Again setting ¢ = (x — p)/o, we obtain
() By definiti (Y2 2 —1/2(x—p)* /o d Acai . btai
avV &7

E(X*) = L J (ot + p)2e "2 dr

V27 )
=’ L r. Pe /2d1+2;10 L JO' tefll/Zdt+p2 L Jo. e’ ds
Var ) V27 ) oo V27 ) oo
which reduces as above to E(X?) = ¢> — r. e Pdr+ 2.
V27
We integrate the above integral by parts. Let u =¢ and dv = e dr. Thenv= e

du = dt. Thus

L [* 2 ep 1 —2]°® 1 JC. ey
— e di =—— |—te +— e di=0+1=1
V2T J, V2T [ J*oo V2T ) ce

Consequently, E(X?) = 0% -1+ p? = o + 42 and
Var(X) = E(X*) —py =" + 1 —p> = 0°

Thus the theorem is proved.

2
“/2 and
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Supplementary Problems

BINOMIAL DISTRIBUTION

6.38.

6.39.

6.40.

6.41.

6.42.

6.44.

6.45.

Find P(k) for the binomial distribution B(n,p), where:

1 1 1
() n=5.p=§,k=1; @) n=7,p=§,k=2; (o) n=4,p:Z,k:2

A card is drawn and replaced three times from an ordinary 52-card deck. Find the probability that:
(«) two hearts were drawn, (b) three hearts were drawn, (c) at least one heart was drawn.

A box contains three red marbles and two white marbles. A marble is drawn and replaced three times from
the box. Find the probability that:
() one red marble was drawn, (b) two red marbles were drawn, (c) at least one red marble was drawn.

A baseball player’s batting average is .300. (That is, the probability that he gets a hitis 0.300.) He comes
to bat four times. Find the probability that he will get: («) two hits, (b) at least one hit.

A geology quiz consists of 10 multiple-choice questions, there being four choices for each question. Bob is
unprepared and decides to guess the answer to every question. Assuming 70 percent is a passing grade, find
the probability that Bob will pass the quiz.

Team A has probability 0.4 of winning whenever it plays (and there are no ties). Suppose A plays four
games. Find the probability that A wins:
(«) two games, (b) at least one game, (c) more than half of the games.

The probability of Ann hitting a targetis % (a) If she fires five times, what is the probability that she hits the
target at least twice? (b) How many times must she fire so that the probability of hitting the target at least
once is more than 90 percent?

A card is drawn and replaced in an ordinary 52-card deck. Find the number of times a card must be drawn
so that: () there is an even chance of drawing a heart, (b) the probability of drawing a heart exceeds 0.75.

EXPECTED VALUE AND STANDARD DEVIATION

6.46.

6.47.

6.48.

6.49.

Team A has probability 0.4 of winning whenever it plays (and there are no ties). Let X" denote the number
of times A wins in four games. () Find the distribution of X. (b) Find the mean, variance and standard
deviation of .Y.

Suppose 2 percent of the bolts produced by a factory are defective. In a shipment of 3600 bolts from the
factory, find the expected number £ of defective bolts and the standard deviation o.

A fair die is tossed 1620 times. Find the expected number £ of times the face 6 occurs and the standard
deviation o.

Let X be a binomially distributed random variable with £(Y) =2 and Var(Y) =% Find n and p.
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6.50.

Consider the binomial distribution B(n,p). Show that:

@ PE__(—kebp

Pk —1) ke
(b) Pk —1) < Plk) for k < (n+1)p;
Pk —1)> Pk) fork>(n+1)p

NORMAL DISTRIBUTION

6.51.

6.52.

6.53.

6.54.

6.55.

6.56.

6.57.

6.58.

6.59.

Let Z be the standard normal random variable. Find:

(@) P(-0.81<Z<113), (b) P(0.53<Z<203)
(&) P(Z<0.73), @) P(|Z| <0.25)

Let X be normally distributed with mean p = 8 and standard deviation o = 4. Find:
(@) P(5< Y <10), (b) P(10< X <15), () P(X >15), () P(X <5).

Suppose the weights of 2000 male students are normally distributed with mean & = 155 pounds and standard
deviation o = 20 pounds. Find the number of students with weights:

(@) less than or equal to 100 pounds, (¢) between 150 and 175 pounds inclusive,

(b) between 120 and 130 pounds inclusive, (#) greater than or equal to 200 pounds.

Suppose the diameters & of bolts manufactured by a company are normally distributed with mean p = 0.25
inches and standard deviation o = 0.02 inches. A boltis considered defective if & < 0.20 inches or & > 0.28
inches. Find the percentage of defective bolts manufactured by the company.

Suppose the scores on an examination are normally distributed with mean p = 76 and standard deviation
o =15. The top 15 percent of the students receive As and the bottom 10 percent receive Fs. Find:
() the minimum score to receive an A, (b) the minimum score to pass (not to receive an F).

A fair coin is tossed 10 times. Find the probability of obtaining between 4 and 7 heads inclusive by using:
(a) the binomial distribution, (b) the normal approximation to the binomial distribution.

A fair coin is tossed 400 times. Find the probability that the number of heads which occur differs from 200
by: («) more than 10, (b) more than 25 times.

A fair die is tossed 720 times. Find the probability that the face 6 will occur:
() between 100 and 125 times inclusive, (b) more than 150 times.

Among 625 random digits, find the probability that the digit 7 appears:
() between 50 and 60 times inclusive, (b) between 60 and 70 times inclusive.

POISSON DISTRIBUTION

6.60.

6.61.

Find: (@) e '€, () e 23,

For the Poisson distribution f(k, A) = /\ke_’\/k!, find: (&) f(2;1.5), (b) f(3; 1), (c) f(2;0.6).
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6.62.

6.64.

6.65.

BINOMIAL AND NORMAL DISTRIBUTIONS [CHAP. 6

Suppose 220 misprints are distributed randomly throughout a book of 200 pages. Find the probability that

a given page contains: (a) no misprints, (b) 1 misprint, (c) 2 misprints, («) 2 or more misprints.

Suppose 1 percent of the items made by a machine are defective. Find the probability that 3 or more items
are defective in a sample of 100 items.

Suppose 2 percent of people on the average are left-handed. Find the probability of finding 3 or more left-
handed among 100 people.

Suppose there is an average of 2 suicides per year per 50,000 population. In a city of 100,000, find the
probability that in a given year there are: (#) 0, (&) 1, (¢) 2, (#) 2 or more suicides.

MULTINOMIAL DISTRIBUTION

6.66.

6.67.

6.38.

6.39.

6.40.

6.41.

6.42.

6.43.

6.44.

6.45.

6.46.

6.47.

6.48.

A die is loaded so that the faces 1, 2, 3, 4, 5, 6 occur with respective probabilities 0.1, 0.15, 0.15, 0.15, 0.15,
0.3. The die is tossed 6 times. Find the probability that:
(#) each face appears once, (b) the faces 4, 5, 6 each appear twice.

A box contains 5 red, 3 white, and 2 blue marbles. A sample of six marbles is drawn with replacement; that
is, each marble is replaced before the next marble is drawn. Find the probability that:
() 3 are red, 2 are white, 1 is blue, (b) 2 are red, 3 are white, 1 is blue, (c¢) 2 of each color appear.

Answers to Supplementary Problems

(a) 80/243, (b) 21/128, (c) 27/128
() 9/64, (b)1/64, (c)37/64

(a) 36/125, (b) 54/125, (c) 117/125
(4) 0.2646, (b) 0.7599

0.0035

(a) 216/625, (b) 544/625, (c) 112/625
(a) 131/243, (b) 6

(@3, ()5

(@) [0, 1, 2, 3, 4; 0.1296, 0.3456, 0.3456, 0.1536, 0.0256]
(b) p=1.6,0> =096, c = 0.9798

n=72,0=284

w=270, 0 = 15
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649. n=6,p=1/3

6.51. («)0.2910+0.3708 = 0.6618, (b) 0.4788 —0.2019 = 0.2769,
(¢) 0.5000 + 0.2673 = 0.7673, () 2(0.0987) = 0.1974

6.52. (@) 0.4649, (b) 0.2684, (c) 0.0401, (A) 0.2266

6.53. (a)6, (b) 131, (c) 880, (A)24

6.54. 7.3 percent

6.55. ()92, (b) 57

6.56. (a) 0.7734, (b)0.7718

6.57. () 0.2938, (b) 0.0108

6.58. (a) 0.6886, (b) 0.0011

6.59. (a) 0.3518, (b) 0.5131

6.60. (a«) 0.202, (b)0.100

6.61. (a) 0.251, (b) 0.0613, (c) 0.0988

6.62. () 0333, (b) 0.366, (c)0.201, («) 0.301

6.63. 0.080

6.64. 0.325

6.65. («)0.0183, () 0.0732, (c) 0.1464, () 0.909

6.66. () 0.0109, () 0.00103

6.67. (a«)0.135, (b) 0.0810, (c) 0.0810
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PART Il: Inferential Statistics

Chapter 7

Sampling Distributions

7.1 INTRODUCTION: SAMPLING WITH AND WITHOUT REPLACEMENT

Inferential statistics is used to draw conclusions about a population, based on a probability model of
random samples of the population. For example, a pollster may want to estimate the proportion of all
eligible voters favoring a particular presidential candidate by polling a random sample of eligible
voters. Or, a statistician may want to use the mean starting income of a random sample of recent
college graduates to estimate the mean starting income of all college graduates. Since different random
samples will most likely give different estimates, some knowledge of the variability of all possible estimates
derived from random semples is needed to arrive at reasonable conclusions. Before investigating this
variability, some technical terminology is needed.

In general, a population is any finite set of objects being investigated. A sample of objects drawn
from a population is a rendom semple if it is selected by a process in which every member of the
population has essentially the same chance of being chosen. We consider two types of random sample:
those drawn with replacement and those drawn without replacement. The probability distribution of a
random variable defined on a space of random samples is called a sampling distribution. Sampling
distributions are discussed in this chapter and their application to inferential statistics in the following
chapters.

EXAMPLE 7.1 Suppose it is desired to determine the average age of students graduating from colleges in the U.S.
ina given year. Here the population is the set of all college graduates in the U.S. for the given year. The age X of
each graduate is a random variable defined on the population. The average age X of the students in a random
sample of n graduates is a random variable defined on the space of all random samples of n graduates. The
probability distribution of X is a sampling distribution.

Sampling With Replacement

In sampling with replacement, each object chosen is returned to the population before the next
object is drawn. We define a random sample of size n, drawn with replacement, as an ordered n-tuple of
objects from the population, repetitions allowed.

EXAMPLE 7.2 A population consists of the set S = {4,7,10}. The space of all random samples of size 2, drawn
with replacement, consists of all ordered pairs (a, b), including repetitions, of numbers in S. There are nine such
pairs, which are

4,4, &7, &10), (7,4), (7,7), (7,10), (10,4), (10,7), (10,10)

The Space of Random Samples Drawn With Replacement

In general, if samples of size n are drawn with replacement from a population of size N, then the
fundamental principle of counting says there are

N-N-....-N=N"

such samples. In any survey involving samples of size n, each of these should have the same probability
of being chosen. This is equivalent to making the collection of all N samples a probability space in

210
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1
which each sample has probability v of being chosen. Hence, in Example 7.2, there are 3° =9

random samples of size 2, and each of the nine random samples has probability % of being
chosen.

Sampling Without Replacement

In sampling without replacement, an object chosen is not returned to the population before the next
object is drawn. We define a random sample of size #n, drawn without replacement, as an unordered
subset of n objects from the population.

EXAMPLE 7.3 When sampling without replacement from the population S = {4,7,10}, there are only three
random samples of size 2, which are the three subsets of S containing two elements, namely

14,7}, {4,10}, {7,10}.

The Space of Random Samples Drawn Without Replacement

If samples of size n are drawn without replacement from a population of size N, then there are

()

such samples, which is the number of subsets of the population containing # elements. For instance, in

Example 7.3, there are
3 3!
<2> 21 3

random samples of size 2. As in the case of sampling with replacement, the collection of all random
samples drawn without replacement can be made into a probability space in which any two samples have
the same chance of being selected. In Example 7.3, each of the three random samples has probability
of being chosen. »

EXAMPLE 7.4 Suppose 75 out of the 100 seniors in a high-school senior class prefer candidate A over candidate B
for class president. If 20 different seniors, chosen randomly, are polled about their preference, what is the
probability that exactly 15 of them favor candidate A? To answer this question, first note that the 20 different
seniors can be interpreted as a sample of size 20, drawn without replacement, from a population of size

100. There are <12000> such samples. The number of these samples in which 15 seniors favor candidate A is
BA(B where
15 5)
5 .
5= the number of ways 15 seniors can be chosen from the 75 that favor A, and

25 . .
< ) = the number of ways the remaining 5 seniors of the sample can be chosen from
the 25 that do not favor candidate A

Therefore, the probability that exactly 15 seniors in the sample with favor A is

P(15) = M ~ 0.226

()
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Comparing Sampling With and Withont Replacement

We saw in Example 7.4 that il 2@ seniors, chosen without replacement, were polled, then the
probability that exactly 15 of them would lavor candidate A is approximately €.226. 1f the 20 seniors
were chosen with replacement, then their selection would be a binomial experiment, b(ZO,%), and the

probability of exactly 15 in the sample lavoring candidate A is

20\ 7/ 75 \”/ 25\’
P(15 A 2 g P
(L5 (15)(100) (100) R20¢

Figure 7-1 shows the complete probability histograms [or the number of seniors favoring candidate
A when samples of size 28 are drawn with or without replacement, respectively. For4t =10,1,2,....9,
and 20, the probability that %4 scniors favor candidate A is ( to two dccimal places in both types ol
sampling.

w —
o2
02 02
018 — [ 0.8 [
0.16 0.16
0.14 0.14
0.12 ] 0.12 e
0.1 il 0.1 a
6.08 0.08
0.06 T 0.06 — |
0.04 0.04
0.02 :|_ 0.02
0 0 o
10 11 12 13 14 15 16 17 18 19 20 10 11 12 13 14 15 16 17 18 19 20
Sampling with replacement Sampling without repleccment
Fig. 7-1

The main difference between the two types ol sampling is that when sampling with replacement, the
individual outcomes in cach samplc arc independent, whercas when sampling without replacement, the
outcomcs are not independent. For cxample, il two coins arc drawn at random [rom three dimcs
and two quarters, then the probability ol getting two quarters is %% = 0.16 if the coins are drawn
with replacement, and % . % = 8.1 without replacement. However, when the population is large in com-
parison with the sample size, results obtained by sampling are very similar whether the sampling is with
or without replacement. Therelfore, when the populatien size is much larger than the sample
size, a probability model that assumes the individual outcemes in each sample are independent can
be applied to the sampling process regardless of whether the samples are obtained with er without replace-
ment.

EXAMPLE 7.5 Suppose that 55 percent of all eligible voters in a state lavor candidate B lor governor. II a
random sample of 1000 eligible voters is chosen, find the probability that between 52 percent and S8 percent of
the voters in the sample will favor candidatc B.

A samplc of 1000 voters is small in comparison with the number of cligible voters in any state, so we may usc
sampling with rcplaccmcent as a probability modcl. The sample sclection is then a binomial cxperiment b(r,p),
where #n = 1000 and p = 0.55. The probability that between 52 percent and 58 percent of the voters sampled will
lavor candidate B is the probability that there will be between 520 and 580 suecesses in the experiment. This
probability is equal to

SR

Z ( 10:)0 ) (0.55),(0.45)10:)(:_, ~ 0.95

r=>520
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The result was determined by using the normal approximation of the binomial (see Problem 7.8). Hence, approxi-
mately 95 percent of the time the random sample will be within 3 percentage points of the true percentage of the
population favoring candidate B.  Also, the result does not depend on the actual size of the total voting population,
only that the sample is small by comparison.

7.2 SAMPLE MEAN
Sampling With Replacement

Suppose X is a random variable with mean p and standard deviation o, defined on some popula-
tion. A random sample of size n, drawn with replacement, yields » values, x;, x5, ..., x,, for X. Since
the sample is drawn with replacement, these values are independent of one another. They can therefore
be considered to be values of # independent random variables Xi, X>,..., X, each with mean p and
standard deviation 6.  For example, if X is the age of college graduates in a given year, then X; would be
the age of the ith graduate (i =1,2,...,n) in a random sample from this population. The random
variable

X+ X+t X,
n

X =

is called the sample mean of X1,X,,...,X,. As a random variable, X also has a mean, pg, and a
standard deviation, o¢. It can be shown that these sample parameters are related to the corresponding
population parameters p and o, as stated in Theorem 7.1 below.

Theorem 7.1 (Mean and Standard Deviation of X: Sampling With Replacement): Suppose a population
random variable X has mean yu and standard deviation o. Then the sample mean X, for
random samples of size n drawn with replacement, has mean p ¢ and standard deviation o ¢
given by

o
py=p and  op=—

Vi

Furthermore, if X is approximately normally distributed, then so is X.

EXAMPLE 7.6 A population consists of the set S = {4, 7,10} as an equiprobable space. Random samples of size
2 are drawn with replacement.

() Compute the population mean, p, and standard deviation, o.
(b) Find the sampling distribution (probability distribution) for the sample mean, X.

(¢) Compute the mean, py, and standard deviation, oy, of ¥, and compare with u and o.
(#) Since the population is an equiprobable space, the probability of each number in S occurring is 3. Therefore,

the mean and standard deviation of the population are

1 1 1 21
= xP(x)=4. .- - e =
p=2xP(x) 3+7 3+1037377

and a:\Q]xfm%uy:%mfﬂ?%+wfn?%+aogn?%:ngv%

for every possible sample pair, and Table 7-2 gives the sampling

b
(b) Table 7-1 lists the mean value (a+b)

distribution for the sample mean, X.
(¢) From Table 7-2,

2 3 2 1 63
+55.54 7548554105 =5 =1

CE({X) =4
g =B =0 9 9
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Table 7-1. Samples of size 2, Table 7-2. Sampling distribution
sampling with replacement. for X, sampling with replace-
ment.
(a, b) X
by P(x)
4, 4 4
4 1
4,7 5.5 >
5.5 3
(4, 10) 7
7 3
(7, 4) 55 ’
8.5 Z
(7.7 7
10 L
(7, 10) 8.5
(10, 4) 7
(10, 7) 8.5
(10, 10) 10
and
oy =/ 21X — py) P(X)
2 1 2 2 2 3 2 2 2 1
=/@=7? =+ (55-7 24+ (T-77% 2+ (85-17)}* = — 7%=
\/(4 7) 9+( 7) 9+(7 7) 9+(85 7) 9+(10 7) 5
27 -
=4/==V3
) %
= V6 _ o : :
s Wy = = U, Oy — ==, Ly = <.
Therefore, puy =7 and oy = V3 VRS which agree with the formulas of Theorem 7.1, where n = 2
Sampling Without Replacement
If samples are drawn without replacement, then the sample values, xi,x,,...,x,, of a random

variable X are not independent. Nevertheless, the average of the values, namely

n

defines a sample random variable which will also be denoted by X and will also be called the sample
mean. 1In this case, the mean and standard deviation of X are given by Theorem 7.2 below.

Theorem 7.2 (Mean and Standard Deviation of X: Sampling Without Replacement): Suppose a popula-
tion random variable X has mean p and standard deviation 0. Then the sample mean X,
for random sample of size n drawn without replacement, has mean p¢ and standard
deviation o ¢ given by

c |N—n
Hx = 1 and UY:% N_1

where N is the size of the population and n < N. Furthermore, if X' is approximately
normally distributed, so is X.



CHAP. 7] SAMPLING DISTRIBUTIONS 215

EXAMPLE 7.7 Assume that random samples of size 2 are drawn without replacement from the population
S = {4,7,10} as an equiprobable space.

() Find the sampling distribution for the sample mean, Y.
(b)) Compute the mean yuy and standard deviation o of X, and compare with the population mean p and standard
deviation o.
(a+b)

(@) Table 7-3 lists the mean value

for every possible sample pair, and Table 7-4 gives the sampling

distribution for the sample mean, Y.

Table 7-3. Samples of size 2, Table 7-4. Sampling distri-
sampling without replace- bution for X, sampling
ment. without replacement.

{a, b} X X P(%)
{4, 7} 5.5 5.5 i
{4, 10} 7 7 i
{7, 10} &5 8.5 i

(b) From Table 7-4,

. 1 1 1 21
and
(& 2p(= 2 1 2 1 2 1
Oy = (-\*M,y) P(.\): (55*7) §+(7*7) §+(85*7) 5
4.5 —
=\= =v1L5

From Example 7.5, the population mean and standard deviation are = 7 and o = V6. Hence, py =7 =

/N — 6 [3-2 1
also, oy =V 1.5 and %~ % = % 31 V3. \[5 =+/1.5. These equations agree with the

formulas of Theorem 7.2.

The Sampling Distribution of X

The second parts of Theorems 7.1 and 7.2 say that if X is approximately normally distributed, then
X is also approximately normally distributed. Since we are assuming that the population is finite, X
cannot be exactly normal, but many random variables for large populations can, for most practical
purposes, be considered to be normally distributed. For example, the national SAT scores in a given
year are approximately normally distributed with mean 500 and standard deviation 100. The mean
SAT scores for random samples of size n will also be approximatey normal with mean 500 and standard

... 100 . . . . . . .
deviation —. (Since the population size, N, of students taking the SAT is large in comparison to a

NG

. . IN —n . .
typical sample size, n, we may assume T 1; equivalently, we may assume that the scores in each

sample are independent.) The following remarkable theorem says that if the sample size is large, then
the sample mean X is approximately normally distributed regardless of the distribution of X.

Theorem 7.3 (Central Limit Theorem): Supose X is a random variable with mean p and standard
deviation o > 0, defined on some population. If n is large, then the sample mean X is
approximately normally distributed.
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As a rule of thumb, the central limit theorem applies when n > 30. Note that Theorems 7.1 and 7.2

still apply when # is large. That is, X has mean p and standard deviation — 1f the samples are drawn

with replacement, whereas X has mean p and standard deviation — q/ 1f the samples are drawn
without replacement and n < N. \/_

Sampling From a Large Population

As noted earlier, when a random sample is drawn from a large population, it can be assumed that
the values xy, x,,...,x, of the sample are independent. The assumption of independence is key to
much of the probability theory used as a model for statistical inference. In the following sections,
phrases such as “‘the population is much larger than the sample size”” or “‘the population is large in
comparison to the sample size”” are meant to convey that the x values obtained in samples are essentially

independent. In practice, if the assumption o1~ 1 is reasonable in a given context, then inde-

pendence may be assumed. Hence the Central Limit Theorem can be rephrased as follows.

Theorem 7.3’ (Central Limit Theorem): Suppose X is a random variable with mean p and standard
pp M
deviation ¢ > 0, defined on some population. If 7 is large (n > 30) and the population
size is large in comparison to n, then the sample mean X is approximately normally
(o2

Vi
EXAMPLE 7.8 Suppose that the number of customers entering Dee’s Grocery each day over a five-year period is a

random variable with mean 100 and standard deviation 10. Then the average number of customers computed over
randomly selected 30-day periods can be modeled as a normal random variable with mean 100 and standard

distributed with mean g = p and standard deviation o¢ =

.. 10 . L .
deviation —— =~ 1.8. To see this, first note that the sample size is 30, which is large enough to assume that the

V30
sample average is a normal random variable. Also, the population size is the number of days in a 5-year period,
which is at least 1826 and sufficiently large compared with the sample size to enable us to assume that the numbers of

N — 1826 — 30
customers in the days of a sample are independent; equivalently, \/ — 2 \/ T 1~ 0.9920 =~ 1.
EXAMPLE 7.9 With reference to Example 7.8, what is the probability that the average number of customers
entering Dee’s Grocery daily over a 30-day period is between 95 and 105?

As indicated in Example 7.8, the average number of customers, or sample mean X, can be modeled as a normal
random variable with mean 100 and standard deviation 1.8. Then

X 100
1.8

is a normal random variable with mean 0 and standard deviation 1, that is, a standard normal random variable.
Using the standard normal table,

P(95 < X <105) = P(95 ;8100 < o Igloo < 1051*8100) P(—2.78 < Z < 2.78) = 0.9946

Hence, it is almost certain that the average number of customers entering the store daily over a 30-day period is
between 95 and 105.

7.3 SAMPLE PROPORTION

Suppose a proportion p of a population favor candidate A for president. In a random sample of
size n drawn from the population, a certain proportion p of the sample will favor candidate A, and the
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collection of all such proportions defines a random variable P, called the sample proportion. The mean
and standard deviation of P are given in the next two theorems.

Theorem 7.4 (Mean and Standard Deviation of P: Sampling With Replacement): Suppose the popula-
tion proportion is p, and random samples of size n are drawn with replacement. Then the
.5 .. 1—
sample proportion P has mean p and standard deviation u
n

Theorem 7.5 (Mean and Standard Deviation of P: Sampling Without Replacement): Suppose the popu-
lation size is N, the population proportion is p, and random samples of size n are drawn
without replacement. Then the sample proportion P has mean p and standard deviation

VS

If the population is much larger than the sample size, then

— Y =~ 1, and if the sample size itself

is also large (n > 30), then the central limit theorem (Theorem 7.3") can be used to obtain the following
result.

Theorem 7.6 (Central Limit Theorem for Sample Proportions): Suppose the sample size n is large
(n > 30), and the population size is large in comparison to n. Then the sample proportion
p(1—p)

P is approximately normally distributed with mean p and standard deviation {/——=2.
n

Theorems 7.4 and 7.5 follow from Theorems 7.1 and 7.2, respectively, and Theorem 7.6 follows from
theorem 7.3' (see Problems 7.63-7.65).

EXAMPLE 7.10 Suppose 25 percent of all U.S. workers belong to a labor union. What is the probability thatina
random sample of 100 U.S. workers, at least 20 percent will belong to a labor union?

The sample size, » = 100, is greater than 30, and the total number of U.S. workers is much larger than
100. Therefore, the sample proportion 2 of workers that belong to a labor union can be modeled as a normal

1—p) \/0.25 % 0.75
no 100

random variable with mean p = 0.25 and standard deviation \/ al =~ 0.0433. Then

P—0.25
zZ= 0.0433

is a standard normal random variable. Using the standard normal table,

P £-025_02-025
0.0433 ~ 0.0433

~ P(Z> —1.15)
= P(Z < 1.15)
=0.8749

P(P>02)=

Hence, it is very likely that there will be at least 20 percent union workers in a random sample of 100 workers.

7.4 SAMPLE VARIANCE

Let X be a population random variable with mean p and standard deviation o. We assume that
random samples of size n are taken with replacement, or if they are taken without replacement, we
assume that the population size is much larger than #. Then the values x, x5, ..., x, of X in a random
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sample are, in effect, values of # independent random variables X7, X5, ..., X, each with mean p and
standard deviation 0. The random variable

X1 - X+ (XX + -+ (X, X)

2 __
5= n—1

where X is the sample mean, is called the sample variance.

Since $” is intended to be an average of the square deviations from X, it may seem more natural to
divide by s rather than n — 1. In fact, some statisticians do define S? with n as the denominator, and
there are pros and cons for each choice. A reason in favor of dividing by n — 1, as above, is that the
expected value of $° is then equal to o2, the variance of X (see Problem 7.31). In technical terms, the
above S is an unbiased estimator of o*. Before discussing a sampling distribution related to S$°, we
must introduce the chi-square random variable.

The Chi-Square Distribution

Because of the central limit theorem, the normal distribution plays a major role in inferential
statistics. Another continuous probability distribution that plays an important role in inferential
statistics is the chi-square distribution, which can be defined as follows.

Definition: Let Z;,Z,,...,7Z; be k independent normal random variables, each with mean 0 and
standard deviation 1. Then, the random variable

N =Zi+Z3+ -+ Z}

is called a chi-square random variable with k degrees of freedom.

Properties of the Chi-Square Distribution

A chi-square random variable x* with k degrees of freedom is often denoted by x*(k) to emphasize
its dependence on the parameter k, which can be any positive integer, including 1. There is a density
curve for each value of k, several of which are illustrated in Fig. 7-2.  Note that x° (k) assumes only non-
negative values (since it is a sum of squares). Also, as k increases, the corresponding density curve
becomes less skewed to the right and more symmetric about the mode, which is k — 2; x*(k) has mean k
and standard deviation v/2k.

A
a2 - k=1
k=4
015+
k=6
[Ny k=8
0.05
¢ 5 10 15 20

Fig. 7-2 Chi-square distribution for & degrees of freedom

EXAMPLE 7.11 Suppose Xj, X5, and X5 are independent normal random variables, each with mean 100 and
standard deviation 15, and let Z; = (X; — 100)/15 for i = 1,2,3. Then Z;, Z,, and Z; are independent normal
randon1 variables, each with mean 0 and standard deviation 1. Therefore, Z3, Z3, and Z2 are each x*(1), with
mean 1 and standard deviation v/2; and Z? + Z% + Z3 is x2(3), with mean 3 and standard deviation v/6.
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The Sampling Distribution of (n — 1)S5?/s>

We are now in a position to determine a sampling distribution related to the sample variance
S%. Note that if X7, X3,...,¥, are n random variables, each with mean p and standard deviation
o > 0, then (see Problem 7.30)

2 (X — /\7)2 =>(Xi— M)2 - n(X’ - M)Z

Dividing both sides by o* gives

X, — X)? X, —p)? (X—p)?
Z( 2):Z( Uzﬂ)(az/’;;)

g
If the X;s are independent random variables, the left side of the above equation is (n — 1)S° / o?; and if
the X;s are also normally distributed, the right side is the difference of a x*>(n) random variable (by
definition) and a x*(1) random variable (by the Central Limit Theorem 7.3"). The following result can
then be established.

Theorem 7.7: Suppose random samples of size n corresponding to some random variable X are drawn
from a population whose size is much larger than n. Suppose also that X is (approxi-
mately) a normal random variable with mean p and standard deviation ¢ > 0. Then
(n—1)8?/0” is (approximately) a chi-square random variable with n — 1 degrees of
freedom.

Mean and Standard Deviation of 5>

As stated above, the expected value of S? is o°, the variance of X. That is, the mean of S° is

o°. Also, since (n — 1)8%/0” is a chi-square random variable with n — 1 degrees of freedom, the stan-

dard deviation of (n—1)8*/0> is 1/2(n—1). Therefore, the standard deviation of $> is

[\/2(n — 1)]6*/(n — 1), which is equal to [\/2/(n — 1)]o°.

EXAMPLE 7.12 The annual college SAT scores are (approximately) normally distributed with mean p = 500 and
standard deviation o = 100. If S? is the sample variance on the space of all random samples of 50 SAT scores, then
498%/0* is (approximately) a x>(49) random variable, which has mean 49 and standard deviation
V249 =7v2=9.9. S itself has mean pg = o> = 10,000 and standard deviation og = [1/2/49] - 100> =~ 2020.

BASIC ASSUMPTION REGARDING FUTURE SAMPLING

In Chapters &, 9, 10, and 11, unless otherwise stated, we will assume, for simplicity, that either
sampling is done with replacement or that the population size N is much larger than the sample size
n. This will ensure that the individual outcomes of a random sample are essentially independent, and

. N—n .
make the correction factor Y1 for the sample variance unnecessary.

Solved Problems

SAMPLING WITH AND WITHOUT REPLACEMENT

71. Let S={I1,56,8}.

() List all samples of size 3, with replacement.

(b) How many samples, with replacement, are there of size 4, size 5, size n?
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7.2

7.3.

74.

7.5.
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() A sample with replacement is a 3-tuple of numbers from S, repetitions allowed. By the fundamental
counting principle, there are 4 x 4 x 4 = 64 such samples:

1,1, 1,1, 1,5, (1, 1,6),(1, 1,851,155, 1,56),(,5,8)
1,6, 1), (1, 6,5), (1, 6,6), (1,6, 8), (1,8 1), (1, 8 5), (1, 8, 6), (1, &, 8)
G 1L1),65 1,5 651,6),6 18,6 51,655, 55 6), 55,8
(5,6, 1), (56,5, 5 6,6), (568, 8 1), 85,586,588
6.1, 1), (6, 1, 5), (6, 1, 6), (6, 1, 8), (6, 5, 1), (6. 5, 5), (6, 5, 6), (6, 5. 8)
(6, 6, 1), (6, 6, 5), (6, 6, 6), (6, 6, 8), (6,8 1), 6, 8 5), 6 8 6), 6 8 8)
8, 1,1, (81,5, (8 1,6),(8 1,8), & 5 1), 55,8 56), (858
(8.6, 1), (86, 5), (8 6,6), (86,8, (88 1), (585, (88 6), (588

(b) There are 4* = 256 samples of size 4, 4° = 1024 samples of size 5, and, in general, 4" samples of size n
for any positive integer .

Let S = {1,568}

(a) List all samples of size 3, without replacement.
(b)) How many samples, without replacement, are there of size 4, size n?

4
() A sample of size 3, without replacement, is a subset of S containing 3 elements. There are < 3> =4
subsets: {1, 5, 6}, {1, 5, 8}, {1, 6, 8}, {5, 6, 8}.

4 . :
() Forn=1,2,3, 4, there are ( ) samples of size n; for n > 4, there are no samples of size n.
n

Five different banks draw a name at random from the same list of 100 names to send a credit-card
application. How many random samples of five applications, one application for each bank, are
possible? How many of the samples contain the same name more than once?

Let the banks be denoted by 4, B, C, D, E. Each sample of five applications can be considered as a 5-
tuple of names, where the first name is chosen by bank A, the second by bank B, and so on. Since
repetitions are allowed, the sampling is with replacement, and there are 100° = 10,000,000,000, or 10 billion,
possible samples. By the fundamental counting principle, the number of samples with five different names
18 100 x 99 x 98 x 97 x 96 = 9,034,502,400. Subtracting this number from 10 billion, we find that there are
965,497,600 applications with the same name appearing more than once.

How many committees of S people can be randomly selected from a group of 10 women and 15
men. How many of the committees will have all men? How many will have all women? How
many have three women and two men?

The number of 5-person committees is the number of ways that 5 people can be chosen from a group of
25 people, or the number of samples of size 5 that can be chosen, without replacement, from a population

of size 25, which is (255> = 53,130. The number that have all men is (155> = 3003, and the number

that have all women is <10> =252. The number that have three women and two men is
10 15
= 12,600.
(5)(5) 2

What is the most likely breakdown of men and women in a committee of five randomly chosen
from 15 men and 10 women?
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7.6.

7.7.

Since the ratio of 15 men to 10 women is 3 to 2, it seems reasonable that a committee of 3 men and 2
women would be the most likely to occur at random. This expectation can be checked by simply counting
the number of each type of committee. From Problem 7.4 we have the following counts.

5 men 3003
5 women: 252

3 women, 2 men: 12,600

Similarly, we get the following counts.

1 man, 4 women: <15> <10> = 3150

3 men, 2 women: ( 3 ) ( 120> = 20,475

4 men, 1 woman: (145> <110> = 13,650

As expected, a committee with 3 men and 2 women is the most likely to occur.

A professor asks her class to determine the number of random samples of size 3 that can be
selected, without replacement, from a population of three Democrats and two Republicans.
James answers that there are three random samples, one consisting of 3 Democrats, one con-
sisting of 2 Democrats and 1 Republican, and 1 consisting of 1 Democrat and 2 Republicans. Is
James right? If not, how many are there?

All random samples of size 3 should have the same chance of occurring. However, since there are
more Democrats than Republicans, a Democrat is more likely to be selected than a Republican. Therefore,
a sample consisting of 2 Democrats and 1 Republican is more likely than a sample consisting of 1 Democrat
and 2 Republicans. So James’s answer is incorrect. To arrive at the correct answer, label the Democrats

. 5 . .
as Dy, D,, Dy and the Republicans as Ry, R,. Then, there are ( 3) = 10 random samples of size 3, without
replacement, namely:

{D17D27D3}7 {DlvD27R1}7 {D17D27R2}7 {D17D37R1}7 {D17D37R2}7

{D27D37R1}7 {DZ7D37R2}7 {D17R17R2}7 {D27R17R2}7 {D37R17R2}

Note that the probability that a random sample of size 3 will have 2 Democrats and 1 Republican is &

1
whereas the probability that the sample will have 1 Democrat and 2 Republicans is only %

How many random samples of size 3, with replacement, are there for the population in Problem
7.67 How many are there in each of the categories: 3 Democrats; 2 Democrats, 1 Republican; 1
Democrat, 2 Republicans; 3 Republicans?

There are 5° = 125 such random samples, broken down as follows.

3 Demecrats: 27 random samples. They are: (Dy, Dy, D;), (D2, D, D,), (D3, D3, Ds3); 3 permuta-
tions each of (D, Dy, D), (D1, D1, D3), (D2, Da, Dy), (D2, Da, Ds3), (D3, D3, Dy), (D3, D3, Dy); and 6
permutations of (Dy, D,, Ds).

2 Demecrats, I Republican: 54 random samples. They are: 3 permutations each of (D;, Dy, Ry),
(D1, D1, Ry), (D3, Dy, Ry), (D2, Dy, Ry), (D3, D3, Ry), (D3, D3, R,); and 6 permutations each of
(Dls D25 Rl)v (D], D29 RZ), (Dl'l D3s Rl)s (Dl, D3, RZ)’ (D25 D3» Rl)s (D29 DS: RZ)

1 Demecrat, 2 Republicans: 36 random samples. They are: 6 permutations each of (D;, Ry, R»),
(D2, Ry, Ry), (D3, Ry, Ry); and 3 permutations each of (D;, Ry, Ry), (D1, Ry, Ry), (D2, Ry, Ry),
(D2, Ry, Ry), (D3, Ry, Ry), (D3, Ry, Ry).

3 Republicans: 8 random samples. They are: (R, R}, Ry), (R2, Ry, R,); and 3 permutations each of
(R1, Ry, Ry), (R, Ry, Ry).
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In Example 7.5 it was stated that
true. r=520

30 /1000 _
< ) > (0.55)"(0.45)"*"" ~ 0.95. Show that this is
The result says that P(520 < X < 580) ~ 0.95, where X is a binomial random variable with mean
np = 1000(0.55) = 550, and standard deviation ~/np(l —p) = 1/1000(0.55)(0.45) =~ 15.73. By approxi-
mating .Y by a normal random variable with the same mean and standard deviation, and using the continuity
correction, we get

< <
1573  — 1573 — 1573
~P(—194<Z<194)

519.5— 550 _ ¥ — 550 _580.5 — 550
P(520 < ¥ < 1000) = P< )

where Z is the standard normal random variable. Then, from the standard normal table,

P(—194<Z<194) =2P0<Z<194)
~ 2(0.4738)
~ 0.95

SAMPLE MEAN

7.9.

7.10.

7.11.

A population random variable X has mean 100 and standard deviation 16. What are the mean
and standard deviation of the sample mean X for random samples of size 4 drawn with replace-
ment?

For the population, 4 = 100 and ¢ = 16. By Theorem 7.1 the mean p y and standard deviation oy of

X are:

ny = p =100 and oy = =

With reference to Problem 7.9, what are the mean and standard deviation of X if the population
size is 250, and the samples of size 4 are drawn without replacement?

By Theorem 7.2, where N = 250 and n = 4,

o [N—n 16 j246

= ——=—/—==r 795
VaRVN-—1 +/4V249

py = p =100 and oy

Suppose the random variable X in Problem 7.9 is approximately normally distributed. What is
P(95 < X < 105) for samples of size 4 drawn with replacement?

By Problem 7.9, the mean and standard deviation of X are py = 100 and oy = 8. By Theorem 7.1, ¥
is approximately normally distributed. Therefore,

95100 _ ¥ —100 _ 105 — 100
< <
s & 8
= P(—0.625 < Z < 0.625),

P95 < X <105) = P(

where Z is the standard normal random variable. Using a standard normal table,
P(—0.625 < Z <0.625) = 2P(0 < Z < 0.625)
~ 2(0.2324)
~ 0.46
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Suppose the random variable X in Problem 7.9 is approximately normally distributed. What is
P95 < X < 105) for samples of size 4 drawn without replacement?

By Problem 7.10, the mean and standard deviation of X are puy = 100 and oy =~ 7.95. By Theorem
7.2, X is approximately normally distributed. Therefore,

95 -100 _ X —100
795 — 795 —

~ P(—0.63 < Z < 0.63)

PO5<XY < 105):P( 105’100)

7.95

where Z is the standard normal random variable. Using a standard normal table,

P(—0.63<Z2<0.63) =2P(0<Z<0.63)
~ 2(0.2357)
~ 047

Let S={1, 5, 6, 8}. Find the probability distribution of the sample mean X for random
samples of size 2 drawn with replacement.

Since S has 4 elements, there are 4> = 16 random samples of size 2 drawn with replacement. These
pairs and their average values are given in the following table.

Sample X Sample X Sample X Sample X
(LD 1 (1, 5) 3 (1, 6) 3.5 (1, 8) 4.5
()] 3 5,9 5 5, 6) 5.5 (5,8 6.5
(6, 1) 3.5 (6, 5) 5.5 (6, 6) 6 (6, 8) 7
@8, 1) 4.5 (8,9 6.5 (8, 6) 7 ()] 8
The probability distribution of Y is given in the following table:
X 1 3 3.5 4.5 5 5.5 6 6.5 7 g
p(x) % T % % % 1% % % i 1

Let S= {1, 5, 6, 8}. Find the probability distribution of the sample mean X for random
samples of size 2 drawn without replacement.

. 4 . .
Since S has 4 elements, there are ( 2) = 6 random samples of size 2 drawn without replacement.

These, their average value, and the probability distribution of X are given in the following two tables:

Sample X * )
3 1
{1, 5} 3 §
3.5 1
{1, 6} 3.5 i s 6
{1, 8 4.5 5'5 ¢
{5, 6} 5.5 6‘5 6
{5, 8 6.5 ‘ 3
7 1
{6, 8} 7 6
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7.15. Let S = {1, 5, 6, 8}. Compute the population mean p and standard deviation . Also, com-
pute the mean py and standard deviation oy of the sample mean X for random samples of size 2
drawn with replacement. Verify that py — p and oy = o/v/2, as stated in Theorem 7.1.

. . 5 .

The population, taken as an equiprobable space, has mean p = W = 5, and standard devia-
152+ (5-57+(6-5"+(8-5° 26 V26 e

tion o —1/ (-3 +6=5) : ( )+ Y 7 —QT. Using the probability distribution

table in Problem 7.13, the mean of X is

1 2 2 2 1 2 1
py =1X—=4+3X—=4+35X—=4+45X—=+5x—=+55x—=+6x—

16 16 16 16 16 16 16
2 2 1
80
-2 _3
16

which is the same as the population mean. The variance of X is

1 2 2 2

2 2 2 2 2 2
oy =1-5)"=4+0C-5)"=+0B5-5)"=+MU45-5)"=+05-5
v = ) 16 ( ) 16 ( ) 16 ( ) 16 ( )

22 21 22 22 2
FS5 -5 et (65 L (65-5) =+ (75 5+ (8-5)

:TEUG+8+45+05+0+05+1+45+8+%

52 13

16 4

.. S V13 . V26 .

Therefore, the standard deviation of Y is oy = - Since o = - and n =2, it follows that
o \/% \/E .
— =——=——=0y, as stated in Theorem 7.1.
Ve 2v2 2 %

7.16. LetS=1{1,5,6,8. Computethemean py andstandard deviation oy of X for random samples

. . . o [N—n .
of size 2 drawn without replacement. Verify that puy = p and oy = , as stated in

Theorem 7.2. Vi YN -1

As computed in Problem 7.15, the population mean and standard deviation are p =5 and

26 _
0= Using the probability distribution table in Problem 7.14, the mean of .Y is

1 11 1 1 1

_30_

5
6

as stated in Theorem 7.2. The standard deviation of X is

21 21 21 21 21 21
= — 5 (355 o+ (455 2=+ (5557 =+ (65574 (7—5)7°=
oy \/(3 5)6+(35 )6+(4 )6+(55 5)6+(65 5)6+(7 5)6
e
G
. o [N—n_ V26 2 V13v2 VI3 13
Since N=4 and n =2, we have — |/ —— = —— /== — —== = 4/—, which is equal to oy,
as stated in Theorem 7.2. Vi VN =1 2273 2 V3 V23 6
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7.17. Let S={1, 5, 6, 8}. Find the probability distribution of the sample mean X for random
samples of size 3 drawn (&) with replacement, (b) without replacement.

(a) There are 4° = 64 random samples of size 3 drawn with replacement. These are shown in Problem
7.1. By finding the average of the three entries in each triple, we arrive at the following probability

distribution.
x p(%) x p(%) x p(%)
1 1/64 13/3 3/64 19/3 6/64
7/3 3/64 14/3 6/64 20/3 3/64
8/3 3/64 5 7/64 7 3/64
10/3 3/64 16/3 3/64 22/3 3/64
11/3 3/64 17/3 6/64 24/3 1/64
4 6/64 6 4/64

4 . .
(b) There are < 3 ) = 4 random samples of size 4 drawn without replacement. They are {1, 5, 6}, {1, 5, 8},

{1, 6, 8}, {5, 6, 8}. Computing the average of the entries in each of these, we arrive at the following
probability distribution table.

X 4 143 5 1953

P(X) 1/4 1/4 1/4 1/4

7.18. Find P(4 < X <6), where X is the sample mean for random samples of size 3 drawn with
replacement from the population {1, 5, 6, 8}.

Using the probability distribution table in Problem 7.17(a), we find that

ri<x< =) 1o(5) o(5) re 1 a(F) 1o(5) 100

6+3+6 7 3+6+4
64 64 64 64 64 64 64
35

— = 0.55
T 64 0

7.19. Find P(4 < X < 6), where X is the sample mean for random samples of size 3 drawn without
replacement from the population {1, 5, 6, 8}.

Using the probability distribution table in Problem 7.17(b), we find that

PA4< XY <6)=p() +p<?} +r(5)

7.20. Does the Central Limit Theorem (Theorem 7.3) apply to the sample mean X for random samples
of size 36 drawn with replacement from the population {1, 5, 6, 8}? If so, use the theorem to
compute P(4 < X <6).

Since the sample size 36 is larger than 30, Theorem 7.3 does apply. Hence, we may assume that .Y is
approximately normally distributed. Also, by Theorem 7.1, Y has mean py = 5 and standard deviation
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26 . . . .
cr;(:%, where 0’=\T is the population standard deviation (as computed in Problem 7.15).
26 V26
Therefore, 0y = ——- — ~=> ~ 0.4249. Then
2V36 12

i 5 ¥-5 _6-5
P(4§X§6):P<4 <X o6 )

0.4249 ~ 0.4249 — 0.4249
~ P(—235< Z <2.35)

where Z is the standard normal random variable. Using a standard normal table, we find that
P(—235<Z<235)=2P(0 < Z <235) ~2(0.4906) ~ 0.98.

Does the Central Limit Theorem (Theorem 7.3") apply to the sample mean X for random samples
drawn without replacement from the population {1, S, 6, 8}?

No, only samples of size 4 or less can be drawn without replacement. Furthermore, the population
size, 4, can never be much larger than the sample size.

SAMPLE PROPORTION

7.22.

7.23.

7.24.

The proportion of unmarried men between ages 21 and 30 years in a town is % Suppose
random samples of size 16 are drawn with replacement from all men in the town between
ages 21 and 30. What are the mean and standard deviation of the proportion P for all such

samples?

By Theorem 7.4, the mean of Pis %, and the standard deviation of P is

\/M— X3 V20

16 16 12

Suppose the town in Problem 7.22 has 225 men between ages 21 and 30 years, and the sampling is
without replacement. Then what are the mean and standard deviation of P?

By Theorem 7.5, the mean of P is still 2, but the standard deviation is the standard deviation without

replacement, 0.1179, multiplied by
225— 16 209
Vo 0

Hence, the new standard deviation is approximately 0.1179 x 0.9659 =~ 0.1139.

The proportion of Democrats in a population consisting of three Democrats, Dy, D,, D3, and
two Republicans, Ry, R, is p = % There are 125 random samples of size n = 3 that can be
drawn with replacement from the population. Find the probability distribution for the sample
proportion P of Democrats defined by the collection of all 125 such samples (see also Problem

7.60).

Let p denote the proportion of Democrats in a given sample; p can assume the values: 1 (three
Democrats), 2 (two Democrats, one Republican), 1 (one Democrat, two Republicans), 0 (three Republi-
cans). Problem 7.7 gives the breakdown of the samples into these categories, which results in the following
probability distribution table.
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Category p Frequency P(p)
3 Democrats 1 27 2L
2 Democrats, 1 Republican % 54 %
1 Democrat, 2 Republicans 1 36 35
3 Republicans 0 8 o

7.25. Verify that the sample proportion P in Problem 7.24 has mean p = g and standard deviation

11— .
u, as stated in Theorem 7.4.
n
From the probability distribution table in Problem 7.24, the mean of P is
. 27 2 54 1 36 8 75 3
2P = X 3 T s O I TR TS

The variance of P is

Z(ﬁp)zp(ﬁ):<l-%>212275+< 73) 125 ( E) 25" (0%>2%
L9

4 27 1 54 16

25 125+225 125+22€ 125 25 15

_4 27 1 6 16 4 9 8

=35 125 25 125 25 125 |25 125
250

T 25% 125

2

=%

Therefore, the standard deviation of P is g Also,

p(1—p)  [2(1-3)

n 3

S . .

7.26. There are only < 3> = 10 random samples of size # = 3 that can be drawn without replacement
from the population Dy, D;, D3, Ry, R;. Find the probability distribution for the sample
proportion P of Democrats defined by the collection of all 10 random samples.

The ten random samples of size n = 3, drawn without replacement are:
{Dy, Dy, D3}, {Dy, Da, Ri}, {Dy, Da, Ry}, {Di, D3, Ri}, (D1, D3, Ry},
{D3, D3, R}, {Dy, D3, Ry}, {D1, Ry, Rs}, {Da, Ri, Ry}, {Ds, Ry, Rs}

Let p denote the proportion of Democrats in a given sample; 5 can assume the values: 1 (three Democrats), %
(two Democrats, one Republican), or 1 (one Democrat, two Republicans). We obtain the following prob-
ability distribution table.

Category Frequency P

>
S

3 Democrats
2 Democrats, 1 Republican

e
ol al> al—

1 Democrat, 2 Republicans
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7.27. Verify that the sample proportion P in Problem 7.26 has mean p :% and standard deviation

\/p(lnp) . \/N — Y, as stated in Theorem 7.5.

From the probability distribution table in Problem 7.26, the mean of 2 is

J 1 2 6 1 3 6 3

The standard deviation is

AN 2 3\'6 (1 3\?3  [r2\'1 1V 6 (413
5)0\35)0"\35) 0 V\5) 07 \15) 0 \15) 10

R E NI
“ V250 V15 TS
Furthermore,
p(l—p) [N—n_ [30-39 [5-3
n n—1 3 5—1
v fi]
5 V2TS

SAMPLE VARIANCE

7.28.

7.29.

7.30.

Suppose Z,, Z,, Z; are three independent standard normal random variables. Use these to
generate three chi-square random variables, each with 2 degrees of freedom. What are the mean
and variance of each of the three chi-square random variables?

724+ 75, 7} + 73, and Z5 + Z3 are each chi-square random variables with & = 2 degrees of freedom.
Each one has mean 2 and variance 2k = 4.

Suppose Z is a standard normal random variable. Is Z* + Z* a chi-square random variable with
2 degrees of freedom?

No. If Z? + Z* were X2(2), it would have variance 4, as in Problem 7.28, but Z% + Z%> = 277, and
Var(2Z?) =2 Var(Z*) =4 x 2 =8.

Let X;, X, be two random variables, each with mean p. Show that
S (X X)) =00 (X 10)* — 2(X — p)?, where X is the sample mean.

=X =)+ (= X+ (X, —p)+ (o= X))

= -’ 2N e X))+ (p X)

H () 2 ) X) (e X

(i) +(p— X)X, —2u+p— X +2X, —2u+p—X)

I
VM“

Il
o

(X — 1)’ + (p — X)X —2p)

I
'M“

Il
o

(X, — p)? = 2(¥ — p)?

I
VM“

Il
o
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The same procedure can be used to show that, for any positive integer #, 5;’:1(&7.17)2:
) !
S ) — X )

7.31. Let X, X,5,...,X, be n independent random variables, each with mean p and standard
deviation o. Show that the expected value of the sample variance,

XX+ X+ + (X, - X)

S? =
n—1

is equal to o?.

First note that cr%rl = E(X; — p)* = 0% and U?\' = E(X — p)* = 0*/n by Theorem 7.1. Then

o\ 2
55 = B B ) = B a0

n—1 n—1
1 2 n — 2
= E(X; — —— EX —
—— S E(X - 0 - = B p)
1 2 n 0'2
7117120 n—1n
no? o

T n—1 n-1

:0'2

7.32. Let S=1{1, 5, 6, 8}. Find the probability distribution of the sample variance S? for random
samples of size 3 drawn without replacement.

There are four random samples of size 3 drawn without replacement: {1, 5, 6}, {1, 5, 8}, {1, 6, 8},
{5, 6, 8}. There are four corresponding values of

(Y =X+ (Y, — X))+ (33— X)°
2

and each has probability %, as indicated in the following table.

§* =

Sample X, X, X, X S? p
(1,5, 6 1 5 6 4 7 1
{1,5, 8 1 5 8 4 L i
(1,68 1 6 g 5 13 | 4
(5.6,8 | s 6 s L I !

7.33. Use the probability distribution determined in Problem 7.32 to compute the mean pg: and the
standard deviation o of the sample variance S? for random samples of size 3 drawn without
replacement from the population {1, 5, 6, 8}.

ThemeanofSZis;LSz:7><%+3?7><%+13x%jt;x%:%:?;andthevarianceof82is
2, 26 2X1+ 37 26 le+ ;3 26 le+ 7 26 2X1
s2 = 3 4 3 3 4 3 4 3 3 4
676
36

169
9
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Therefore, the standard deviation of S? is og = \/1_29 = ?

It can be shown that when sampling without replacement, the mean of the corresponding

sample variance is pg = v o°, where o” is the population variance, taken as an equiprobable

-1
space, and N is the population size. Use Problem 7.33 to verify this result for the population
{1, S, 6, &}, when samples of size 3 are drawn without replacement.

In Problem 7.15 it was determined that the population variance for {1, 5, 6, 8}, taken as an equiprobable
4 26 26
2 —_—

. 26 26 .
space, is o = T From Problem 7.33, we have pg» = —. Since N = 4, we get Ll T =377

3 N VA

was to be shown.

Suppose samples of size 10 corresponding to a population random variable X are drawn without
replacement. Suppose also that X is normal, with mean 75 and standard deviation 5. What are
the mean pg and standard deviation o of the sample variance S%7

The mean pg of §? is equal to the variance of Y regardless of the sample size. Therefore,
per =52 =125 Also, by Theorem 7.7, 95*/25 is chi-square with 9 degrees of freedom. Therefore, the

25 25v2
standard deviation of 95*/25 is v/2 x 9 = 31/2; and the standard deviation of §? is o5 = 5 X V2 = T\[

Supplementary Problems

INTRODUCTION: SAMPLING WITH AND WITHOUT REPLACEMENT

7.36.

7.37.

7.38.

7.41.

7.42.

How many samples of size 3 can be drawn from S = {2, 4, 8, 10, 12}, (a) with replacement, (b) without
replacement?

In Problem 7.36, how many of the samples drawn with replacement have three different numbers?

If a population has size 10, what is the sample size n for which there are the most samples drawn (a) with
replacement, (b) without replacement?

Repeat Problem 7.38 for a population of size N.

If a student guesses each answer in a 5-question True—False test, what is the most likely number of correct
answers the student will get? What is the least likely number of correct answers the student will get?

Suppose there are 20 business majors in a statistics class of 32 students. If a random sample of 4 students is
chosen without replacement, what is the probability that at least 2 of them will be business majors?

Repeat Problem 7.41 if the samples are chosen with replacement.

SAMPLE MEAN

7.43.

A population random variable X has mean 75 and standard deviation 8. Find the mean and standard
deviation of .Y, based on random samples of size 25 taken with replacement.
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7.44.

7.45.

7.46.

747.

7.48.

7.49.

7.50.

7.51.

7.52.

7.53.

7.54.

7.55.

Repeat Problem 7.43 if the random samples are taken without replacement.

Suppose the random variable ¥ in Problem 7.43 is approximately normally distributed. Find
P(72< XY <178).

Repeat Problem 7.45 if the samples are taken without replacement, and the population has size 400.

SAT scores are approximately normally distributed with mean 500 and standard deviation 100. If a
random sample of size 50 is taken, what is P(X > 525)?

With reference to Problem 7.47, how large must the sample size be so that P(475 < X < 525) = 0.95?

A population random variable ¥ has mean 250 and standard deviation 75. Suppose Y has standard
deviation 13.5, based on random samples of size 25 taken without replacement. How large is the popula-
tion?

Let S= {2, 4, 8, 16, 32}. Find the probability distribution of the sample mean X for samples of size 2
drawn without replacement.

Find the mean and standard deviation of X in Problem 7.50.
Repeat Problem 7.51 if the samples are drawn with replacement.

A population random variable X has mean 25 and standard deviation 5. Samples of size 40 are drawn with
replacement. Find P24 < X < 26).

Suppose the waiting time for a bus is a random variable with mean 8 minutes and standard deviation 4
minutes. In a given month, what is the probability that the average waiting time is less than 6 minutes?

Let X be a 4-place decimal number drawn at random from the interval [0, 10]. X has mean 5 and standard
deviation 2.89. Suppose 100 numbers are drawn at random from the interval. What is the probability
that the average of the numbers is between 4.8 and 5.2?

SAMPLE PROPORTION

7.56.

7.57.

7.58.

7.59.

Thirty-three percent of the first-year students at an urban university live in university housing. What are
the mean and standard deviation of the proportion P of first-year students in university housing for all
samples of size 50, drawn with replacement, from the population of first-year students?

With reference to Problem 7.56, suppose there are a total of 3970 first-year students. What are the mean
and standard deviation of the proportion P if the samples are drawn without replacement?

With reference to Problem 7.56, what is the probability that between 15 and 18 of first-year students in a
random sample of 50 live in university housing?

. . - . . . 1-
Show that if the random variable P is the sample proportion, with mean p and variance u
n

>

corresponding to random samples of size n, then nP is a binomial random variable with mean np and
variance np(1 — p).
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7.60. In Problem 7.24, the probability distribution of the sample proportion £ of Democrats in random samples of
size 3, drawn with replacement from a population of three Democrats and two Republicans, was obtained by
listing the frequency of all possible proportions in samples of size 3. Use the fact that nP is a binomial
random variable (see Problem 7.59) to obtain the probability distribution 2 without listing all possible
frequencies.

7.61. A population is broken down into two categories, A and B. Suppose the proportion of the population in
category A is 0.7, and let P be the proportion in category A in random samples of size 5 drawn with
replacement from the population. Use the fact that nP is a binomial random variable (Problem 7.59) to
find the probability distribution of P.

7.62. A population is broken down into two categories 4 and B, and p is the proportion in category 4. Selecting
a single individual from the population can be modeled as a Bernoulli random variable .Y, where Y = 1 if the
individual is in category A, and X = 0 if the individual is in category B. Show that the sample mean Y,
corresponding to random samples of size #, is the proportion 2 of individuals in the sample that are in
category A4.

7.63. Since the random variable X in Problem 7.62 is a Bernoulli random variable, Y has mean p = p and
standard deviation o = 1/p(1 — p). Use these equations and the fact that X = P to show that Theorem
7.4 follows from Theorem 7.1.

7.64. Use the equations in Problem 7.63 and the fact that X = 2 (Problem 7.62) to show that Theorem 7.5 follows
from Theorem 7.2.

7.65. Use the results of the previous two problems to show that Theorem 7.6 follows from Theorem 7.3’

SAMPLE VARIANCE

7.66. Let X7,Y,,..., X, be nindependent normal random variables, each with mean 20 and variance 4. Explain

(X; —20)° L 20)? (X, — 20)°

why T T + et — is a chi-square random variable with n degrees of freedom.

7.67. Let Xi, X,, X; be three random variables, each with mean 25 and variance 7, and let X be the sample
mean. Show that

(X, —X)° (X, —25° (¥ —25)°
D I P /3

7.68. As stated in Example 7.12, the annual SAT scores are approximately normally distributed with mean
p =500 and standard deviation o = 100. Let S* be the sample variance defined for random samples of
25 SAT scores. Find the mean and standard deviation of S,

7.69. With reference to Problem 7.68, for what value S? of 82 is P(S2 < S‘Q) = 0.95?

7.70. With reference to Problem 7.68, for what value $? of $%is P(S2 > S’z) = 0.95?
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7.36.

7.37.

7.38.

7.39.

7.40.

7.41.

7.42.

7.43.

7.44.

7.45.

7.46.

7.47.

7.48.

7.49.

Answers to Supplementary Problems

(@) 5° = 125; (b) (g) =10
5.4.3=60

() There is no such # since the number of samples drawn with replacement, which is 10", increases as n

. 10

increases. (b) < 5 ) =252,

(«) There is no sample size n which gives the most samples drawn with replacement; the number of such
samples, N”, increases as # increases.

(b) If N iseven, then the maximum number of samples of size n, drawn without replacement, occurs when
n=~N/2. If N is odd, then the maximum number occurs when n= (N —1)/2 and when
n=(N+1)/2.

. . 5 5 L . .
The probability of exactly n correct answers is P(n) = x (0.5)°, which is a maximum when 7 is either 2
n

or 3, and is a minimum when # is either 0 or 5. Hence the most likely number of correct answers is 2 or 3,
and the least likely is 0 or 5.

oo ()3 ()(E)/(3)] o

1 [P(0)+P1)]=1— {(%)4+4xgx <£>3] ~0.85

wy =175 0y = \/% 1/% =1.64 /]Xrizls, where N is the size of the population.

72-75 X175 _18-15
< <
1.6 — 16 — 1.6

P(12< X <78) = P< ) ~ P(—1.875< Z < 1.875) ~ 0.94

X
.
[\S)
A
b
A
<
N/
I

(72775 X-75 _78-175
P < <

~ P(—1. <Z<1.935 =0.
1.55 — 1.55 — 1.55 ) (1935 < 2 < 1.935) ~ 095

X —500 _ 525 — 500
525) =P >
) <100/\/507 100/+4/50

) ~ P(Z > 1.77) ~ 0.04

3234) =0.95 forﬁ: 1.96,

. 475 - 500 _ X — 500 _ 5255
P(475< X < 525) :P( 00 % 00) ~ <f v 7

100/n = 100/ = 100/ vn 4

or n = 61.5; round up to n = 62.

75 |N-25 N—-25 135
— = 13.5; =—=09; N=
V25V N -1 PV N-1 15 0.9, N =128
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7.50.

7.51.

7.52.

7.53.

7.54.

7.55.

7.56.

7.57.

7.58.

7.59.

7.60.

7.61.

SAMPLING DISTRIBUTIONS

X 3 5 6 9 10 12 17 18 20 24

P(x) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

py = 124; oy = 6.68

py =124; oy = 17715

24-25 _ X -25 L2625
S/N*S/N*S/f

P(24§Y§26):P< ) P(-126< Z2<1.26)=0.79

_ — 8 68
For a 30 day month, P(X < 6) = < ) P(Z < —-2.74) = 0.003
4/+/30 4/\/
48 -5 Y-s5 52-5
P48 < < < < ) P(—0.69) < Z < 0.69) = 0.51
2.89/v 100 2 89/v 100 ~— 2. 89/ 100
33(1 33)
pp=033; 0p = 9-33(1 —033) 0 = 0.0665

0.33(1 — 0.33) \/3970 — 50
S =033 0, = . ~0.
#p =033 0 \/ 50 070 1 066!

< 15 18) <0.3 ~033 _P-033 036033
P = < <

~ P(—045 < Z < 045) =035
0.0665 — 0.0665 —  0.0665 ) (-045<Z<045) =03

[CHAP. 7

nP is the number of “successes” in » trials, where p is the probability of success, due to sampling with

replacement, in each trial.

p= % =0.6; P(P =0) = P(3P = 0) = (0.4)° = 0.064
) =PBP=1)=3x0.6x(04)" =0.288
) = P(3P =2) =3 x (0.6)” x 0.4 = 0.432
P(P=1)=PBP=3)=(06)=0216

P(P=0)= P(5P=0)=(03)" =0.00243

P<13:%> = P(5P=1)=5x07x (03)" =0.02835

P<P:§> =P(5P=2)=10x (0.7)* x (0.3)* = 0.1323

P(ﬁ:%):P(sﬁ—@ 10 x (0.7)° x (0.3)* = 0.3087
.4 . 4

P<P:§> = P(5P=4)=5x%(0.7)" x0.3=0.36015

P(P=1)=P(5P=5)=(0.7) =0.16807
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X; + Xy +---+x, number of x;s equal to 1

7.62. %= =p

n n

1—
7.63. pp = px =p by Theorem 7.1, and 0, =0 = el _p)

, also by Theorem 7.1.

Sla

_ 1— _
7.64. pp — py =p by Theorem 7.2, and 0, =0y = %~ \/]NV — ’11 = \/p( m ?) . \/x — ’11, also by Theorem 7.2.

7.65. P=2YX, and X is approximately normally distributed with mean p and standard deviation
1_
oy = i M = o0, by Theorem 7.6.

NG

(X, —20)* (X, —20)° (X, — 20)

7.66. 1 , 1 ey 1 are n independent normal random variables, each with mean 0
and standard deviation 1. By definition, their sum is a chi-square random variable with »n degrees of
freedom.

X, —25)7° X, — X+ ¥ —25)
7.67. Z( ) :Z(YZ A —25)
7 7
B (Y, —X)? 2(X,— X)(X¥ —25 (¥ —25)?
- 7 7 T
X, - X)) 20Y-25 _ Y 257
X, - X) X - 25)°
WD )

2 5000
7.68. pe =o° =10,000; o5 = [/2/(n — 1)|o* = ,/ﬁ % 10,000 = 7

. 2452 2452
69. P(SP<SHy=—p({Z
7.69 ( ) (10,000 = 10,000

2487 18
10,000 = 10,000

P(x*(24) < 0.00245?) = 0.05 for 0.00245% = 13.8, or $? = 5750

) ~ P(x*(24) < 0.00245?) = 0.95 for 0.00248% = 36.4, or 8% = 15,166.67

7.70.  P(S* > $?) = P< ) ~ P(x*(24) > 0.00245?) = 0.95



Chapter 8

Confidence Intervals for a Single Population

8.1 PARAMETERS AND STATISTICS

The mean p and standard deviation o of a population random variable X are called parameters; and
the mean X and standard deviation s of a random sample are called szaziszics. In general, any numerical
characteristic of a population is called a paraimeter, and any quantity computed from a random sample is
called a statistic. Statistics are used to estimate parameters.

EXAMPLE 8.1 In 1994, the median income for all four-person families in the state of Pennsylvania was
$49,120. A random sample of 25 four-person families in Pennsylvania had a median income of $48,500. The
value $49,120 is a parameter, and $48,500 is a statistic.

A random variable defined for random samples is called a szazistic if it does not explicitly depend on
any unknown population parameters. For instance, the sample mean X and the sample variance S° are
statistics. If the value of the parameter o is known, then S? / o? is a statistic; but if the value of & is not
known, then $?/o” is not a statistic. Because their values are used to estimate parameters, random-
variable statistics should not depend on unknown population parameters.

Note that the word “statistic’’ can refer to a numerical value, as in X, and also to a random variable,
asin X. We will know from context which meaning to attach to the word.

Random-Variable Samples

As stated at the end of Chapter 7, we will assume from here on that either samples are chosen with
replacement or that the population is large in comparison with the size of random samples, so that, in
effect, the values in a random sample are independent. If xq, x5, ..., x, are a random sample of values
of a random variable X, it is often convenient to consider them to be values of n independent random
variables X, X5,...,X,, each with the same probability distribution as X. Then the collection
X1, X5,..., X, is called a rendom-variable sample corresponding to X or, simply, a random semple.
Hence, just as the term “statistic”’ can refer to either a numerical value or a random variable, the
expression ‘random sample” can refer to a collection of numerical values or a collection of independent
random variables. We will know from context what meaning to attach to these terms.

EXAMPLE 8.2 Suppose Y is a normal random variable with mean 100 and standard deviation 8. Then a collec-
tion of three independent normal random variables Y7, X5, X3, each with mean 100 and standard deviation &, is a
random-variable sample corresponding to X. If the values x; = 104,x, = 92,x3 = 100 of X are obtained in a
random sample, then 104, 92, and 110 can be considered to be sample values of X7, X,, and X3, respectively.

Point Estimates

A value of a statistic used to estimate a population parameter is called a point estimate of the
parameter. In Example 8.1, the median income $48,500 for a sample of 25 four-person families is a
point estimate of the median income $49,120 for all four-person families in Pennsylvania. A different
sample would most likely yield a different point estimate of the median income for the population.

Unbiased and Biased Estimators

A random-variable statistic is called an unbiased estimator of a population parameter if the
expected value of the statistic is equal to the parameter. The sample mean X and sample

236
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variance S° are unbiased estimators of the corresponding population mean p and variance o, respec-
tively. That is,
E(X)=p and  E(S?) =’

(see Problems 8.5 and 7.31). Also, suppose a population is divided into two groups, and the members
of one group are designated as ‘“‘successors”. Let p be the proportion of successes in the popula-
tion. The sample proportion P, whose value on a random sample of size n is the proportion of
p(1—p)
—
That is,

successes in the sample (see Section 7.3), has mean p and variance P is an unbiased estimator

| A A 1—
T P(1 — P) is an unbiased estimator of 1%.
e

of p, and

YT (1-p)
lP(lP)) e

n

(see Problems 8.6 and 8.7).
In general, the value of an unbiased estimator obtained from a numerical random sample is called an
unbiased point estimate of the corresponding population parameter.

EXAMPLE 8.3 With reference to Example 8.2, find unbiased point estimates of the mean p and variance ¢* of X,
based on the sample values x; = 104, x, = 92, x5 = 110.

1 104 +92 + 11 306
i= ;Z X = w = % =102 is an unbiased point estimate of p, which is equal to 100; and
2 2 2 ,
2 1 12(-’51’*??)2 _ (104 — 102)~ + (92 2102) + (110 — 102) _ 4+ 1020 +64: "
n_

is an unbiased point estimate of o2, which is equal to 64.

A random-variable statistic used to estimate a population parameter is called a biased estimator if
the expected value of the statistic is not equal to the parameter. For example, the statistic

5,2:(X1—X)2+(X2—X)2+-~+(X,,—X)2

n
is a biased estimator of the population variance o” since

£ and  ES) - " lpery -l

n n n

Szznfl

o’ £ o

It can also be shown that the sample standard deviation S = /52 is a biased estimator of the population
o . . S - . . 1—
standard deviation . That is, E(S) # o. Finally, = P(1 — P) is a biased estimator of u
n n
In general, the value of a biased estimator obtained from a numerical random sample is called a
biased point estimate of the corresponding population parameter.

8.2 THE NOTION OF A CONFIDENCE INTERVAL

In addition to point estimates of a parameter, there are interval estimates which stipulate, with a
certain degree of confidence, that the parameter lies between two values of the estimating statistic.
Suppose a population random variable X has mean p whose value is unknown. From a random sample
of size n, the value X of the sample mean X can be used to estimate y at the 95 percent confidence level as
follows. First, determine the value E (see Example 8.4) for which

Plu—E<X<p+E)=0095
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which is equivalent to the equation
PX—E<pu<X+E)=095

(see Problem 8.10). Then [X — E, X + E]is called a random 95 percent confidence interval for p, and E is
called the margin of error. This means that the probability is 0.95 that a random sample will resultin a
value ¥ of X for which the numerical interval [x — E, X + E] contains p. In other words, as X ranges
through all possible values of X, 95 percent of the intervals [¥ — E, x+ E] will contain p (see
Fig. 8-1). Each interval [Xx — E, X + E] is called a 95 percent confidence interval for p.

Does not contain z

Fig. 8-1 Ninety-five percent of all intervals [¥ — E, X + x| contain p.

EXAMPLE 8.4 Suppose Y is a normal random variable with mean g, which is unknown, and standard deviation o,
which is known to be 2. A random sample (with replacement) of 25 values of X results in a sample mean
X =10. Determine the margin of error E for a 95 percent confidence interval for p and find the corresponding
confidence interval. Give an interpretation of the result.

To determine E, we first convert to standard units. The random variable

b
Z =
o/\/n
has mean 0 and standard deviation 1. Also, since X is normal, so is Z. Therefore, Z is a standard
. 2 X - . . .
normal random variable. Now % =5= 04,s0 Z = 0—4M The margin of error E satisfies the equation
n K

Pu—-E<XY<pu+E)=0095,

which, in standard units, is equivalent to

E _X-u E E
e i R} .
P( 04°="04 *0.4) 095, or P< 04 04

IN
N
IN
|
N——
I
(e}
O
th

From Table A-1 in the Appendix, we find that
95
P(—1.96 < Z <1.96) =0.95; equivalently, PO<Z<1.96) = OT =0.475
That is, 1.96 is the critical value of Z corresponding to probability 0.95. Therefore,

0% =1.96 or E=04x%x196=0.784

The corresponding 95 percent confidence interval is
[x— E, X+ E] =[10—0.784,10 + 0.784] = [9.216, 10.784]

We are 95 percent confident that the mean p of .Y is some value in this interval, which means that, as X ranges
through all possible values of X, 95 percent of all the intervals [ — 0.784, X + 0.784] will contain u. Note that
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although different random samples of size 25 can give different values of %, the value of E is the same for each
sample.

Confidence Level

The confidence level 0.95 is the probability that g will lie in the random interval [X — E, X + E], and
1 —0.95 = 0.05 is the probability that p will not lie in the random interval [X — E, X + E]. That is, 5
percent of the intervals in Figure 8-1 will not contain . In general, if 0.95 is replaced by -, where
0<~v<«1,and
PX -E<p<X+E)=~

then [X — E, X + E] is called a random 100 percent confidence interval for y; v is called the confidence
level and is equal to the probability that [X — E, X + E] will contain p; 1 — v is equal to the probability
that [X — E, X + E] will not contain p. For a given value X of X, the numerical interval [Xx — E, X + E|
is called a 100+ percent confidence interval.

EXAMPLE 85 In Example 8.3, the confidence level is 7 = 0.95, and the margin of error is £ =0.784. The
probability that a random interval [X —0.784,Y +0.784] will contain g is 0.95, and the probability that
[X —0.784, X + 0.784] will not contain g is 0.05.

Comment on Terminology and Notation

The confidence level v is also called the confidence coefficient, and instead of the Greek letter -y
(gamma), the notation 1 — «, where « is the Greek letter alpha, is often used to denote the confidence
level. For simplicity, we will use the single letter v for the confidence level.

Finding Margin of Error

As illustrated in Example 8.4, when the standard deviation o of X is known, the margin of error E is

given by
_*o

v

where z* is the value of the standard normal random variable Z satisfying

E

P(—z*<Z<z%) =~ equivalently, P0<Z<z%) :%

When o is not known, it will be replaced by the sample variance, and Z will be replaced by a ¢ random
variable, which will be defined in Section 8.3.

Sample Size

~%

can also be used to determine the

As illustrated in the following example, the formula E =

sample size needed to obtain a desired margin of error at a given confidence level.

EXAMPLE 8.6 Suppose .Y is a normal random variable with mean p and standard deviation 2, and we wish to
obtain a 95 percent confidence interval for x with a margin of error no larger than 0.5. How large must the sample
size be? o

We can solve the equation E = - for \/n in terms of E,z*, and o, obtaining

Vi z*o
V=g

As E decreases, \/n will increase.  We have 0 = 2, E < 0.05, and we saw in Example 8.3 that the critical Z value for
a 95 percent confidence interval is z* = 1.96. Therefore,

1.96 x 2
>
V> 0.5

= 7.84; equivalently, n>(7.84) ~ 61.5
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Since #n must be a positive integer, a sample size of 62 or larger is needed for a margin of error of 0.5
or less.

In general, the larger the sample size for a given level of confidence, the smaller the margin of
error. On the other hand, if in Example 8.6, a value of n as large as 62 is impractical, then a margin of
error of 0.5 or less can only be obtained by decreasing the confidence level. For instance, suppose the

maximum possible sample size is 36, but we still want a margin of error of 0.5 or less. We then solve the
~%

equation £ = 7 for z* in terms of E, o, and /n, obtaining
n
z* = —E\/E
o
As E or \/n decreases, so does z*. We have E <0.5,n < 36, and o0 = 2. Therefore,
05 x6
* < =1.5
=T

From the standard normal table,
P(0<Z <1.5) =0.4332; equivalently, P(—1.5<Z < 1.5) =0.8664

Therefore, the confidence level is 86.64 percent with a margin of error of 0.5 and a sample size of 36.

Ideally, we want a small margin of error and a high confidence level. The price for obtaining both
of these is a large sample size. If a sample size large enough to achieve both objectives is impractical,
then we must settle for either a higher margin of error or a lower confidence level.

Maodels and Reality

The probability theory for deriving confidence intervals for p requires that the sample mean X be
normally distributed. For large samples, the Central Limit Theorem is used to conclude that X is
approximately normally distributed, and for small samples we will require that X itself is approximately
normally distributed, which then implies that X is also approximately normal. In applications, X will
always be a random variable defined on a finite population, so that X and therefore X can never be
exactly normal. Hence, the confidence intervals obtained in applications are only approximate. The
theory provides a model for dealing with real populations, but our conclusions will be valid only to the
extent that the real X approximates a normal distribution.

8.3 CONFIDENCE INTERVALS FOR MEANS

Let X be a random variable defined on some population, and suppose the mean p of X is
unknown. Suppose also that x is the value of the sample mean obtained in a random sample of size
n. Then a confidence interval for p is

[x— E %+ E]

where E is the margin of error. We know how to find E for a given confidence level when the standard
deviation o of X is known by using the formula
E— z*o
G
developed in Section 8.2. We will also show how to find £ when o is unknown.

The confidence intervals prescribed for p require that the sample mean X be approximately normally
distributed. This condition can be met for small samples (n < 30) if X itself is approximately normally
distributed. For large samples (n > 30), the Central Limit Theorem enables us to assume that X is
approximately normally distributed regardless of the distribution of X.
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PRESCRIPTION 8.1 {Confidence interval for g when g is known)

Requirements: X has known standard deviation ¢, and X is approximatcly normally distributed.
Let v be the specilicd conlidence level, and supposc that a valucx of the sample mcan X is obtainced
in a random sample of size .  Complcte the following steps.

(1) Find Critical Z Value: Using a standard normal table (or computer software), find the value z* of
the standard normal random variable Z for which P(—z* < Z < z*) = (equivalently,
P(0 < Z < z*) = v/2) (sec Fig. 8-2).

2y Compuie Margin of Error: Compute E =

z*o

(3) Determine Confidence Interval: An approximate 100-y percent confidence interval [or the mean /2 of
Xis [x— E,x+ E|.

The value z* is the critical value of Z corresponding to the confidence level -y (see Fig. 8-2).

w2
r=

r~ >

-z 0 z*

¥ig. 82 P(-*SZ<M=v o (OSZ <) =7/

EXAMPLE 87 A population random variable X has unknown mean g and standard deviation o =20. A

randotn sample of sizc 100 rcsults in a samplc mean % = 250. TFind the corresponding 90 pereent confidence
intcrval for .

Since the sample size is greater than 39, we may assume that X is approximately nonnally distributed. The
confidence level is 0.99. Trom Table A-l in the Appendix. the critical value z* satislying P(—z* < Z < 2*) = 0.9
(equivalently, P(0 < Z < z%) = 0.45) is z* = 1.65. Thercforc, by Prescription 8.1, the margin of error is

O 20 o
V100

The approximate 99 percent confidence interval for g is [250 — 3.3,250 + 3.3, or [246.7, 253.3].

Confidence Intervals for 4 When ¢ is Unknown

When the standard deviation, o, of X is not known, values ol the sample standard deviation

1 .
s=y-Lox o2y
n—1
are used in place of . Recall that (n — l)éz/cf2 is a chi-square random variable with » — 1 degrees of
freedom (see Section 7.4). However, we must first introduce the ¢ random variable.

The ¢ Distribution

The standard normal and chi-squarc distributions combinc to producc the ¢ distribution, which is
dclined as [ollows.
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Definition: Let Z be the standard normal random variable, and x° the chi-square random variable with
k degrees of freedom. Suppose Z and x* are independent. Then the random variable

z
x*/k

is called the ¢ random variable with k degrees of freedom.

=

Properties of the ¢ distribution

The random variable 7 is also denoted by 7(k) to emphasize its dependence on the parameter k. The
density curve of #(k) is a bell-shaped curve, as illustrated in Fig. 8-3. The curve is similar to a normal
density curve, but flatter and with thicker tails; #(k) has mean O for k > 2 and standard deviation
k/(k—2)fork >3. For k=1, the mean is not defined, and for k = 1,2, the standard deviation is
not defined. For large values of k (k > 30), the ¢ distribution closely approximates a standard normal
distribution.

v

0

Fig. 8-3 ¢ distribution for & degrees of freedom.

EXAMPLE 8.8 Let X be a normal random variable with mean g = 10 and standard deviation o = 2. Suppose ¥
is the sample mean for random samples of size n =25, and §? is the corresponding sample variance. Then

= %10 is a standard normal random variable, and X2 = i
degrees of freedom (see Section 7.4).  Furthermore, these two random variables are independent. Dividing x> by k
and )}akhllg the square root of the result gives \/x2/k = ; Finally, when Z is divided by /x?/k the result is

t = S/ which, by definition, is a ¢ random variable with 24 degrees of freedom.

Example 8.8 can be generalized to obtain the following result (see Problem 8.26).

is a chi-square random variable with & = 24

Theorem 8.1: Suppose a random variable X hasmean . Let X be the sample mean corresponding to
random samples of size n, and let S be the corresponding sample standard deviation. If
X is normally distributed, then the random variable

P el
~ S/vn

has a ¢ distribution with n — 1 degrees of freedom.

We can now state a prescription for finding a confidence interval for p when o is unknown. In it,
the  random variable takes the place of Z, and the statistic s takes the place of the unknown parameter o.

PRESCRIPTION 8.2 (Confidence interval for 4 when o is unknown)

Requirement: X is approximately normally distributed.
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Let v be the specified confidence level. Suppose that values xj, X5,....x, of X are obtained in a
random sample of sizc n. First compute the sample statistics X = (xy +x +---+x,)/n and

1 .
s = \/ : S(x; — %)*. Then complete the following steps.
n
(1) Find Critical t Value: Using a t table (or computer software), find the value * of the / random
variablec with »—1 dcgrees of frecdom that satisfics P(—t¥ <1< r¥) =+ (cquivalently,
PO <1 < 1*) = v/2) (see Fig. &-4).

(2) Compute Margin of FError: Compule

s

Ya

(3) Deterinine Confidence Interval: An approximate 180~y percent confidence interval for the mean g of
Xis [ — E,x+ F].

The value 1* is called the critical vaiue of 1 corresponding to the confidence level  (sec Fig. 8-4).

r'
{n-1)
¥ Y
2 2
—* 0 " =
Fig. §-4

EXAMPLE 89 The average of a random sample of 19 scores on a college placement exam is 75, and the sample
standard deviation is 8.4. Assuming that the collection of all scores is approximately normally distributed, find a 95
percent confidence interval for the mean score.

Using Table A-2 in thc Appcndix. with 10 — | = 9 degrees of freedom. we find that P(—* <1 < 1*) =90.95
{cquivalently, P(0 <1 < 1¥*) =0.475) for r* = 2.26. Therctorc. the margin of crror is

i t*)s 226 84
Tvr 1

and an approximate 95 percent confidence interval for the mean score is [75 — 6,75 + 6] = [69, 81].

=~ 6.90

Small Samples

As illustrated in Examplc 89, the 7 distribution can be used when o is unknown, provided X
is approximately normally distributed. II' the sample size is 30 or greater, then we may assume,
on the basis of the Central Limit Theorem, that X is approximately nonmally distributed. In fact,
for large samples, the ¢ distribution is very close to the normal distribution, and beth have essentially
the same critical values, as is ilustrated in Example &18. "The ¢ distribution is needed mainly
for small samples, but in this case, X itsell must be approximately normal in order to guarantee that
X is.

EXAMPLE 8.10 The critical Z value at the 95 percent conlidence level is 1.96. The critt’cal ¢ values at the 95
percent conlidence level are: * =2.04 for 38 degrees of freedom, +* = 2.92 lor 40 degrees of [reedom, * =2.00 lor
69 deerees of freedom. and #* = 1.98 for 120 degrees of freedom.
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84 CONFIDENCE INTERVALS FOR PROPORTIONS

Suppose a population is broken up into two groups. The members of one of these groups will be
referred to as “successes”. Let p be the (unknown) proportion of successes in the population. A
numerical confidence interval for p is of the form

where p is the proportion of successes obtained in a random sample, and E is the margin of error. We
give a prescription for finding £ when the sample size is large. As defined in Sections 7.3 and 8.1, the
sample proportion P is the random variable whose value on a random sample size # is the proportion j
of successes in the sample. P has mean
Hp =P
and standard deviation
i p(L—p)
n

and is approximately normal when n > 30.

Since p is unknown, so is 05. However, the approximation of P as normally distributed is usually
sufficiently robust for /p(1 — p)/a to be replaced by /p(1 — p)/n in a confidence interval for p. We
can then deduce the following prescription.

PRESCRIPTION 8.3 (Confidence interval for population proportion p)

Regquireinent: The sample size n is large (n > 30).
Let ~ be the specified confidence level, and suppose p is the proportion of successes obtained in a
random sample of size n > 30. Complete the following steps.

(1) Find Critical Z Value: Using a standard normal table (or computer software), find the value z* of
the standard normal random variable Z for which P(—z* < Z <z*) =+ (equivalently,
P(0 < Z < z*%) = +/2) (see Fig. 8-2).
p(1—p)
—

(3) Determine Confidence Interval: An approximate 100~ percent confidence interval for the proportion
p of successes in the population is [p — E, p + EJ.

(2) Compute Margin of Error: Compute E = z*

EXAMPLE 8.11 In a random sample of 900 registered voters, 55 percent favored the Democratic candidate for
President. Find an approximate confidence interval for the proportion of all registered voters that favor the
Democratic candidate at confidence level (a) 90 percent, (b) 99 percent.

(@) We have p =0.55, and from Table A-1 in the Appendix, we find that P(—z* < Z < z*) = 0.9 (equivalently,
P(0 < Z <0.45) for z* = 1.65). Therefore, the margin of error is

. P —p) 0.55% 045 _
— = 165 [~ ~ 0.03

and the corresponding 90 percent confidence interval is [0.55 — 0.03,0.55 + 0.03] = [0.52,0.58].
(b) The critical Z value at the 99 percent level is z* = 2.58, the margin of error is

E= 2.58\/M ~ 0.04

E=z

900

and the corresponding 99 percent confidence interval is [0.51, 0.59].

Sample Size
p(l —p . . .
From the formula E = z* u, we see that as the sample size n increases, the margin of error £
n

for a given confidence level decreases. We may want to know, before sampling, how large a sample
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must be to guarantee that the margin of error does not exceed some value for a given confidence
level. For example, suppose we want the margin of error to be at most 0.03 at a 99 percent confidence
level. From Example 8.11, we know that z* = 2.58 for a confidence level of 99 percent. That means »

must be chosen so that
2.58 [PA=D) 03
n

However, we won’t know what p is until we do the sampling. We can get around this problem by
considering a worst-case scenario. It can be shown that the product p(1 — p) is at most 0.25, which
occurs when p = 0.5. Therefore, \/p(1 — p) is at most +/0.25 =0.5. If we choose 7 so that

2.58 x 0.5
NG

then E will be at most 0.03 regardless of the sample value p obtained. The above inequality is equiva-
lent to

<0.03

2.58 % 0.5 s
_ = > —
503 43, or  n>(43)% = 1849

V>
Hence, a sample size of 1849 or higher will result in a margin of error of 0.03 or less. Often
when making such a calculation for n, the result turns out not to be a whole number. In this

case, we round up to the next integer. For example, if # came out to be 1426.2, we would round up
to 1427.

8.5 CONFIDENCE INTERVALS FOR VARIANCES

Suppose a random variable X is approximately normally distributed with mean p and unknown
variance o”. A prescription will be given here for finding confidence intervals for > when  is unknown
(see Problems 8.38 and 8.64 for the case in which p is known). The confidence intervals depend on the
chi-square distribution (see Section 7.4), which is not symmetric, so they do not take the usual form
s* + E, where s* is a value of the sample variance S obtained in a random sample. Prescription 8.4
gives a method for finding the endpoints of the intervals.

The confidence intervals for means in Section 8.3 require that the sample mean X be approximately
normally distributed. Here we require that X itself be approximately normally distributed.

Confidence Intervals for 6> When u is Unknown

Suppose X7, X5, ..., X, is a random-variable sample corresponding to a normal random variable X
(Section 8.1). X = (X; + X, +---+ X,)/n is the sample mean, and S* = S (X; — X)*/(n—1) is the
sample variance. By Theorem 7.7, the random variable

(n—1)8

o2

is a chi-square random variable with n — 1 degrees of freedom, denoted by x*(n — 1), or simply x° if
n — 1 understood from context (Section 7.4).

Let us first consider the case of a 95 percent confidence interval for o>. With reference to
Table A-3 in the Appendix, choose the constants & and b, corresponding to n — 1 degrees of free-
dom, to satisfy
1+0.95

=0.025 and P(*<b) = —— = 0975

1-0095

P(x’ < a) >
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X (m-1)

0.95

0025 0.025

v

Fig. 8-5

(Fig. 8-5). lhen

Pla<x*<b)= PO < b) — Px* < a)
9975 - 0.025
=995

o —1)s?
Replacing x~ by 017.,), we get
P

P(ag(”—_fﬁgb) —0.95
a-

which is equivalent to
P(HS s gw) —0.95
b a

- )8 (n—1)8] . :
[(H b) ,(” a) ] is a randotn 95 percent confidence interval

(see Problem 8.31). Therefore,
for o°.

In general, il a level of confidence «y is specified, and the constants & and 4 are chosen for # — 1
degrecs of frecedom to satisfy

2 le= 2 1 ¢
POC<a)=—=" and P(}<b)—-—"

2
(n—1)8> (n—1)8*
St

]

then
a

is a random 108~ percent confidence interval for o°. We therefore arrive at the following prescription.

PRESCRIPTION 8.4 (Confidence interval for a° when g is unknown)

Requirement: X is approximately normally distributed.

Let « be the specified confidence level. Suppose the values x),x2,...,x, ol X are obtained
in a random sample of size #. First compute the sample values ¥ = (x) + 3+ +x,)/# and
24 =B e .
5= (x;—x)"/(n—1). Then complete the following steps.

(1) Find Critical x* Values: Using a chi-square (able (or computer software), find values & and b
ol the chi-square random variable with # —1 degrees ol f{reedom that satisly P(X2 Sra)i—
1l — v ) 1 <k 04
— P(x" £ b) = ——.
7 P sh == ]
(2) Determine Ceonfidence [nterval. An approximate 190y percent confidence interval lor o is

(n l)k\'z‘ (n — 1)s? .

b a




CHAP. §] CONFIDENCE INTERVALS FOR A SINGLE POPULATION 247

EXAMPLE 8.12 The values of a normal random variable Y obtained in random sample are
55, 65, 82, 48, 55, 75 70, 62

Find a 90 percent confidence interval for the variance of X.
The value of the sample mean is
54+65+82+48+5+75+70+62 512

Y= 3 A

and the value of the sample variance is

o (55— 64)7 + (65 — 64)7 + (82 — 64)> + (48 — 64)7 + (55 — 64)7 + (75 — 64)7 + (70 — 64)* + (62 — 64)°

7
= 204 ~ 129.14
7
From Table A-3 in the Appendix, with 7 degrees of freedom, we find that P(x* < a) = ! 720'90 = 0.05 fora =2.17,

1+0.90

and P(x*<b)=
for o2 is

=0.95 for b=14.1. Therefore, the corresponding 90 percent confidence interval

7x129.14 7 x 129.14

TR = [64.1, 416.6]

(See also Problem 8.34.)

Confidence Intervals for the Standard Deviation

Note that the confidence interval obtained for the variance o’ in Example 8.12 is quite large,
having a left endpoint of 64.1 and a right endpoint of 416.6. The corresponding confidence interval

(n—1)8* (n— I)Sz]

b , is a random
P

for the standard deviation o is smaller. By definition, if [

b a

confidence interval for o, meaning that the probability that o lies in this interval is~. If s* is the value of
the sample variance S° obtained in a random sample of size n, then the numerical interval

_ 2 _ 2
100~ percent confidence interval for o°, then l\/(n DS , \/ (n I)S] is a random 100~ percent

b
corresponding 90 percent confidence interval for o is [v/64.1,1/416.6] = [8.01,20.41].

(n—1)s* [(n—1)s*] . :
) . is called a 100 percent confidence interval for 0. In Example 8.12, the

Comment

The interval given in Prescription 8.4 has the property that the probability in each of the two tails
of the chi-square distribution for n— 1 degrees of freedom is (I —)/2, where + is the level of con-
fidence. This choice of confidence interval is consistent with the confidence intervals for means and
proportions, in which the probability in each of the two tails of the standard normal or ¢ distribution
s (1 —)/2. 1In the case of the standard normal and ¢ distributions, these intervals are the smallest
possible 100y percent confidence intervals. Because the chi-square distribution is not symmetric, the
confidence interval in Prescription 8.4 may not be the smallest possible.

WARNING

All confidence intervals obtained in this and previous sections are approximate to the extent that X,
or X, is normally distributed. The confidence intervals for means, using the normal or the ¢ distribu-
tion, and those for proportions, are robust in the sense that they are very close to the true confidence
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intervals for bell-shaped distributions, even when the distributions are not very close to being
normal. (The deviation of a bell-shaped distribution from a normal distribution can be measured
by E[(X — p)*]/o*, which is called the kurtosis of the distribution; the kurtosis is 3 for a normal
distribution, less than 3 for a flatter distribution, and greater than 3 for a steeper bell-shaped
distribution.) However, confidence intervals obtained for the variance are not robust, and can deviate
very significantly from true confidence intervals when X is not normally distributed. Therefore, the
practical use of confidence intervals for variances is limited.

Solved Problems

PARAMETERS AND STATISTICS

8.1. Fill in each blank below with the number of each item in the second list that describes the
expression to the left of the blank.

(‘) M (h) (xl7)?)24’()(:27)?)24’“‘4’()(:”7)?)2

n—1

12 2 2
n—1
‘77_2 ‘77‘2 ‘77'2
(C) X2 (J) (3&1 ‘\‘) + (3‘2 “\‘;3 + + (lﬂ :") _
XX, X) 44 (X, - X)?
(e) x1,%,...,%, O X1,X%,.... X,
R R
X1+Xx+- -+ X, X1+X2++Xn

(8 " - (n) " -
(1) parameter (8) unbiased estimator of u
(2) random variable (9) Dbiased point estimate of p
(3) numerical statistic (10) biased estimator of p
(4) random-variable statistic (11) unbiased point estimate of o~
(5) numerical random sample (12) unbiased estimator of o”
(6) random-variable sample (13) biased point estimate of o
(7) unbiased point estimate of y (14) biased estimator of o”
(@) 1 b 1 (© 2 @ 1 (@ 5 H 39 (@ 37 W 311
@ 4,12 (j) 3,13 (k) 4,14 0 6 (m) 4,10 n 4,8

8.2. The values 2, 7, 3, 8 were obtained as a random sample of a random variable X. Give unbiased
point estimates of the mean g and variance o° of X.

2+7+3+8 20

X = — 5 =" 5 is an unbiased point estimate of p.
2=+ (T -5 +B -5 +(8-57 9+4+4+9 26 . : . .
2= ( )+ ) 3 ( )+ ) 2t ; i =3~ 8.67 is an unbiased point esti-

mate of 2.
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1
8.3. Show that a value s* = —IZ (x — 3?)2 of the sample variance can be computed by means of
n_

the formula s* =

n—1 & n—1

8.4. The formula for the sample variance in Problem 8.3 is convenient for computational purposes,
especially for large samples. Use the formula to verify the point estimate of ¢ obtained in
Problem &.2.

1
n—1

n

2
rx n—1

which is the value of s? obtained in Problem 8.2.

1 4 126 100 26
P = = (< 4) — — S__—_ - _
=349 49 +64) —2x2 33

8.5. Show that the sample mean X, for random samples of size n, is an unbiased estimator of the
population mean p.

Y1+ X+ 4+, . .
U “ where X7, X5,...,X, are independent random variables, each

By definition, X =

n
with mean g and standard deviation o. The expected value of a constant times a random variable is that
constant times the expected value of the random variable, and the expected value of a sum of random
variables is equal to the sum of the expected values of the random variables. Therefore,

YN+X%N+--+X 1
E< 1 2n n):ZE(XlJVXZJF“‘JFXn)

= % <E(X1) +EX)+ -+ E(X,,))

=—(ptpt-+n

8.6. Show that the sample proportion P is an unbiased estimator of the population proportion p.

The parameter p is the proportion of successes in the population. Let X be the random variable whose
value is 1 for a success, 0 otherwise. .Y is a Bernoulli random variable with mean g = p and variance
o =p(l — p). The sample mean .Y, for random samples of size n, is the number of successes in the sample
divided by n. Therefore, X = P, the sample proportion. As shown in Problem 8.5, for any random
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8.7.

8.8.

8.9.

CONFIDENCE INTERVALS FOR A SINGLE POPULATION [CHAP. 8

variable .Y, the expected value of ¥ is the same as the expected value of Y, in this case p. Therefore, p is the
expected value of P, which makes P an unbiased estimator of p.

Show that

1 4 n 1—
1P(l — P) is an unbiased estimator of y.

The Bernoulli random variable ¥ of Problem 8.6 has meanp and variance o® = p(1 — p).  Also, we know
1 _
that for any random variable, the sample variance S?2 = mz (X; — X)2 is an unbiased estimator of o2

Now JY; is the value of Y on the ith member of the sample, and since Y; is either 0 or 1, it follows that X7is
equal to X, which is the key to the following.

1 _
- — 2 (X~ X)?

1 o
:nilz(xffzxixﬂﬁ)

1 2 O 2
:m ZXZ-72XZX[+Z_Y
_ 11<2X[-zf.nf+ny2)

"

l < ‘ 72)
= nX —nX
n—1

= l.*2(1 - X)

=

= 1}3(17113)

Now E(S?) = 0. Therefore, E<%f’(l - f’)) = p(1 —p). Therefore,

e( L pa - p)) —21=2)
(P -5)

A random sample of 25 students at Greentree College had 10 males and 15 females. Give

unbiased point estimates for the proportion of male students and for the proportion of female
students in the college.

. 10 2 15 3.

5

b=5=% is an unbiased point estimate for the proportion of male students, and § =1 — p=—=

an unbiased estimate for the proportion of female students.

With reference to Problem 8.8, give an unbiased point estimate of the variance of the sample
proportion P of males for all random samples of size 25. Also give an unbiased point estimate of
the variance of the sample proportion Q of females.

1 123 1

— 113(1 —-p)= 23300 0.01 is an unbiased point estimate of the variance of &
1 1 32 1 . . . . . A 5
— 1j(l —q) = 7337700 0.01 is an unbiased point estimate of the variance of (. In general, P

and Q = 1 — P have the same variance.
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THE NOTION OF A CONFIDENCE INTERVAL

8.10.

8.11.

8.12.

8.13.

8.14.

8.15.

Show that, for any value of v between 0 and 1, P(u — E < X < p+ E) = 7 is equivalent to
PX-E<u<X+E)=n.
pu—E<X<put+tEspu-E<LXY and X<u+E
Su<X+E and X-E<p
SX-E<u<X+E

from which the desired result follows.

Let X be a normal random variable with mean p and standard deviation o = 10. Find the
margin of error for a 90 percent confidence interval for u corresponding to a sample size of 12.

*
The formula for the margin of error £ is £ = Z—U. We have o = 10, n = 12, and from Table A-1,

n
we find that P(—z*<Z<:z*)=0.9 for z*¥=1.65. Therefore, the margin of error is

g=LOx10 4.
V12

Interpret the result of Problem 8.11.

The probability is 0.9 that the mean  of X is in the random interval [ — 4.76, X + 4.76], where X is
the sample mean of X; the probability is 0.1 that p is not in the random interval [X — 4.76, X + 4.76].

With reference to Problem &.11, find an approximate 90 percent confidence interval for p if the 12
sample values of X are as follows.

95 103 107 98 90 110
92 108 90 94 105 100

The value of the sample mean determined by the sample values is
954103 + 107 + 98 +90 + 110 + 92 + 108 +90 + 94 4- 105+ 100 1192
12 12

From Problem 8.11, the margin of error is E = 4.76. The corresponding confidence interval is
[X—E, X+ E]=1[99.33 — 4.76, 99.33 +4.76] = [94.57, 104.09].

~ 99.33

X =

Interpret the result of Problem 8.13.

We are 90 percent confident that the interval [94.57, 104.09] contains the mean p of X, meaning that as
X ranges through all possible values of .Y, approximately 90 percent of the intervals [¥ — 4.76, % + 4.76]
will contain p. That is, as more and more random samples of 12 values of X are taken, approximately
90 percent of the corresponding confidence intervals [x — 4.76, X + 4.76] will actually contain pu.

Using the random sample in Problem 8.13, find an approximate 99 percent confidence interval
for p.

We have X =~ 99.33, but must determine the margin of error corresponding to a 99 percent confidence

interval for . At a 99 percent level of confidence, the critical Z value z* satisfies P(—z* < Z < z*) = 0.99;

99
equivalently, P(0 < Z < z*) = OT =0.495. From Table A-1, we find that z* ~ 2.58. Since the random

variable Y in question has standard deviation 10, and the sample size is 12, it follows that the margin of



252

8.16.

8.17.
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. 2.58 x 10 . . . .
error is E :Tm 7.45. Therefore, an approximate 99 percent confidence interval for p is

[99.33 — 7.45, 99.33 + 7.45] = [91.88, 106.78].

Let X be a normal random variable with unknown mean g and standard deviation o = 5. Find
the sample size needed for a 99 percent confidence interval with a margin of error 2.5.

The critical Z value for a 99 percent confidence interval for p, as determined in Problem 8.15, is

* 2o 258x5
772, we see that v/n :7_EO = 2.; —5.16.

Therefore, » must be at least (5.16)2 ~26.6. The desired value of n, which must be an integer, is 27.

z* =2.58. From the equation for the margin of error, £ =

Let X be a normal random variable with unknown mean g and standard deviation o = 3. It is
desired to obtain a confidence interval for p with a margin of error of 1.5, based on a random
sample of size 16. What is the corresponding confidence level?

* z¥x3 3z*

The formula for the margin of error is E = Z—U. We therefore have 1.9 = ——=— so
4% 15 Vn Vie 4
¥ = 3 — =2. From Table A-1, we find that P(-2< Z <2)=2P(0 < Z <2) =2(0.4772) = 0.9544.

Therefore, the confidence level is 0.9544, or 95.44 percent.

CONFIDENCE INTERVALS FOR MEANS

8.18.

8.19.

8.20.

8.21.

A random variable X has unknown mean and standard deviation 25. A random sample of 50
values of X has mean X = 112. Find an approximate &5 percent confidence interval for the mean
pof X.

Since the sample size, 50, is larger than 30, we assume that X is approximately normally distributed.
We then apply Prescription 8.1. Using Table A-1, we find that the critical Z value satisfying

. . . * 1.44
P(—z*<Z <z*)=10.85is z* = 1.44. Therefore, the margin of error is £ = 9 7X25 ~ 5.09. The
Vi V50

corresponding approximate 85 percent confidence interval for p is [112—5.09, 112+ 5.09] =
[106.91, 117.09].

With reference to Problem 8.18, how large must the sample size be to obtain an 85 percent
confidence interval for p with a margin of error equal to 2.5?

z* 144 x25 36
Substitute £ = 2.5, z* = 1.44, and o = 25 into the formula E = 7 to obtain 2.5 = RSl —
16 vn vn vn
Therefore, v = 35~ 14.4, and n = (14.4)2 =207.36. Since » must be an integer, the sample size needed
is 208. )

With reference to Problem &.18, suppose that the sample size can be no larger than 100. What is
the smallest possible margin of error?

144 %25

If n <100, then £ >
- v 100

3.6. Therefore, 3.6 is the smallest possible margin of error.

Find the values #* in each of the following cases for a 7 distribution with 10 degrees of freedom.
(@) PO<:< %) =045 (b) P(—r*<t<r*)=0.90 (¢) PE<r*) =095

As illustrated in Fig 8-6, Table A-2in the Appendix gives t* values for various values of P(0 < ¢ < ¢*)
corresponding to different degrees of freedom.
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8.22.

8.23.

PO<t<t¥)

v

ol i

Fig. 8-6

(@) From Tablc A-2. corrcsponding to 10 degrees of frecedom. we find that P(0 < < /%)= 0.45 for
=181,

(b) By thc symmetry of the 7 distribution, P(—* < 1 < ¥*) =2P(0 <1 < r*) =2 x0.45=0.90. Therc-
fore, from part (@), ¥ = [.81.

(¢} P(r<¢*)=095=0.5+0.45=P(r <0)+ (0 <t <1*¥). Therelore. lrom pari {(a). t* = 1.81.

The numbers
244, 189, 12.8, 205 19.1, 15.2, 21.7, 14.6

forin a random samplc of valucs of a normally distributed random variable. Find a 98 percent
confidence interval for the mean u of X.

Sincc X is nonnally distributed, so is .X; therefore Prescription 82 can be used. The mcan of the
samplc valucs is

X= =18.4

24,4+ 189+ 128 + 205+ 19.1 + 15.24+21.7+ 14.6 _ 147.2
8 R

The valuc of the sample variance is

s = [(24.4 — 18.4) + (18.9 — 18.4)% + (12.8 — 18.4)% + (20.5 — 18.4)?
+(19.1 — 18.4)% 4 (15.2— 18.4)% + (21.7 — 18.4)” + (14.6 — 18.4)*)/7

_ 108.08
e

= 1544

Thercfore the sample valuc of the standard deviation is s = v/ 1544 = 3.93. By thc symmctry of thc 7
distribution, P(—1* < ¢ < 1*)=0.98 is cquivalent to P(0 < ¢ < 7¥) = 0.98/2 = 0.49. Using Tablc A-2 in
the Appendix, with 8 — | =7 dearees of reedom, we lind that £(0 << ) =049 for ¥ =3.00. By

*s 3.00x3.93
Vn V8
for the mean of X is [18.4 —4.17, 18.4 +4.17] = [14.23, 22.57].

Prcescription 8.2, the margin of crror is £ = =~ 4.17. Thc 98 percent confidence interval

A random samplc of sizc 10 from a normal population variable X results in the value x = 124 [or
¢! ~ . . .

the sample mecan and s” = 21 for the sample variance. Find an approximate 90 perccnt con-

fidence interval for the mean g of X.

Sincc X is nonnally distributed, so is X. Thercforc. Prescription 8.2 applics.  The margin of crror is

s — ’ : y
L. =7_. where s =\ 21, # =10, and #* is the valuc of the ¢ random variable with 9 degrees of freedom
n

satislying P(—r* <t < r*) = 0.90; equivalently, 2(0 << *) =0.45. From Table A-2 in the Appendix,

1.83v21
=

t* =1.83. Thercfore, £ = ———=2.65; and thc corrcsponding 90 pereent confidence interval for p is

V10
[124 — 2,65, 124 +2.65] = [121.35 ,126.65].
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8.24. A random sample of size 41 of a population random variable X results in a sample mean

8.25.

8.26.

% = 75.82 and a sample variance s> = 16.16. Find an approximate 99 percent confidence inter-
val for the mean p of X.

Since the sample size is larger than 30, we may assume, on the basis of the Central Limit Theorem, that

the sample mean Y is approximately normally distributed. Then, by Prescription 8.2, the margin of error is
*

t —_—
E = TS, where s = v/16.16, n = 41, and ¢* is the value of the ¢ random variable with 40 degrees of freedom
n
satisfying P(—t* < < ¢*) = 0.99, equivalently, P(0 < ¢ < ¢*) =0.495. From Table A-2 in the Appendix,
2.70v/16.16
Vi
[75.82 — 1.70, 75.82 + 1.70] = [74.12, 77.52].

t* =2.70. Therefore, £ = = 1.70; and the corresponding 99 percent confidence interval for p is

Suppose the sample size in Problem 8.24 was 200. What would be the corresponding 99 percent
confidence interval?

Table A-2 does not have a t* value for 199 degrees of freedom. The closest value for ¢* in the ¢
table is M for 120 degrees of freedom. Using computer software, we get * =2.60. Then

2.601/16.16

V200

[75.82 —0.74, 75.82 + 0.74] = [75.08, 76.56]. 1If the value 2.62 were used for t*, the corresponding margin
of error is 0.74 to two places, which gives the same confidence interval. Furthermore, as the number of
degrees of freedom increases, the ¢ distribution approaches the standard normal distribution. The critical
value of the standard normal Z at the 99 percent confidence level is 2.58, which gives a margin of error of
0.73, and the slightly smaller confidence interval, [75.09, 76.55].

~0.74 with a corresponding approximate 99 percent confidence interval of

Prove Theorem &.1. That is, suppose X has mean p and standard deviation o, and the sample
mean X, for random samples of size n, is normally distributed. Let S be the sample standard
X —p

S/v/n

deviation. Show that the random variable ¢ = has a ¢ distribution with n — 1 degrees of

freedom.

X—n has a standard normal distribution (Theorem 7.1), and x*> = ——~
o/vn a?
has a chi-square distribution with n» — 1 degrees of freedom (Theorem 7.7). Therefore, by definition,
VA
X/ (n—1)
divided by S/o, the os cancel, leaving

The random variable Z =

has a ¢ distribution with n — 1 degrees of freedom. Now /x?/(n — 1) = S/o, and when Z is

X - .
—M, as desired.

S/vn

CONFIDENCE INTERVALS FOR PROPORTIONS

8.27.

In a random sample of 100 transistors, 92 were within the specifications stated by the manufac-
turer. Find a 99.5 percent confidence interval for the proportion p of all of the manufacturer’s
transistors that meet the stated specifications.

Since the sample size is larger than 30, Prescription 8.3 can be used. We have p =92/100 = 0.92,
and from Table A-1, P(—z*<Z <:z*)=0995 (equivalently, P(0 < Z < z*)=0.995/2=0.4975)
p(1 —p . .08
l% =2.81 % = 0.08; and the corresponding

99.5 percent confidence interval for p is [0.92 — 0.08, 0.92 + 0.08] = [0.84, 1.00].

for z* =2.81. The margin of error is £ = z*
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8.28.

8.29.

8.30.

8.31.

8.32.

Find a 95 percent confidence interval for the proportion p in Problem 8.27.

From Table A-1, P(—z*<Z <:z*)=0.95 (equivalently, P(0 < Z <z*)=0.95/2=0.475) for
. 0 =) _ 0.92 x 0.08

— 1.96 R
sponding 95 percent confidence interval is [0.92 — 0.05, 0.92 + 0.05] = [0.87, 0.97].

z*=1.96. The margin of error is E=z ~ 0.05, and the corre-

Suppose a pollster states that [0.52, 0.57] is a 98 percent confidence interval for the proportion of
eligible voters favoring candidate 4. What percentage of the sample favored candidate 4, and
what is the margin of error?

The sample proportion p favoring candidate A4 is the center of the interval, which is the average of the

w = % = 0.545. Therefore, 54.5 percent of the sample favored

candidate 4. The interval [0.52, 0.57]is of the form [p — E, p + E|, where j is the proportion in the sample
favoring A4, and E is the margin of error. The length of the interval is 0.57 —0.52 = 0.05 =
p+E—(p— E)=2E. Therefore, E =0.05/2 = 0.025, or 2.5 percent.

two endpoints. Hence, p =

In Problem &.29, how many eligible voters responded to the pollster?

From Table A-1, we find that critical Z value at the 98 percent level is z* =2.33; that is,
P(—233<Z72<233)=098 We then substitute z*=2.33, p=0.545, and E =0.025 into the

p(l1 —p /0. 45 .
formula E =:z* M to obtain 0.025 = 2.33 M, or 0.025= % Therefore,
n n n

1.16 . . . . -
n=0025 = 46.4. By squaring 46.4 and rounding up to the next integer we find that 2153 eligible voters
responded.

A pollster obtained a confidence interval [0.51, 0.55] for the proportion of eligible voters favoring
candidate B based on a sample of 1200 eligible voters. What is the level of confidence of the
interval?

Proceeding as in Problem 8.29, we find that the sample proportion favoring B is p = 0.53, and the
margin of error is £ =0.02. Substituting these values, along with » = 1200, into the formula

) . {053 %047 s o 002
E=:z - we get 0.02=:z o0 ~ 0.0144z*. Therefore, z 70.0144~1.39. From

Table A-1, we find that 1.39 is the critical value of Z at the 83.54 percent level. Hence the level of
confidence is 83.54 percent.

Suppose a pollster wants to determine a 95 percent confidence interval for the proportion of
citizens that favor a balanced budget, even if some social programs must be cut. A margin of
error of no more than two percentage points is desired. How large must the sample size be?
p(1 —p)
—

The margin of error is E =z* Using Table A-1, we find that, for a 95 percent

confidence interval, z*=1.96. As stated at the end of Section 8.4, the most /p(l —p) can

be is 0.5. We therefore set MSO.% and solve for n. We get ﬁzM:nm.

NG 0.03
Therefore, n > (32.67)2 =1067.33. Since » must be a whole number, we round up to 1068 as the desired
sample size.
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CONFIDENCE INTERVALS FOR VARIANCES

8.33.

8.34.

8.35.

8.36.

8.37.

C)s2
u < b) =~ is equivalent to

Show that, for any level of confidence -, P<¢§
o

P<M<UZ<L1)SZ) -

b -~ a
)2 e 1ye2
The inequality & < w is equivalent to o < M, and the inequality w < b is equiva-
a
@
lent to w < o2, from which the desired result follows.

Suppose that the value s> = 129.14 obtained in Example 8.12 was based on a random sample of
size 101.  What would be the corresponding 90 percent confidence interval for o2

With reference to Prescription 8.4, and using Table A-3 in the Appendix, with 101 — 1 = 100 degrees of
1-090 0.05 for a=77.9, and P(x><b) = ! +20'90 =0.95 for
100 x 129.14 100 x 129.14]

124 ’ 71.9

[104.15, 165.78]. Note that this interval is considerably smaller than the interval [64.1, 416.6] obtained in
Example 8.12 for 7 degrees of freedom.

freedom, we find that P(x? < a) =

b=124. The corresponding 90 percent confidence interval for o° is

What is the corresponding 90 percent confidence interval for the standard deviation o in Problem
8.347
[V104.15, V/165.78 = [10.21, 12.88]

A pollster states that 225 is the left endpoint of a 95 percent confidence interval for the variance of
a normally distributed random variable, based on a random sample of size 31. If the interval
was determined using Prescription 8.4, what was the value of the sample variance obtained in the
sample, and what is the right endpoint of the interval?

According to Prescription 8.4, the confidence interval is of the form { , where & satisfies

1+0.95

=0.975. From Table A-3 in the Appendix, we

1095
2

PO < a)= =0.025, and P(x* < b) =

find that « = 16.8 and b = 47.0. Since the left endpoint is 225, the sample value s> of the sample variance

308 s 225x47
must satisfy 4—; =225. We can therefore conclude that s° = el 352.5. It then follows that the

30
2
right endpoint must be 3.% = % = 629.46.

A random sample of 28 values of a normal random variable X results in a sample standard
deviation s = 6. Find a 98 percent confidence interval for the standard deviation o of X.

We first find a 98 percent confidence interval for the variance o* of X, using the value s> = 6> = 36 for
the sample variance. Following Prescription 8.4, we find values & and b for the chisquare

1-0.98
random variable with 27 degrees of freedom that satisfy P(x* < ) = 0 =0.01 and P(x* <b)=
1+0.98
+20 =0.99. Table A-3 in the Appendix gives « =129 and b =47.0. The 98 percent confidence

27 x 36 27 x 36
47 7 129

val for o is [v/20.68, \/75.35 = [4.55, 8.68).

interval for o is = [20.68, 75.35]. Therefore, the desired 90 percent confidence inter-
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8.38. (Confidence interval for o* when p is known) Suppose X is a normal random variable with

known mean p and unknown variance o, and suppose that X7,X,,...,X, is a random-
variable sample of size n corresponding to X. Let v be a specified confidence level. Show

2 2
that Z(X"bf ) , Z(X"af ) is a 100~ percent confidence interval for o, where the constants

1—

e« and b are chosen to satisfy, with »n degrees of freedom, P(nga):T’y,
1

POC < b) = —

Each (X; — p)/o is a normal random variable with mean 0 and standard deviation 1. Therefore, by
definition, the random variable 3 (.X; — M)Q /o is chi-square with n degrees of freedom. The desired result
follows from the reasoning leading to Prescription 8.4 with ) (x; — M)Q in place of (n — 1)s2.

Supplementary Problems

PARAMETERS AND STATISTICS

8.39.

8.40.

8.41.

8.42.

8.43.

8.44.

The median age for the total number of first-year students at a university in 1997 was 17.6, and in a sample
of 20 first-year students, the median age was 18.1.  Which number is a parameter, and which is a statistic?

How is a random sample x;, x», . .., x,, of values of a random variable Y related to a random-variable sample
X1, X,,..., X, corresponding to X?

Suppose X1, .X5,..., Y, is a random-variable sample corresponding to .Y, which has unknown mean p, and
let X be the corresponding sample mean. Explain why 3 (X; — ¥)? is a statistic and S (¥; — p)? is not.

Let x; =12, x, =15, x3 =10, x4 = 11 be a random sample of values of a random variable X. Find
unbiased point estimates of the mean u and variance o> of X, respectively.

Suppose that p is the proportion of computer users that are connected to the Internet. In a random sample
of 36 computer users, 20 were connected to the Internet. Give an unbiased point estimate for p and also an
unbiased estimate for the variance of the proportion of computer users connected to the Internet in all
random samples of 36 computer users.

Explain the difference between an unbiased estimator of a parameter and an unbiased point estimate of the
parameter.

THE NOTION OF A CONFIDENCE INTERVAL

8.45.

8.46.

8.47.

A normal random variable X has unknown mean p and standard deviation 5. What is the margin of error
for a 92 percent confidence interval for u, based on a random sample of size 25?

What sample size is needed to have a margin of error equal to one-half the margin of error in Problem 8.45?

Suppose E is the margin of error in a confidence interval for the mean g of a normal random variable Y,
based on a random sample of size n. If the sample size is doubled, what is the new margin of error?
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8.48.

8.49.

8.50.
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Suppose 4.5 is the margin of error in a 98 percent confidence interval for the mean p of a normal random
variable .Y with known standard deviation o, based on a random sample of size n. What would the margin
of error be in a 90 percent confidence interval for p based on the same random sample?

Suppose 2.6 is the margin of error in a confidence interval for the mean p of a normal random variable X
with standard deviation 5.4, based on a random sample of size 16. What is the confidence level for the
confidence interval?

Suppose 3.332 is the margin of error in a 95 percent confidence interval for the mean p of a normal random
variable X with standard deviation 8.5. What is the size of the random sample?

CONFIDENCE INTERVALS FOR MEANS

8.51.

8.52.

8.53.

8.54.

8.55.

8.56.

A random variable X has unknown mean g and standard deviation 12.5. The sample mean for a random
sample of size 50 is x = 72.4. Find a 95 percent confidence interval for p.

A random sample of interest rates charged by area banks for personal loans is: 12.8 percent, 12.2 percent,
13.4 percent, 11.9 percent, 13 percent. Assuming the rates are normally distributed with a standard devia-
tion of 0.9 percent, find a 90 percent confidence interval for the average interest rate.

[126.4, 132.8] is a 95 percent confidence interval for the mean p of a normally distributed random variable
with known variance. Find a 98 percent confidence interval for p, based on the same random sample.

A random sample of 25 grade-point averages at a university has a sample mean x = 2.68 and a sample
standard deviation s = 0.32. Assuming that the grade-point averages are approximately normally distrib-
uted, find a 95 percent confidence interval for the mean grade-point average.

A random sample of five gas stations in a certain area gave the following prices in cents for a gallon of
regular gasoline: 124.9, 127.9, 130.9, 128.9, 122.9. Assuming the price per gallon is normally distributed,
find a 90 percent confidence interval for the average price per gallon.

[42.7,49.3] is a 95 percent confidence interval for the mean g of a normally distributed random variable with
unknown variance, based on a random sample of size 16. Find a 90 percent confidence interval for .

CONFIDENCE INTERVALS FOR PROPORTIONS

8.57.

8.58.

8.59.

8.60.

In a random sample of 200 first-year students at a large urban university, 35 percent said they planned on
working from 16 to 20 hours per week to earn money. Give a 95 percent confidence interval for the
proportion of all first-year students at the university who plan on working between 16 and 20 hours per
week.

In the same student sample as in Problem 8.57, 9.5 percent of the students said they would be traveling to
and from campus by train. Find a 90 percent confidence interval for all first-year students at the university
that will be traveling to and from campus by train.

How large must a random sample be to obtain a 95 percent confidence interval for a population proportion
with a margin of error of at most 0.04?

Suppose [0.46, 0.51] is a 99 percent confidence interval for a population proportion p based on a random
sample of size n. Using the same random sample, find a 95 percent confidence interval for p.
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CONFIDENCE INTERVALS FOR VARIANCES

8.61.

8.62.

8.63.

8.64.

8.65.

8.39.

8.40.

8.41.

8.42.

8.43.

8.44.

8.45.

8.46.

A random sample of 20 values of a normally distributed random variable .Y results in a sample variance
s> =48.5. Find a 90 percent confidence interval for the variance o° of X.

The values of a normally distributed random variable X obtained in a random sample are 25, 28, 26, 25, 22,
30. Find a 95 percent confidence interval for the variance o of X.

Suppose 127 is the right endpoint of a 90 percent confidence interval for the variance of a normally
distributed random variable, based on a random sample of size 26. If the interval was determined by
Prescription 8.4, what is the value of the sample variance obtained in the sample, and what is the left
endpoint of the confidence interval?

Suppose X is a normally distributed random variable with mean p = 50. The values 46.5, 52.1, 48.6, 50.8
are a random sample of values of Y. Use the result of Problem 8.38 to find a 95 percent confidence interval
for the standard deviation o of X.

Suppose the mean of the random variable .Y in Problem 8.64 were not known. What would be the
corresponding 95 percent confidence interval for o?

Answers to Supplementary Problems

17.6 is a parameter; 18.1 is a statistic.
x; is the value of X;,i=1,2,...,n, in a random sample of size .

S — _‘2)2 can be computed in terms of sample values x; of X;; it does not depend on any unknown
population parameters. > (X, — M)Q cannot be computed in terms of sample values; it depends on the
unknown parameter p.

124 15+10+11

x= — = 12 is an unbiased point estimate of p;
2 2 2 2
§* = (12 -12)" + (15 - 12) ;r (10 —12)° + (11 — 12) ~ 4.67 is an unbiased point estimate of o°.
20 . . . . 1. . 1 2 . .
p= ET 0.56 is an unbiased point estimate of p; mp(l —p) = 35 X % (1 — %) ~ 0.007 is an unbiased
. (1 —p)

timate of .

estimate o %

An unbiased estimator of a parameter is a random variable whose expected value is equal to the parameter;
an unbiased point estimate of a parameter is a numerical value obtained from a random sample of an
unbiased estimator of the parameter.

*
oo L1 x5_ s

NG V25
LIS X5 175 o 1o m— 100

N
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8.47.

8.48.

8.49.

8.50.

8.54.

8.55.

8.56.

8.57.

8.58.

8.59.

8.60.

8.61.

8.62.

8.64.

8.65.

CONFIDENCE INTERVALS FOR A SINGLE POPULATION

If o is known, E} = z = = =—E;. If ois unknown,

R Y WA

t* ¢ t* t* E
=2 -2 _2 1
Vi V2 V2 B V2
2.330 1.650 1.65x4.5
4.5= ; E = = ~3.19
NI Vn 2.33
*x5.4 4x26
2.6 = Z X» s zF = - ~ 1.93; confidence level = 94.64 percent.
V16 5.4
1.96 x 8.5

1.96 x 8.5

3.332:7; Vn=—Sam=5n=125

[68.94, 75.87]

[12.00 percent, 13.32 percent]

x = 129.6; E = 3.8 (see Problem 8.48); [125.8, 133.4]
[2.55, 2.81]

[124.06, 130.14]

X = 46; E = 2.7 (see Problem 8.48); [43.3, 48.7]
[0.28, 0.42]

[0.06, 0.13]

(1 —p) _ 1.96 x 0.5
1.96¢/PL—=P) (196305 04 10 > 600.25: round up to 601
n NG

P = 0.485; E = 0.019 (see Problem 8.48); [0.466, 0.504]

a=10.1, b = 30.1; [30.6, 91.2]

s> =17.6,a=0831,b=128;[297, 45.7]

2

2 .
a=14.6, 127 = ﬁ7 = 74.2; b = 37.7; left endpoint =

25% 742

49.2
37.7

So(x;— u)z =19.26, « = 0.484, b = 11.1; [1.32, 6.31]

5% = 6.09, a = 0.216, b = 9.35; [1.40, 9.20]

[CHAP.



Chapter 9

Hypotheses Tests for a Single Population

9.1 INTRODUCTION: TESTING HYPOTHESES ABOUT PARAMETERS

In Chapter & confidence intervals were prescribed for means, proportions, and variances. Here we
discuss another type of statistical inference regarding these same parameters. As an illustration, con-
sider the following example.

EXAMPLE 9.1 A bank institutes a new teller procedure designed to shorten the average customer waiting time
on busy Friday evenings. The old waiting time was normally distributed with mean g = 12 minutes and
standard deviation o =3 minutes. As a test of the new procedure, a random sample of 36 Friday-evening
customers was chosen and found to have an average waiting time of 11 minutes. Determine the probability
that such an average waiting time or less would have occurred by chance under the old system, and interpret the
result.

Let X denote the random variable representing the old waiting time. Then, for samples of size 36, the
sample mean Y is normally distributed with mean 12 and standard deviation 3/ 36 = 0.5. Therefore, the random
variable

X—12
0.5
is the standard normal random variable with mean O and standard deviation 1. Using the standard normal table,

X -12 < 11-12
05 — 05

7 =

P(Y <11)= P< ) = P(Z < -2) =0.0228

Hence, there are only 228 chances in 10,000, or 2.28 out of 100, that a waiting time of 11 minutes or less would
have occurred at random under the old system. Such a low theoretical probability for what in fact did occur
under the new system is fairly strong evidence that the new procedure really does reduce the average waiting
time.

Null Hypothesis and Alternative Hypothesis

Example 9.1 illustrates a typical situation in which some sort of system is modified and it is desired
to evaluate the effect of the changes based on sample results of the new system. Specifically, we identify
some parameter of a random variable associated with the old system, and ask whether the sample results
indicate that a real change has occurred in the value of the parameter, or can the results be merely
attributed to chance?

To address this question, we make two opposing hypotheses concerning the parameter, and then use
probability to test these hypotheses in light of the sample results. The first hypothesis, called the null
hypothesis, denoted by Hy, plays devil’s advocate and says that the value of the parameter has not really
changed; the sample results are simply due to chance. The second hypothesis, called the alternative
hypothesis, denoted by H,, maintains that there really has been a change in the value of the parameter;
the sample results are not due to chance.

EXAMPLE 9.2 InExample9.1, the random variable X is the waiting time on Friday evenings, and the parameter is
the mean p of X;that is, the mean waiting time. The null and alternative hypotheses are as follows:

Hy: The waiting time is still normally distributed with mean 12 minutes and standard deviation 3 minutes.
H,: The average waiting time is less than 12 minutes.

261
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Or, more briefly, letting p denote the mean waiting time,
Hy:pp =12
Hyep <12

Both hypotheses are concerned only with the mean of X. The standard deviation of Y is assumed to be unchanged
by the new system.

One-Sided and Two-Sided Alternatives

The alternative hypothesis in Example 9.1 could also take on the form H, p> 12 or
H,:p # 12. Each of the hypotheses H,: u < 12 and H,: p > 12 is called a one-sided alternative, while
H,:p # 12 is called a two-sided alternative. A one-sided alternative hypothesis says that the mean p has
changed in a specified direction, namely either “‘the new mean is less than the old mean” or ‘“‘the new
mean is greater than the old mean”. A two-sided alternative hypothesis is bi-directional; it says “the
new mean is either greater than or less than the old mean”. An hypothesis test with a one-sided
alternative is called a one-sided test. An hypothesis test with a two-sided alternative is called a two-
sided test.

Simple and Composite Hypotheses

The null hypothesis in Example 9.1, Hy: ¢ = 12, which says that the mean of X is equal to a specific
value, is called a simple hypothesis. The alternative hypothesis, H,: 4 < 12, which says that the mean
can take on a whole range of values, is called a composite hypothesis. A simple hypothesis completely
determines the distribution of X, whereas a composite hypothesis does not. For example, the simple
null hypothesis Hy: p = 12 says that the distribution of X is exactly the same as it was before the change,
whereas the composite alternative hypothesis H,: u < 12 is less specific; it says that the new mean is less
than 12, but does not specify what the new mean is. In our examples, the null hypothesis will be simple,
and the alternative hypothesis will usually be composite.

Test Statistic and P-value of a Test

After the null and alternative hypotheses have been made, a test statistic is defined that will enable us
to perform the test. Performing the test means determining the likelihood that the sample results would
have occurred if the null hypothesis were true. More specifically, the test statistic is a statistic whose
value can be computed from the sample results; and the P-value of the test is the probability that a value
of the test statistic in the direction of the alternative hypothesis and as extreme as the one that actually
did occur would have occurred if Hy were true.

EXAMPLE 9.3 In Example 9.1, the underlying random variable .Y is the Friday evening waiting time, and the test
statistic is obtained by standardizing the sample mean X. That is, the test statistic is

X-12
0.5
which, if Hy: = 12 is true, is the standard normal random variable. The value of X obtained in the sample of 36
customers is X = 11 minutes. The corresponding z-score of ¥, namely
11-12
05
is the test value of the test statistic. Now the alternative hypothesis says that the new average waiting time is less
than 12 minutes. Hence, assuming Hy: u = 12 is true, then a sample waiting time in the direction of the alternative

hypothesis as extreme as 11 minutes is a sample waiting time at least one minute less than the sample mean of 12
minutes, or at least two standard units less than zero. Therefore, the P-value of the test is

P(Z < —2)=0.0228

7 =

-2

z =
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EXAMPLE 9.4 Suppose the alternative hypothesis in Example 9.1 were H,: p # 12. Then a sample waiting time
as extreme as 11 minutes is a sample waiting time at least one minute less than or one minute greater than 12
minutes; equivalently, at least two standard units less than or greater than zero. The P-value of the test would be

P(Z < -2)+ P(Z>2) =2P(Z >2) = 2(0.0228) = 0.0456

Determining the P-value

In general, the P-value of a test depends on the null hypothesis, the test statistic, the test value of the
test statistic, and the alternative hypothesis. Suppose the null hypothesis is a simple hypothesis, say
Hy: 1 = g, the test statistic, assuming Hy is true, is the standard normal variable Z, and the test value of
Z is z. Then the P-value is determined as follows:

For H,:p < pq, the P-value is P(Z < z)
For H,:p > pq, the P-value is P(Z > z)
For H,:pu # py, the P-value is P(Z < —|z|) + P(Z > |z|) [equivalently, 2P(Z > |z|)]

Significance Level and Statistical Significance

A high P-value is evidence in support of the null hypothesis, Hy, and a low P-value provides

evidence against Hy. To assess the weight of the evidence, a threshold P-value, called the significance
level of the test, is often selected before conducting the test. The significance level is usually denoted by
«, and values of 0.01 and 0.05 have traditionally been used for «, but other values can be used as
well. If the P-value of the test is less than or equal to «, then the corresponding value of the test statistic
is said to be statistically significant at the level . If the P-value is greater than «, then the value of the
test statistic is not statistically significant at the level «.
EXAMPLE 9.5 InExample 9.1, the value of the test statistic Z = (X — 12)/0.5 obtained in the sample is —2, whose
P-value was computed to be 0.0228 in Example 9.3. Since 0.0228 is less than 0.05, the test value —2 of Z is
statistically significant at the level 0.05. However, 0.0228 is not less than 0.01, so —2 is not statistically significant
at the level 0.01.

Using Significance Level and P-value for Decision Making

Suppose now that the sample results of a test are going to be used to decide whether or not to reject
the null hypothesis, Hy, as being true. A low P-value obtained in a test says that if Hy is true, then a
rare event has taken place; equivalently, if the event is not so rare, then Hy must be false, and
should be rejected. The significance level «, chosen before the test, is used as the measure of rarity. If
the P-value of the test is less than or equal to «, then the null hypothesis is rejected at the o level of
significance. 1f the P-value is greater than «, then we either accept Hg¢ or hedge a bit and conclude that
there is insufficient evidence to reject Hq at the « level of significance. Simply stated, if the P-value of the
test is greater than o, then the null hypothesis is not rejected.

EXAMPLE 9.6 The P-value for the average waiting time in Example 9.1 was computed to be 0.0228 in Example
9.3.  Since 0.0228 is less than 0.05, the null hypothesis would be rejected at the 0.05 level of significance. Here we
are inclined to believe that the average waiting time has been reduced from 12 minutes by the new teller procedure
rather than maintain that the average waiting time is still 12 minutes and an event whose chances are less than 5 in 20
did occur. On the other hand, since 0.0228 is not less than 0.01, the null hypothesis would not be rejected at the
0.01 level. At this level, to conclude that the average waiting time has been reduced from 12 minutes, we require
that the average waiting time for the sample be so rare as to have only 1 chance out of 100, or less, of occurring.

The Critical Region

All values of the test statistic in the direction of the alternative hypothesis with a P-value less than or
equal to the significance level « define a set called the critical region of the test statistic. By definition, «
is the probability that the test statistic will lie in the critical region.
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EXAMPLE 9.7 Supposc the test statistic, assuming 17y g = g 1s truc, is the standard nomaial random variable Z.
and the lcvel of significance is o = 0.85.  Then, as illustrated in Fig. 9-1, the critical rcgions for onc-sided and two-
sided alternative hypotheses are as [ollows:

For H,: i < j, the critical region is all values z < —1.65, since P(Z < —1.65) = 0.5

For I,:p¢ > py, the critical rcgion is all valucs z > 1.65. since P(Z > 1.65) = 9.05

For H,:j1 # po, the critical region is all values z < —1.96 orz > 1.96. since P(Z < —1.96)+1°(Z > 1.96) = 9.05
[equivalently. (Z > 1.96) = 0.05/2 = 9.025]

0.05
| . N =
Critical region  —1.65
(@) Hip<p,
A
0.05

i gl ”
165~ Critical region
(B) H:p>py

A

0.0235 0.025
;== —w, b
% -1.96 1.96

T

Critical region
(©) Hyip ##o

Fig. 9-1 Critical Z regions, o = 0.05.

EXAMPLE 9.8 Suppose the test statistic, assuming Hg: j2 = j1g is true, is the standard nornmal random variable 7,
and « = 9.0l. At thc 0.8! level of significance, the corresponding critical regions arc the following (sce Fig. 9-2):

For H,:j1 < pq, the critical region is all values = < —2.33, since (7 < —2.33) = 0.81

For IT,:41 > pg, the critical region is all valucs z > 2.33, sincc P(Z > 2.33) = 0.0l

For F,:1i # jeq. the critical region is all valuesz € —2.58 orz > 2.58, sincc P(Z < —2.58)+P(Z > 2.58) = 9.0l
[equivalently, P(Z > 2.58) =0.01/2 = 0.095]

Determining the Critical Region

In genceral, the critical region depends on the null hypothesis, the test statistic, the signilicance level,
and the alternative hypothesis.  Suppose the null hypothesis is the simple hypothesis Hg: f1. = 429, the Lest
statistic, assuming I, is truc, is the standard normal random variable Z, and the significance level is
«a. Then the critical region is determined as [ollows:

For H, p < j1, the critical region is all values z < z*, where P(Z
For H .4+ > py, the critical region is all values z > z*. where P(Z
For H,:p # pto. the critical region is all values z < —z* or
P(Z > z*) = o [cquivalently, P(Z > z¥) = a//2]
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Critical region 2.3
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2337 Critical region

&) H;p>pg
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N P — —— i >
1 -2.58 2.58 t
Critcel region
(©) Hypn#po

Fig. 9-2 Ciritical Z rcgions, « = 9.91.

Using Significance Level and Critical Region for Decision Making

The P-valuc of a Lest will be Iess than or cqual (o the significance Ievel & preciscly when the test value
of the test statistic lies in the critical region. Hence, if the test value lies in the critical region, then the null
hypothesis is rejected at the c level of significance; if the test value is not in the critical region, then the null
hy:pothesis is not rejected.

EXAMPLE 9.9 Thc critical rcgion for the standard normal random variablc at the 0.95 lcvel of significance for the
altcrnative hypothesis 77 ; gt < pgis all valucs z < —1.65 (Examplc 9.7).  Supposc the test valuc of the test statisticis
—2 (as in Example 9.3). Since —2 is less than —1.65, the null hypothesis is rejected at the 0.5 signilicance
level. However, the critical region at the 0.91 level of signilicance is all values z < —2.33 (Example 9.8). Since
—2 is not less than —2.33, the null hypothesis is not rejected at the 0.91 significance level.

Type I and Type IT Errors

There are two important types of mistake that can be made when reaching a decision on the basis of
a hypothesis test: rejecting the null hypothesis when it is true is called a Type I error; not rejecting the
null hypothesis when the alternative hypothesis is true is called a Type JI crror.  Each Lype of crror
depends on the specified signilicance level.

EXAMPLE 9.10 Toillustrate a Type I error, suppose the signilicance level were chosen to be 0.95. and the P-value
of the test is 0.0228 (Example 9.3). Since 9.0228 is less than 0.5, H{; would be rejected at the 0.95 level of
significance. However, this would be a mistake il Hywere in [acl true.

EXAMPLE 9.11 Suppose the level of signilicance were chosen to be 0.91, and the P-value of the test is
0.0228. Since 0.9228 is not less than 0.01, the null hypothesis #y would not be rejected at the 9.01 level of
significance. This would be a Type II error il the altemative hypothesis H, were true.
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Probability of a Type I Error

If a simple null hypothesis, such as Hg: p = pg, is in fact true, then all values of the test statistic
in the critical region will result in a Type I error. Since the significance level « is the probability
that the test statistic will lie in the critical region, it follows that « is the probability of making & Type
I error.

EXAMPLE 9.12 Suppose the null hypothesis is Hy: & = g, the alternative hypothesis is H,: p < g, and the sig-
nificance level is chosen to be 0.05. Then, as illustrated in Fig. 9-1, the critical region consists of all values of the
standard normal random variable less than or equal to —1.65. The probability that a test value will lie to the left of
—1.65 is precisely 0.05.

The significance level chosen for a test depends on how important it is to avoid a Type I error.
Decreasing « reduces the chances of making a type I error. However, since decreasing «
reduces the likelihood of rejecting the null hypothesis, it also reduces the likelihood of rejecting
the null hypothesis when the alternative hypothesis is true, which increases the chances of making
a Type II error. The only sure way to reduce the chances of both types of error is to increase the
sample size.

Probability of a Type II Error

A Type II error results if we fail to reject the null hypothesis when the alternative hypothesis is
true. Now a composite alternative hypothesis does not specify a particular value of the parameter that
forms the basis of the test, and therefore does not uniquely determine the distribution of the underlying
random variable. Hence, we cannot determine the probability of a Type II error simply by assuming
the alternative hypothesis is true. We can, however, determine the probability of a Type II error for
each specific value of the parameter for which the alternative hypothesis is true (see Examples 9.13 and
9.14). This determination leads to the notion of the power of a test, described below.

Power of a Test

Suppose that the null and alternative hypotheses are hypotheses about a parameter, say the
mean p, of a random variable X, whose value completely determines the distribution of X. The test
is to be conducted at a specified level of significance «, which therefore determines a critical region
for the test statistic. Let u; be a specific value of the parameter. Then the power of the test
a! p,, denoted by K(u), is defined to be the probability that the null hypothesis Hy: p = pq will
be rejected when pu = p;. Therefore, 1 — K(u;) is the probability of a Type II error, given that
B=p 7 e

K(p) is the probability that the test statistic lies in the critical region, given that p = p;. Recall
X — o
o/\/n
the standard normal random variable; but if g = p; and p; £ py, then the test statistic is not the
standard normal random variable, so the probability that it lies in the critical region is not equal to
the level of significance «.

that the critical region for the test statistic is determined under the assumption that this statistic is

EXAMPLE 9.13 With reference to Example 9.1, suppose that the null hypothesis Hy: = 12 is to be tested
against the alternative hypothesis H,: pu < 12 at the 0.05 level of significance, based on a random sample of size
36. Suppose also that the new teller policy actually results in the average waiting time being reduced from 12
minutes to 11 minutes, and the standard deviation of the waiting time is still 3 minutes. What is the power K(11) of
the test?

X - Y—-12 xY-12
The test statistic is

He _
o/v/n  3/y/36 05

the 0.05 percent level for the alternative hypothesis H,:p < 12 is z* = —1.65 (see Example 9.7). We want to

The critical value of the standard normal random variable at




CHAP. 9] HYPOTHESES TESTS FOR A SINGLE POPULATION 267

compute the probability that Y

< —1.65, given that is the standard normal random variable. Now

Y-
= < -—1.
K(11) P< o5 < 165)

= P(XY < —1.65x0.5+12)

_p X 11 <*1.65X0.5+12*11
05 — 0.5

~ P(Z <0.35)

~ (0.6368

Powerful Tests

If the null hypothesis is Hy: 4 = py, then K(ue) = o, which is the probability of a Type I error;
therefore we want K(u,) to be small. We can achieve this by choosing the level of significance o to be
small.  On the other hand, if y, is a value of p for which the alternative hypothesis H, is true, then we
want K(p;) to be large. 1 — K(u,) is the probability of a Type II error, which will be small when K(u,)
is large. THence, a powerful test is one in which K(ue) is small, and K(u;) is large whenever
11 7 pe- Increasing sample size increases the power of a test.

EXAMPLE 9.14 Suppose the sample size in Example 9.13 is increased to 64. Find the power K(11) of the test and
the probability of a Type II error at the 0.05 significance level when p = 11.

Y2 _¥-12

With a sample of size 64, the test statistic is Following the method of Example 9.13, we get

3/v64  0375°
Y—12
- < 1.
K(11) P( 5375 < 165)

=P(X < -1.65x%0.375+12)

_ Yfll<fl.65><0.375+12711
n 0375 — 0.375

~ P(Z<1.02)
~ 0.8461

The probability of a Type II error when g = 11is 1 — K(11) = 0.1539.

Using Tables or Computer Software to Find the P-value of a Test

The test statistic in hypothesis testing is often the standard normal random variable, a chi-square
random variable, a 1 random variable, or an F random variable (see Section 10.5). Tables in statistics
texts are usually adequate to compute the P-value for the test value of a standard normal random
variable. However, the ¢ and chi-square random variables require a different table for each degree
of freedom, so most statistics texts include test values for a very limited number of P-values in addition
to 0.05 and 0.01. The Frandom variable depends on a pair of degrees of freedom; and textbook tables
are often limited to P-values of 0.05 and 0.01 only. More detailed reference tables are available, but the
simpler procedure is to use a computer software package to determine the P-value when the test statistic
is not a standard normal random variable.

Reasonable Doubt

Hypothesis testing for rejecting or not rejecting the null hypothesis is similar to weighing evidence
against the defendant in a criminal or civil trial. If, in the mind of a jury in a criminal trial, there is no
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reasonable doubt that the defendant has committed the crime, then the jury should find the defendant
guilty. 1In a civil trial, only a “preponderance” of evidence is needed to find the defendant liable. In
hypothesis testing, the null hypothesis is an assumption of innocence, and the evidence against the
null hypothesis is provided by the sample results. The level of significance « sets the standard
for reasonable doubt or preponderance of the evidence. If the P-value of the test is less than or
equal to «, then the criterion for eliminating reasonable doubt or for establishing a preponderance of
evidence has been achieved, and the null hypothesis is rejected. A very low significance level corre-
sponds to a criminal case that requires a very high degree of certainty of guilt; relatively higher levels of
significance correspond to civil cases in which a lighter weight of evidence can be used for a finding of
liability.

Absolute certainty is rare in trials and in hypothesis testing. Committing a Type I error in hypoth-
esis testing corresponds to finding an innocent defendant guilty or liable. A Type II error corresponds
to not reaching a guilty or liable verdict when the defendant is guilty.

9.2 HYPOTHESES TESTS FOR MEANS

Let X be a random variable with mean g, which is unknown, and standard deviation o, defined on
some population. We give prescriptions for hypotheses tests regarding g when o is known and when o
is unknown. As in the case of confidence intervals for p, hypotheses tests for u require that the sample
mean, X, be approximately normally distributed. This condition can be met for small samples (7 < 30)
if X itself is normally distributed. For large samples (n > 30), the Central Limit Theorem allows us to
assume that X is approximately normally distributed regardless of the distribution of X. We consider
hypotheses tests for p where the null hypothesis is

Hy:pp= pa
and the alternative hypothesis is one of the following:

Ha:p“ < HUq, Ha:lu > He, or H“:'u ?( He

PRESCRIPTION 9.1 (P-value hypotheses tests for 4 when ¢ is known)

Regquirements: X has known standard deviation o, and the sample mean X is approximately normally
distributed.
Let « be the specified level of significance for the test, and suppose that a value X of the sample mean
X is obtained in a random sample of size n. Complete the following steps.

(1) State Hypotheses: State null hypothesis Hy: 1t = pg and alternative hypothesis H,.

s . X —
(2) Compute Test Statistic: The test statistic is the standardized sample mean, namely Z = y \//ﬁo
o/\/n
which, assuming Hy is true, is (approximately) the standard normal random variable. Compute
C _ X —
the test value of Z, which is the z score of x:z = K 0
o/\/n

(3) Determine P-value: Using a standard normal table (or computer software), find the P-value of the
test corresponding to H,:

For H,: pt < pg, the P-value is P(Z < z)
For H,:p > pq, the P-value is P(Z > z)
For H,:p # py, the P-value is P(Z < —|z|) + P(Z > |z|) [equivalently, 2P(Z > |z|)].

(4) Draw Conclusion: If P-value < «, then both z and X are said to be statistically significant at level «,
and Hy is rejected. If P-value > «, then zand X are not statistically significant at level a, and Hy is
not rejected.
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Alternative Version of Prescription 9.1

Instead of computing the P-valucs in Step 3 of Prescription 9.1, we could determine the critical
region for Lhe alternative hypothesis at the specilied level of significance, a (sce Scction 9.1).  If the test
valuc z is in the critical region, then the test result is significant at level &, and the null hypothesis would
be rejected. 11 the test valuc z is not in the critical region, then the test result is not significant at level a,
and the null hypothcsis would not berejected.  Hence Prescription 9.1 can be replaced by the lollowing.

PRESCRIPTION 9.1« (Critical-region hypotheses tests for 4 and ¢ is known)

Requiremnents: X has known standard deviation ¢, and the sample mean X is approximately normally
distributed.

(1} and 2 Same as in Prescription 9.1.
(3) Deterinine Critical Region: Using a standard normal table (or computer software), find the critical
region corresponding to H, and a:

For H, u < ji. the critical region is all z scorcs z < z¥, where z* is the (ncgative) valuc
satisflying P(7Z < z*) = « (Fig. 9-3(a)).
For H, p > {14, the critical region is all z scores z > z¥, where z* is the (positive) valuc satis[ying
P(7Z > z*) = a (Fig. 9-3(h)).
For H ,:j1 # 14, the critical region is all z scorces for which z < —z* or z > z¥, where z* is the
(positive) valuc satisfying P(Z < —z*) 4 P(Z > z*) = a [cquivalently, P(Z > z*) = a/2]
(Fig. 9-3(c).

(4) Draw Cenclusien: 1f the sample value z of the test statistic lies in the critical region, then both z and

x arc said Lo be statistically significant at level @, and H g is rejected. Il z does not lie in the critical
region, then z and ¥ are not statistically significant at level @, and H is not rejected.

Both versions of Prescription 9.1 arc applied to the following example.

v

[
Critical region 2"
(d} Ha: K<y
5

a

— >
K /(;n'ﬁcal region
(b) Hu: K >I‘0

h
al2 \’CQ
e e >
‘ t

Critical regior
() H;p # py

Fig. 9-3  Critical Z regions, signilicance level a.
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EXAMPLE 9.15 A population random variable X is normally distributed with unknown mean g and with standard
deviation o = 2. The null hypothesis is Hy: . = 15. A random sample of size 25, drawn from the population,
results in a sample mean x = 16. Test the null hypothesis at significance level & = 0.01 against each of the
following alternative hypothesis:

(@ Hpp<l15 by Hpp>15 (o) Hpyp#15

P-value selutien: Since X is normally distributed, so is X. The null and alternative hypotheses have already

. T 16 — 15 .
been stated in each case. The value of the test statistic is z = ———— = 2.5 in all three cases. We now do each case

individually. 2/5

(a) By Step 3 in Prescription 9.1, the P-value is P(Z < 2.5) = 0.9938, which is certainly not less than 0.01. There-
fore, the test result z = 2.5 (or x = 16) is not statistically significant at level 0.01, and the null hypothesis would
not be rejected.

(b) By Step 3 in Prescription 9.1, the P-value is P(Z > 2.5) = 0.0062, which is less than 0.01. Therefore, the test
result z = 2.5 (or x = 16) is statistically significant at level 0.01, and the null hypothesis would be rejected.

(¢) By Step 3 in Prescription 9.1, the P-value is

P(Z < -25)+ P(Z >2.5)=0.0062 + 0.0062 = 0.0124

which is not less than 0.01. Therefore, the test result z = 2.5 (or X = 16) is not statistically significant at level
0.01, and the null hypothesis would not be rejected.

Critical-region selution

() The critical region for the one-sided alternative H,:u < 15 at significance level & =0.01 is z < —2.33
(Fig. 9-2(a)). Since the test value z = 2.5 is not in this region, the test result is not statistically significant at
level 0.01, and the null hypothesis Hy: 1 = 15 would not be rejected.

(b) The critical region for the one-sided alternative H,:p > 15 at significance level & =0.01 is z > 2.33
(Fig. 9-2(b)). Since the test value z = 2.5 is in this region, the test result is statistically significant at level 0.01,
and the null hypothesis Hy: ¢ = 15 would be rejected.

(¢) The critical region for the two-sided alternative H,: i # 15 at significance level & = 0.01 consists of the z scores
satisfying z < —2.58 or z > 2.58 (Fig. 9-2(c)). Since the test value z = 2.5 is not in this region, the test result is
not statistically significant at level 0.01, and the null hypothesis Hy: u = 15 would not be rejected.

Hypotheses Tests for # When ¢ is Unknown

As in the case of confidence intervals for ¢, when the standard deviation o is not known, we use the
sample standard deviation

T (% X7

in place of o, and the ¢ distribution in place of the standard normal distribution. The corresponding
prescriptions for the hypotheses tests are as follows.

S =

PRESCRIPTION 9.2 (P-value hypotheses tests for 4 when ¢ is unknown)

Requirement: The sample mean X is approximately normally distributed.

Let « be the specified level of significance. Suppose the values xq, x5, ..., x, of X are obtained in a
. . .. - X X e X
random sample of size n. First compute the sample statistics X = i B A and
n
1 .
s = \/ T S (x; — %)% Then complete the following steps.
n_

(1) State Hypotheses: State null hypothesis Hy: 4 = pg and alternative hypothesis H,.
X — o
S//n
mately) the  random variable with n — 1 degrees of freedom. Compute the test value of ¢ as the ¢
X — o

s/\/n’

(2) Compute Test Statistic: The test statistic is ¢ =

which, assuming Hg is true, is (approxi-

score of the sample mean: 7 =
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(3) Determine P-value: Using a ¢ table, if adequate, or computer software for the / random variable
with # — 1 degrees of freedom, find the P-value of the test corresponding to H,:

For H,: p < g, the P-value is P(1 < 7)
For H,: p > pg, the P-value is P(t > 7)
For H,:p 7 py, the P-value is P(t < —|i|) + P(¢ > |7|) [equivalently, 2P(z > |7|)]

(4) Draw Conclusion: If P-value < «, then both the value 7 of the test statistic and the value X of the
sample mean are said to be statistically significant at level o, and H4 is rejected at the « level of
significance. If P-value >, then 7 and X are not statistically significant at level o, and H ¢ is not
rejected.

EXAMPLE 9.16 A population random variable X is normally distributed with unknown mean and standard
deviation. A random sample of size 16 yields a sample mean x =110 and sample standard deviation
s = 18.18. Test the null hypothesis Hy: ¢ = 100 against the alternative hypothesis H,: u # 100 at the significance
level & = 0.05 by computing the P-value of the test.

Since o is unknown, we apply Prescription 9.2. X is normally distributed, so ¥ also is. Step 1 has
already been completed since the null and alternative hypotheses are given. In Step 2, the test statistic is the ¢
X100 X —100
S/V16 S/4

=2.2. The P-value of the test is P(r < —2.2) + P(t >2.2) = 2P(¢t > 2.2). The closest value to

random variable = , with 15 degrees of freedom. The test value is the ¢ score of

o 110 — 100
o 18.18/4
2.2 for 15 degrees of freedom in Table A-2 of the Appendix is 2.13, which corresponds to a P-value of 0.05. The
actual P-value is less than 0.05. Using computer software, we find that the P-value is 0.0439. Since 0.0439 is less
than 0.05, we reject the null hypothesis.

Alternative Version of Prescription 9.2

Most ¢ tables in textbooks are inadequate to determine the P-value in many cases when the test
statistic is the 7z random variable. The alternative version of Prescription 9.2 uses the critical region
corresponding to the level of significance « and the alternative hypothesis H,, and does not require the
determination of the P-value. The critical region can be determined for various levels of significance
and degrees of freedom from Table A-2 for the ¢t random variable in the Appendix.

PRESCRIPTION 9.2« (Critical-region hypotheses tests for # when & is unknown)
Requirement: The sample mean X is approximately normally distributed.

(1) and (2) Same as in Prescription 9.2.
(3) Determine Critical Region: Using a ¢ table with n — 1 degrees of freedom (or computer software),
find the critical region corresponding to H, and «:

For H,: 1 < py, the critical region is all values 7 < ¢*, where * is the (negative) value satisfying
P(t < r*) = a (Fig. 9-4(a)).
For H,: p > pq, the critical region is all values 7 > #*, where * is the (positive) value satisfying
P(t > r*) = a (Fig. 9-4(b)).
For H,: p 7 g, the critical region is all values 7 for which 7 < —¢* or 7 > t*, where r* is
the (positive) value satisfying P(1 < —1*) + P(¢t > 1*) = « [equivalently, P(z > t*) = «/2]
(Fig. 9-4(c)).

(4) Draw Conclusion: If the sample value, 7, of the test statistic lies in the critical region, then 7 and X are

statistically significant at level «, and Hq is rejected. If 7 does not lie in the critical region, then 7
and X are not statistically significant at level «, and H4 is not rejected.
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Fig. 9-4 Critical ¢ regions.

EXAMPLE 9.17 Test the null hypothesis f7,: p = 100 against the alternative hypothesis /7 ;72 7 100 in Example
9.16 at the significance level & = 0.05 by detenmining the critical region lor /4, at level a = 0.05.

Wec follow Prescription 9.2a.  The critical region for the two-sided alternative #,:4¢ 3% 100 at significance level
a = 0.05 and 15 degrees of freedom consists of the ¢ scorces for which 7 < —2.13 or 7 > 2.13 (Fig. 9-5).  Since the test
value 7=2.2 is in this region, the test result is statistically significant at level 0.05, and the null hypothesis
Iy p = 100 would be rcjected.

0.025 0.025

¥ N
-2.13 713 %2

Fig. 9-5

9.3 HYPOTHESES TESTS FOR PROPORTIONS

As in the casc ol confidence intervals, we assumc that a population is broken up into two
groups, and thc members of onc of the groups arc relerred Lo as “successes.”” Let p be the (unknown)
proportion ol successes in the population, and let 2 be the random variable whose valuc on a
random samplc of sizc 7 is the proportion j of successes in the sample. P has mecan p and standard

deviation »(1 — p)/n. and is approximately normal when 72 > 30.  We then arrive at the following
/ / pp y g
prescription.
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PRESCRIPTION 9.3 (P-value hypotheses tests for population proportion p)

Regquirement: The sample size n is large, n > 30.
Let « be the specified level of significance for the test, and suppose p is the proportion of successes
obtained in a random sample of size n > 30. Complete the following steps.

(1) State Hypotheses: State null hypothesis Hy: p = py and alternative hypothesis H,.
(2) Compute Test Statisticc The test statistic is the standardized sample proportion, namely

P— . . . . . s .
A which, assuming Hg is true, is approximately normally distributed with
po(l — pa)/n
mean 0 and standard deviation 1. Compute the test value of Z as the z score of p, namely
P — Do

Vol —po)/n
(3) Deterinine P-value: Using a standard normal table (or computer software), find the P-value of the
test corresponding to H,:

For H,:p < py, the P-value is P(Z < z)
For H,:p > py, the P-value is P(Z > z)
For H,:p 7 py, the P-value is P(Z < —|z|) + P(Z > |z|) [equivalently, 2P(Z > |z|)]

(4) Draw Conclusion: If P-value < «, then the z score of the sample proportion p is statistically sig-
nificant at level «, and Hy is rejected. We would also say that p is statistically significant at level
c. If P-value > «, then z and p are not statistically significant at level «, and H is not rejected.

EXAMPLE 9.18 A pharmaceutical company claims that 90 percent of smokersthat use their anti-tobacco product,
Kickit, break the smoking habit in two months. In a random sample of 100 smokers who used Kickit as prescribed,
84 stopped smoking in two months. Determine the P-value of the test of the null hypothesis Hy: p = 0.9 against

. . . 84 . L
the alternative hypothesis H,:p < 0.9. Is the sample proportion j = — = 0.84 statistically significant at the 0.01

level? 100
Since the sample size n =100 is greater than 30, we can use Prescription 9.3. The test statistic is
P09 P-09 . 0.84-0.9 .
= = , and the test value of Z is u = —2. Therefore the P-value of the test is

V0.9(1-0.9)/100  0.03 0.03
P(Z < -2). Using the standard normal table, we find that P(Z < —2) =0.0228. Since 0.0228 is not less than
0.01, the sample proportion p = 0.84 is not statistically significant at the 0.01 significance level. The test does not
provide enough evidence to reject the null hypothesis at the 0.01 level. It does, however, provide evidence to reject
the null hypothesis at any significance level greater than or equal to 0.0228.

Alternative Version of Prescription 9.3

Instead of computing the P-values in step 3 of Prescription 9.3, we could determine the critical
region for the alternative hypothesis at the specified level of significance, c. If the test value z is in the
critical region, then the test result is significant at level «, and the null hypothesis would be rejected. If
the test value z is not in the critical region, then the test result is not significant at level o, and the null
hypothesis would not be rejected. Hence, Prescription 9.3 can be replaced by the following.

PRESCRIPTION 9.3« (Critical-region hypotheses tests for population proportion p)
Requirement: The sample size n is large, n > 30.

() and (2) Same as in Prescription 9.3.
(3) Determine Critical Region: Using a standard normal table (or computer software), find the critical
region corresponding to H, and «:

For H,: p < py, the critical region is all z scores z < z*, where z* is the (negative) value
satisfying P(Z < z*) = « (Fig. 9-3(a)).
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For H,: pu > py, the critical region is all z scores z > z*, where z* is the (positive) value satisfying
P(Z > z¥) = « (Fig. 9-3(b)).

For H,:p # py, the critical region is all z scores for which z > z* or z < —z*, where z* is
the (positive) value satisfying P(Z < —z*) + P(Z > z*) = « [equivalently, P(Z > z*) = /2]
(Fig. 9-3(¢)).

(4) Draw Conclusion: If the z score of the sample proportion p lies in the critical region, then z and
therefore p are statistically significant at level «, and Hy is rejected. If z does not lie in the critical
region, then z and p are not statistically significant at level o, and Hy is not rejected.

EXAMPLE 9.19 The critical region at the 0.01 level for the test in Example 9.18 consists of all z scores less than or
equal to z*, where P(Z < z*) =0.01. From the normal table, we find that z* = —2.33. Therefore, the critical
region is all z < —2.33. For any z score of the sample proportion in this region, the null hypothesis Hy:p = 0.9
would be rejected at the 0.01 significance level. Since the z score in Example 9.18 is —2, which isnot < —2.33, Hy is
not rejected.

EXAMPLE 9.20 What sample size would be needed for the test value 5 = 0.84 of Example 9.18 to be statistically
significant at the 0.01 significance level?
From Example 9.19, the z score of the sample proportion 0.84 must be less than or equal to —2.33. The z score

0.84—-0.9 —0.06
of p=0.84isz = = = —0.2y/n. Setting —0.2y/n = —2.33, we get v/n = 11.65. Squar-
? V091 —09)/n 009/ vn Vi g —02vn get v q

ing 11.65 and rounding upward, we find that n = 136.

9.4 HYPOTHESIS TESTS FOR VARIANCES

Suppose X is approximately a normally distributed random variable with mean g and unknown
variance o°. We consider hypotheses tests for o when p is unknown; the case where p is known is
covered in the exercises. The null hypothesis will be

Hy: o’ = oy
and the alternative hypothesis will be one of the following:

H, o’ <oy, Hpo>>o}, or H;o" +# 0

Hypotheses Tests for 6> When p is Unknown

As with confidence intervals, hypotheses tests for o” depend on the chi-square random variable with
n — 1 degrees of freedom,
, (n=1)s?

X = o2

1 SN2 . . . .
where $? = —IZ X;— X )2 is the sample variance, X, X,,..., X, being a random-variable sample
n_

corresponding to X, and X is the sample mean. Proceeding as in the case of confidence intervals, we
arrive at the following prescription.

PRESCRIPTION 9.4 (P-value hypotheses tests for 6> when g is unknown)

Requirement: X is approximately normally distributed.
Let « be the level of significance for the test. Suppose the values x;, x5, ..., x, of X are obtained in

a random sample of size n. Compute the corresponding values of the sample mean

=X touto x", and sample variance s* = —12 (x; — :{')2. Then complete the following
n—

steps. "
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(1) State Hypotheses: State null hypothesis H o’ = aﬁ and alternative hypothesis .

ns? . ‘ . ‘ ‘
L 02)9 which, assuming Hj is truc, is (approxi-
0

maltcly) a chi-squarc random variablc with » — 1 dcgrees of [reedom.  Compute the test valuc
. (» 1)52
X

(2) Compute Test Statistic: The test statstic is x

—
)
0
() Deterinine P-value: Using a lablc or computer software [or the chi-squarc random variable with
n— 1 degrees ol [reedom, find the P-value of the test corresponding Lo H .

For H, 0" < aj, the P-valuc is P(x* < %)
For H, 0” > oy, the P-value is P(x* > X°)

2P <K i S <o

i) 2 |
For  ;;0° # ay, thc P-valuc is {2’(.3(2 > }23) T oes of,)

(4)  Draw Conclusion: Il P-valuc < a, then both ¥* and 5? arc said (o be statistically significant at level
. - < e 2] T . .o
a, and Hy is rejected. I P-valuc > @, then §° and 5° arc not statistically signiflicant at level a, and
11 is not rcjected.

Alternative Version of Prescription 9.4

Chi-square tables in textbooks are often inadequate for computing P-values due to the need to
include data for many different degrees of freedom. An alternative version of Prescription 9.4 replaces
P-values by the critical region for the alternative hypothesis at the specified level of significance, o (see
Section 9.1). If the test value 922 is in the critical region, then the test result is significant at level «, and
the null hypothesis would be rejected.  If %% is not in the critical region, then the test result is not
significant at level a, and the null hypothesis would not be rejecied.  Hence Prescription 9.4 can be
replaced by the following.

PRESCRIPTION 9.4a (Critical-region hypotheses tests for a%; ¢ unknown)
Requirement: X is approximatcly normally distributed.

(1) and (2) Same as in Prescription 9.4.
(3) Determine Critical Region: Using a chi-square table with # — | degrees of freedom (or computer
software), find the critical region corresponding to /4, and «:

For H 0 < of, the critical region is all valucs ¥* < x*, where x* is the valuc satisfying
P(* < x*) = o (Fig. 9-6(a)).

For H 0> > o, the critical region is all valucs §* > x*, where x* is the valuc satisfying
P(* 2 x*) = o (Fig. 9-6(b)).

For H, 0% # i, the critical region is all valucs §° < x§ or x? > x3. where 7§ is the value
satisfying P(x° < x7) = «/2, and x3 is the valuc satislying P(x? > x3) = a/2 (Fig. 9-6(c)}.

2 z L
& 2 2
I y ‘.“‘\‘_ > X 3 I > X 2 x 2
1) — . 0 A— O™ % . 7
Critical %" %' Critical AN xn7 X
region region Critical region
(@) H;0o%<0} ) H,:0%>0? () H,;0%= ot

Fig. 9-6 Critical \* rcgions.
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(4) Draw Conclusion: If the sample value, %2, of the test statistic lies in the critical region, then % and s>
are statistically significant at level o, and Hy is rejected. If % does not lie in the critical region,
then ¥* and s are not statistically significant at level o, and Hy is not rejected.

EXAMPLE 9.21 Over the years the grades in a mathematics professor’s calculus classes have been normally
distributed with mean 75 and standard deviation 8. Recently the grades seem to have fallen and show more
variation. A sample of 41 recent grades has mean x = 73 and standard deviation s = 9.6. Assuming the grades
are still normally distributed, test the null hypothesis Hy: o> = 64 against the alternative hypothesis H,: o> > 64 at
the 0.05 significance level.

P-value seolutien: The grades are a random variable X which we are assuming is normally distributed. How-

ever, since the grades seem to have fallen, we will not assume that t2he mezuzl of X'is 75. Therefore, Prescriptions 9.4
and 9.4a apply. In either case, the test statistic is x* = -@- = % = 0.6255 which, if Hy is true, is a chi-
square random variable with 40 degrees of freedom. The .test value is §* = 0.625 x (9.6)2 =57.6. To apply
Prescription 9.4, we must compute the P-value of the test, which is P(x?> > 57.6). Table A-3 in the Appendix
shows that 0.025 < P(x? > 57.6) < 0.05; using computer software, we find that P(x* > 57.6) ~ 0.035. Since
0.035 < 0.05, the test is statistically significant at the 0.05 level; and we reject the null hypothesis that the variance
is still 64.

Critical region selutien: We now apply Prescription 9.44. The critical region for x>(40) for the alternative
hypothesis H,:0” > 64 at the 0.05 significance level is all values %°> x* where x* satisfies
P(X2 > x*)=0.05. From Table A-3 in the Appendix, with 40 degrees of freedom, we find that
x* =155.8. The test value is )22 = 57.6 (see P-value solution), and since 57.6 > 55.8, the test value is in the critical
region, which means that the test is significant at the 0.05 level, so the null hypothesis Hy: o> = 64 is rejected at this
level.

Warning

As with confidence intervals for the variance, hypotheses tests for the variance, based on the chi-
square test statistic, are not robust, meaning that decisions made may not be very reliable when X is not
close to being normally distributed. Therefore the practical use of hypotheses testing for the variance is
limited.

Solved Problems

TESTING HYPOTHESES ABOUT PARAMETERS

9.1. The9th grade algebra scores in a school district have been normally distributed with a mean of 75
and a standard deviation of 8.25. A new teaching system is introduced to a random sample of 25
students, and in the first year under the new system the average score is 78.2. What is the
probability that an average this high would occur for a random sample of 25 students in a
given year under the old system?

Let .Y be the algebra scores under the old system. Y is a normal random variable with mean 75
and standard deviation 8.25. Let X denote the sample mean for all random samples of size 25. X is

8.25 .
normally distributed with mean 75 and standard deviation —— =1.65. Then P(X >78.2) =

X—75_782-175 . V25 . .
P 165 > Tes = P(Z > 1.94), where Z is the standard normal random variable. Using Table

A-1 in the Appendix, we find that P(Z > 1.94) = 0.0262 ~ 0.026. Therefore an average as high as 78.2
would be expected to occur by chance under the old system in approximately 26 out of 1000 cases.

9.2. State a null hypothesis and alternative hypothesis for testing the new teaching system described in
Problem 9.1.
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9.3.

9.4.

9.5.

9.6.

9.7.

The null hypothesis states that the average score under the old system has not changed with the new
system, that is, Hy: p = 75. The alternative hypothesis, for one who feels that the new system is better,
states that the new mean score has increased, that is, H,: p > 75. It is assumed that o = 8.25 under both
systems.

What is the test statistic and the P-value of the test in Problems 9.1 and 9.2?

1.65
standard normal random variable. The P-value of the test corresponding to the alternative hypothesis
Hye X >75i0s P(Y >782) = P(Z > 1.94) = 0.0262.

The test statistic is the standardized sample mean, namely Z =

which, if Hy is true, is the

At which significance levels would the null hypothesis be rejected in Problems 9.1 and 9.27
Specifically, would the null hypothesis be rejected at significance level 0.05, at significance level
0.017

Since the P-value of the test is 0.0262 (Problem 9.3), the null hypothesis, Hy: ¢ = 75, would be rejected
at any significance level & for which 0.0262 is less than or equal to &, and would not be rejected if 0.0262 is
greater than e. Since 0.0262 is less than 0.05, the null hypothesis would be rejected at the 0.05 level of
significance; since 0.0262 is greater than 0.01, Hy would not be rejected at the 0.01 level of significance.

What is the critical region for the test in Problems 9.1 and 9.2 at the (&) 0.05 significance level,
(b) 0.01 significance level?

(«) Since the test statistic, assuming Hy: ¢ = 75 is true, is the standard normal random variable, and the
alternative hypothesis is H,: p > 75, it follows from Example 9.7 that the critical region at the 0.05
significance level consists of all z scores greater than or equal to 1.65.

() From Example 9.8, the critical region at the 0.01 significance level consists of all z scores greater than or
equal to 2.33.

For what values of the sample mean X in Problems 9.1 and 9.2 will the test statistic lie in the
critical region at the () 0.05 significance level, (b) 0.01 significance level?

(«) By Problem 9.5, all z scores of the sample mean that are greater than or equal to 1.65 lie in the

o . A . . x—=75
critical region at the 0.05 significance level. The inequality * 165

> 1.65 is equivalent to

x> 1.65x1.65+ 75~ 77.72. Therefore the test statistic will lie in the critical region, and Hy will be
rejected when ¥ > 77.72.

() By Problem 9.5, all z scores of the sample mean that are greater than or equal to 2.33 lie in the
x-—75
1.65
x> 233 x 1.65+ 75 ~ 78.84. Therefore, the test statistic will lie in the critical region, and Hy will be

rejected, when x > 78.84.

critical region at the 0.01 significance level. The inequality >2.33 is equivalent to

Suppose the null hypothesis Hg: o = 75 in Problems 9.1 and 9.2 is true. What values of the
sample mean will result in a Type I error at the (&) 0.05 significance level, (b) 0.01 significance
level?

A Type I error occurs if Hy: p = 75 is rejected when it is true. Hg will be rejected whenever the z score
of the sample mean lies in the critical region. (&) By Problem 9.6, part (a), a Type I error at the 0.05 level
will occur if x > 77.72 and Hy is true. (b) By Problem 9.6, part (b), a Type I error at the 0.01 level will occur
if x> 78.84 and H, is true.
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9.8.

9.9.

9.10.
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Suppose the new average score is actually 78 in Problems 9.1 and 9.2, and the standard deviation
of the scores is still 8.25. What is the power K(78) of the test at the 0.01 significance level? What
is the probability of a Type II error when p = 78?7

Y — 78
is the

X-75,. . .. . .
K(78) is the probability that the test statistic lies in the critical region, given that

standard normal random variable. At the 0.01 level, the critical region is all z scores greater than or equal

x— 175
to 2.33 (Problem 9.5), and al > 2.33 is equivalent to X > 78.84 (Problem 9.6, part (b)). Therefore,

1.65

X 78 _ 7884178
1.65 — 1.65

II error will occur when g =78 is 1 — K(78) =1 — 0.305 = 0.695.

K(78) = P(X > 78.84) = P< ) = P(Z >0.51) = 0.305. The probability that a Type

With reference to Problem 9.8, what is the power K(78) of the test at the 0.01 significance level if
the sample size is 100? What is the probability of a Type I error when the sample size is 100? What
is the probability of a Type II error when y = 78 and the sample size is 1007

If the sample size is 100, then the test statistic is Yo X(/) ;2’;5, and o ; ’8 is the standard
normal random variable. Therefore 8.25/v/100 : 0.825

XY-75 )
K(78) = < s > 2 33) P(Y >233 %0825+ 75) = P(X > 76.92)

X 78 _ 7692 —
=P >
0.825 — 0.825

78
) = P(Z > —1.31) = 0.9049

The probability of a Type I error is equal to the significance level 0.01, regardless of the sample
sizeez. The probability of a Type II error, when p =78 and the sample size is 100, is
— K(98) =1—0.9049 = 0.0951.

With reference to Problem 9.8, what sample size is needed to raise the power of the test to 0.98
when p = 787
. -5 X-—-178 .
Let n be the sample size. Then the test statistic is and ——— is the standard normal
5 25/[ 8.25/\/n
X-75

8.25/\/n

. X-78 _ 7578 3yn
P(X>75 33 x 8.25 =0.98 P > 33 =P > 33 )] =0.98.
(X >75+233x825/\/n) =0.98, or <8.25/\/Z*8.25/\/ﬁ+2 ) <Z? 205 +2 ) 0

From the standard normal table, we find that the Z value for which P(Z >:z*) =098 is

random variable. The sample size » must satisfy P( 22.33) =0.98, equivalently,

z* = —2.05. Solving 73\/5 +2.33 = —2.05 for \/n, we get /n= 25 (2.05 +2.33) = 12.045. Squaring

12.045 and rounding upward, we find that a sample size of n = 146 is needed for the power K(78) to equal
0.98 at the 0.01 level of significance.

HYPOTHESES TESTS FOR MEANS

9.11.

The useful lifetime of Everlast’s 1.5 volt battery is a normally distributed random variable with
mean 40 hours and standard deviation 4 hours. A new chemical composition is introduced to
make the production of the batteries more efficient. The company wants to see if the useful
lifetime of the battery has been affected by the new process. Specifically, they wish to test the
null hypothesis Hy: pu = 40 against the alternative hypothesis H,: p 7# 40. It is assumed that the
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9.12.

9.13.

9.14.

9.15.

standard deviation is still 4 hours. A sample of 100 batteries has a useful lifetime of 39.1
hours. Determine the test statistic and P-value of the test.

We follow Prescription 9.1. The test statistic is the standardized sample mean, namely

X — 4 X — 4 39.1 — 4
zZ = 0 = 0 whose test value is z = »1-40 = —2.25. The P-value of the test is computed
4/4/100 0.4 0.4

under the assumption that the null hypothesis is true, that is, that Z is the standard normal random
variable. Using the standard normal table, we find that the P-value of the test is
2P(Z > |—225]) =2P(Z >2.25) =2 x0.0122 = 0.0244.

At which significance levels would the null hypothesis be rejected in Problem 9.11? Specifically,
would the null hypothesis be rejected at significance level 0.05, at significance level 0.01?

As determined in Problem 9.11, the P-value of the testis 0.0244. The null hypothesis would be rejected
at any significance level & for which 0.0244 < &, and would not be rejected if 0.0244 > &. Therefore, the
null hypothesis would be rejected at the 0.05 significance level but not at the 0.01 significance level.

What is the critical region for the test in Problem 9.11 at the (&) 0.05 significance level, (b) 0.01
significance level?

We use Prescription 9.1a. The critical region is all z scores greater than or equal to z* or less than or
equal to —z*, where P(Z > z*) = &/2, & being the level of significance.

() Here &/2 =0.05/2=0.025. From the standard normal table, we find that P(Z > z*) = 0.025 for
z* =1.96. Therefore the critical region is all z scores greater than or equal to 1.96 or less than or
equal to —1.96.

() Here /2 =10.01/2=0.005. From the standard normal table, we find that P(Z > z*) = 0.005 for

z% =2.58. Therefore the critical region is all z scores greater than or equal to 2.58 or less than or
equal to —2.58.

Use the critical regions obtained in Problem 9.13 to determine whether to reject or not reject the
null hypothesis in Problem 9.11.

We use Prescription 9.1a. In Problem 9.11, the test value of the sample mean X is 3.91, and the value
of the test statistic Z = ‘Y(;:'O 18z = 39'1) ; 40 = —2.25. Since —2.25 is less than —1.96, the test value of Z
is the critical region for the 0.05 significance level (Problem 9.13), and the null hypothesis Hy: p = 40 would
be rejected at that level. Since —2.25 is not less than —2.58, the test value of Z is not in the critical region

for the 0.01 significance level (Problem 9.13), and the null hypothesis would not be rejected at that level.

For what values X of the sample mean in Problem 9.11 will the z score of X lie in the critical region
(@) at the 0.05 significance level, (b) at the 0.01 significance level?

Topy 40 %40

o/Vn  4//100 04

(«) At the 0.05 significance level, the critical region consists of all z scores greater than or equal to 1.96

The z score of Xis z =

or less than or equal to —1.96 (Problem 9.13). Setting i

405 196, we get > 1.96x

i—4
* 0 < —1.96, we get ¥ < 39.22. Hence, the z score of X will lie

0.4 +40 ~ 40.78. Similarly, setting

in the critical region at the 0.05 significance level when ¥ > 40.78 or ¥ < 39.22.

(b) At the 0.01 significance level, the critical region consists of all z scores greater than or equal to

T4
*04022.53, we get T>2.58x

2.58 or less than or equal to —2.58 (Problem 9.13). Setting
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£ 40

0.4 +40 ~ 41.03. Similarly, setting

< —2.58, we get X < 38.97. Hence, the z score of x will lie

in the critical region at the 0.01 significance level when ¥ > 41.03 or x < 38.97.

9.16. Suppose it is decided to reject the null hypothesis Hy: ¢ = 40 in Problem 9.11 if a random sample
of 100 batteries gives an average useful life of less than 39.5 or greater than 40.5. At what
significance level is the test being conducted?

The significance level & is determined under the assumption that Hy is true, in which case the test

statistic Z =

40 . . . - .
0a is the standard normal random variable; e is the probability that a test value of Z is less

than w = —1.25 or greater than 4037;40

0a = 1.25, which is 2P(Z > 1.25) = 2 x 0.1056 = 0.2122.

9.17. What is the power of the test in Problem 9.16 at the value 39 for x? What is the probability of a
Type II error when p = 397

The power K(39) of the test in Problem 9.16 is the probability that the sample mean X will assume a
value greater than or equal to 40.5 or less than or equal to 39.5, assuming p = 39, that is, assuming that
X—-39

. = X -39 _40.5-39 X -39 395-39
= P(XY > 40. X <395) = > <
K(39) = P(XY >40.5) + P(X <39.5) <P 0 > o4 )+P( 0 <" o3 >

= P(Z>3.75) + P(Z < 1.25) = 0.8945

Z = is the standard normal random variable. Therefore,

The probability of a Type II error when p =39 is 1 — K(39) =1 — 0.8945 = 0.1055.

9.18. The following cholesterol levels were found in a random sample of 10 women aged 20 to 24
engaged in a low-fat diet program:

176, 120, 175, 186, 182, 188, 180, 186, 168, 184

The null hypothesis is that the average cholesterol level of all women who maintain the diet is
normally distributed with mean p = 184. The alternative hypothesis is H,: p < 184. Use the
data to determine the P-value of the test.

Since o is not given, we follow Prescription 9.2. The value of the sample mean is

176 + 180 + 175 + 186 + 182 + 188 + 180 + 186 + 168 + 184 1805

= 10 o = 180.5
and the value of the sample variance (see Problem 8.3) is
1 10 1 10
2 _ 2_ Vo2 1 11) — — 2 _
s = 92 X T 9(326,141) 9 (180.5)" = 37.611
X184

so the sample standard deviation is s = Vs = 6.133.  The test statistic is # = whose test value is

. 180.5—-184 S/V10
t=———~ —1.80. The P-value of the test is P(+ < —1.80) = 1 — P(r < 1.80), which is computed
6.133/1/10

under the assumption that ¢ is a ¢ random variable with 9 degrees of freedom. The value closest to 1.80 in
the ¢ table for 9 degrees of freedom is 1.83, which gives a P-value of 1 — 0.95 = 0.05. The P-value for 1.80 is
slightly larger than 0.05; using computer software, we find that the P-value for 1.80 is 0.0527.

9.19. Find the critical region for the test in Problem 9.18 at the () 0.05 significance level, (b) 0.01
significance level.
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9.20.

9.21.

9.22.

We follow Prescription 9.2a4. (&) The critical region corresponding to the alternative hypothesis
H,:p < 184 is all values 7 of the test statistic satisfying 7 < ¢*, where P(z < *) = 0.05. Using the ¢ table
with 9 degrees of freedom we find that * = —1.83. (b) Here the critical region is all values 7 < ¢*, where
P(t < t*) = 0.01; the ¢ table gives t* = —2.82.

For what values x of the sample mean, corresponding to other samples of 10 women in Problem
9.18, will the null hypothesis Hy: u = 184 be rejected (@) at the 0.05 significance level, (b) at the
0.01 significance level?

The null hypothesis will be rejected when the ¢ score of ¥, namely lies in the critical

x—184
s/V/10°
region. The value s of the sample standard deviation will vary from sample to sample.

(«) From Problem 9.19, the critical region for the alternative hypothesis at the 0.05 significance level

j7184< 1.83 e get
—1.83, w
s/v10 £

=~ 184 — 0.5787s. The result depends on the value s of the sample standard deviation

consists of all ¢ scores less than or equal to —1.83. Setting

i< 18471'833

obtained in the sample.

() From Problem 9.19, the critical region for the alternative hypothesis at the 0.01 significance level
X184
s/V10

~ 1.84 —0.8918s. As in part («), the result depends on the sample value s of the

consists of all ¢ scores less than or equal to —2.82. Setting
2.825
V10

sample standard deviation.

< -2.82, we get

<184 —

Suppose the cholesterol levels of a random sample of 10 women in the low-fat diet program of
Problem 9.18 have a sample standard deviation value of s = 5.2. What values X of the sample
mean will result in a rejection of the null hypothesis Hy: p = 184 in favor of the alternative
hypothesis H,: p < 184 (&) at the 0.05 significance level, (b) at the 0.01 significance level?

(#) According to Problem 9.20, the null hypothesis will be rejected at the 0.05 significance level if
X <184 —0.5787s. Substituting s = 5.2, we find that if x <184 —0.5787 x 5.2 =~ 180.99, then the
null hypothesis will be rejected.

(b) According to Problem 920, the null hypothesis will be rejected at the 0.01 significance level if
<184 —0.8918s. Substituting s = 5.2, we find that if x <184 —0.8918 x 5.2 = 179.36, then the
null hypothesis will be rejected.

The bumpers on a new Saber automobile are supposed to sustain only minor damage in collisions
at speeds up to S miles per hour. In a test of S Sabers, the mean speed for minor damage was 4.8
miles per hour with a sample standard deviation of 0.3 miles per hour. Are the test results
statistically significant at the 0.05 level?

We assume that the top speed for minor damage is normally distributed. The test statistic is the ¢ score
of the sample mean, and the results are statistically significant if the test statistic lies in the critical region of
the ¢ random variable at 4 degrees of freedom. The null hypothesis is Hy: = 5, and the alternative
hypothesis is H,:p < 5. From the ¢ table, the critical ¢ value at the 0.05 level with 4 degrees of freedom

is t* = —2.13. Therefore, the critical region, which isin the direction of alternative hypothesis, consists of
.. 48-—5 .
all ¢ scores less than or equal to —2.13. The ¢ score for the sample mean is 7 = 03/v5 = —1.49. Since
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9.23.

9.24.
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—1.49 is not less than —2.13, the test results are not statistically significant at the 0.05 level. There is not
enough evidence to reject the null hypothesis at this level.

At what levels are the test results in Problem 9.22 statistically significant?

The test results are statistically significant at any level & for which the P-value of the test is less
than or equal to @. The P-value of the test is the probability that a sample mean of 4.8 or lower would
occur if the actual mean were equal to 5. That is, the P-value is equal to P(X <4.8)=

XY-5 48-5
P( < ) = P(t < —1.49), where ¢ is a ¢ random variable with 4 degrees of freedom. The

0.3/V5 "~ 03/V5)
value closest to —1.49 obtainable from Table A-2 in the Appendix is —1.53 which corresponds to
e = 0.1. Computer software gives P(t < —1.49) = 0.105.

X — Z*o ¥
Ho <y <Xt ——
n

a/\/n vn z/n

. . X . . z*o Lo . .
The inequality —z* < is equivalent to ———= < ¥ — py which in turn is equivalent to
n

—He
. o/ NG

Show that (@) —z* < < z* is equivalent to (b) X —

e < X +TZ. That is, the left inequality of () is equivalent to the right inequality of (b). Also, the
. . X — g . . _ z¥o . . . _ z¥o
inequality YN < z* is equivalent to ¥ — pg < W which in turn is equivalent to X — W < pg. There-

fore, the right inequality of (&) is equivalent to the left inequality of (b).

HYPOTHESES TESTS FOR PROPORTIONS

9.25.

9.26.

In a random sample of 125 cola drinkers, 68 said they preferred Coke over Pepsi. Let p denote
the percentage of all cola drinkers that prefer Coke over Pepsi. Do a P-value test of the null
hypothesis Hy:p = 0.5 against the alternative hypothesis H,:p > 0.5 at the 0.05 percent level.

Since the sample size n = 125 is greater than 30, we can use Prescription 9.3. Letting 2 denote the
P-05 P05

V05(1—0.5)/125  0.0447°

then Z is (approximately) the standard normal random variable. The test proportion of those that prefer
.. 68 . 544 —-0.5 .

Coke is p = 5 = 0.544, and the test value of Zisz = % ~ (0.98. Using a standard normal table,

the P-value of the test is P(Z > 0.98) = 0.1635. Since 0.1635 is not less than 0.05, there is not enough
evidence to reject Hy at the 0.05 significance level.

sample proportion random variable, the test statistic is Z = If Hy is true,

What is the critical region for the hypothesis test in Problem 9.257 Is the test value of the test
statistic in the critical region? What conclusions can you make regarding the null hypothesis
Hy:p=0.5?
The critical region is determined under the assumption that the null hypothesis Hy: p = 0.5 is true, in
P05 P05
0.5(1 —0.5)/125  0.0447
random variable. By Prescription 9.3a, the critical region for Z corresponding to the alternative hypothesis
H,:p > 0.5 at the 0.05 significance level is all z scores z > z*, where P(Z > z*) = 0.05. From the standard

normal table, we find that z* = 1.65. The test value of Z is z = 0.98 (Problem 9.25), and since 0.98 is less
than 1.65, the test value of Z is not in the critical region. We therefore would not reject the null hypothesis.

which case the test statistic Z =

is (approximately) the standard normal
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9.27.

9.28.

9.29.

9.30.

9.31.

In Problem 9.25, how large of a sample is needed for a sample proportion p = 0.544 to be
statistically significant at the 0.05 level? Use the notion of P-value to answer the question.

We choose the sample size # so that the P-value of the test is at most 0.05. The test statistic is

p—0.5 p— 0. p— 0. 544 -0.5
L = P03 = (P-0 S)ﬁ, and the test value of Z is z= w =
0.5(1 - 0.5)/n 0.5/v/n 0.5 0.5
0.088\/n. Hence we want 7 to satisly P(Z > 0.088y/n) < 0.05. From the standard normal table, we find

0.088
rounding upward, we find that » = 352 is the smallest sample size for a test proportion p = 0.544 to be
statistically significant at the 0.05 level.

that P(Z > z*) = 0.05 for z* = 1.65. Setting 0.088\/n = 1.65, we get Vn = = 18.75. Squaring and

Use the critical region to answer the question posed in Problem 9.27.
—0.
0.5/
of the sample proportion p for which z > 1.65 (Problem 9.26). Substituting j = 0.544 and setting z > 1.
.544 —0. .65
% > 1.65, which is equivalent to 0.088./n > 1.65, or v/n > i ~ 18.75. Squaring and

0.088
rounding upward, we find that » > 352, as in Problem 9.27.

AN
W

For samples of size n, the critical region for the test in Problem 9.25 consists of all z scores z =

2%

55

we get

In Problem 9.25, what test proportion p is needed for the test to be statistically significant at
the 0.05 level, based on a sample of size n = 1257 Use the notion of P-value to answer the
question.

We choose j so that the P-value of the test is at most 0.05, that is, P<Z 2%;4(175) <0.05. From
Problem 9.27 (or from the standard normal table), we know that P(Z > z*) = 0.05 for z* = 1.65. Setting
p—0.5

00T > 1.65, we get p > 1.65 x 0.0447 + 0.5~ 0.5738. Hence, a test proportion of at least 0.5738 is

needed for statistical significance at the 0.05 level.

Use the critical region to answer the question posed in Problem 9.29.

505
0.0447°
z is in the critical region z > 1.65 (Problem 9.26). Setting
0.0447 + 0.5 = 0.5738, as in Problem 9.29.

The test value of the test statistic is z = and we want to find the test proportion p for which

p—05 R
> 1.65 > 1.
0.0447716, we get p>1.65x

What is the power of the test in Problem 9.25 at p = 0.6?

The power of the test at p = 0.6, denoted by K(0.6), is the probability that the null hypothesis
Hy:p = 0.5 will be rejected at the 0.05 significance level when the true proportion of cola drinkers that
prefer Coke over Pepsi is p = 0.6. Hy will be rejected in favor of H,:p > 0.5 if the test statistic lies in the

critical region for H, at the 0.05 level, which is all z scores z > 1.65. The test statistic is no longer

0.0447
the standard normal since we are now assuming that p = 0.6, not 0.5. Hence, we must compute

P—06

V/0.6(1—0.6)/125

is the standard normal

P — 0.5
P<P 0 > 1.65), given that which is equal to

P—06
0.0447 0.0438°
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random variable. We get

P<P —05 1,65> — P(P > 1.65 % 0.0447 + 0.5) = P(P > 0.5738)

0.0447 =
P06 _ 05738
= — > | = >
P (0.0433 = 0.043s> Pz >-06),

where Z is the standard normal random variable. From the standard normal table, we find that
P(Z > —0.6) =0.7258. Hence, the power of the test at p = 0.6 is 0.7258.

9.32. What sample size is needed in Problem 9.25 for the power of the test at p = 0.6 to equal 0.9?

The test statistic is P05 = (P 0'5)\/71, and we are assuming that the random variable
V05(1—0.5)/n 0.5
Z = P06 G 0.6)vn 1s the standard normal. With reference to Problem 9.31, we want

V0.6(1-0.6)/yn 04899

to determine the sample size #n so that P((13()()—55)\/ﬁ > 1.65) =0.9. We get
P(% > 1.65) = P<P > %w.s)
- P< (13(;4(;'33‘/5 > {1'65\;_20'5 105 0.6} % 0.4%)
= P<Z > —0'52(5).4;8; Vz) =09

where Z is the standard normal random variable. From the standard normal table, we find that

P(Z> 128)=009. Setting 0'8234*—88;\/7’ — 128, we get yin— 22X 0'408?9 — 08 145,

Squaring and rounding upward, we get n = 211.

HYPOTHESES TESTS FOR VARIANCES

9.33. Find the critical region at the 0.01 significance level for the test in Example 9.21, and determine
whether the null hypothesis would be rejected at this level.

We apply Prescription 9.4a. The critical region for x2(40) for the alternative hypothesis H,: x> > 64 at
the 0.01 significance level is all values ¥* > x*, where x* satisfies P(x> > x*) = 0.01. From Table A-3 in
the Appendix, with 40 degrees of freedom, we find that x* = 63.7. The test value obtained in Example 9.21
is )“(2 = 57.6, and since 57.6 < 63.7, the test value is not in the critical region, which means that the null
hypothesis Hy: o? = 64 is not rejected at this level.

9.34. The amount of soda in 96 0z bottles of Andy’s Root Beer is normally distributed with mean
= 96 and standard deviation o0 = 120z. A new bottling procedure is designed to decrease the
variability of the amount of soda in the bottles. A sample of 101 bottles has a standard devia-
tion of 0.980z. Test the null hypothesis Hy:o® = 1.44 against the alternative hypothesis
H,:0” < 1.44 at the 0.025 level.

We apply Prescription 9.4a. The critical region for x?(100) for the alternative hypothesis
H, 0" <144 at the 0025 significance level is all values e < x* where x* satisfies
P(X2 < x*)=0.025. From Table A-3 in the Appendix, with 100 degrees of freedom, we find that
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9.35.

9.36.

9.37.

9.38.

(n—1)s" 100 x (0.98)
og 14
66.69 < 74.2, the test value is in the critical region, which means that the null hypothesis Hy: 0% = 1.44 is

rejected at the 0.025 significance level.

x*=74.2. The test value of the test statistic is )22: ~ 66.69; and since

The number of hours spent sleeping by an undergraduate college student is a normal random
variable with mean p = 7.5 and variance o> = 1.25. In graduate school the student’s sleep
pattern changes. A sample of 15 days gives an average of ¥ = 6.25 hours and s* = 1.5.  Assum-
ing that the sleeping hours are normally distributed, test the null hypothesis Hy: 0> = 1.25 against
the alternative hypothesis H,:o” 7 1.25 at the 0.05 significance level.

We apply Prescription 9.4a. The critical region for x*(14) for the alternative hypothesis
H,: 0> # 125 at the 0.05 significance level is all values %> < x] or %*>> x5, where x| satisfies
P(x* < x7) =0.05/2 = 0.025, and x; satisfies P(x* > x3) = 0.025. From Table A-3 in the Appendix,
with 14 degr%es of freedom, we find that x} = 5.63 and x5 =26.1. The test value of the test statistic is

—1)s 1.5 Lo . . . .
= ( 21)S = 141X25 = 16.8, which is not in the critical region. Therefore, the null hypothesis
0'. .

Hy: o? = 1.25 is not rejected at the 0.05 significance level.

Suppose X is a normal random variable with mean g and variance o?, and X1,X,,..., X, is a

. . X, p)
random sample of size n corresponding to X. Show that x> = > %
random variable with n degrees of freedom.

is a chi-square

. Y. .
Fori=1,2,...,n, the random variable Z; = 2 7 Pis standard normal, and the Z;s are independent.
a

(X; — Il)z

Therefore, by definition (see Section 7.4), x> = > 5
a

of freedom.

is a chi-square random variable with n degrees

The weight of a 16 0z bag of C&P Potato Chips is a random variable X with mean p = 16 0z and
standard deviation 0 =0.50z. A new quality control procedure is introduced to reduce the
variability of X. The weights of a random sample of 25 bags are as follows:

15.8 15.4 159 16.5 16.3
15.9 16.0 159 16.6 15.5
16.4 15.2 16.6 16.2 15.8
16.6 15.7 15.4 159 16.1
15.5 16.4 15.4 15.5 16.4

Assuming that the mean of all bags produced under the new system is still 16 oz, test the null
hypothesis Hy: 0> = 0.25 against the alternative hypothesis H,:0° < 0.25 at the 0.01 level. Use

(X *M)z

= > — as the test statistic.

By Problem 9.36, x* is a chi-square random variable with 25 degrees of freedom. From the chi-
square table, the critical region for H,:o® < 0.25 at the 0.01 level is all test values of x* less than or
equal to 11.5. Computing with the help of a calculator, we find that the test value is

o2 (xi — 16)2
=205
at the 0.01 level of significance. The sample does not supply enough evidence at this level to conclude that
the new quality control procedure has actually decreased the variability of Y.

= 18.52. The test value is not in the critical region, so the null hypothesis is not rejected

At what significance level would the null hypothesis in Problem 9.37 be rejected, based on the
sample data?
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From the chi-square table, with 25 degrees of freedom, we find that the critical region for the alternative
hypothesis H,:o? < 0.25 at the 0.1 level is all test values less than or equal to 16.5, and the critical region for
the alternative hypothesis at the 0.25 level is all test values less than or equal to 19.9. Since the test value
obtained in Problem 9.37 is 18.52, we can conclude that the smallest significance level that the null hypoth-
esis Hy: 0> = 0.25 would be rejected is between 0.1 and 0.25. Using computer software, we find that the
P-value of the test is 0.18. Therefore, Hq will be rejected at any level greater than or equal to 0.18.

Supplementary Problems

INTRODUCTION: TESTING HYPOTHESIS ABOUT PARAMETERS

9.39.

9.40.

9.41.

9.42.

9.43.

9.44.

9.45.

The tread life of Goodwear’s all-weather tire is normally distributed with mean p = 39,000 miles and
standard deviation o = 3000 miles. A test of 16 new model all-weather tires results in an average tread
life of 40,500 miles. What is the probability that an average tread life of 40,500 miles or greater would
occur with the previous model all-weather tires?

Identify the null and alternative hypotheses in Problem 9.39, and classify each as either simple or composite.

What is the P-value of the test in Problem 9.39?

Would the null hypothesis in Problem 9.39 be rejected at the 0.01 significance level? What about the 0.05
significance level?

Find the critical region for the test in Problem 9.39 at the 0.05 significance level, and find the power of the
test at () p = 39,000 miles, (b) x = 40,500 miles, (¢) p = 42,000 miles.

Repeat part (b) of Problem 9.43 under the assumption that the test result in Problem 9.39 was obtained for a
sample of 36 tires.

Suppose the null hypothesis is Hy: ;¢ = pq and the test value X of the sample mean of a normal random
variable is greater than pg. Under which of the following alternative hypotheses is Hy more likely to be
rejected?

(@ Hgpp>po, () Hyp# po.

HYPOTHESES TESTS FOR MEANS

9.46.

9.47.

9.48.

9.49.

The sample mean of a random sample of 50 values of a random variable X is ¥ = 72.4. Assuming that .Y
has standard deviation o =29, test the null hypothesis Hy: o = 70 against the alternative hypothesis
H,: p> 70 at the 0.05 significance level by computing the P-value of the test.

Perform the test in Problem 9.46 by using the critical region for the test.

Repeat Problems 9.46 and 9.47 for the significance level 0.01.

Determine the power of the test in Problem 9.46 at p = 71.5.
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9.50.

9.51.

9.52.

9.53.

9.54.

The numbers 125.5, 130.2, 112.8, 120.2, 111.3 form a random sample of five values of a normal random
variable X. Test the null hypothesis Hy: ¢ = 110 against the alternative hypothesis H,: 0 > 110 at the 0.05
significance level.

Repeat Problem 9.50 at the 0.01 significance level.

Repeat Problems 9.50 and 9.51 for the alternative hypothesis H,: p # 110.

Using Table A-2 in the Appendix, estimate the P-value of the test in Problem 9.50. If appropriate computer
software is available, find the P-value.

Suppose a test of the null hypothesis Hy: 1t = pg against the alternative hypothesis H,: p > pq is rejected at
the 0.05 significance level but not at the 0.01 significance level. If possible, determine what the decision
would be if H¢ were tested against H,: u # ug at each of the levels 0.05 and 0.01.  Assume that.Y is normally
distributed and o is known.

HYPOTHESIS TESTS FOR PROPORTIONS

9.55.

9.56.

9.57.

9.58.

9.59.

9.60.

In a random sample of 25 students at a private liberal arts college, 17 were receiving some sort of financial
aid. Letting p denote the proportion of all students at the college receiving financial aid, test the hypothesis
Hy:p = 0.5 against the alternative hypothesis H,:p > 0.5 at the 0.05 significance level by computing the
P-value of the test.

Perform the test in Problem 9.55 by using the critical region for the test.

Repeat Problems 9.55 and 9.56 at the 0.01 significance level.

How large of a sample is needed in Problem 9.55 for the test value p = 0.68 to be statistically significant at
the 0.01 level?

Determine the power of the test in Problem 9.55 at p = 0.7.

Determine the sample size needed for the power of the test in Problem 9.55 to be 0.95 at p = 0.7.

HYPOTHESIS TESTS FOR VARIANCES

9.61.

9.62.

9.63.

The number of eggs produced annually by individual chicken hens on Old McDonald’s Farm is normally
distributed with mean 250 and standard deviation 15. The number of eggs produced by 6 randomly chosen
hens given a new feed was: 260, 240, 270, 250, 265, 245. Test the null hypothesis Hy: 0 = 15 against the
alternative hypothesis H,:c <15 at the 0.1 significance level. Assume that the mean is still 250 (see
Problem 9.36).

Repeat Problem 9.61 under the assumption that the mean with the new feed may no longer be 250.

The grades in elementary algebra in a school district are normally distributed with mean 73 and standard
deviation 9. A new program, designed to reduce the variation in grades, is introduced at a random selection
of schools in the district. In a random selection of 51 students in the new program, the standard deviation
was 7.4. Test the hypothesis Hy: 0 = 9 against the alternative hypothesis H,: o < 9 at the 0.05 significance
level.
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9.64.

9.65.

9.39.

9.40.

9.41.

9.42.

9.43.

9.44.

9.45.

9.46.

9.47.

9.48.
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Repeat Problem 9.63 at the 0.01 significance level.

Test the hypothesis Hy: 0> = 10,000 against the alternative hypothesis H,:o” # 10,000 at the 0.05 signifi-
cance level for the sample SAT scores: 520, 540, 475, 510, 400, 550, 425, 600, 430, 515.

Answers to Supplementary Problems

X — 39,000 _, 40,500 — 39,000
3000/f ~ 3000/v16

Hy: 0 =39,000, H,: > 39,000; Hy is simple, H, is composite.

P(X > 40,500) = P< ) = P(Z >2)=0.0228

0.0228 (see answer 9.39).

Since 0.01 < 0.0228 < 0.05, Hy would not be rejected at the 0.01 significance level, but would be rejected at
the 0.05 level.

Critical reglon -39, 000 > 1.65, or X > 40,237.5
3000/V/16
(a) K(39,000) =0.05 )
(b) K(40,500) = P(X > 40,237.5), given that & — 40,500 is standard normal
’ 4= 8 3000/V16 ’

(X 40,500 _ 40,2375 — 40,500
=P > _
3000/V16 3000/V16

) = P(Z > -0.35) =064

_ X — 42,000 .
¢) K(42,000) = P(XY > 40,237.5), given that —————— is standard normal
(&) K(42000) = P( e S0/ /TE
(X — 42,000 _ 40,237.5 — 42,000

3000/V16 —  3000/V16

) = P(Z>-235) =099

Critical region: ﬂ) > 1.65 or X > 39,825.

3000/v/36

XY — 40,500
3000/1/36

_ p[ X 40500 _ 39,825 — 40,500
a 3000/\/36 ~3000/v/36

K(40,500) = P(X > 39,825), given that ————— is standard normal

> = P(Z>-135 =091

When X > py, the value z of the test statistic is positive, and the P-value for H,: i > pg is half the P-value for
H,: p# py. Therefore, Hy is more likely to be rejected when the alternative hypothesis is H,: p > .

P-value = 0.03 < 0.05; reject Hy.

.. . x—7 .
Critical region: * 0 >1.65 orx>1.65x 9/\/%+ 70 = 72.1; test value: X = 72.4; reject Hy.

9/v/50

. . . x-170
P-value = 0.03 > 0.01; do not reject Hy. Critical region: > —
test value: ¥ = 72.4; do not reject Hy. 9/v/50

>2.33,0r £ > 2.33 x 9/v/50 4+ 70 = 72.97;
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9.49.

9.50.

9.51.

9.52.

9.53.

9.54.

9.55.

9.56.

9.57.

9.58.

9.59.

9.60.

9.61.

K(71.5) = P(X > 72.1), given that yo7s is standard normal
9/v/50
B <JZ ~7LS5 721715
9/v/50 — 9/v/50

) = P(Z > 047) =0.32

Critical region: 7 > 2.13; test value: = 2.76; reject H,.
Critical region: £ > 3.75; test value: = 2.76; do not reject H,.

Critical region at 0.05 significance level: |7] > 2.78; test value: 7 = 2.76; do not reject Hy. Critical region at
0.01 significance level: |7] > 4.60; test value: 7 = 2.76; do not reject Hy.

0.01 < P-value < 0.05 (P-value = 0.025).

The test value z satisfies 1.65 <z < 2.33. Therefore, 0 < z < 2.58, which means Hy will not be
rejected in favor of H,:p # pg at the 0.01 significance level. To be rejected in favor of H,:p # pe at
the 0.05 significance level, z would have to satisfy z > 1.96, which cannot be determined from
1.65<z<233.

P-value = 0.036 < 0.05; reject Hy.

p—05 5—05

J/05x05/25 01

Critical region:

> 1.65, or p > 0.665; test value: p = 0.68 > 0.665; reject Hy.

p—05

P-value = 0.036 > 0.01; do not reject Hy. Critical region: 01

P =0.68 < 0.733; do not reject Hy.

> 233, or p>0.733; test value:

.. . p—05 p—05 0.68 — 0.5
Critical region: = > 2.33; = 0.364/n > 2.33 for n > 42.
SO 05 < 05/n 05/~ 0.5/v/n Vi

Critical region: p > 0.665 (see answer 9.56).
P-07 P-07

/0.7x03/25  0.0917

) = P(Z > —0.38) = 0.648

is standard normal.

K(0.7) = P(P > 0.665), given that

p P—07_0665—0.7
0.0917 = 0.0917

. P07 P07 .
Want P(P > 0.665) = 0.95, given that = is standard normal.
\/0.7 x 0.3/n \/0.21/11
p( L7 > 0665 0.7} _ P<Z > 7_0.0@) =095 for 7_0.0&/5 = —1.65
\/0.21/11 \/0.21/11 vV 1v/0.21

n = 466.7; round up to 467.

Critical region: 2 < 2.20; test value:

5 (260 —250)% + (240 — 250)* + (270 — 250)% + (250 — 250) + (265 — 250) + (245 — 250)2 178
X — = J.
152

do not reject Hy.
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9.62.

9.63.

9.64.

9.65.
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. . 5
Critical region: )22 < 1.61; test values: x = 255, 5= 140, )"(2 = >1<51240
50 x (7.4)° .
Critical region: ¥ < 34.8; test value: ¥ = % = 33.80; reject Hy.

Critical region: %> < 29.7; test value: {2 = 33.80; do not reject Hy.

Critical region: x? < 2.70 or x> > 19.0; test values: X = 496.5, s> = 3983.61, x* =

reject Hy.

= 3.11; do not reject H,.

9% 3983.61

=3.59;
10,000 3.59; do not



Chapter 10

Inference for Two Populations

10.1 CONFIDENCE INTERVALS FOR THE DIFFERENCE OF MEANS

Let X and Y be independent random variables with means py and py, and standard deviations oy
and oy, respectively. The object is to obtain a confidence interval for py — py, based on independently
chosen random samples of size m and n from the X and Y distributions, respectively. We consider the
cases where oy and oy are known, and where oy and oy are unknown.

Note that py — py is the mean of the random variable X — Y, so we can proceed as in Section 8.3,
where confidence intervals for the mean of a single random variable are obtained. Also, since X and Y
are independent random variables, so are X and Y, and therefore the variance of X — Y is the sum of the
variances of X and Y:

0_2 0'2

2 X Y

Oy = -+—
- m n

where 0% is the variance of X and 0% is the variance of Y.

The confidence intervals prescribed for py — py require that the sample means X and Y be approxi-
mately normally distributed. (Actually, it is only required that X — ¥ be approximately normally
distributed.) For small X-samples (m < 30), X will be normally distributed if X itself is, and for
small Y-samples (n < 30), ¥ will be normally distributed if ¥ is. For large samples (m and n > 30),
the Central Limit Theorem allows us to assume that X and Y are approximately normally distributed
regardless of the distributions of X and Y.

We arrive at the following prescription.

PRESCRIPTION 10.1 (Confidence interval for py — py; 6y and 6y known)

Regquirements: X and Y are independent random variables with known standard deviations oy and oy,
respectively; X and Y are approximately normally distributed.

Let -y be the specified confidence level, and suppose the values x;, x5, ..., x,, of X and y;,y5,...,¥, of
Y are obtained in independently chosen random samples of size m and #, respectively. First compute
Mttt X, gy Nttty
m n

the sample values X = ndy Then complete the following steps.

(1) Find Critical Z Value: Find the value z* of the standard normal random variable Z for which
P(—z*<Z <z%) =~.
o% | ¥
—_— + _
m n
(3) Determine Confidence Interval: An approximate 100~y percent confidence interval for py — py is
x—y—EXx—y+E].

(2) Compute Margin of Error: Compute E = z*

EXAMPLE 10.1 The weights of two types of mice in a psychology research lab are normally distributed. Type .X
mice have mean weight 28 grams and standard deviation oy = 3 grams; Type Y mice have mean weight 28 grams
and standard deviation oy = 2 grams. A new diet is designed to increase the average weight of each type. The
gram weights of 8 Type X mice under the new diet are:

29, 28, 30, 31, 26, 32, 25, 34

291
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Ten Type Y mice under the new diet have gram weights:
27, 31, 30, 28, 29, 25, 31, 30, 29, 26

Find a 90 percent confidence interval for py — py corresponding to mice on the new diet. Assume oy = 3 grams
and oy = 2 grams.
We use Prescription 10.1.  The sample value of X is
29 +28 +30 + 31 +26 +32+25+ 34

X= . =29.375 = 29.38

and the sample value of Y is

_ 26+31+30+28+29+25+31+30+29+26
y: g
10

From Table A-1, the critical value z* of the standard normal random variable Z for which P(—z* < Z < z*) =0.9is

z* = 1.65. Therefore,
o2 o 9 4
E=z¢X+-L=165/3+—~204
m + n 8 * 10 0

and the corresponding approximate 90 percent confidence interval for gy — py is

[(29.38 — 28.60) — 2.04, (29.38 — 28.60) + 2.04] = [1.26,2.82)

28.6

Since 0 is in the confidence interval, we do not have strong evidence that either mean weight under the new diet is
greater than the other.

Confidence Intervals for gy — puy When oy and oy are Unknown but Equal

Suppose oy and oy are not known but are presumed to be equal. Let X, X5,...,X,, and
Yy, Y,, ..., Y, be independent random-variable samples corresponding to X and Y, respectively (see
Section 8.1). The statistic

5 \/(m ~1)SE A (n— 1)82

m+n—2

1 _ 1 _
where S} = —IZ(Xi ~X)? and S} — —IZ( Y;— Y)* are the sample variances for X and Y,
m— n—

respectively, is called the pooled estimator of the common standard deviation of X and Y. If X and ¥
are independent normal random variables, it can be shown that the random variable

:X*Y*(MX*MY)

11
Spy/=+=
m n

1

has a ¢ distribution with m + n — 2 degrees of freedom (see Problem 10.6).

PRESCRIPTION 10.2 (Confidence interval for py — py; 6y, 6y unknown but equal)

Requirements: X and Y are independent random variables; X and Y are approximately normally
distributed; oy and oy are unknown but equal.

Let v be the specified level of confidence, and suppose x;, x,...,x,, and y;, y,,...,y, are inde-
pendently chosen random samples corresponding to X and Y, respectively. First compute the sample
B L 7 T L. N U o B S A

1 B 1 .
- y = " 5 S‘\’ - "— 1 Z (xi - x)27 S%' :nTlZ (yi 7.)))2’

values x =

—1)s% —1)s3 )
and sp = \/ (m n)':ir :En > )% . Now complete the following steps.
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(1) Find Critical t Value: Using a ¢ table (or computer software), find the value #* of the # random
variable with m + n — 2 degrees of freedom that satisfies P(—z* <t < 1*) = .

/11
(2) Compute Margin of Error: Compute E = t*sp - + -

(3) Determmine Confidence Interval: An approximate 100y percent confidence interval for py — py is
x—y—EXx—y+E].

EXAMPLE 10.2 Suppose in Example 10.1 that the random weights X and Y of each type of mice had standard
deviation 2.50z before the new diet. Use the data given there to construct a 90 percent confidence interval for
py — py under the assumption that the new standard deviations are unknown but equal.

We use Prescription 10.2. From Example 10.1, ¥ =29.375 and y =28.6. The values of the sample

1 1
2 (i — 29.375)* 2 9.125 and s% = 52(}’[ — 28.6)> ~ 4.267, computed with the help of a

variances are Sy = 7

m—1)s5 +(n—1)s3
m+n—2 B

calculator. The pooled estimator S, of the common variance has value sp = \/ (

\/7 % 9.125+9 x 4.267

16 T 1

t* satisfying P(—t* <t <*) =09 is t* =175 Therefore, the margin of error is E = t¥sp4/—+-=
m n

~2.53. From Table A-2, with 16 degrees of freedom, we find that the critical value

1 . . .
1.75 x 2.53 §+E’z2.10, and the approximate 90 percent confidence interval for jpuy —py is

[(29.38 — 28.6) — 2.10, (29.38 — 28.6) + 2.10] = [—1.32,2.88).

Confidence Intervals for uy — py When oy and oy are Unknown and Not Necessarily Equal

Small samples: 1f it is unreasonable to assume that the unknown standard deviations oy and oy
are equal, then in place of 7, you can use the random variable

T:X*Y*(MX*MY)
S, Sy
m n

Although 7 does not have a ¢ distribution, when m and n are moderate, say m > S and n > S, 7 can be
approximated as a ¢t random variable provided X and Y are normally distributed. The number of
degrees of freedom, in terms of the sample values s% and 5%, can be taken as the largest integer, denoted
by [k], which is less than or equal to

<é+é)2
i m n

1 s 2+ 1 55 2
m—1\m n—1\n

The corresponding confidence interval for py — py is [¥ — y — E, x — y + E], where E = *

2

S
= + _Y’ ¥
m n

being the value of the 7 random variable with [k] degrees of freedom satisfying P(—z* < ¢ < %) =~y (see
Problem 10.4).

Large samples: 1f m and s are each 30 or larger, then the above random variable 7 is approximately

sk

2 2
the standard normal random variable Z, and E = z*\/s;‘Jrs—), z* being the value of Z satisfying
P(—z* < Z < z*) = v (see Problem 10.3). men
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10.2 HYPOTHESES TESTS FOR THE DIFFERENCE OF MEANS

In the previous section we gave prescriptions to find confidence intervals for py — py-, where X and
Y are independent random variables. Here we consider hypotheses tests for py — py. Prescriptions
are given for tests in which the null hypothesis is

Hy: py — py = 0, equivalently, Hy: py = py
and the alternative hypothesis is one of the following.

H,: py — py <0, equivalently, H,: py < py

H,: py — py >0, equivalently, H,: py > py

H, py —py 70, equivalently, H,: py # py

As with confidence intervals, we consider the case where oy and oy are known and the case where

they are unknown. For each of these, both P-value and critical-region tests are prescribed.
PRESCRIPTION 10.3 (P-value hypotheses tests for uy — py; 6y and 6y known)

Requirements: X and Y are independent random variables with known standard deviations oy and oy,
respectively; X and Y are approximately normally distributed.

Let « be the specified level of significance; and suppose that a value ¥ of X is obtained in a random
sample of size m, and a value y of Y is obtained in an independently chosen random sample of size 7.
Complete the following steps.

(1) State Hypotheses: State null hypothesis Hy: py = py and alternative hypothesis H,.

s X—-Y . . . .
(2) Compute Test Statistic: The test statistic 8 Z =————= which, assuming Hy is true, is
oy , %y
m n
(approximately) the standard normal random variable. Compute the test value of Z as
X—y
z = ? .
(ox%
Xy
m n

(3) Determine P-value: Using a standard normal table (or computer software), find the P-value of the
test corresponding to H,:

For H,: py < py, the P-value is P( )

For H,: py > py, the P-value is P( )
For H,: py 7/ py, the P-value is P(Z < —|z|) + P(Z > |z|) [equivalently, 2P(Z > |z|]

<z
Z >z

(4) Draw Conclusion: If P-value < «, then z and ¥ — y are statistically significant at level o, and Hy is
rejected. If P-value > «, then z and ¥ — y are not statistically significant at level «, and Hy is not
rejected.

EXAMPLE 10.3 With reference to Example 10.1, test the null hypothesis Hy: py = py against the alternative
hypothesis H,: py # py at the 0.10 level of significance by computing the P-value of the test.
The test statistic is o o o
Y-v Y-vY Y-Y

\/C_fi; N é 32 2 1.235
m n ) + 10

which, if Hy: py = py is true, is the standard normal random variable. The test value of Z is

_§-y 2938-286
712357 1235

=~ 0.63
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Using Table A-1, we find that the P-value for H,: puy # py is 2P(Z>z)=2P(Z > 0.63) = 2(0.2643) =
0.5286. Since 0.5286 > 0.10, the test is not significant at the 0.10 level, and we do not reject the null
hypothesis.

Alternative Version of Prescription 10.3

As an alternative to the P-value test, a critical-region test can be prescribed as follows.

PRESCRIPTION 10.3& (Critical-region hypotheses tests for py — puy; oy and 6y known)

Requirements: X and Y are independent random variables with known standard deviations oy and oy,
respectively; X and Y are approximately normally distributed.

(1) and (2) Same as in Prescription 10.3.
(3) Determine Critical Region: Using a standard normal table (or computer software), find the critical
region corresponding to H, and a:

For H,: py < py, the critical region is all z scores z < z*, where z* is the (negative) value
satisfying P(Z < z*) = o (Fig. 9-3(a)).

For H,: py > py, the critical region is all z scores z > z*, where z* is the (positive) value
satisfying P(Z > z*) = « (Fig. 9-3(b)).

For H,: py # py, the critical region is all z scores for which z > z* or z < —z*, where z* is
the (positive) value satisfying P(Z < z*) + P(Z > z*) = «a [equivalently, P(Z > z*) = /2]
(Fig. 9-3(¢)).

(4) Draw Conclusion: If the sample value z of the test statistic lies in the critical region, then z and
X — y are statistically significant at level o, and Hy is rejected. If z does not lie in the critical
region, then z and X — y are not statistically significant at level «, and H is not rejected.

EXAMPLE 10.4 With reference to Example 10.1, test the null hypothesis Hy: ny = py against the alternative
hypothesis H,: py # py at the 0.1 level of significance by determining the critical region.

The critical region consists of all z scores for which z > z* or z < —z*, where z* is the (positive) value satisfying
P(Z >z*)=0.1/2=0.05. From Table A-1, we find that P(Z > z*) = 0.05 for z* = 1.65. Therefore, the critical
region consists of all z scores < —1.65 or > 1.65. The test z score is 0.63 (Example 10.3). Since 0.63 is not in the
critical region, the null hypothesis is not rejected at the 0.1 significance level.

Hypotheses Tests for uy — py When oy and 6y are Unknown but Equal

As in the case of confidence intervals for py — py, when the standard deviations oy and oy are
unknown but equal, we replace the standard deviation of X — Y by the pooled estimator

5 \/(m ~ 1S+ (n—1)S2

m+n—2

1 _ 1 _
where S% :—IZ(Xi —X)? and S% :—IZ(Yi — Y)? are the sample variances for X and Y,
m— n—
respectively. We also use the 7 distribution with m + n — 2 degrees of freedom in place of the standard
normal distribution. The corresponding prescriptions for performing hypotheses tests are as follows.
PRESCRIPTION 10.4 (P-value hypotheses tests for py — py; 6y, 6y unknown but equal)

Regquirements: X and Y independent random variables; X and Y are approximately normally distri-
buted; oy, oy unknown but equal.

Let « be the specified level of significance, and suppose xi,x,,...,x,, and yy,ys,...,y, are inde-
pendently chosen random samples corresponding to X and Y, respectively. First compute the sample
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o xptxttx, - ittty o 1 \2 1 2
1 3= — - %) 8= o
Lt e Ry e

— 1)s3 — 1)s3
and sp = \/ (m n)qsi;rfnz )SY. Then complete the following steps.

(1) State Hypotheses: State null hypothesis Hy: py = py and alternative hypothesis H,.
(2) Compute Test Statistic:  The test statistic is
X-Y
1 1
Spy/—+—
m n

which, assuming H4 is true, is (approximately) the ¢ random variable with m 4+ n — 2 degrees of
freedom. Compute the test value of ¢ as

=l

Xy
1
m

f=

S |-

S

' +

(3) Determine P-value: Using a ¢ table, if adequate, or computer software for a ¢ random variable
with m + n — 2 degrees of freedom, find the P-value of the test corresponding to H,:
For H,: py < py, the P-value is P(t < 7)
For H,: py > py, the P-value is P(t > 1)
For H,: py # py, the P-value is P(z < |7]) + P(t > |7]) [equivalently, 2P(t > |7|]
(4) Draw Conclusion: 1f P-value < «, then 7 and X — y are statistically significant at level o, and Hy is

rejected. If P-value > «, then 7 and ¥ — j are not statistically significant at level a, and Hy is not
rejected.

Alternative Version of Prescription 10.4

The alternative version of Prescription 10.4 uses the critical region for H, and « in place of the
P-value of the test. The critical region can be determined for various levels of significance and
degrees of freedom from Table A-2 in the Appendix.

PRESCRIPTION 10.4¢ (Critical-region hypotheses tests for py — py; 6y, 6y unknown but equal)

Regquirements: X and Y are independent random variables; X and Y are approximately normally
distributed; oy, oy unknown but equal.

(1) and (2) Same as in Prescription 10.4.
(3) Determine Critical Region: Using a ¢ table with m + n — 2 degrees of freedom (or computer soft-
ware), find the critical region corresponding to H, and «:

For H,: py < py, the critical region is all values 7 < r*, where #* is the (negative) value satis-
fying P(z < r*) = a (Fig. 9-4(a)).

For H,: py > py, the critical region is all values 7 > r*, where ¢* is the (positive) value satis-
fying P(z > r*) = « (Fig. 9-4(b)).

For H,: py 7 py, the critical region is all values 7 for which 7 > r* or 7 < —t*, where r* is
the (positive) value satisfying P(r < —1*) + P(t > t*) = a [equivalently, P(z > 1*) = a/2]
(Fig. 9-4(c)).
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(4) Draw Conclusion: 1If the sample value 7 of the test statistic lies in the critical region, then 7 and
X — jy are statistically significant at level o, and Hy is rejected. If 7 does not lie in the critical region,
then 7 and X — p are not statistically significant at level a, and Hy is not rejected.

EXAMPLE 10.5 Suppose in Example 10.1 that the random weights X and Y of each type of mice had standard
deviation 2.5 oz before the new diet. Use the data given there to test the null hypothesis Hy: py = py against the
alternative hypothesis H,: py # py at the 0.1 level of significance. Assume that the new standard deviations are
unknown but equal.

We use Prescription 10.4(a). From Example 10.2, x = 29.375,7 = 28.6, and s, =~ 2.53. The test value of the
test statistic

. 29.375 ; 28.6 ~0.65
2.53 §+E
From Table A-2, with 16 degrees of freedom, we find that the critical value ¢* satisfying
P(t>1*)=0.1/2=0.05is #* = 1.75. Therefore, the critical region is all ¢ scores f < —1.75 or 7 > 1.75. Hence,

0.65 is not in the critical region, so the null hypothesis is not rejected at the 0.01 level of significance.

Hypotheses Tests for uy — py When 6y and 6y are Unknown and Not Necessarily Equal

Small samples: As with confidence intervals, if it is unreasonable to assume that the unknown
standard deviations oy and oy are equal, then in place of ¢ you can use as a test statistic the random
variable

X7

O
m n

which, if Hy : py = py is true, has an approximate ¢ distribution when m and »n are moderate, say m > 5
and 7 > 5, and X and Y are normally distributed. To obtain the number of degrees of freedom, first
find sample values s% and 5%, and then compute

i m n
1 s%( 2+ 1 s%/ 2
m—1\m n—1\n

The largest integer less than or equal to & is the number of degrees of freedom of 7. Now proceed as in
Prescription 10.4 or 10.4a with the statistic 7 in place of ¢ (see Problem 10.12).

Large samples: 1f im and n are each 30 or larger, then the above random variable 7 is approximately
the standard normal random variable Z, assuming Hy: p, = py 18 true, and you can proceed as in
Prescription 10.3 or 10.3& with 7 in place of Z (see Problem 10.13).

10.3 CONFIDENCE INTERVALS FOR DIFFERENCES OF PROPORTIONS

Suppose it is a presidential election year, and that p; and p, are two states’ respective (unknown)
proportions of eligible voters that favor the Democratic candidate. Suppose also that some of the
candidate’s advisors believe that p; is greater than p,, that is, that p; — p, is positive, whereas others
believe that p; is less than p,. If the two states have a nearly equal number of electoral votes, and the
candidate can spend time campaigning in only one of them, it would be helpful to obtain a confidence
interval for p; — p,, based on random samples of size n; and n,, respectively.
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Sampling in a situation such as this can be modeled by two independent binomial experiments
b(ny,p1) and b(ny, p,), where p; is the probability of success in each of the n; trials constituting the
first experiment, and p, is the probability of success in each of the n, trials constituting the
second experiment. The collection of all possible proportions of successes in the n; trials making up
the first experiment defines a random variable P, with mean p1 and variance py(1 — py)/ny.  Similarly,
all proportions of successes in the #, trials making up the second experiment define a random variable P,
with mean p, and variance p,(1 — p,)/n,. Therefore, the mean of P, — P, is

Kp_p, =P1— P2
and since we are assuming independence, the variance of Py — P, is

2 7}71(1 —p1) , p2(1—py)
Tp B, — +
1 2 nl n2

Also, if #; and n, are large, say n; > 30 and n, > 30, then by the Central Limit Theorem, P, — }32 is
approximately normally distributed. As in the case of a single proportion, the variance of P; — P, is
estimated by
Pl=p) | pall=p2)
ny )

where p; and p, are sample values of P, and P, obtained in independently drawn large random samples
from the respective binomial populations.
We arrive at the following prescription.

PRESCRIPTION 10.5 (Confidence interval for p; — p,)
Regquirements: The sample sizes n; and n, are large, say n; > 30 and n, > 30.

Let ~ be the specified confidence level; and suppose that a value p; of P, is obtained in a random
sample of size n; > 30, and a value p, of P, is obtained in an independently chosen random sample of
size ny, > 30. Complete the following steps.

(1) Find Critical Z Value: Using a standard normal table (or computer software), find the value z* of
the standard normal random variable Z for which P(—z* < Z <z*) =+ [equivalently,
P0<Z < 2% =7/2]

5 (15 (15
(2) Compute Margin of Error: Compute E = Z*\/pl( - ) +p2( - Pz).
1 2

(3) Determine Confidence Interval: An approximate 100y percent confidence interval for p; — p, is
(P1 — P2 — E.py — P2 + E].

EXAMPLE 10.6 A presidential candidate needs either Ohio’s 21 electoral votes or Pennsylvania’s 23 electoral votes
to virtually insure a victory. In a poll of 500 eligible voters in Ohio, 260 favored the candidate over his primary
opponent; and in a pole of 600 eligible voters in Pennsylvania, 306 voters favored the candidate. The proportions,
p1=0.52in Ohio and p, = 0.51 in Pennsylvania, seem to give a slight edge to Ohio, and the candidate has time and
money to concentrate on only one of the states. Find a 99 percent confidence interval for p; — p,, and interpret the
result.

Since the sample sizes are each larger than 30, we can apply Prescription 10.5. From the standard normal table,

we find that P(—z* < Z <z*) =0.99 for z* = 2.58. The margin of error is £ = Z”‘\/pl(l —h) +p2(1 —p) =
n n
5 53\/0‘52 X048 051049 X :
' 500 600

p1—pois [(0.52 —0.51) — 0.078, (0.52 — 0.51) + 0.078] = [—0.068,0.088]. Since 0 is in the confidence interval, the
slight edge in Ohio’s favor may simply be due to chance. The results do not indicate that Ohio is the better choice
for a campaign effort (see Problem 10.17).

~ 0.078. The corresponding approximate 99 percent confidence interval for
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10.4 HYPOTHESES TESTS FOR DIFFERENCES OF PROPORTIONS

As in the case of confidence intervals for differences of proportions, we consider two independent
binomial experiments by (n;,p,) and b,(ny, p,), where p; is the probability of success in each of the
trials constituting the first experiment, and p, is the probability of success in each of the n, trials
constituting the second experiment. The collection of all possible proportions of successes in n; trials
defines a random variable P1, and the collection of all possible proportions of successes in n, trials
defines a random variable P,. The random variable £, — P, has mean Py — s, and since P, and P, are
pll=p) (1 —p)

n ) .

independent, the variance of P, — P, is For large samples, say n; > 30 and

n, >30, P, — P, is approximately normal.

So far, all that we have said applies to confidence intervals. However, there is one major difference
between confidence intervals and hypotheses tests for differences of proportions. In the case of a
pi(l—py) Jr132(1 o)

m n
where p; and p, are sample values of P, and P,, respectively. In the case of hypotheses tests, where the
null hypothesis is

confidence interval for p, — p,, the variance of P, — P, is approximated by

Hy:py —py =0, equivalently, Hy: py = po

X;+x
we combine the sample data to obtain the pooled sample proportion p = ! 2 , X1 being the number of

n+n
successes in n; trials making up the first experiment, and x, the number of successes in », trials making
up the second experiment. In terms of the sample values p; and p,, p can be computed as an average,
weighted according to the relative values of n; and n, (see Problem 10.20):
h— n1p1 + napy
n +ny

P+ Py

Note that if n; = n,, then the above weighted average simplifies to
the above formula for the variance of P; — P,, we get the estimate

p0-9) (53

for the variance of 2; — P,. The random-variable statistic whose value is p on each pair of samples of
sizes n; and n, respectively, is denoted by P. We then arrive at the following prescriptions for hypoth-
eses tests concerning p; — ps.

Replacing p; and p, by p in

PRESCRIPTION 10.6 (P-value hypotheses tests for p; — p,)
Requirement: The sample sizes are large, say n; > 30 and n, > 30.

Let a be the specified level of significance. Suppose that a value p; of P, is obtained in a random
sample of size n; > 30, and a value p, of P, is obtained in an independently chosen random sample of
npy + mp;

size ny > 30. First compute the pooled sample proportion p = ——

following steps.

, and then complete the

(1) State Hypotheses: State null hypothesis Hy : p; = p, and alternative hypothesis H,.
(2) Compute Test Statistic:  The test statistic is

b b
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which, if Hy is true, is approximately normally distributed with mean 0 and standard deviation
1. Approximate the sample value of Z as

b — o

\/ﬁ(l ()

(3) Determine P-value: Using a standard normal table (or computer software), find the P-value of the
test corresponding to H,:

z =

For H,: p; < py, the P-value is P(Z < z).
For H,: p; > p, the P-value is P(Z > z).
For H,: p| 7 p,, the P-value is P(Z < —|z|) + P(Z > |z|) [equivalently, 2P(Z > |z|)].
(4) Draw Conclusion: 1If P-value < «, then the values z and p; — p, are statistically significant at level

«, and Hgq is rejected. If P-value > «, then z and p; — p, are not statistically significant at level «,
and H,4 is not rejected.

Comment

C . . - - p1(l —p pr(1 —p
Some statisticians estimate the variance of P; — P, by b =P +p2( )

, as in the case of
n n

confidence intervals, but since the null hypothesis states that the proportions p; and p, are equal, it seems

more natural to pool the sample data rather than treat the sample values separately.

EXAMPLE 10.7 With reference to Example 10.6, test the null hypothesis Hy : py = p, against the alternative
hypothesis H,: p; > p, at the 0.01 significance level by computing the P-value of the sample results.

26 3
The sample proportions in Example 10.6 are p; = 5_0?) =0.52 and p, = 6_8(6) = 0.51, so the pooled proportion is
5 200> 0.52+600x051 260+306 0.5145. The corresponding estimate of the test statistic is
P 500 + 600 ~ 7100 T poneing
1 — P 52 -0.51
- b — b2 _ 0520 ~ 033

R 1 1 ’ 1 1
\/p(l ) <n—1+n—2> \/0‘5145 X 0.4855 x (%*%)

The P-value of the test is P(Z > 0.33) = 0.3707. Since 0.3707 is substantially higher than 0.01, we don’t even come
close to rejecting the null hypothesis at the 0.01 significance level.
Alternative Version of Prescription 10.6

An alternative version of Prescription 10.6, which uses the critical region determined by the alter-
native hypothesis and the level of significance, is the following.

PRESCRIPTION 10.6a& (Critical-region hypotheses tests for p; — p,)

Requirement: The sample sizes are large, say #; > 30 and s, > 30.

(1) and (2) Same as in Prescription 10.6.
(3) Determine Critical Region: Using a standard normal table (or computer software), find the critical
region corresponding to H, and a:

For H,: p; < p,, the critical region is all values z < z*, where z* is the (negative) value satis-
fying P(Z < z*) = a (Fig. 9-3(a)).

For H,: p; > p», thecritical region is all values z > z*, where z* is the (positive) value satisfying
P(Z > z*%) = « (Fig. 9-3(b)).
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For H,: p, / p,, the critical region is all values z for which z > z* or z < —z*, where z* is
the (positive) value satisfying P(Z < z*)+ P(Z > z*) = a [equivalently P(Z > z*) = a/2]
(Fig. 9-3(¢)).

(4) Draw Conclusion: 1If the sample value z of the test statistic lies in the critical region, then
z and p; — p, are statistically significant at level a, and Hq is rejected. If z does not lie in
the critical region, then z and p; — p, are not statistically significant at level o, and H4 is not
rejected.

EXAMPLE 10.8 Test the null hypothesis Hy:p, =p, in Example 10.6 against the alternative hypothesis
H,: p; > p, at the 0.01 significance level by determining the critical region for the test.

The test statistic is the standard normal random variable Z, and from Table A-1, we see that P(Z > z*) = 0.01
for z* =2.33. From Example 10.7 above, the value of the test statistic is z = 0.33, which is far from the
critical region. Therefore, with some emphasis, we do not reject the null hypothesis at the 0.01 significance
level.

10.5 CONFIDENCE INTERVALS FOR RATIOS OF VARIANCES

So far we have found confidence intervals for differences of means and differences of proportions;
and it is possible to find confidence intervals for the difference of variances, o% and o%, corresponding to
two independent normal random variables X and Y, respectively. However, the probability distribu-
tion of 0% — 0% is more complicated than the probability distribution of % /0%. Therefore, since either
of these two expressions could be used to compare the two variances, we will determine confidence
intervals for a§( / azy. We consider the case where py and py are unknown here, and the case where py
and py are known in the exercises. First, however, a new distribution, called the F distribution, must
be introduced.

The F Distribution

In Section 8.3 we saw how the standard normal and chi-square distributions could be combined to
produce the 7 distribution, which proved useful in constructing confidence intervals and hypotheses tests
for means and their differences. Here, two chi-square distributions are combined to produce the F
distribution, which is defined as follows.

Definition: Let x’>(m) and x*(n) be independent chi-square random variables with degrees of freedom

m and n, respectively. Then, the random variable

p_ X (m)/m

X*(n)/n

is called an F randomn veriable with in and n degrees of freedom.

Properties of the F Distribution

The random variable F is also denoted by F(m, n) to emphasize its dependence on the parameters m
and n. Note that F(n,m) is not the same as F(m, n); in fact,
X’ (n)/n 1

Fln,m) = x*(m)/m - F(m,n)

The first number m in parentheses for F(m, n) always refers to the degrees of freedom of the chi-square
random variable in the numerator of the above definition of F. There is a density curve for each
pair (m, n), several of which are illustrated in Fig. 10-1. Note that the F random variable assumes
only positive values, since it is a ratio of positive random variables. The density curves are skewed
to the right, but the skewing becomes less severe as both m and n increase. The mean and standard



302 INFERENCE FOR TWO POPULATIONS [CHAP. 10

deviation of F(m,n) are

n n 20m+n—2
pr =% for n>3 and UFn2\/(m(n4)) for n>3

pp is not defined for n =1 or 2, and o is not defined for n = 1,2,3, or 4. The mode of F(m,n) is

-2
n(m —2) for m > 3; for m = 1 or 2, there is no mode.

m(n+2)
A
1
F(l1,2)
08} F48)
06}
F (10, 20)
04
02
! |
g 1 P 3 4 5

Fig. 10-1 Density curves for F(1, 2), F(4, 8), and F(10, 20).

Confidence Intervals for o /a§v When gy and py are Unknown

. . . . ] 2
Suppose X and Y are independent normal random variables with unknown variances o3 and oy,

respectively. Let X1, X5,...,X,, and Yy,Y,,..., Y, be independent random-variable samples corre-
sponding to X and Y, with sample means X and Y, respectively (see Section 8.1). Then
—1)8% —1)83
(m 2) X and (n 2) Y
Oy Ty

, 1 _ 5 1 - . . .
where Sy = —IZ(X i — X )2 and Sy = —12()} — Y)z, are independent chi-square random vari-
m— n—

ables with m — 1 and n — 1 degrees of freedom, respectively (see Sections 7.4 and 8.5). Dividing the chi-
square random variable on the left above by m — 1 gives S3 /03, and dividing the one on the right by
n—1 gives 53,/ o3. Therefore, by definition, the ratio

5

Sy/oy
Fn—1m—1)=
Sy/o%

is an F random variable with n — 1 degrees of freedom in the numerator and m — 1 degrees of freedom in
the denominator. F can also be written as

7 a2
oSy

Fn—1m—1) s
¥OY

Let us consider a 98 percent confidence interval for o3/ o%. Using an F table, or computer software,
we can find constants & and b for which P(e < F(n — 1,m — 1) < b) = 0.98. For example, we could
choose & and b to satisfy

P(F < a) =0.01 and P(F<b)=0.99
(see Fig. 10-2 and Example 10.9).
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0.01

o]

Then
Paf<F<h)y=PFr<h —P(F<a)=099—-001=098
7 2
Suquulmg = z lor F. wc have
¥OX )
P(a < TX5Y b) ~ 098
oySy

which is cquivalent 10

Therelore,

2 a
= g
Sy Sy

] ; 3, &
is a random 98 percent confidence interval for o%/0y.

EXAMPLE 169 A random sample of size 26. drawn lrom a normal population X, has sample variance o’i =64:
and a random sample of'size 16, drawn [rom a normal population Y, has sample variance §% = 100. Assuming that
X and Y are independent, find a 98 percent conlidence interval for oﬁ/azy

We have m—1=26—-1=25, and n—1l=16—-1=15 Wec must find o and b for which
P(F(15,25) < a) = 0.01 and P(F(15,25) < b) =0.99. Tables A-4 to A-7 in thc Appcndix give valucs F* dircetly
for P(F(15,25) < F*) =09 or 0.950or 0.9750r 0.99. From Tablc A-7, wc find that b = 2.85. Table A-7 can also

. T ] ’ r 1
be uscd indircctly to find the valuc of « for whi'ch P(F(15,25) < a) = 0.0l as follows. Sincc F(15,25)

the following cquations arc cquivalent. T (3o, Ing
P(F(15,25) < a) =0.01
P l ) =0.0l
F(25,15) =
P(F(25, 15) > l) —0.01
!
l
P(F(25._ 15)<_1)=l 01 =0.99
[¢
1 1 - sy 64 :
From Table A-7, wc find that —= 3.28, or « = —. Finally, - = ——== 0.64. Thercfore, the corresponding
a 3.28 x%, 100
98 percent conlidence interval for o3./c% is |a 5;, bi}w] = { : 2. 64| =0.195, 1.824].
; Sy Sy 3.28
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In general, if the significance level is -y, we can replace 0.98 by ~ in the above example to arrive at the
following prescription.

PRESCRIPTION 10.7 (Confidence interval for % /a§(; p#y and py unknown)

Regquirements: The random variables X' and Y are independent and approximately normally dis-

tributed.
Let ~ be the specified significance level, and suppose that values xy,x5,...,x, of X and
Y1,Y2,--.,¥, of Y are obtained in independently chosen random samples. First compute the

sample  values ¥ — -\ txott Ty 2 Tyt +y,1, sy =—— > (x;— %)%, and
| m n m—1
55 = o > —.)7)2. Then complete the following steps.
1
(1) Find Critical F Values: Find values F7} and F’ that satisfy P(F(m — 1,n — 1) < F7}) = er'y and
1 .
P(F(n—1,m 1) < F%) — ;7 (see Fig. 10.3).

(2) Determine Confidence Interval: An approximate 1004 percent confidence interval for o% /0% is

2 2
1 Sy * Sy
[ XT,F2X7 .

F7oos3 53
1 1.98 55
In Example 10.9, % =5 =099, m - 1=25n 1 =15, F =328 F} =285 and X064,
Sy

According to Prescription 10.7, the corresponding 98 percent confidence interval for air/a%v is

[ﬁ x 0.64,2.85 x 0.64] = [0.195,1.824], as was obtained in Example 10.9.

£ Y

F(m—-1,n-1)

Fn-1,m-1)

WARNING

Just as in the case for a single variance, the above approximate confidence intervals for o% /o5 are
not robust, and can deviate very significantly from the true confidence intervals when X and Y are
not normally distributed (see Section 8.5). Hence, the practical use of these confidence intervals is
limited.

10.6 HYPOTHESES TESTS FOR RATIOS OF VARIANCES

Suppose X and Y are approximately normally distributed random variables with means py and py,
and unknown variances 0% and %, respectively. As in the case of confidence intervals, we consider
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hypotheses tests for 0% /0% when py and py are unknown. The null hypothesis will be

Hy: aﬁ/a%/ =1; equivalently, Hy: 0% = 0%
and the alternative hypothesis will be one of the following:

H,: 0%/0% < 1; equivalently, H,: 0% < 0%

H,: ag(/a%/ > 1; equivalently, H,: 0% > 0%

H,: 0% /a%/ £ 1; equivalently, H, o% 7 o7

Hypotheses Tests for air / a%v When gy and py are Unknown
In the previous section, confidence intervals for o / o% utilized the F random variable
2 Q2
oSy
Fn—1m—-1)=———
( A

1 o 1
where S% - m Z(Xl — X)z and S%' = ﬁ

respectively. If the null hypothesis Hy: 0% = o% is true, then the above random variable becomes

S(Y; — Y)? are the sample variances for X and Y,

2
Fn—1,m—1) :S—g
Sy

Also, by the reciprocal property of the F distribution,
S2
Fm—1n—1)=2&
S2

Hence, either $%/S% or S%/S% can be used as the test statistic. Proceeding as in the case of confidence
intervals, we arrive at the following prescription.

PRESCRIPTION 10.8 (P-value hypotheses tests for ox / 63 My, py unknown)

Regquirement: X and Y are approximately normally distributed.

Let o be the level of significance for the test. Suppose the values xi,Xx,,...,x, of X and
Y1, V2, - -, ¥, of Y are obtained in independently chosen random samples. Compute the sample values
ottt X, o ittty 1 \2 1 _\2
X = — g X — X d & =— 7).
x L, Ll R D) and § - D0 )

Then complete the following steps.

(1) State Hypotheses: State null hypothesis Hy : 0% = 0% and alternative hypothesis H,.

(2) Compute Test Statistic: Let Sg(/Sz), be the test statistic, which, assuming H,y is true, is approxi-
mately an F(m — 1,n — 1) random variable. Compute the test value as 5% /s%.

(3) Determine P-value: Using an F table, if adequate, or computer software, find the P-value of the
test corresponding to H,:

For H,: 0% < 0%, the P-value is P(Fim—1,n—1) < s%/s?)
For H,: 0% > 0%, the P-value is P(F(m —1ln—1> sﬁ/s%)
2P(F(m —1,n— 1) < s%/5%) if s3 /5% < 1

For H,: o / oy, the P-value i
or Hy: o 7 oy, the VduelS{ZP(F(ml,nl)zs%—/s%»)ifs%—/s%»>l
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4y Draw Cenclusion: 1f P-value < a, then the test is statistically significant at level a, and H, is
rejected in favor of H,. If P-value > a, then the test is not statistically significant at level «, and
Hyq is not rejected in favor of H,.

EXAMPLE 10.10 In Example 10.9, a random sample of size m = 26, drawn from a nonnal population X, has

sample variance 5 = 64; and a random sample of size # = 16. drawn [rom a normal population Y. has sample
2

. o] & P - 64 )

variancc sy = 100. Thc valuc of the test statistic is T" = 0.64. Let the null hypothcsis be 0% = oy.and
Sy

Ict & = 0.05 be the significancclevel.  Then, using computcer software. we find thatfor 17,: oi < 0%, the P-valuc is

P(F(25,15) < 0.64) =~ 0.16. Sincc0.16 > 0.05, we would not rcject the null hypothcsis in favor of /7, ok < oy at

the 0.05 significance level. Note that lor H: 0y # o, the P-value is twice the P-value for H ,: 0}(, < 0%, namely

2 % 0.16 = 0.32; so we would also not reject the null hypothesis in favor of A, 03 # oy at the®.05 signilicance level.

Alternative Version of Prescription 10.8

The following alternative version of Prescription 10.& replaces the P-value by the critical region for
the alternative hypothesis at the specified level of significance a. Because of the limitations of the F
tables in the Appendix, all critical regions are defined in terms of the right tail of either the
F(an—1,m—1)or F(m— 1,n— 1) distribution.
PRESCRIPTION 10.8« (Critical-region hypotheses tests for ai— /G’zy; Hx,py unknown)

Requirement: X and Y are approximately norimally distributed.

(1) and (2) Samc as in Prescription 10.8.
(3) Determine Critical Region:

;
For H, o} < o%. the critical region is all samplc valucs ;—& > F*, where F* is the F valuc
satistying P(F(n—1,m — 1) < F¥) = | — a (Fig. 10-4(a)). ’

For H,: af‘» > o%. the critical region is all sample values z—g( > F* where F* is the F value
satsfying P(F(m — 1,n — 1) < F*) = 1 — a (Fig. 10-4(%)).

r 3
F(n—1,m—1)

_D Ft
(a) H,: 0} <a} ; Critical region: s /s,? > F*

* Fm—1,m—1)

0 F*

1-af2

() H; 0 # o} ; Crigtal region: sf/s? > Fy*, s3 s > Fy

Fig. 104
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2 2
2 .- s Sy * Sy * % .
For H,: 0% # o%, the critical region is all values —- > F or 5 > F'», where F; is the F value
Sy Sy

satisfying P(F(n—1,m—1)<F})=1—-«/2, and F5 is the F value satisfying
P(F(m —1,n—1) < F3) =1 — a/2 (Fig. 10-4(c)).

(4) Draw Conclusion: 1f the test value 5% /s% or s%/s% lies in its corresponding portion of the critical
region, then the test is statistically significant at level «, and H is rejected in favor of H,. If the
test value does not lie in the critical region, then the test is not statistically significant at level o, and
Hgq is not rejected in favor of H,.

EXAMPLE 10.11 In Example 10.10, sﬁr = 64, based on a random sample of size m = 26; and SZY =100, based
on a random sample of size n = 16. The null hypothesis is Hy: 0% = 0%. The critical region at the & = 0.05

2
- . S . o
level of significance for H,: 0% < 0% is all sample values TyzF * where F* is the F value satisfying
S3

p
P(F(15,25) < F*)=1— &« =0.95. From Table A-5 in the Appendix, we find that #* = 2.09. The value of the
100
’ 64
Hy: 0% = 0% in favor of H,: 0% < 0% at the 0.05 significance level.
For the alternative hypothesis H,: 0% # 0%, the critical region at the 0.05 significance level contains all values
2 2
S—2Y > F}or STX > F3, where F is the F value satisfying P(F(15,25) < F}) =1 — &/2 = 0.975, and F} is the F value
Sy Sy
satisfying P(F(25,15) < F3) =1 — «/2=0.975. From Table A-6 in the Appendix, we find that F} = 2.41 and
2

2
corresponding test statistic is TY: ~ 1.56, which is not in the critical region, so we do not reject
S5

2
. S S . VR . .
F3=2.69. Since TY ~ 1.56 and TX = 0.64, neither statistic is in its corresponding portion of the fundamental

Sy Sy
region, so the null hypothesis is not rejected in favor of H, : 0% # 0% at the 0.05 significance level.

Solved Problems

CONFIDENCE INTERVALS FOR THE DIFFERENCE OF MEANS

10.1. The scores on a standardized math test in District X are normally distributed with mean 74 and
standard deviation & while those in District ¥ are normally distributed with mean 70 and
standard deviation 10. A new learning program, which makes extensive use of computers, is
introduced in both districts. The mean score under the new system of a random sample of 40
students in District X is x =75. In District Y, y = 73, based on a random sample of 50
students. Find a 95 percent confidence interval for py — py under the new system. Assume
Oy — 8 and Oy = 10.

We apply Prescription 10.1. From Table A-1, the value z* of the standard normal random
variable Z satisfying P(—z*<Z<z*)=095 is z*=196. The margin of error is

[ 2 2 ,
E=7z* % +C;—(I; —-1.96 2—3 + % ~2 3.72. Therefore, the corresponding approximate 95 percent con-
fidence interval is [(75 — 73) — 3.72, (75 — 73) + 3.72] = [-1.72,5.72].

10.2. Suppose the sample standard deviation for X in Problem 10.1, based on the random sample of
size 40, is sy = 8.8; and that for Y, based on the sample of 50 students, is sy = 9.2. Determine
an approximate 95 percent confidence interval for py — py under the assumption that oy and oy
are unknown but equal.
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We apply Prescription 10.2. The sample value of the pooled estimator of the common standare
deviation is

e e 2, 2
gy [0 DSk (0 D [39(88) 490927
m—+n—2 88

Table A-2 in the Appendix shows that the value ¢* of the 7 random variable, with 60 degrees of freedom, that
satisfies P(—1* <:<t*) =095 is * =198, and for 120 degrees of freedom, ¢* =2.00. Since 88 is
approximately midway between 60 dnd 120, we will use t* = 1 99. (Computer software gives 1.9873.) The

margin of error is £ = t*spy /—+— = 1.99 x 9.02, /er% ~3.81. The corresponding approximate

95 percent confidence interval for py — py is [(75 — 73) — 3.81,(75 — 73) + 3.81] = [—1.81,5.81].

Suppose that the sample standard deviation for the 40 District X students in Problem 10.1
is sy = 7.8, and that for the SO students in District Y is sy =9.6. Compute an approxi-
mate 95 percent confidence interval for py — py under the assumption that the random
variable

X7V (py — py)

T =
S| 5
40 50

is approximately normally distributed with mean 0 and standard deviation 1.

We follow Prescription 10.1 with s% = (7.8)> = 60.84 in place of ¢c% = 64 and s% = (9.6) = 92.16
in place of cr%: =100. As shown in Problem 10.1, the value z* of the standard normal random variable

/g 2 2
Z satisfying P(—z*<Z<:z*)=095 is z*=196. The margin of error is E=z* 40 +%:

60.84 92.16 . . . .
1.96 T+Tz3.59. The corresponding approximate 95 percent confidence interval is

[(75 — 73) — 3.59, (75 — 73) + 3.59] = [~1.59, 5.59)].

With reference to the mice in Example 10.1, find a 90 percent confidence interval for py — py
under the assumption that

XY (py —py)

T =
5,5
10

is approximately a ¢ random variable whose degrees of freedom are given by the largest integer
less than or equal to the expression for k at the end of Section 10.1.

7 2
o . . % ;. /11
We follow Prescription 10.2 with the margin of error E = ¢* X +S—y in place of E = t¥spy/—+—.
m n m n

From the data in Example 10.1, we find that s% ~ 9.125 and 5% ~ 4.276 (see Example 10.2). Substituting
these values, along with m = 8 and n = 10, into the expression for k, we get

9.125 4.276\2

(‘if‘*‘ia‘)
C1/9.125\° 1/4276
7(T) +9< 10 )

We therefore assume that 7 has 11 degrees of freedom. From Table A-2, we find that the value ¢* of the ¢
random variable, with 11 degrees of freedom, that satisfies P(—t* <t <*)=0.9 is t*=1.80. Then
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10.5.

10.6.

E = 1.80\/¥+%z 2.25. Using the values X ~29.38 and y = 28.6 obtained in Example 10.1,

we find that the corresponding 90 percent confidence interval for py—py i8S
[(29.38 — 28.6) — 2.25, (29.38 — 28.6) + 2.25] = [—1.47,3.03].

What justifies the assumptions made concerning the random variable 7 in Problems 10.3 and
10.47

It can be proven, by methods beyond the level of thistext, that the distribution of the random variable 7
in Problem 10.3 approaches the standard normal distribution as m and » increase without bound. For our
purposes, the assumption that 7 is approximately standard normal is justified because the random variables
X and Y are normally distributed, and the sample sizes 7 = 40 and n = 50 are each larger than 30. Simi-
larly, for our purposes, the assumption in Problem 10.4 that 7 is approximately a ¢ random variable with the
specified number of degrees of freedom is justified because the random variables .Y and Y are normally
distributed, and the sample sizes m = 8 and n = 10 are each larger than 5.

Suppose X and Y are independent random variables, and 0% = 0%. Show that the random

— Y — (py — py)
1 1
Spy/—+—
m n

By definition, if Z and y? are independent, where Z is a standard normal random variable and x° is a
Z

VX k

freedom (see Section 8.3). Let o be the common value of o% and a2y. The random variable

variable defined in Section 10.1 has a ¢ distribution with m + n — 2 degrees of

freedom.

chi-square random variable with & degrees of freedom, then

is a t random variable with & degrees of

Z:X*Y*(HX*HY):X*Y*(HX*HY)
1 1

+ —
n

o
m

—1)s3 —1)83
is standard normal. Also, (m )Sx and (= 1)Sy

are independent chi-square random variables with
— 1)S3 —1)S% .

(-1 (1= 18
a a

chi-square with m — 1 +n — 1 = m + n — 2 degrees of freedom. When Z is divided by v/x*/(m +n— 2), o
C— ¥ — (v — my ~—1S> 1S
Y (1) e s, \/( ST+ (- DS}

m — 1 and n — 1 degrees of freedom, respectively (Theorem 7.7). Therefore, > =

. . . ¢
cancels, and the resulting quotient is
1 m+n—2

1
Spy/— -+~
m n

HYPOTHESES TESTS FOR THE DIFFERENCE OF MEANS

10.7.

The average GPA for 60 mathematics majors at a particular university is 3.4 with a variance
of 0.2; and the GPA for the 50 physics majors at the university is 3.5 with a variance of 0.12.
Letting X and Y represent the mathematics and physics GPAs, respectively, and assuming the
GPAs are normally distributed, test the null hypothesis Hg: py = py against the alternative
hypothesis H,: py < py at the 0.05 significance level by constructing the P-value for the test.

Following Prescription 10.3, the test statistic is

Y-y
A
_Jr_
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which, assuming Hy is true, is standard normal. The test value of Z is

Z:ﬂ'\; ~1.32

2 012 -
60 50
The P-value of the test is P(Z < —1.32) = 0.09. Since the P-value is greater than 0.05, the test is not
significant at the 0.05 level, and the null hypothesis is not rejected at that level.

In Problem 10.7, test the null hypothesis Hy: puy = py against the alternative hypothesis
H,: py < py at the 0.05 significance level by constructing the critical region for the test.

Following Prescription 10.3a, at the 0.05 level, the critical region for H,: py < py is all values z < z*,
where P(Z < z*) = 0.05. From Table A-1, we find that z* = —1.65. The test value of Z found in Problem
10.7 is z = —1.32, which is not in the critical region. Therefore, Hy is not rejected in favor of H, at the 0.05
significance level.

At what significance level would the null hypothesis in Problem 10.7 be rejected in favor of the
alternative hypothesis?

H gy would be rejected at any level greater than or equal to the P-value of the test, which was determined
to be 0.09. In particular, Hy would be rejected in favor of H, at the 0.1 significance level.

The annual salaries, in thousands of dollars, of & men in middle management at a given company
are: 55.5,64.%8,68.2,70.2, 52.4, 56.8, 60.6, 72.5, while those for 6 women are: 56.2, 48.8, 58.4, 50.9,
60.2, 54.5. Let X and Y denote the salaries of the men and women, respectively; and assuming
normal distributions and equal standard deviations, test Hy: py = py against H,: py > py at the
0.05 significance level by constructing a critical region for the test.

Following Prescription 10.4a, the needed sample values are

555+ 64.8+ 682+ 702+ 524+ 56.8 +60.6+72.5

= 2 ~ 62.63
5= 62+488+584+509+602+545z54.83
6
1
55 = DCE 62.63)7 ~ 54.87
1
55 = 20— 54.83)% 2 19.07
. \/7 X 5487 +5x1907 )
12
. X-Y ) ) . . . .
The test statistic is ¢ = ﬁ which, assuming Hy is true, is a ¢ random variable with 12 degrees of
Sp\ / 3 + 3
.. 6263 —54.83 . . .
freedom. The test value of ¢ is /= ———=2.29. The critical region for H,: py > py is all

1
6.32y/=+—=
] * 6
values 7 > r*, where P(¢ > r*) = 0.05. From Table A-2in the Appendix, with 12 degrees of freedom, we

find that ¢* =1.78. Since the test value 2.29 is greater than 1.78, the null hypothesis Hy: py = py is
rejected in favor of H,: py > py at the 0.05 significance level.

In Problem 10.10, what is the smallest significance level at which the null hypothesis would be
rejected in favor of the alternative hypothesis?



CHAP. 10] INFERENCE FOR TWO POPULATIONS 311

10.12.

10.13.

The answer is the P-value of the test, which is P(X — Y > 62.63 — 54.83 = 7.8), assuming H, is true;
equivalently

Y-y 62.63 — 54.83

r T 11
S\gte 632/3t¢

Using Table 4-2 in the Appendix, with 12 degrees of freedom, we find that the P-value is between 0.01 and
0.025. Using computer software, we find that the P-value is 0.02.

~ 229

The sample standard deviations in Problem 10.10 are sy = 7.41 and sy = 4.37. Such a large
difference seems to indicate that the assumption of equality may be unwarranted (see Problem
10.33). Repeat the test using as the test statistic

X-Y

Sy Sy
{2X 4 2
m n

which, assuming Hg is true, has an approximate z distribution with degrees of freedom equal to
the largest integer less than or equal to

2 2\2

Sy ST

m n

1 si2+1 v\’
m—1\m n—1\n

We apply Prescription 10.4a, with 7 in place of #. The value of the test statistic is
62.63 — 54.83 246

5487 | 19.07 -
Vs 6

( 5487 1907 )2
L _~ 1153
1/54.87 n 1/19.07
7 8 5 6
The critical region for H,: uy > py is all values 7 > r*, where P(¢t > t*) = 0.05. From Table A-2, with 11

degrees of freedom, we find that r* = 1.80. Since the test value 2.46 is greater than 1.80, the null hypothesis
Hy: py = py is rejected in favor of H, at the 0.05 significance level, as in Problem 10.10.

T =

and the value of k is

A random sample of size 100 drawn from a normal population X has sample mean x = 74.8
sample standard deviation sy = 7; and a random sample of size 150 drawn from a normal
population Y has sample mean y = 72 and sample standard deviation sy = 10. Test the null
hypothesis Hy: py = py against the alternative hypothesis H,: py # py at the 0.01 level of sig-
nificance. Use 7 from Problem 10.12 as the test statistic; for large samples, and assuming Hy is
true, 7 is approximately standard normal.

We follow Prescription 10.3a, with 7 in place of Z. The value of the test statistic is

748 - 72
7= T® 100 =~ 2.60. The critical region at the 0.01 significance level for the alternative hypothesis
00 ' 150

H,: py # py is all values ¥ > z* or 7 < —z*, where P(Z > z¥) = 0.01/2 = 0.005. From Table A-1, we find
that z* = 2.58. Since 7 = 2.60, we reject Hy in favor of H, at the 0.01 level.
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Would the null hypothesis Hg: gy = py in Problem 10.13 be rejected in favor of H,: py > py at
the 0.01 significance level?

The critical region at the 0.01 significance level for H,: py > py consists of all values 7 > z*, where
P(Z >z*)=0.01. From Table A-1, we find that z* = 2.33. Since the test value is 7 = 2.60, Hqy will be
rejected in favor of H,: py > py at the 0.01 significance level. In general, if Hy: py = py is rejected in
favor of H,: py # py at any significance level e, then Hy will be rejected in favor of H,: py > py at the
same level, provided X > p. This is so because the right-tail portion of the critical region for H,: py # py is
contained in the critical region for H,: py > py; and therefore any test value of Z that is in the right-tail
portion of the critical region for H,: py # py will also be in the critical region for H,: py > py.

CONFIDENCE INTERVALS FOR DIFFERENCES OF PROPORTIONS

10.15.

10.16.

10.17.

In a random sample of 50 people from eastern states in the U.S.A., 40 said they favored gun
control; and 25 out of 48 from western states were in favor of gun control. Find a 95 percent
confidence interval for p; — p,, where p, is the proportion of those in eastern states favoring gun
control, and p, is the proportion of those in western states favoring gun control, and interpret the
result.

o . .4 . 25
We follow Prescription 10.5. The sample proportions are p; = % =08 and p, = i 0.52, and the

. 8x0. . .
estimated sample standard deviation is \/ 0 ;00 2 + 0 52;;0 48 =
P(0<Z<z*)=0.95/2 =0.475 for z* = 1.96. Therefore, the margin of error is £ = 1.96 x 0.09 = 0.18,
and the 95 percent confidence interval for p;, —p, is [(0.8 —0.52) —0.18, (0.8 —0.52) +0.18] =
[0.10,0.46]. Since 0 is not contained in the interval, the sample provides strong evidence that p; > p,.

0.09. From Table A-1, we find that

The sample difference in Problem 10.15 is p; — p, = 0.8 — 0.52 = 0.28. What is the probability
that a difference as large or larger than this would occur if in fact p; = p,?

Let P, denote the proportion from eastern states favoring gun control in an arbitrary random sample of
size 50, and P, the proportion from western states favoring guncontrolin an arbitrary random sample of size
48. The random variable P; — P, is approximately normally distributed with mean p; — p, and variance

1-— 1— 5 > : i
a1 50 P) +p2( 15 p2). We want to compute P(P; — P, > 0.28), given that p; = p,. An estimate p of the
. . 40 + 25 . .
common value of p; and p, can be obtained by pooling the data: p = 58 j: a3 ~0.66. Then, P, — P, is
. . . p(l —p) p(l—p .66 x 0.34  0.66 x 0.34
approximately normal with mean O and variance il 50 ) +p( m p) _0 SXO + 4><8 ~ 0.009.

P —Py—0_ 028

Vv0.009 v/0.009
normal random variable. From Table A-1, we find that P(Z > 2.95) = 0.0016. That is, the chances of a
difference as large as 0.28 occurring are only 16 in 10,000 if in fact p; = p,.

Therefore, P(P, — P, > 0.28) = P< ) = P(Z >2.95), where Z is the standard

Repeat Problem 10.16 using the data in Example 10.6.
In Example 10.6, the difference in the sample proportion is p; — j, = 0.52 — 0.51 = 0.01. The estimate
of the common proportion, obtained by pooling the data, is p :M ~ 0.515, and the estimated
, , 500 + 600
variance of Br — P is 0.515 x 0.49 Jr0.515 %049 00009 Th
1o 500 600 o e

P, — P, 5 0o
v/0.0009 ~ +/0.0009

PP, — P, >0.01) :P< ):P(220.33) =0.37
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Hence the chances are 37 in 100 that a difference as large as 0.01 would occur if p; = p,. In this case,
the data do not provide strong evidence that p; > p,.

HYPOTHESES TESTS FOR DIFFERENCES OF PROPORTIONS

10.18. Using the data in Problem 10.15, test the null hypothesis Hy: p; = p, against the alternative
hypothesis H,: p; > p, at the 0.01 significance level by finding the P-value for the test.

o . 4 25
We follow Prescription 10.6. The sample proportions are p, =5—8=0.8 and p, :E=0.52, so

p1—p2 =0.28. The P-value of the test, computed under the assumption that Hy is true, is
P(p; —p, >0.28). From Problem 10.16, P(p; — p, > 0.28) = 0.0016. Since 0.0016 < 0.01, the null
hypothesis is rejected in favor of H,: p; > p, at the 0.01 significance level.

10.19. Using the data in Problem 10.15, test the null hypothesis Hy: p; = p, against the alternative
hypothesis H,: p; > p, at the 0.01 significance level by finding the critical region for the test.

40 25
We use Prescription 10.6a. The sample proportions are p, = il 0.8 and p, = . 0.52; and the

S 40425 . .
pooled proportion is p = 0+ ~ 0.66. (Note that p can also be computed by the formula given in
50 + 48
e . p p 8+ 4 52
Prescription 10.6, namely p = Py Py 20081480 ~ 0.66. See Problem 10.20.) The value
nm =+ ny 50 -+ 48

of the test statistic is

p— b 8.0 0.52

— ~

NG 11y
\/p(lp)(Z+Z) \/0.66><0.34<%+E)

For the alternative hypothesis H,: p; > p, at the 0.01 significance level, the critical region is all z > z*,
where P(Z > z*) =0.01, Z being the standard normal random variable. From Table A-1, we find that
z* =2.33. Since 2.93 > 2.33, the test statistic lies in the critical region, and Hy: p; = p, is rejected in favor
of H,.

10.20. Suppose that x; is the number of successes in #; trials making up one experiment, x, is the

. . . . n X1 n X

number of successes in n, trials making up a second experiment. Then p, = — and p, = — are
m )
X1 -+ Xy

the corresponding proportions of successes. Show that the pooled proportion p =
mpy + nppy
1 —+ My ’

can
n —+ ny

also be computed by the formula p =

L, X R . X R o
From the equation p; = 2 we get x; = n Py, and from p, = 22 we get Xy = myp,.  Substituting for x;
m ny

and x, in the formula p = il xQ, we get p = Py + P

, as desired.
ny +ny ny + 1y

CONFIDENCE INTERVALS FOR RATIOS OF VARIANCES

10.21. Find a 98 percent confidence interval for oy /oy in Example 10.9.

The 98 percent confidence interval for 0% /0% found in Example 10.9 is [0.195,1.824]. The correspond-
ing 98 percent confidence interval for oy /oy is [v/0.195, v/1.824] = [0.442, 1.351].

10.22. The sample variance of 11 one-liter bottles of wine bottled in summer was $% = 50 (ml)?, and the
sample variance of 16 one-liter bottles of wine bottled in winter was S3 = 60 (ml)>. Assuming
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10.24.
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that the volume of liquid in the bottles is normally distributed, find a 90 percent confidence
interval for 0% /o%.

1 19
We follow Prescription 10.7, where m =11 —1=10,n = 16 — 1 = 15, and 7; = TO = 0.95. From
Table A-5, we find that P(F(10,15) < F}) = 0.95 for F} =2.54; and P(F(15,10) < F3) =0.95 for
. . . 1 S 5
F5 =12.85. The corresponding 90 percent confidence interval is TR %, 2.85 x % =[0.328,2.375].

A random sample of six values of a random variable X is:
32, 40, 25, 31, 24, 28
and independently obtained eight sample values of a random variable Y are:
15, 14, 18, 12, 20, 16, 17, 16

Assuming that X and Y are normally distributed, find a 90 percent confidence interval for 0% /0%
and one for oy /oy

32+40+25+31+24+28 18
We follow Prescription 10.7. The sample values are X = 130729 ST :—0:

e 15+14+18+12;2O+16+17+16:%:16, s§(:%2(xi730)2 _3 fnd Szy_%z(yigy_&
Also, ”TV — 1% _095. From Table A5, we find that P(F(5,7) < F})=0.95 for F}=3.97,
P(F(7,5) < F3) = 0.95 for Fi=4.88. The corresponding 90 percent confidence interval for o%/o% is

% X %7 4.88 x % = [1.43,27.65]. The corresponding 90 percent confidence interval for oy /oy is

[vT.43, V27.65] = [1.20, 5.26].

30,

A statistician reports that [0.250, 1.265] is a 98 percent confidence interval for 0% /0% based on a
random sample of m = 41 values from a normal distribution X and # = 31 values from a normal
distribution ¥, independent of X. What is the sample value of S%/S3%?
1.

We follow Prescription 10.7, where m —1 =40, n —1 = 30, H_T7 = % =0.99. The 98 percent

1 2 2

= X ;—X, F5x iz—X , where F) and Fj satisfy P(F(40,30) < F}) =0.99 and
1Sy Y 2

P(F(30,40) < F3) = 0.99. From Table A-7, we find that F} = 2.30 and F3 = 2.20. Therefore, ST‘ must
2 2 Sy

confidence interval is

1 .

— <3 _ 0250 and 220 xX —1265. From the first equation, we get
2 2.30 52}' S%

STX =230 x 0.250 = 0.575. Checking this value in the second equation, we do get 2.20 x 0.575 = 1.265.
Sy

Hence, the ratio of sample variances is 0.575.

satisfy the equations

Suppose X and Y are independent normal random variables with means py and py-, and vari-
ances 0% and 0%, respectively; and let X7, X5,...,X,, and Y, Y>,..., Y, be independent random-
variable samples corresponding to X and Y. Show that

1 .
7% % (Y, )’

1
073/ = EZ(Xi - #‘1’)2

is an F(n,m) random variable.
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X — v Y — ue
Yi— 1y and St
Iy gy

Yi—n 2
definition, <—’LLX) is a chi-square random variable with m degrees of freedom, and > (Z—Y>
Ox Oy
is a chi-square random variable with »n degrees of freedom (see Section 7.4). Therefore,

= (5]

3
Xi —px
m Z < oy )

is an F(n,m) random variable, as defined in Section 10.5. By multiplying numerator and denominator of
this fraction by O’irO’%z, the result is

The random variables are independent standard normal random variables. By

1
CT%’ X ;Z(Yi - m)2

1
oy % — (X~ py)’
10.26. Let X and Y be independent random variables with known means py and py, respectively.
Give a prescription for a 100~ percent confidence interval for o% /o%.

By following the reasoning leading to Prescription 10.7, with —> (X; — pq")z in place of S%, and
m

1 . . .
ZZ(Y/ — uy)? in place of S, we arrive at the 100 percent confidence interval

1 1
1 —Z(Xi*ﬂx)2 —Z(Xi*HXf
m kM
o R
! —Z(Yi*,u)/)2 —Z(Yi*,uyf
n n
2,2 * . L+ w L+
for oy /oy, where F| and F, satisfy P(F(m,n) < F1) = , and P(F(n,m) < F;) = —

10.27. Use the result of Problem 10.26 to find a 90 percent confidence interval for 0% /0% in Problem
10.23, assuming that py = 30 and py = 16.

1 1 1 1.9
The sample values are EZ(M —30)? ~ 28.33 and EZ(yl- —16)? =5.25.  Also, ;7 70 =0.95.

From Table A-5, we find that P(F(6,8) < F})=10.95 for F} =3.58, and P(F(8,6) < F};) = 0.95 for

F3 =4.15. Using the result of Problem 10.26, the corresponding 90 percent confidence interval for
1 28.33 28.33
2,2 . . .
o SRV Stk I Y ety gy § B 39]. . :
oy /oy is 3758 X T35 4.15 x 553 [1.51,22.39]. Hence, knowing the values of py and py, which

enables us to increase by onethe number of degrees of freedom in the numerator and denominator of the F
random variable, results in a smaller confidence interval than the one obtained in Problem 10.23.

HYPOTHESES TESTS FOR RATIOS OF VARIANCES

10.28. In Problem 10.22, the sample variance of 11 one-liter bottles of wine bottled in summer was
5% = 50(1111)2 and the sample variance of 16 one-liter bottles of wine bottled in winter was
s% = 60 (ml)>.  Assuming that the volume of liquid in the bottles is normally distributed, test the

null hypothesis Hy: 0% = 0% against the alternative hypothesis H,: 0% < 0% at the 0.05 signifi-
cance level by finding the critical region for rejecting the null hypothesis.
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We follow Prescription 10.84, where i — 1 =10, — 1 = 15, and 1 — &« = 0.95. The critical region is
all values s%/s% > F*, where F* is the F value satisfying P(F(15,10) < F*) = 0.95. From Table A-5, we
find that F* — 2.85. The test value of s3/s% is 60/50 = 1.2. Therefore, we do not reject Hq at the 0.05
significance level.

Find the P-value for the test in Problem 10.28.

We follow Prescription 10.8, wherem — 1 = 10,n — 1 = 15, and H,: cr?Y < Uzy. The P-value for the test
is the probability that a value of s%/s% as small or smaller than 50/60 = 0.83 would occur if the null
hypothesis Hy: 0% = 0% were true; that is, P(F(10,15) < 0.83). Table A-4 in the Appendix can tell us only
that this probability is greater than 0.1. Using computer software, we find that P(F(10,15) < 0.83) = 0.39.

For the data in Problem 10.23, test the null hypothesis Hy: 0% — 0% against the alternative
hypothesis H,: 0% > 0% at the 0.05 significance level by finding the critical region for the alter-
native hypothesis.

We follow Prescription 10.84, wherem — 1 =5,n—1=7,and 1 — & = 0.95. The critical region is all
values §3/s% > F* where F* is the F value satisfying P(F(5,7) < F*¥) = 0.95. From Table A-5 in the
Appendix, we find that F* = 3.97. The test value of s3/s% is 34/6 = 5.67. Since 5.67 > 3.97, we reject Hy
at the 0.05 significance level.

With reference to the previous problem, would Hy: 0% = 0% be rejected in favor of H,: 0% > 0%

at the 0.01 significance level.

The critical region at the 0.01 significance level is all values s%/s% > F* where F* is the F value
satisfying P(F(5,7) < F*) = 0.99. From Table A-7, we find that F* = 7.46. Since the test value 5.67 is
less than 7.46, we would not reject Hy in favor of H, at the 0.01 significance level.

Determine the P-value for the test in Problem 10.30.

We follow Prescription 10.8, where mm — 1 =5,n— 1 =7, and H,: a?\r > Uzy. The P-value for the test is
the probability that a value of s%/s% as large or larger than 34/6 = 5.67 would occur if the null hypothesis
Hy: 0% = 0% were true; thatis, P(F(5,7) > 5.67). Tables A-6 and A-7 in the Appendix can tell us only that
this probability is less than 0.025 and greater than 0.01. Using computer software, we find that
P(F(5,7) > 5.67) =0.02.

In Problem 10.10, we tested Hy: py = py against H,: py > py under the assumption that
oy = oy. Test this assumption at the 0.05 significance level. That is, test Hy: 0% = 0% against
H,: 0% / 0%, using the data of Problem 10.10.

We follow Prescription 10.84, where m — 1 =7,n—1 =5, and 1 — &/2 = 0.975. The critical region is
all values 53 /s% > F7 or s3/s% > F3, where F7 is the F value satisfying P(F(5,7) < F}) = 0.975, and F}
is the F value satisfying P(F(7,5) < F3) =0.975. From Table A-6, we find that F} =529
and F>—6.85. The test value of s3/s% =19.07/54.87 =0.35, and the test value of s%/s% =
54.87/19.07 = 2.88. Since neither test value is in the corresponding portion of the critical region, we do
not reject Hgq at the 0.05 significance level.

Supplementary Problems

CONFIDENCE INTERVALS FOR THE DIFFERENCE OF MEANS

10.34.

10.35.

Use the data in Example 10.1 to find a 95 percent confidence interval for puy — py.

Use the data in Problem 10.1 to find a 90 percent confidence interval for py — py.
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10.36.

10.37.

10.38.

10.39.

10.40.

Given that X and Y are independent normally distributed random variables with equal but unknown
variances, find a 98 percent confidence interval for gy — py, based on the independently obtained random
samples

xp =125, x =142, x3=108, x4=11.5 x5=10.1, x4=129
and y1 =102, y,=10.5 yp3;=114, p, =98 yps=12.1

Suppose the random variables X and Y in Problem 10.36 do not necessarily have equal variances. Then the
statistic 7 defined in Section 10.1 can be used to determine a confidence interval for py — py. 7 is approxi-
mately a ¢ random variable with [£] degrees of freedom, where & is defined along with 7 in Section 10.1, and
[£] is the largest integer less than or equal to k. Find & and [%] for the data in Problem 10.36.

Use the result of Problem 10.37 to find a 98 percent confidence interval for py — py.

A random sample of 50 values of a normal random variable X gave sample values = 114.8, 5% = 70.4; and
an independently obtained random sample of 60 values of a normal random variable Y gave sample values
5=110.6, s> =48.2. Assuming ¥ and Y are independent, find a 95 percent confidence interval for
wy — py. Use the statistic 7 defined in Section 10.1, and assume that 7 is approximately normally dis-
tributed.

Why was the statistic 7 defined in Section 10.1 assumed to be an approximate ¢ random variable in Problem
10.37 and an approximate normal random variable in Problem 10.39?

HYPOTHESES TESTS FOR DIFFERENCES OF MEANS

10.41.

10.42.

10.43.

10.44.

10.45.

10.46.

10.47.

10.48.

X and Y are independent random variables with variances o3 = 125, 0% = 150. Independently obtained
random samples of 35 values of .Y and 40 values of ¥ have sample means x = 102.8, y = 98.1. Test the null
hypothesis Hy: puy = py against the alternative hypothesis H,: py # py at the 0.05 significance level by
computing the P-value of the test.

Perform the test in Problem 10.41 by determining the critical region for the test.

Using the data in Problem 10.41, test the null hypothesis Hy: pty = py against the alternative hypothesis
H,: py > py at the 0.05 significance level by computing the P-value of the test.

Using the data in Problem 10.41, test the null hypothesis Hy: py = py against the alternative hypothesis
H,: py > py at the 0.05 significance level by determining the critical region of the test.

In Problem 10.36, test the null hypothesis Hy: py = py against the alternative hypothesis H,: py # py at
the 0.10 significance level by determining the P-value of the test, assuming computer software is available.

In Problem 10.36, test the null hypothesis Hy: py = py against the alternative hypothesis H,: py # py at
the 0.10 significance level by determining the critical region for the test.

In Problem 10.36, test the null hypothesis Hy: py = py against the alternative hypothesis H,: py > py at
the 0.10 significance level by determining the P-value of the test, assuming computer software is available.

In Problem 10.36, test the null hypothesis Hy: py = py against the alternative hypothesis H,: py > py at
the 0.10 significance level by determining the critical region for the test.
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With reference to Problems 10.41 and 10.42, find K(7); that is the power of the test at py_y = py — puy = 7.

With reference to Problems 10.43 and 10.44, find K (7).

CONFIDENCE INTERVALS FOR DIFFERENCES OF PROPORTIONS

10.51.

10.52.

10.53.

10.54.

10.55.

Suppose sample proportions p; = 0.58 and p, = 0.52 are obtained in independent random samples of size 36
and 44, respectively. Find a 98 percent confidence interval for the difference p; — p, of the corresponding
population proportions.

When asked if they believed a woman would be elected president in the next 20 years, 22 out of 40 randomly
selected men said yes, and an independent survey, 33 out of 48 randomly selected women said yes. Let p,
and p, denote the proportions of all men and women, respectively, that believe a woman will be elected
president in the next 20 years. Find a 95 percent confidence interval for p; — p,.

Use the data in Problem 10.52 to find 90 percent and 98 percent confidence intervals for p; — p,, and
compare these with the 95 percent confidence interval obtained in Problem 10.52.

It is desired to obtain a margin of error of at most 0.02 in a confidence interval for the difference p; — p»
of population proportions at the 0.95 confidence level, based on two independent random samples, each of
size n. How large must n be? (Hint: Use the inequality p; (1 — p,) + p,(1 — p,) < 0.5.)

Suppose [-0.25, 0.25] is a confidence interval for p; — p,, based on independent random samples, each of
size 36. If p; = 0.62, find p, and the confidence level of the interval?

HYPOTHESES TESTS FOR DIFFERENCES OF PROPORTIONS

10.56.

10.57.

10.58.

10.59.

10.60.

10.61.

Using the data in Problem 10.51, test the null hypothesis Hy: p; = p» against the alternative hypothesis
H,: p; > p, at the 0.1 significance level by computing the P-value of the test.

Perform the test in Problem 10.56 by determining the critical region for the test.

Using the data in Problem 10.52, test the null hypothesis Hy: p; = p» against the alternative hypothesis
H,: p; < p, at the 0.1 significance level by computing the P-value of the test.

Perform the test in Problem 10.58 by determining the critical region for the test.

Using the data in Problem 10.52, test the null hypothesis Hy: p; = p» against the alternative hypothesis
H,: p; # p; at the 0.1 significance level by computing the P-value of the test.

Perform the test in Problem 10.60 by determining the critical region for the test.

CONFIDENCE INTERVALS FOR RATIOS OF VARIANCES

10.62.

10.63.

Find the mean and standard deviation of the random variable F(16, 20).

Find & and b for which P(F(10,12) < &) = 0.05 and P(F(10,12) < b) = 0.95.
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10.64.

10.65.

10.66.

Find positive numbers « and b for which P(a < F(15,8) <b) = 0.95.

A random sample of size 31, drawn from a normal population X, has sample variance S = 42.25; and an
independently drawn random sample size 41, drawn from a normal population Y, has sample variance
S} =23.04. Assuming ¥ and Y are independent; find a 95 percent confidence interval for o%/c%.

A random sample of five values of a normal random variable .Y is: 10, 12, 18, 27, 13; and a random sample of
6 values of a normal random variable Y is: 23, 24, 31, 26, 28, 30. Find a 90 percent confidence interval for

O'_\'/O'y.

HYPOTHESES TESTS FOR RATIOS OF VARIANCES

10.67.

10.68.

10.69.

10.70.

10.71.

10.72.

10.73.

10.74.

10.34.

10.35.

10.36.

10.37.

10.38.

Using the data in Problem 10.65, test the null hypothesis Hy: 0% = 03 against the alternative hypothesis
H,: 0% > 0% at the 0.05 significance level by finding the P-value of the test, assuming computer software is
available.

Perform the test in Problem 10.67 by determining the critical region for the test.

Using the data in Problem 10.65, test the null hypothesis Hy: 0% = 0% against the alternative hypothesis
H,: 0% # o3 at the 0.05 significance level by finding the P-value of the test, assuming computer software is
available.

Perform the test in Problem 10.69 by finding the critical region for the test.

Using the data in Problem 10.66, test the null hypothesis Hy: 0% = 0% against the alternative hypothesis
H,: 0% > 0% at the 0.1 significance level by finding the P-value of the test, assuming computer software is
available.

Perform the test in Problem 10.71 by finding the critical region for the test.

Using the data in Problem 10.66, test the null hypothesis Hy: 0% = oy against the alternative hypothesis
H,: 0% # 0% at the 0.1 significance level by finding the P-value of the test, assuming computer software is
available.

Perform the test in Problem 10.73 by finding the critical region for the test.

Answers to Supplementary Problems
[~1.645, 3.195].

[1.256, 2.806].
[—0.984, 3.384].
k=8.462, [k] =8.

[—0.948, 3.348].
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10.39.

10.40.

10.41.

10.42.

10.43.

10.44.

10.45.

10.46.

10.47.

10.48.

10.49.

10.50.

10.51.

10.52.

10.53.

10.54.

10.55.

10.56.

10.57.

10.58.

10.59.

10.60.

10.61.

10.62.

10.63.

10.64.
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[1.285, 7.115].

The sample sizes are small (6 and 5) in Problem 10.37, and they are large (50 and 60) in Problem 10.39.
P-value = 0.08; do not reject Hy.

Critical region: |z| > 1.96; test value: z = 1.74; do not reject Hy.
P-value = 0.04; reject Hy.

Critical region: z > 1.65; test value: z = 1.74; reject H,.

P-value = 0.16; do not reject Hy.

Critical region: |7| > 1.83; test value: 7 = 1.55; do not reject H.
P-value = 0.08; reject Hy.

Critical region: 7 > 1.38; test value: 7 = 1.55; reject H,.

0.74.

0.83.

[-0.20, 0.32].

[—0.340, 0.065].

90 percent [—0.307, 0.032]; 98 percent [—0.378, 0.103]; the 90 percent confidence interval is contained in the
95 percent confidence interval (Problem 10.52), which is contained in the 98 percent confidence interval, or,
the higher the degree of confidence wanted, the larger the interval must be.

n > 4802.

P2 =0.62; 97.11 percent.

P-value = 0.29; do not reject Hy.

Critical region: z > 1.28; test value: z = 0.54; do not reject H,.
P-value = 0.09; reject Hy.

Critical region: z < —12.8; test value: z = —1.33; reject H,.
P-value = 0.18; do not reject Hy.

Critical region: |z| > 1.65; test value: z = —1.33; do not reject H,.
nr = 1.11, op = 0.57.

a=1/291, b =275

a=1/320, b= 4.10.
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10.65.

10.66.

10.67.

10.68.

10.69.

10.70.

10.71.

10.72.

10.73.

10.74.

[0.95, 3.69].

[0.93, 5.29].

P-value = 0.0366; reject Hy.

Critical region: s%/s% > 1.74; test value: s%/s3 = 1.83; reject H.

P-value = 0.0733; do not reject Hy.

Critical region: s%/s% > 1.94 or s%/s% > 2.01; test values: s3/s% = 1.83, s%/s% = 0.55; do not reject Hy.
P-value = 0.0659; reject Hy.

Critical region: s_zy/s% > 3.52; test value: sir/si = 4.47; reject H,.

P-value = 0.1318; do not reject Hy.

Critical region: s%/s% > 5.19 or s%/s% > 6.26; test values: s%/s% = 4.47, s%/s% = 0.22; do not reject Hy.



Chapter 11

Chi-Square Tests and Analysis of Variance

11.1 CHI-SQUARE GOODNESS-OF-FIT TEST

The chi-square distribution can be used to determine how well experimental data match expected
values in a probability model. For example, if we toss a fair coin 10 times, the expected number of
heads is 5, as is the expected number of tails. However, we could get more or fewer heads than tails in
10 tosses. It would not be very surprising to get 6 heads and 4 tails (probability = 0.2). It is even
possible to get 10 heads with a fair coin, but the probability of 10 straight heads is only about 0.001, so if
this actually happened, we might begin to doubt that the coin is fair. We expect some variation in the
experimental data due to chance, but a great deal of variation from the expected number of heads and
tails would make us suspect that the fair-coin model is not very accurate. Where do we draw the
line? The chi-square test, which is based on the following theorem, addresses this question. The
test provides a technical tool for comparing the expected outcomes of an experiment with the actual
outcomes that occur.

Theorem 11.1: Let &y, a5, ..., &; be the possible outcomes of an experiment, with corresponding prob-
abilities py, po, ..., pr. Foreach performance of n independent trials of the experiment,
np; is the expected number of occurrences of a;; suppose f; is the actual number of
occurrences of a;, where f + f, + -+ fi =n. Then for large values of n, say np; > 5
for each j, the random variable

Xz (fi — nP1)2 n (f2— "P2)2

2
4ot (Jx — npi)
npy np; npy.

is approximately chi-square with & — 1 degrees of freedom.

Null Hypothesis and Test Statistic

In applications of Theorem 11.1, the probabilities py, p,, ..., p; are not known, but a probability
model of their values is conjectured. The null hypothesis is
Hy: P(o) =py,  Pla) =pa, e Plag) = pr

Experimental data are then gathered and a value ¥° of the test statistic x° is computed. If %> = 0, then
the experimental data exactly match the conjectured expected values. In general, the smaller ¥ is, the
more support there is for the null hypothesis; the larger %° is, the less support there is for the null
hypothesis.

Multinomial Random Variable

A more technical statement of the chi-square test involves the notion of a multinomial random
variable which is a generalization of a binomial random variable. In the binomial case, n independent
trials of an experiment having two possible outcomes, success and failure, are performed. The trials are
called independent because the probability of success is the same for each trial. The binomial random
variable X is the number of successes in the # trials. Note that the random variable ¥ = n — X is the
number of failures in the # trials. In the multinomial case, n independent trials of an experiment having
k possible outcomes, &}, &, ..., a;, are performed. The trials are independent because the probability

322
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ofa, j=1,2,...,k, is the same foreach trial. The random variable X; is the number of times a; occurs
in the » trials; and the & random variables X, Xa, ..., X, taken collectively, arce called a nudrinomial
ramdom variable, denoted simply by X. Note that these random variables are not independent since
Xy =n—(Xi+ Xa+ -+ X,y). The frequency f; referred to in Theorem 11.1 is the value of X;
obtained in # trials. In terms of the multinomial random variable X, the null hypothesis H¢ in the
chi-squarc goodncss-of-fit test states that the data arc a random sample of outcomes for X, while the
alternative hypothesis f, states the data are not a random sample of outcomes for X.

Performing the Test: P-value and Critical Region

An cxperiment consisting of » independent trials is performed, and the frequencies fy, £, ..., fi of
outcolues &y, «,,...,a; are determined, where /| + /> + .-+ f, = #. Using these frequencies, a test
value )"(2 of the above x? is computed. Then the P-value of the test is the probability that a test value as
large or larger than £” would occur if 71 were true.  That is, the P-valuc is 2(x? > £?), assuming k — |
degrees of freedom. If a level of significance a is specified, then # is rejected if P-value < a; H, is not
rcjected if P-valuc > . Equivalently, the critical region for the test consists of all values of x° that are
greater than or equal to x*, where x* is the critical value satisfying P(;)('2 > x*) = a(see Fig. 11-1); Hyis
rcjected if §2 is in the critical region; 7, is not rcjected if %7 is not in the critical region.

Note that the alternative hypothesis H,: P(a;) # p; is multidirectional in terms of the £ probabilities
P(aj), Jj=1,2,...,k. However. the test is onc-sided in the chi-squarc random variable since the alter-
native hypothesis is cquivalent to the hypothesis xl > x*

22k-1)

v

0 . == "
x* Critical region

Fig. 11-1

EXAMPLE 11.1 A dicis tossed 60 times, and the frequency of cach facc is as indicated in the chart:

N

Face (a)) 1 2 3 4 5

Frequency (f) 5 7 S 14 13 16

Assunic that the dic is fair, and apply the chi-squarc goodncss-of -fit test at the 0.05 level of sigaificance.
Ifthe die is [air, then p; =1, and ap; =68 -1 = 10 Torj = 1,2,...,6. The test value is
% 2 ) 2 2 L 4
5—10)7 (7-10)7 (5—-10)* (14— 10)* —10)* (16— 10)’
2 (5100 (710 (S—10 (1410 (13-10)* (16— 10)° _

A2 | )
X 10 10 10 TR 10 -

There arc 6 — | = 5 degrees of freedom.  The P-valuc is P(y” > 12) =0.0348, using computer softwarc.  Since
0.0348 is less than 0.05, the hypothesis that the die is lair is rejected a1 the 0.05 level of significance. If computer
software is not available to compute l’(x2 > 12), Table A-3 in the Appendix can be used to detenmine that the one-
sided critical region lor 5 degrees of [reedom at the 0.05 level of significance is all values of XZ that are greater than
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x*=11.1. Since 12is greater than 11.1, 12 s in the critical region, and the hypothesis that the die is fair is rejected
at the 0.05 level of significance.

11.2 CHI-SQUARE TEST FOR EQUAL DISTRIBUTIONS

In the previous section, we used a chi-square random variable to test whether experimental data
conformed to a hypothesized probability distribution. The chi-square random variable can also be
used to test whether two or more independent multinomial random variables with the same outcomes
have the same probability distributions. For example, suppose that a group of subjects is randomly
broken up into two categories before the flu season; each person in one category will receive a Type-1 flu
shot, and each person in the other category will receive a Type-2 flu shot. The possible outcomes for
each category are: no flu, a mild case of flu, and a severe case of flu. The hypothesis that each type of
shot has the same effect is tested by constructing a chi-square random variable in terms of the expected
frequency of each outcome and the observed frequency of each outcome.

Null Hypothesis

More generally, suppose X and Y are independent multinomial random variables, each with out-
comes a;, @,,... 4. Let p; be the probability of outcome @; in the distribution of X, and let 4; be the
probability of outcome &; in the distribution of Y, for j=1,2,...,k. Note that ¢; is not necessarily
equal to 1 — p;. The null hypothesis is

Hy:p=gq; for  j=12..k

Test Statistic

Suppose f; is the frequency of outcome @; in a random sample of X of size m, and g; is the frequency
of outcome @; in2 a random sample of 2Y of size n. By Theorem 11.1, the random variables
2 (f; — mp)) . 2 (gj - ”11]')

Xy =22 - and xy =3 "
freedom. Furthermore, since X and Y are independent, it follows that x% -+ x% is approximately chi-
square with degrees of freedom &k —1+k—1 =2k — 2.

In practice, p; and ¢; are not known, but are estimated from the experimental data. Since the null
hypothesis is that p; = ¢;, each is estimated by the pooled sample value

g
T m+n

are approximately chi-square, each with k& — 1 degrees of

for j =1,2,..., k. Figure 11-2 illustrates the estimated probabilities when & = 3.
When p; and g; are replaced by p; in the random variable X% + x%, k — 1 degrees of freedom are lost,
so the random variable

) A2
2 (J; — mp;) (g —np;)
X = - + -
Syl
is approximately chi-square with 2k — 2 — (k — 1) = k — 1 degrees of freedom; s the test statistic for
the test for equality.

Performing the Test: P-value and Critical Region

A random sample of m values of X results in frequencies fi, f5, ..., fi of outcomes &, @, ..., &,
where f1 + f, + - - + f; = m; and an independently obtained random sample of # values of Y results in
frequencies gy, g5,...,8; of &, &, ... &, where g, + g, + - -+ g =n. Using these frequencies, the

estimated probabilities p; are computed, along with the expected frequencies mp; and np;,
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a; a, a, a, a, as Totals
f; S £ s Ja o | 2fmm
g; 81 & 43 84 &s Zgjz n

Totals | fi+g fit&e fitg fitg Jfitgs | mtn

5 | hite hLhte Ate Lite fites | Ypo=1
7 m+n mtn m+n mtn m+n 7

Fig. 11-2  Probabilities p; estimated from frequencies f; and g;.

j=1,2,... k. Then the corresponding value ¥* of x> is determined. The P-value of the test is the
probability that a test value as large or larger than %> would occur if Hg were true. That is, the P-value
is P(x> > %?), assuming k — 1 degrees of freedom. If a level of significance « is specified, then Hq is
rejected if P-value < «; Hy is not rejected if P-value > «. Equivalently, the critical region for the
test consists of all values of x* that are greater than or equal to x*, where x* is the critical value
satisfying P(x*> > x*) = « (see Fig. 11-1); Hy is rejected if %> is in the critical region; Hy is not rejected
if ¥* is not in the critical region. As in the chi-square goodness-of-fit test in Section 11.1, this test is
also one-sided in the chi-square random variable; the alternative hypothesis H, is equivalent to the
hypothesis: x> > x*.

EXAMPLE 11.2 The freshman math grades of 250 males and 210 females at a university were distributed as
indicated in the following table.

Grades

A B C D F Totals

Male 35 42 85 48 40 250
Gender Female 28 50 77 35 20 210
Totals 63 92 162 83 60 460

Use the chi-square random variable to test, at the 0.05 significance level, the hypothesis the grade distributions are
the same.

By pooling the m = 250 male and » = 210 female frequencies in each grade category, we obtain the following
estimated probabilities:

63 R 92 . 162 R 83 R 60

PA:m> PB:m> Pc:ﬁ> PD:m> PF:@

The expected frequencies mp; for the males are:

. 63 . 92 R 162
mp 4 = 250 x 160 34.24 mpp = 250 x 160" 50 mpe = 250 x 160" 88.04
83 60
fa — 25 — 45. Hp — — =132.61
mpp = 250 x 160 45.11 mpr = 250 x 160 2
and the expected frequencies 7p; for the females are:
. 63 . 92 ) 162
npy =210 x 160" 28.76 npp =210 x 10" 42 npe = 210 x 10" 73.96
83 6
npp =210 X —— = 37.89 npr =210 x S0 =27.39

460 460
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The corresponding chi-square test value is

o (35 —34.24)7  (42-50)* (85— 88.04)7 (48 —45.11)* (40 —32.61)

T 3124 50 804 4511 3260
(28 —28.76)* (50 —42)* (77—173.96)* (35—37.89) (20 —27.39)°
28.76 42 73.96 37.89 27.39
~7.14

There are k = 5 grades and &k — 1 = 4 degrees of freedom. The critical chi-square region for 4 degrees of freedom at
the 0.05 significance level is all values greater than or equal to 9.49. Since 7.14 < 9.49, we do not reject the
hypothesis that the grade distributions for males is the same as that for females.

Extension to More Than Two Distributions

The chi-square test for equality of two multinomial random variables X and Y can be extended to

three or more independent multinomial random variables X, X5, ...,X,, each having the same number
of outcomes @;, &,,..., .. The null hypothesis is
H.pI]:p2]::prj; j:1)2a"'ak

where p;; is the probability of outcome &; in the distribution of X;. Let f; denote the frequency of
outcome @; in #; trials corresponding to X;. For each j (j=1,2,... k), the common value of p;
(i=1,2,...,r) in the null hypothesis is estimated by p;, obtained by pooling the frequencies f;
(i=1,2,...,r):

R 7f1j+f2j+"'+.f;j7ﬁ

b m et tm

where f; = fi;+ fo; +---+ f,; is the sum of the frequencies corresponding to outcome a; for
all » multinomial random variables, and n = n; + 5, + - - - + n, is the total number of trials (see Fig.
11-3). The number of degrees of freedom before the probability estimates are made is r(k — 1),
corresponding to # independent multinomial random variables, each one consisting of &k — 1
independent frequency counts. Only k— 1 degrees of freedom are lost by the estimates
since pr=1—(p1+py+ - +pPr1). Hence, after the estimates are made, there are
r(k—1)—(k—1)=(r—1)(k— 1) degrees of freedom. See Problem 11.14 for an example of the chi-
square test of equality for three multinomial random variables.

a ay a, Totals
X S Ji2 Jie 7
X J T S 7y
X, I fa S 7
Totals | /4 fa fu n
p"j % % % Zﬁj = ]

Fig. 11-3  Probabilities j; estimated from frequencies f;.

11.3 CHI-SQUARE TEST FOR INDEPENDENT ATTRIBUTES

The chi-square random variable can also be applied in testing whether attributes are independent.
For example, suppose » math students are classified according to stress experienced at final-exam time
(Attribute X) and grades received in the final exam (Attribute Y). Stress is classified as L (low),
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M (medium), and H (high); while grades are classified as 4, B, C, D, and F. Cross-classifying the
students according to the three categories of attribute X and the five categories of attribute Y results in
Fig. 11-4, which contains 3 x 5 = 15 cells within the margins. For example, the cell labeled .4 con-
tains all students that experience low stress and get an 4 in the final exam, while the cell labeled HC
contains all students that experience high stress and get a C in the final exam. Such a table of cell
counts is called a 3 x 5 contingency table.

Y (Grades)
I A B C D F

L IA LB IC LD IF
X(Stress) M | MA MB MC MD MF
H | ma BB HC HD HF

Fig. 11-4 Contingency table.

A different group of # students would most likely result in a different contingency table. When all
such tables are considered, a probability can be associated with each cell. For example, P(LA) is the
probability that a randomly chosen student will experience low stress and get an 4 in the final exam,
while P(HC) is the probability that a student will experience high stress and get a C in the final
exam. Similarly, a probability can be associated with each marginal category. For example, P(L)
is the probability that a student will experience low stress, and P(C) is the probability that a student will
get a C in the final exam.

Attributes X and Y are, by definition, independent if the probability corresponding to each cell of
Fig. 11-4 is equal to the product of the probability in the row margin of the cell with the probability in
the column margin of the cell. That is, if

P(LA) = P(L)P(4), P(LB)=P(L)P(B), ...,  P(HF)= P(H)P(F)

fifteen equationsin all. Usually, the actual values of the probabilities in these equations are not known,
but must be estimated from samples. The estimated probabilities most likely will not satisfy the
equations exactly, so to test the hypothesis that X and Y are independent, a chi-square random variable
% is constructed in terms of the expected and observed frequencies of the cross categories. The value of
x* on a particular random sample of students is then used to test the hypothesis that attributes X and ¥
are independent.

Contingency Table of Probabilities

To be more specific, and also more general, let X and Y be attributes associated with individuals
in a population. Suppose that X can be classified into mutually disjoint categories 4, A,,...,4,, and
Y can be classified into mutually disjoint categories By, B,,...,B,. The probability P(4;B;) that a
randomly chosen individual in the population can be classified into both category 4; and category B; will
be denoted by p;;. Figure 11-5 is an r X ¢ contingency table of probabilities, where p;; is in the ith row
and jth column, i =1,2,...,r;, j=1,2,... ¢

The right column margin of Fig. 11-5 contains the probabilities p;, i = 1,2, ..., r, where the dot after
the subscript 7 indicates summation through index j. For example, when i = 1,

P1=pn Pt pre= P(4))

Similarly, the lower row margin contains the probabilities p;, j = 1,2,..., ¢, where the dot before the j
indicates summation through index i. For example, when j = 2,

P2 =Pu+Pnt-+po=PB)
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Y
B, B, B,
4, Pn P2 Pic Py
x /%2 P.21 P?z P?c P 2
4, | Pn P2 - D P
P P Pec 1

Fig. 11-5 Contingency table of probabilities.

The sum of all of the probabilities p;; within the margins is 1, as is the sum of the marginal probabilities
Di.» as is the sum of the marginal probabilities p.;.

Contingency Table of Frequencies

A random sample of n individuals in the population results in an » x ¢ contingency table of frequen-
cies, as illustrated in Fig. 11-6. For example, f1, denotes the number of individuals in the cross category
A,B,, while f5; denotes the number of individuals in cross category 4,B;.

Y
B, B, B, | Totals
4 | S - e | A
4 .
Ar f;l fr2 fm fl"
Totals | f I fo. n

Fig. 11-6 Contingency table of frequencies.

The marginal frequency at the right of each row in Fig. 11-6 is the sum of the ¢ frequencies preceding
it, and the marginal frequency at the bottom of each column is the sum of the r frequencies above

it. For example,
o=+ ot +fie and Jo=tot ot -+ fo

The sum of all of the frequencies f;; within the margins is s, as is the sum of the marginal frequencies f;.,
as is the sum of the marginal frequencies f;. When all possible samples of # individuals in the popula-
tion are considered, it follows from Theorem 11.1 that the random variable

Z (flj - nplj)2 4 Z (fzj - np2j)2 T Z (frj - nPrj)2

npy; npy; Apy;

is approximately chi-square with r¢ — 1 degrees of freedom, assuming # is large. Note that, in each
summation, j runs from 1 to e.

Null Hypothesis and Test Statistic
The null hypothesis is that attributes X and Y are independent. Equivalently,

Hy: pj =pi Xp,
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for each pair ij. In practice, the values of p;. and p,; are unknown, but are estimated as

13‘:&:/(;‘1+ﬁ2+"'+ﬁc and ﬁ.:&:fljJerjJr‘”Jrfrj
) n ) n

When p;. and p,; are replaced by their estimates p; and p,; in the chi-square random variable above,
r — 1+ ¢ — 1 degrees of freedom are lost; and the resulting random variable
~ A N2 ~ A \2 ~ ~
2 (flj*”l ><P1.><P-j) (fzj*nxpz»xpj) (frj*nxprxp-j)z
X =2 ——— +3° —— LR DY —
nxp].xp_j n><p2.><p_j n><p,_><p_j

is approximately chi-square with rc —1 — (r — 1 +¢—1) = (r — 1)(¢ — 1) degrees of freedom, assuming
the null hypothesis is true. In each summation, j runs from 1 to ¢. The random variable x is the test
statistic.

Performing the Test: P-value and Critical Region

A random sample of 7 individuals in the population results in the frequencies f; of cross categories
A;B;, where i = 1,2,...,r, j=1,2,... ¢ and ) f; = n. Using these frequencies, the estimated prob-
abilities p;. and p; are computed, followed by the expected frequencies n x p;. X p;, and then a value %2
of the test statistic x° is determined. The P-value of the test is the probability that a test value as
large or larger than ¥* would occur if Hg were true. That is, the P-value is P(X2 > ¢?), assuming
(r — 1)(¢ — 1) degrees of freedom. If a level of significance « is specified, then Hy is rejected if P-value
< «; Hy is not rejected if P-value > a.  Equivalently, the critical region for the test consists of all values
of x* that are greater than or equal to x*, where x* is the critical value satisfying P(X2 > x*) = « (see
Fig. 11-1); H is rejected if %2 is in the critical region; Hy is not rejected if % is not in the critical region.

As in the chi-square tests in Sections 11.1 and 11.2, this test is also one sided in the chi-square
random variable; the alternative hypothesis H, is equivalent to the hypothesis: x> > x*.

EXAMPLE 11.3 Let’s consider Example 11.2 from the point of view of independence of attributes rather than
equality of distributions. That is, 460 freshmen are cross classified according to gender and grades, as indicated in
the table.

Grades

A B C D F Totals (f;)

Male 35 42 85 48 40 250
Gender Female 28 50 77 35 20 210
Totals (f}) 63 92 162 83 60 460

Use the chi-square random variable to test, at the 0.05 significance level, the hypothesis that the attributes of gender
and grades are independent.

Here r =2 and ¢ = 5. The subscripts i = 1,2 correspond to male, female, respectively; and the subscripts
j=1,2,3, 4,5, correspond to grades A, B, C, D, F, respectively. The probability estimates for gender are

. A 250 . f 210
P = T 460 T
and those for grades are
5o J1_ 63 o _fa_ 92  f3 162
P T 3607 P2 =T 3607 73 = T 1607
Jfa_ 83 fs_ 60

M TR BT T
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The expected frequency estimate for males getting As is

250 63
X P X pp =460 x — x — = 34.24
SR " 360 " 360
Similarly, the other nine cross-classification frequency estimates are
n X pr. x p, =50, n X p. x ps = 88.04, nXxpy xpg=4511, nx py. x ps=32.61
and nx p, x p,=2876, nX Py X poy =42, nx py x py="73.96,
n X py. X pg=73789, nX Py X ps=2739

The corresponding value of the chi-square test statistic is

o (35-3424)7  (42-50)% (85— 88.04)7 (48— 45.11)> (40— 32.61)°

X T T 50 8804 4511 326l
(28 —28.76)> (50 —42)* (77—73.96)* (35— 37.89) N (20 — 27.39)*
28.76 42 73.96 37.89 27.39
~7.14

There are (r — 1)(¢ — 1) = 1 x 4 = 4 degrees of freedom. The critical chi-square region for 4 degrees of freedom at
the 0.05 significance level is all values greater than or equal to 9.49. Since 7.14 < 9.49, we do not reject the
hypothesis that the attributes of gender and grades are independent.

Comparing the Chi-Square Tests for Equal Distributions and for Independent Attributes

We see that the value of the chi-square statistic in Example 11.3 is the same as that in Example
11.2. In fact, the chi-square test for equality of independent multinomial distributions always gives the
same result as that for independence of cross classified attributes. That is, suppose an r x ¢ frequency
table is given. The table can be interpreted as a table of observed frequencies for » independent multi-
nomial random variables X7, X», ..., X,, each with the same ¢ outcomes (Fig. 11-3, where k = ¢), or as a
table of observed frequencies for a cross-classification of a collection of r attributes with a collection of ¢
attributes (Fig. 11-6). Let a significance level « be specified. Then, on the basis of the chi-square test,
the hypothesis that the r multinomial random variables have the same distributions will be rejected at
level « if and only if the hypothesis that the # attributes are independent of the ¢ attributes is rejected at
level v (see Problems 11.13, 11.14, and 11.15).

Although the results are the same, the collection of the data is different in the two cases. Inthe case
of the r multinomial random variables, r independent random samples of sizes sy, #,, . . ., n, are collected,
one sample for each random variable; in the attribute case, a single random sample of size # is collected,
and the data are then cross-classified into an » X ¢ contingency table. The two cases are comparable,
and give equivalent results, when n = ny +n, + - -+ + n,.

11.4 ONE-WAY ANALYSIS OF VARIANCE

In Section 10.2 we tested the hypothesis that two independent random variables have the same
mean. When their variances were unknown, we further assumed that the random variables were
approximately normal and that the variances, although unknown, were equal (see Prescriptions 10.4
and 10.4(a)). Here we test the hypothesis that m independent approximately normal random variables
with the same unknown variance have the same mean. In the case of two distributions, a ¢ random
variable was used as the test statistic. Here it is more convenient to use an F random variable as the
test statistic. Both statistics measure in ratio form the variation between the distributions as being
separate in relation to the variation within a single distribution obtained by pooling the data from each
one. “‘Analysis of variance” is the technical expression used to describe this measure of variation. The
analysis is “one-way’ since only the row random variables are compared.
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One-Way Random-Samples Table

Suppose that Xj, X,,...,X,, are m independent normal random variables with unknown means
M1, B2, - -5 pn and unknown but common variance o’. We wish to test the null hypothesis
Hl: H1 = M2 = = My

As illustrated in Fig. 11-7, let Xy, Xp,..., X, be a random-variable sample of X; of size n for
i=1,2,...,m.

Random variables Random samples Sample means
X, Xy X o . X, X,
X, Xn X Xon X,
Xm Xml Xm2 Xmﬂ }m
Grand sample mean X

Fig. 11-7 One-way random-samples table.

The right margin in Fig. 11-7 contains the individual sample means X;, where

Xy Xot o+ X,
g, Xt Xot ot X

i=1,2,...,m
n

The grend sample mean in the lower right corner, obtained by pooling the random samples, is

X\ +X+ -+ X,
m

X =

Square Variations

The totel squere variation, Vr, of the samples in Figure 11-7 is the sum of the squares of the
deviations of the pooled samples from the grand sample mean:

Ve=S (X, X+ XXy~ X+ 4 (X, — X)?

where in each summation, j runs from 1 to n. The grand sample mean X is an estimator of the grand
parameter mean g = (py + pp + -+ + p,,)/m, and X; — X is an estimator of y; — p. If the null hypoth-
esis were true, then y; — p = 0, which means that X; — X can be used as a measure of the disagreement of
the data and the null hypothesis. With this in mind, the square deviation between the row samples,
denoted by Vy, is defined as

Ve=nY (X, — X
The square variation due to rendom error, denoted by V., is defined as
Ve=Vr—Vg
A formula for V, as a sum of squares is given in Problem 11.22. Some important properties of

these square variations can be summarized in the following theorem (see Problem 11.23).

Theorem 11.2: Ve/cr2 is chi-square with mn —m degrees of freedom regardless of whether the null
hypothesis Hg: py = pp = -+ = p,,, 18 true or not. If Hy is true, then Vr/o® is chi-
square with m — 1 degrees of freedom, and V7/o” is chi-square with mn — 1 degrees of
freedom; and all three chi-square random variables are independent.
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The Test Statistic

It follows from Theorem 11.2 and the definition of the F distribution (Section 10.5) that if Hg is true,
then

_ Wr/m—1)
F= V,/(mn—m)

is an F random variable with m — 1 and mn — m degrees of freedom. F will be the statistic to test

Hy. Motivation for this choice of test statistic is provided by the following theorem (see Problem
11.24).

Theorem 11.3: E(V,/(mn —m)) = ¢, and E(Vg/(m—1)) =0 + m% S (i — p),  where

p= (ot )/ m.

Theorem 11.3 says that if the null hypothesis is true (meaning p = u; for i = 1,2,...,m), then
E(Vr/(m — 1)) will equal ¢*, and therefore sample values of F should be close to 1; the more the
means y; differ, the larger sample values of F are likely to be.

One-Way Analysis-of-Variance Table

In applications of the F test for equal means, a one-way analysis-of-variance table is usually con-
structed as illustrated in Fig. 11-8.

Square variation Degrees of freedom | Mean square F
Between row samples , Va Vel(m—1)
Vy " m—1 V. /(mn — m)
Random error v,
mn—m
Vv, mn—m
Total 1
v, mn

Fig. 11-8 One-way analysis-of-variance table.

Performing the Test: P-value and Critical Region

Random collections of # sample values x;;, xp, ..., X; for each random variable X;, i = 1,2,...,m,
are independently obtained. Using these, values X; of the sample means X; are computed, as well as a
value X of the grand mean X. The corresponding values

VT:Z(xlj7£)2+Z(x2j*j)zﬂL”'JrZ(,\‘mj*i)z,

VR =H Z()Ei—)?)z, and Vv, = Uy — Vg
of Vr, Vg, and V, are then computed, and finally the value
P v/(m—1)

v,/ (mn — m)

of the test statistic F is determined. The P-value of the test is the probability that a test value as large
or larger than F would occur if Hg: pty = 4y = -+ - = p,,, were true. That is, the P-value is P(F > F),
assuming m — 1 and mn — m degrees of freedom. If a level of significance « is specified, then Hq is
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rejected i’ P-value < a; Hj is not rejected il P-value > .  Equivalently, the critical region [or the test
consists of all valucs of I that arc greater than or cqual to ¥, where F¥ is the critical valuc satisl'ying
P(F > F*) = « (see Fig. 11-9); H; is rejected it £ is in the critical region; H, is not rejected if £ is not in
the critical region.

As in the chi-square tests in Sections 11.1, 11.2, and 11.3, this test is also one sided in the test
statistic; the altcrnative hypothesis f, is cquivalent to the hypothesis I" > I'*,

F(m—1,mn—m)

v

F‘/‘ ‘ Critical region

Fig. 11-9

EXAMPLE 11.4 A random sample ofsize 4 is taken from each of three independent normal random variables, X,
X, X3, resulting in the lollowing table of sample values.

X; 13 1 16 22
X 16 8 21 11
™ 15 1225 10

Assuming that the three random variables have cqual varianccs, test, at the 0.05 significance level, the hypothesis
that X, Y, X; have the same mean.
The sample mcans arc
13411416422
X =—=15.5, 2
] 4 X2 4
15.5+ 144+ 15.5

16+8+21+11 16 -12+25+10
A i Ok kT

and thc grand sample mean is ¥ = = 15. The total squarc variation is

3
vp=(13= 150 + (11— 15 + (16 — 15 + (22 —15)2 + (16— 15)* + (8 — 15)> + (21 — 15)?
+ (11 =15 + (U5 = 15F + (12 = 15)° + (25— 15)* + (10 — 15)°

=306
The square deviation between row samples is
vep=4[(155 - 15)2 + (14— 15)* + (15.5 - 15)*] = 6
and the square variation due te random error is
¢, = 306 — 6 = 300

To detennine the degrees of [reedom of the test statistic. we note that m— 1 =3—1=2, and mn—m =
3x4—3=9. Therelore, the test statistic is

6/2

0.09
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The critical region at the 0.05 significance level consists of all test values greater than or equal to 4.26. Since
0.09 < 4.26, the test value is not in the critical region, and we do not reject the null hypothesis that the means of X7,
X,, X5 are equal. The corresponding analysis-of-variance table is as follows.

Square variation Degrees of freedom Mean square F
Between row samples vp o vp/(m—1) 0.09
vp==6 m—1=2 m—1 v./(mn—m)
Random error v,
£ =3333

v, = 300 mn—m=9 mn —m
Total

vy = 306 mn—1=11

Comparing the ¢ Test and the F test for Equality of Means in the Two-Sample Case

In the case of two independent normal distributions with equal but unknown variances, we can use
either the F statistic defined here or the 7 statistic of Section 10.2 (Prescriptions 4 and 4(a)) to test the
hypothesis that the distributions have equal means (see Problem 11.18). The ¢ test and the F test for
equal means against H,: p; # p, will have the same P-value and therefore will give the same result at
any significance level. To see that the P-values are equal, we first note that, in the two-sample case,
F = 1%, where F = F(1,n — 1) (see Problem 11.19). The alternative hypothesis H,: p; # p is two-sided
in the ¢ test, and therefore the P-value is equal to P(|t| > |7]), where 7 is the sample value of ¢

The P-value in the F test is P(F > F), where F is the test value. Since |7| = \/F and |7| = VF , the two
P values are equal.

11.5 TWO-WAY ANALYSIS OF VARIANCE

In one-way analysis of variance, only row variables are compared. In two-way analysis of var-
iance, we compare both row and column variables defined by a frequency table of two cross-classified
attributes, 4 and B, where 4 is classified into r categories 4y, 4,,...,A4,, and B is classified into ¢
categories By, B,,...,B,. For example, as illustrated in Fig. 11-10, where » = 2 and ¢ = 3, the popula-
tion may consist of college students; attribute A is gender, classified into 4;: Male and 4,: Female, and
attribute B is age, classified into By: Below 20 years, B,: 20 to 25 years, and B;3: Over 25 years. Each
entry 4;B; in the table represents the number of students in both category 4; and category B;.

| Gender
e A48, A8, 4,5
4,8, A,B, 4,B,

Ag

Fig. 11-10 Cross classification of attributes.

Assumptions for Two-Way Analysis of Variance

In general, consider a population classified according to two attributes 4 and B. A sample of size n
from the population results in an r x ¢ cross-classification table such as Fig. 11-11, where the entry in
row i and column j is the number of individuals in the population falling into categories 4; and B;. We
assume that the entry in row i and column j is a value of a normal random variable X'; with mean p;; and
standard deviation 0. That is, all rc random variables X; have the same standard deviation; they are
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also assumed to be independent. Then, fori=1, 2,...,r, the row sample mean

XﬁAXllﬁ» 12+ +ch

=

c
has mean p;. = (ua +pa + -+ + e)/c. Forj=1,2,... ¢, the column sample mean

P2

has mean p; = (py; + po; + -~ + ) /r. The grand sample mean is defined to be
. X1+ X+ 1 X, . o Xi+ X+ + X,
y ==t tA et ; equivalently, X = it Xo b b
¥ ¢

X has mean p = (p1. + po. + - + p,.)/r which is also equal to p = (. + po + -+ pe)/c.

Row sample
Attribute B means
Xu Xy X, zr
Awibued | B A= i
Xa X X X,
Column samiple means | X, X, X, X

Grand sample mean

Fig. 11-11 Two-way cross-classification table.

Null Hypotheses

In a two-way analysis of variance, there are two null hypotheses, one saying that the row means are
equal:

R .
H.( )'LLU:}IQ]::/.L,] for j:1,2,...,c

and the other saying that the column means are equal:

H£C)3Mi1:#i2:“':#ic for =12, ... r

With reference to cross-classification of college students in Fig. 11-10, H.(R)

says that the gender
distributions are equal, and H.(C) says that the age distributions are equal.

Square Variations

Analogous to the one-way case, for two-way analysis, the zotal square variation, denoted by Vr, is
the sum of the squares of the deviations of all 7¢ random variables from the grand mean:

V=2 (X, — XV + 2 (Xy — X+ + 2 (X, - X)

where j runs from 1 to ¢ in each summation. The square deviation between rows, denoted by Vi, is
defined as

Ve=c 2 (X; */\7)2
where i runs from 1 to #. The square deviation between columns, denoted by V¢, is defined as

VCZIZ(X]*X)z
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where j runs from 1 to ¢. The square variation due to random error, denoted by V,, is defined as
Ve=Vr— (Ve +Vc)

In one-way analysis of variance, we were able to say that the distribution of ¥, does not depend on
whether the null hypothesis is true or not (Theorem 11.2). To obtain a similar result here, we assume
that the means p; of the random variables X; satisfy the equations p; = p + oy + 3;, where )~ a; =0
and ) 3; = 0 (see Problems 11.27-11.30). Then as in the one-way case, some important properties of
the square variations can be summarized in the following theorem.

Theorem 11.4: V,/o” is chi-square with (r — l)gc — 1) degrees of freedom regardless of whether either
null hypothesis is true If H, (R) i true, then VR/O' is chi-square with » — 1 degrees
of freedom; and 1f H is true then Vc/o2 is chi-square with ¢ — 1 degrees of free-
dom. If both H and H.( ) are true, then ¥Vr/o” is chi-square with r¢ — 1 degrees of
freedom; and all four chi-square random variables are independent.

The Test Statistics

It follows from Theorem 11.4 and the definition of the F distribution (Section 10.5) that if H.(R) is
true, then

Ve/(r—1)
Ve/(r—1)(c—1)

is an F random variable with » — 1 and (¥ — 1)(¢ — 1) degrees of freedom. F (R) is the test statistic used
to test H:RJ. Similarly, if the null hypothesis H:CJ is true, then

© _ Velle—1)
=y e 1

is an F random variable with ¢ — 1 and (r — 1)(c — 1) degrees of freedom. Fy (©) {5 the test statistic used
to test Hy (). Motivation for the choice of test statistics is provided by the following theorem.

FR

Theorem 11.5: E(V,/(r — 1)(c — 1)) = 0%, EVg/(r — 1)) = o +% > (i — 1)’
and E(V/(e—1)) = 0+ ——=5 () -

Theorem 11.5 says that if Hy (R is true, then E (Vr/(r — 1)) will equal 0°, and sample values of F®
will tend to be close to 1; the more the row means differ, the larger sample values of F (R) are likely to
be. Similarly, if H( is true, then E(V¢/(c — 1)) will equal 62, and sample Values of F©) will tend to be
close to 1; the more the column means differ, the larger sample values of F(©) are likely to be.

Two-Way Analysis-of-Variance Table

In applications of an F' test for equal row means and for equal column means, a two-way analysis-of-
variance table is usually constructed as illustrated in Fig. 11-12.

Performing the Tests: P-value and Critical Regions

A total of rc¢ random values x;, one for each random variable X, are independently obtained.

Using these, the sample-mean values X; = (xjy +Xp + - +X)/c, X;= (X + x5+ -+ x5) /1,
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Square variation Degrees of freedom | Mean square F
Between rows 1 Ve Vellr—1)
Vi r r—1 V,/(r-1(c~1)
Between columns ! Ve Vele—1)
v, ¢ c-1 V.- e~ 1)
Random error r—1)e-1) v,
v, reiRe 1)
Total )
v, i

Fig. 11-12 Two-way analysis-of-variance table.

and x = (x;. + X + -+ X,.)/r (equivalently, x=(x;+x,+ - +x.)/c) are computed. The
corresponding values

vp =Y (x; %)+ X Gy~ X)X (%)
vg=c 3 (% — %), ve=r) (X;— x), and ve=vr — (vg +vc)
are then computed. Finally the values

A(R) vg/(r —1) ; A(C) _ ve/(e —1)
£ v,/(r —1)(e—1) r v/(r—1)(c—1)

of the test statistics are determined.

The P-value of the row test is the probability that a test value as large or larger than F (R would
occur if H( ) were true. That is, the P-value is P(F > F®), assumlng r—1land (r—1)(c— 2 degrees
of freedom If a level of significance « is specified, then H.( is rejected if P-value < a; Hy * is not
rejected if P-value > a. Equivalently, the critical region for the test consists of all values of F' that are
greater than or equal to F* where F* is the critical Value satisfying PEF > F*) = o, assuming r — 1 and
(r—D(c—1) §rees of freedom (see Fig. 11-2); H ) is rejected if #®) is in the critical region; Hy (R)
not rejected 1f F® is not in the critical region.

The P- Value of the column test is the probability that a test value as large or larger than F© would
occur if H.( were true. That is, the P-value is P(F > F(©)), assuming ¢ — 1 and (r — 1)(c— 2 degrees
of freedom. If a level of significance « is specified, then H.(C) is rejected if P-value < o; Hy ’ is not
rejected if P-value > . Equivalently, the critical region for the test consists of all values of F' that are
greater than or equal to F*, where F* is the critical value satisfying P(F > F*) = q, assuming ¢ — | and
(r—1(—-1) Egrees of freedom (see Fig. 11-9); H ) i rejected if F1 is in the critical region; H.(C)
not rejected 1f F) is not in the critical region.

As in the one-way analysis of variance, these tests are also one sided; the alternative hypothesis H, in
each case is equivalent to the hypothesis: F > F*.

EXAMPLE 11.5 Three types of indoor lighting: 4;, A», and A3, were tried on three types of flower: By, B;, and B3,
grown from seed. The average heights in cm after 12 weeks of growth are indicated in the table.

(a) Test, at the 0.05 significance level, whether there is a significant difference in growth due to lighting.
(b) Test, at the 0.05 significance level, whether there is a significant difference in growth due to flower type.
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Flowers
B B, B; Row sample means
A, 16 24 19 19.67
Lighting Ay 15 25 18 19.33
As 21 31 15 2233
Column sample means 1733 26.67 17.33 20.44

Grand sample mean
From the table, we see that the grand sample mean is X = 20.44. The total variation is
vp = (16 — 20.44)% + (24 — 20.44)? + (19 — 20.44)% + (15 — 20.44)% + (25 — 20.44)?
+ (18 —20.44)* + (21 —20.44)% + (31 — 20.44)% + (15 — 20.44)* = 23222
row sample means are X;. = 19.67, X,. = 19.33, and x3. = 22.33; and the square deviation between rows is

vr = 3[(19.67 — 20.44)% + (19.33 — 20.44)? + (22.33 — 20.44)%] = 16.19

The column sample means are x.; = 17.33, x, = 26.67, and X3 = 17.33; and the square deviation between columns is

ve = 3[(17.33 — 20.44)% + (2667 — 20.44)” + (17.33 — 20.44)?] = 174.47

Therefore, the square variation due to random error is

Q)

®)

v,=23222— (17447 + 16.19) = 41.56

The degrees of freedom of the row test statistic are » — 1 = 2 and (r — 1)(c — 1) = 4; and the value of the row
test statistic is
pony_1619/2
11.56/4

From Table A-5 in the Appendix, the critical region for the row test at the significance level 0.05 consists of all
test values greater than or equal to 6.94. Since 0.78 < 6.94, the test value is not in the critical region, and we
do not reject the null hypothesis that the column means are equal. Equivalently, we conclude that there is not
a significant difference in growth due to the type of lighting.

The degrees of freedom of the column test statistic are ¢ — 1 =2 and (r — 1)(c — 1) = 4; and the value of the
column test statistic is

A(C) _ 174.47/2

41.56/4

From Table A-5, the critical region for column test at the significance level 0.05 consists of all test values greater
than or equal to 6.94. Since 8.40 > 6.94, the test value is in the critical region, and we reject the null

hypothesis that the column means are equal. Equivalently, we conclude that there is a significant difference
in growth due to the type of flower. The corresponding analysis-of-variance table is

=840

Square variation Degrees of freedom Mean square F
Between rows Ve 210
Ve=16.19 F—1=2 F—1 F® =0.78
Between columns V, %704 o
Ve=174.47 c—1=2 c—1 F(O =840
Random error v, 1039
V,=41.56 (r—1)(c—1)=4 (r—=1(-1)
Total
Vy=23222 re—1=8
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Solved Problems

CHI-SQUARE GOODNESS-OF-FIT TEST

11.1.

11.2.

339

A pair of dice is tossed 360 times, and the frequency of each sum is indicated in the chart.

Sum 2 3 4 5 6 7 8 9 10 11 12
Frequency 8 24 35 37 44 65 51 42 26 14 14
Would you say that the dice are fair on the basis of the chi-square test?
The null hypothesis is
Hy: P(2) = L _ P(12) P(3)= 2 _ P(11) P4) = 3 = P(10)
v 36 ’ T 36 ' T 36 ’
4 5 6
PE) =5 =PO),  PO)=z=PB),  P()=5
The following table lists the 11 expected frequencies np;, where n = 360.
Sum 2 3 4 5 6 7 8 9 10 11 12
Expected frequency 10 20 30 40 50 60 50 40 30 20 10
The chi-square test sum is
$10)° (24 -20)* (35-30)* (37 -40)® (44-50)* (65-60) (51— 50)
o (107 (4207 (35 307 (37 407 @4 S0P (65 60 (51 50)
10 20 30 40 50 60 50
4240 (26 -30)> (1420 (14— 10)
L4240 (26-30° (4-20  (4-10)

40 30 20 10

From Table A-3 in the Appendix, with 10 degrees of freedom, we find that the probability of a sum as large
or larger than 6.74 is 0.75, and the probability of a sum as large or larger than 9.34 is 0.5. Hence, the
probability of getting 7.45 or larger is between 0.5 and 0.75 (using computer software, the probability is
0.68), which is strong evidence that the dice are fair. More precisely, the null hypothesis would not be

rejected at any significance level less than 0.68.

Over the years, the grades in a certain college professor’s class are typically as follows: 10 percent
As, 20 percent Bs, 50 percent Cs, 15 percent Ds, and S percent Fs. The grades for her current
class of 100 are 16 As, 28 Bs, 46 Cs, 10 Ds, and 0 Fs. Test the hypothesis that the current class is

typical by a chi-square test at the 0.05 significance level.

The null hypothesis, expected frequency, and actual frequency are shown in the following table.

Grade A B C D F
Hy: probability = 0.1 0.2 05 0.15 0.05
Expected frequency 10 20 50 15 5
Actual frequency 16 28 46 10 0
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11.4.

11.5.
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The chi-square test sum is

A 16 —10)* (28 —20)> (46 —50)% (10 —15)?% (0 —5)°
Xzz( )+( )+( )+( )+( )

10 20 30 15 5~ 137

From Table A-3, with 5 — 1 = 4 degrees of freedom, the critical region consists of all values greater than or
equal to 9.49. Since 13.79 > 9.49, we reject the hypothesis that the class is typical.

A bag is supposed to contain 20 percent red beans and 80 percent white beans. A random
sample of 50 beans from the bag contains 16 red and 34 white. Apply the chi-square test at the
0.05 significance level to either reject or not reject the hypothesis that the contents are as adver-
tised.

If the contents are 20 percent red and 80 percent white, then P(red)=p; =02, and
P(white) = p, = 0.8; np; = 50 x 0.2 = 10 and np, = 50 x 0.8 = 40. The test chi-square value is

o (16107 (3440

X="v% ‘T ¥
From Table A-3, with one degree of freedom, the critical region consists of all values greater than or equal to
3.84. Since 4.5 > 3.84, we reject the hypothesis that the bag contains 20 percent red and 80 percent white
beans.

A coin is tossed 100 times, resulting in 60 heads (H) and 40 tails (7). Apply the chi-square test
at the 0.05 significance level to either reject or not reject the hypothesis that the coin is fair.

The null hypothesis is: P(H) =p; =0.5, P(T)=p,=0.5. We have n=100, so np; = 100 x
0.5 =50 = np,. The test chi-square value is

o (60 —50)% (40— 50)?
X = + =

50 50

From Table A-3, with one degree of freedom, the critical region consists of all values greater than or equal to
3.84. Since 4 > 3.84, we reject the hypothesis that the coin is fair.

4

Suppose a coin is tossed 100 times, resulting in x heads. For what values of x will the null
hypothesis that the coin is fair not be rejected on the basis of the chi-square test at the 0.05
significance level?

If x is the number of heads, then 100 — x is the number of tails. For the hypothesis of fairness not to
be rejected at the 0.05 level, the test chi-square sum must satisfy (see Problem 11.4)
o (x—50)% (100 — x — 50)*

V=t % <3.84

which simplifies to

(x =50  (50—x)7 .., 2(x —50)° .,
50 + 50 < 3.84 or 0 <3.84

Simplifying further,
(x — 50)* <25 x 3.84 or |x —50] < V25 x3.84~9.80< 10

Hence, x must satisfy |x — 50| < 10 which is equivalent to —10 < x — 50 < 10, or 40 < x < 60. Therefore,
if there are more than 40 but fewer than 60 heads in 100 tosses, the hypothesis of fairness will not be rejected
at the 0.05 significance level.
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CHI-SQUARE TEST FOR EQUAL DISTRIBUTIONS

11.6.

11.7.

11.8.

At what significance level would the null hypothesis in Example 11.2 be rejected?

The chi-square test value obtained in Example 11.2 is 7.14, and the number of degrees of freedom is
4. From Table A-3, we see that any test value equal to or greater than 5.39 will be in the critical region at
significance level 0.25. Hence, the null hypothesis will be rejected at the 0.25 significance level. Using
computer software, we find that the P-value of the test, which is defined as P(x*> > 7.14) for 4 degrees of
freedom, is 0.13. Hence, the null hypothesis will be rejected at any significance level greater than or equal to
0.13.

A random group of 40 people younger than 50 years was given a flu shot, and a second random
group of 60 people 50 years or older was given the same flu shot. Each member of the groups
was classified according to whether the member did not get the flu (N), had a mild case of the flu
(M), or had a severe case of the flu (S). The frequencies in each group are as indicated in the
following table.

Reaction
N M S Totals
Under 50 years 30 6 4 40
Age | 50 years or older 36 12 12 60
Totals 66 18 16 100

Use a chi-square random variable to test, at the 0.05 significance level, the hypothesis that the
reactions to the shot are the same in each group.

By pooling the subjects under 50 years and those 50 years and over in each reaction group, we get the
following estimated probabilities:

66 18 16

py = — = 0.66, pyr = — = 0.18, ps = —=0.16
Py =155~ PM =100 bs =150 =0
The expected frequencies mp; for the m = 40 subjects under 50 years are
mpy =40 x 0.66 = 26.4, mpy =40 x 0.18 = 7.2, mpg =40 x 0.16 = 6.4

and the expected frequencies np; for the n = 60 subjects 50 years and over are
npy = 60 x 0.66 = 39.6, npyr = 60 % 0.18 = 10.8, npg = 60 % 0.16 = 9.6
The corresponding chi-square test value is
2 (30— 26.4)? N (6—172)* N (4 —6.4)? . (36 — 39.6)? . (12 — 10.8)? N (12 - 9.6)2
26.4 7.2 6.4 39.6 10.8 9.6
~2.65

There are k = 3 reaction levels and & — 1 = 2 degrees of freedom. From Table A-3, the critical chi-square
region for 2 degrees of freedom at the 0.05 significance level is all values greater than or equal to 5.99. Since
2.65 < 5.99, we do not reject the hypothesis that the reactions to the shot are the same in each group.

At what significance level would the null hypothesis in Problem 11.7 be rejected?

The chi-square test value obtained in Problem 11.7 is 2.65, and the number of degrees of freedom is
2. From Table A-3, we see that any test value equal to or greater than 1.39 will be in the critical region at
significance level 0.50. Hence, the null hypothesis will be rejected at the 0.50 significance level. Using
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computer software, we find that the P-value of the test, which is defined as P(x* > 2.65) for 2 degrees of
freedom, is 0.27. Hence, the null hypothesis will be rejected at any significance level greater than or equal to
0.27.

Salaries for 200 males and 300 females at a certain company are as indicated in the following
frequency table, where the notation [a, ) means a salary greater than or equal to & but less than b.

Salaries in thousands of dollars

1 2 3 4 5
[20, 30) [30, 40) [40, 50) [50, 60) [60, -) Totals
Male 20 34 46 60 40 200
Gender Female 45 78 90 62 25 300
Totals 65 112 136 122 65 500

Use the chi-square random variable to test, at the 0.05 significance level, the hypothesis the salary
distributions are the same.

By pooling the male and female frequencies in each salary grade, we obtain the following estimated
probabilities:

)2 :%:0.13, Py :%:0.224, D3 :%:0.272,
134:?0(2):0.244, ﬁsz%:O.B
The expected frequencies mp; for the m = 200 males are:
mp; = 200 x 0.13 = 26, mp, =200 x 0.224 = 44.8 mp; = 200 x 0.272 = 54.4,
mp, =200 x 0.244 = 48.8, mps = 200 x 0.13 = 26
and the expected frequencies np; for the n = 300 females are:
np; =300 x 0.13 = 39, np, =300 x 0.224 = 67.2, np; = 300 x 0.272 = 81.6,
nps =300 x 0.244 = 73.2, nps =300 x 0.13 = 39

The corresponding chi-square test value is
o (20267 (34—448)° (46 544)° 60 48.8)° (40 — 26)°
X706 148 54.4 188 26
(45-39) (78 —67.2)° (90 —81.6)> (62 —73.2)° (25 —39)
+ + + + +
39 67.2 81.6 73.2 39

~ 25.66

There are k = 5 salary grades and kA — 1 = 4 degrees of freedom. The critical chi-square region for 4
degrees of freedom at the 0.05 significance level is all values greater than or equal to 9.49. Since
25.66 > 9.49, we reject the hypothesis that the salary distribution for males is the same as that for females.

What is the probability that the chi-square value of 25.66 obtained in Problem 11.9, or higher,
would occur if the male and female salaries were equally distributed?

From Table A-3, with 4 degrees of freedom, we see that the probability that a test value equal to or
greater than 18.5 is 0.001. Hence, the probability of getting 25.66 or higher is less than 0.001. Using
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computer software, we find that P(x? > 25.66) for 4 degrees of freedom is 0.00004. Hence, there areonly 4
chances in 100,000, or 1 in 25,000, that a chi-square value this large would occur if the male and female
salaries were equally distributed.

CHI-SQUARE TEST FOR INDEPENDENT ATTRIBUTES

11.11.

11.12.

A random group of 800 eligible voters was cross-classified according to annual income and
party affiliation, as indicated in the following table. In the table, [20, 40) signifies income of
at least $20,000 but less than $40,000; [40, 60) means at least $40,000 but less than $60,000, and
[60,000, —) means $60,000 and over. Apply a chi-square test for independence of annual income
and party affiliation at the 0.05 significance level.

Annual income

(20, 40)  [40,60)  [60, ) Totals (f,)

Democratic 125 225 70 420
Party Republican 60 200 120 380
Totals (f}) 185 425 190 800

The contingency table has » = 2 rows, where Democratic affiliation corresponds to i = 1 and Republican
affiliation corresponds to i = 2; there are ¢ = 3 columns, where j = 1 corresponds to the salary range [20, 40),
j = 2 corresponds to [40, 60), and j = 3 corresponds to [60, —). The estimated row probabilities are:

420 380

p,, = ——=0.525 Py, = —— = 0.475
P~ 300 ’ P2 =350 ="
and the estimated column probabilities are:
. 185 . 425 . 190
P17 %5007 P2 =300 P3 7300
The expected frequency estimates are:
185
n X pr.x p; = 800 x 0.525 x 0= 97.125, n X py. X p,=223.125, nx pp. x ps=99.75,
nX py x pq = 87875, nXxpy X p,=201.875, n X py x ps3=90.25

The test value of the chi-square statistic is:
o (125-97.125)%  (225-223.125)> (70 — 99.75)

97125 23125 9975
(60 — 87.875)° (200 — 201.875)% (120 — 90.25)?
87.875 201.875 90.25
~ 35.56

There are (r — 1)(¢ — 1) = 1 x 2 = 2 degrees of freedom. From Table A-3, the critical region for 2 degrees
of freedom at the 0.05 significance level is all test values greater than or equal to 5.99. Since 35.56 > 5.99,
we reject the hypothesis that annual income and party atfiliation are independent.

Estimate the P-value for the test in Problem 11.12, and interpret the result.

The P-value is the probability that a test value as large or larger than 35.56 would occur, at 2 degrees of
freedom, if the attributes of annual income and party atfiliation were independent. From Table A-3 in the
Appendix, we can conclude only that the P-value is less than 0.001. Using computer software, we find that
P(x* >35.56) = 0.00000002. Hence there are only 2 changes in 100 million, or 1 in 50 million, that such a
large test statistic would occur if the attributes of annual income and party affiliation were independent.
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A random group of 300 males was cross-classified according to age and total cholesterol level, as
indicated in the table below.

Total cholesterol

Under 200 200-239 240 or higher
Low Medium High Totals (f;)
20-34 66 24 8 98
Age 35-54 54 48 22 124
55-74 18 50 10 78
Totals (f;) 138 122 40 300

Use the chi-square random variable to test, at the 0.01 significance level, the hypothesis that the
attributes of age and cholesterol level are independent.

The contingency table has r = 3 rows, where age bracket 20-34 corresponds to i = 1, 35-54 corresponds
to i =2, and 55-74 corresponds to i = 3. There are ¢ =5 columns, where j =1 corresponds to low
cholesterol level, j = 2 corresponds to medium, and j = 3 corresponds to high. The estimated row prob-
abilities are:

.98 . 124 .78

P =300 P2 =300 P+ =300
and the estimated column probabilities are:

. 138 . 122 .40

P17 300” P27 300° P37 300

The expected cross-classification frequency estimates, where » = 300, are:

nx Py x p1 = 45.08, nx pr. x po = 39.853, nx Py x ps = 13.067,
nXx py x p1=57.04, n X py. X po= 50427, n X py. X p3=16.533,
nx Py x pg = 35.88, nX Py % po=31.72, nxpy x ps3=104

The test value of the chi-square statistic is:

o (66 —45.08)7 (24—39.853)° (8 —13.067)% (54— 57.04)> (48—50.427)

T 4508 39.853 13.067 5704 50427
(22 - 16.533)> (18 — 35.88)° L0 31.72)° Lo 10.4)°
16.533 35.88 31.72 10.4
~39.53

There are (r — 1)(c — 1) = 2 x 2 = 4 degrees of freedom. From Table A-3, the critical region for 4 degrees
of freedom at the 0.01 significance level is all test values greater than or equal to 13.3. Since 39.53 > 13.3,
the test value is in the critical region, and we reject the hypothesis that age and total cholesterol level are
independent.

Consider the table in Problem 11.13 as a frequency table for three independent multinomial
random variables, X7, X5, X3, where X; distributes the number of subjects in its corresponding
age bracket among the three cholesterol levels. Test, at the 0.01 significance level, the hypothesis
that the random variables have the same distribution.
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11.15.

The null hypothesis is H.: P11 = P21 = P315 P12 = P22 = P32; P13 = P23 = D33, where Dij is the probablhty
of cholesterol level j in age bracket i. We estimate the probability of cholesterol level j by pooling the
frequencies in the jth column of the table:

. 138 122 .40
17300 P2 =300 737300
The expected frequencies corresponding to the 98 subjects in age bracket 20-34 are:
138 122 40
—— —45.08 — =139, — =13.06
9!5><300 08, 98><300 39.853, 98><300 3.067
Those corresponding to the 124 subjects in age bracket 35-54 are:
138 122 40
124 x — = 57.04 124 x — = 50.427 124 x —=16.533
" 300 ’ " 300 ’ " 300
and those corresponding to the 78 subjects in age bracket 55-74 are:
138 122 40
78 x — = 35.88 78 x — =31.72 78 x — =104
" 300 ’ 300 ’ " 300

Note that these 9 frequencies also occurred as cross-classification frequencies in Problem 11.13. The test
value of the chi-square statistic here will also be the same as in Problem 11.13, namely, %> = 39.53. Finally,
since there are also 4 degrees of freedom here, the critical region at the 0.01 significance level is the same as in
Problem 11.13, namely all test values greater than 13.3. We therefore reject the hypothesis that the three
multinomial random variables have the same distribution.

Suppose the frequency data in an # X ¢ contingency table for cross-classified attributes is the same
as the frequency data in an r X c¢ table for r independent multinomial random variables, each with
the same ¢ possible outcomes. Show that the test value of the chi-square statistic is the same in
each case.

In the cross-classification case, the probability estimates are

N A
PU:Pi4><Pj:71><7]

(see Fig. 11-6), and the expected frequency estimates are

N j
nxpi.xp,jff,-,xg

In the multinomial random variables case, the probability estimates are

(see Fig. 11-3), and the expected frequency estimates are

N
n; X p; = n; x =

n
Since n; = f;; + fo + -+ fi. = fi., it follows that the expected frequency estimates are the same, and
therefore the test values of the chi-square statistic are the same. Note that the number of degrees of

freedom is (r — 1)(c — 1) in each case.

ONE-WAY ANALYSIS OF VARIANCE

11.16.

The average gas mileage, in miles per gallon, of a random sample of compact cars, five from each
of three manufactures, is given in the table. Assume that the average gas mileage for each of the
three makes of cars is normally distributed, and that the three distributions have the same
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variance. Test, at the 0.01 significance level, the hypothesis that the three distributions have the

same mean.

X 325 30.2 34.6 313 29.8

X, 289 29.6 30.2 30.6 29.1

X; 34.8 36.2 31.8 33.7 353

As indicated in the table, the three distributions are labeled X7, .Y,, Xj, respectively. The respective
test values of the sample means for .7, X,, X; are

_ 289+29.6+30.2+30.6+29.1

’{‘1:32 +302+3;6+313+298:31.68, % ) — 20,68,
%= 34.8 +36.2 + 315.8 +33.7+353 3436
. 31.68 +29.68 + 34.36 L
and the grand sample mean is X = + 3 + =31.91. The total square variation is

v = (32.5—31.91)% + (30.2 — 31.91)* + (34.6 — 31.91)* + (31.3 — 31.91)* + (29.8 — 31.92)°
+ (28.9 —31.91)% + (29.6 — 31.91)% + (30.2 — 31.91)* + (30.6 — 31.91)* + (29.1 — 31.91)°
+ (34.8 —31.91)* + (36.2 — 31.91)> + (31.8 — 31.91)* + (33.7 — 31.91)* + (35.3 — 31.91)?
= 83.73.
The square deviation between row samples is
vr = 5[(31.68 — 31.91)* + (29.68 — 31.91)* + (34.36 — 31.91)%] = 55.14
and the square variation due to random error is
v, = 83.73 — 55.14 = 28.59

The degrees of freedom are m — 1 =3 — 1 =2 and mn —m =3 x 5 —3 = 12, and the test statistic is

. 55.14/2
F(2,12) = ———==11.5
(2.12) 28.59/12 7
From Table A-7, the critical region at the 0.01 significance level consists of all test values greater than or
equal to 6.93. Since 11.57 > 6.93, the test value is in the critical region, and we reject the null hypothesis
that the means of X7, X5, X3 are equal. The corresponding analysis-of-variance table is as follows.

Square variation Degrees of freedom Mean square F
Between row samples YR _ 5747 Ve/(m—1) 1157
vp = 5514 m—1=2 m—1 V,/(mn—m)
Rand
andom error Yo _ 538
v, = 28.59 mn—m=12 mn — m
Total
vy = 83.73 mn—1=14

11.17. Determine the P-value for the test in Problem 11.16, and interpret the result.

The P-value for the test is the probability that a value of the test statistic equal to or greater than 11.57
would occur if the hypothesis that the three distributions have the same mean were true. From Table A-7
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in the Appendix, with 2 and 12 degrees of freedom, we can conclude only that the P-value is less than
0.01. Using computer software, we find that the P-value is 0.0016. Hence, there are only 16 chances in
10,000 or 1 in 625 that such a result would occur if each of the three car makes had the same average gas
mileage.

11.18. In the case of two independent normal distributions with equal but unknown variances, we can
use either the F statistic (Section 11.4) or the ¢ statistic (Section 10.2) to test the hypothesis that
the distributions have equal means. Apply both tests to X; and X, from Problem 11.17 at the
0.05 significance level.

The table of sample values is as shown in the table below.

X 325 30.2 34.6 313 29.8

X, 289 29.6 30.2 30.6 29.1

We first apply analysis of variance using the F statistic. From Problem 11.17, the test values of the
sample means for Y; and Y, are x; = 31.68 and x, = 29.68. The test value of the grand sample mean is

31.68 +29.68 e
X= + =30.68. The total square variation is

vy = (32.5 — 30.68)" + (30.2 — 30.68) + (34.6 — 30.68)” + (31.3 — 30.68)> + (29.8 — 30.68)°
+(28.9 — 30.68)” + (29.6 — 30.68)> + (30.2 — 30.68)* + (30.6 — 30.68)> + (29.1 — 30.68)’
=27.14
The square deviation between row samples is
vr = 5[(31.68 — 30.68)> + (29.68 — 30.68)*] = 10
and the square variation due to random error is
v,=2714-10=17.14
The degrees of freedom are m — 1 =2 —1=1and mn—m =2 x 5— 2 =8, and the test statistic is

. 10/1
F(1,8) = 17.13/8

4.67
From Table A-5, the critical region, at the 0.05 significance level, consists of all test values greater than or
equal to 5.32. Since 4.67 < 5.32, the test value is not in the critical region, and we do not reject the null
hypothesis that the means of Y;, X, are equal

We now apply the ¢ test from Section 10.2, following Prescription 4(a) from that section, where the
random variables .Y and Y in Prescription 4(a) are represented here by X; and X, respectively. Also, m
and n from Prescription 4(a) are both equal to 5 here. We then compute the following test values:

% = 31.68, %, = 29.68

1
%, = (625 - 31.68)% + (30.2 — 31.68)" + (34.6 — 31.68)” + (31.3 — 31.68)° + (29.8 — 31.68)% = 3.77
1
5%, = l289 - 29.68)7 + (29.6 — 29.68)% + (30.2 — 29.68) + (30.6 — 29.68)> + (29.1 — 29.68)%] = 0.52
SP:\/4><3.77+4><0.52:1.467 . 3168 2968 .
8 146,/ +1

From Table A-2, the critical region, at the 0.05 significance level with 8 degrees of freedom, for the alter-
native hypothesis H,: p; # u consists of all values 7 > 2.31, or f < —2.31. Since 2.17 satisfies neither of
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these inequalities, 2.17 is not in the critical region, and the null hypothesis Hy: 1y = p, is not rejected in
favor of H,: p; # o, which is the same result obtained by the F test.

Note that, in Problem 11.18, 7% = (2.17)2 — 4.7 = F, allowing for rounding. Show that in gen-
eral, F = 1% in the two-sample case, where F is the test statistic of Section 11.4 for testing equality
of means, and ¢ is the test statistic of Section 10.2, Prescriptions 4 and 4(e), for testing equality of
means based on random samples of the same size.

2 2 2
X 2(171)/171 and 2(n) = 2Z _ XQ(l)/l.
x*(n)/n Xe(n)/n o X (n)/n
F(l,n) = z2(n). To see how this equality applies here, let the random variables .Y and Y in the ¢ test of
Prescriptions 4 and 4(«) be denoted by Y| and X, with means p; and u,, respectively. Also, m = n in the ¢
test since both random samples have size n; and m =2 in the F test since there are only two random
variables X7 and X,. In both tests, the null hypothesis is Hy: pu; = p, and the alternative hypothesis is
H,: py # pp. Substituting .Y, for .Y and .Y, for Y, and m = # in the formula for the ¢ statistic in Prescrip-

tion 4 gives
-X, XX
e
S n

N (G A G OL A ) L C STEp O Y (Xy - XY
’ n+n—2 2(n—1)

First note that, by definition, F(m,n) = Therefore,

where

each summation going from j=1to j=n. Then

2= "(YI - ‘?2)2
(X~ X))+ 2 (X — )P/ (n— 1)

On the other hand, substituting m = 2 in the formula for the F statistic, we get

F= IZ;{ZZ::Z): Ve/;(/’fi Ty where Vi =n((X; — X)* + (X, — X))
and Vo= (Xy — X1V + X (Xy — %)
(see Problem 11.22). Substituting Y = # in the formula for ¥ and simplifying, gives
Va= g (XY, — X,)%. Therefore
56— 1)’

> Xy — 0+ (Xy — )%/ 2(n—1)

Finally, the 2s cancel, resulting in F = £, as desired.

Both the F test and the ¢ test in Problem 11.18 were applied under the assumption that X; and X,
have equal variances. Apply the two-sample F' test described in Prescription 10.8(e) of Section
10.6 to test the hypothesis that a§(1 = O'i/z against the alternative hypothesis ag(l # 03(2 at the 0.05
significance level.

The random variables .Y and Y in Prescription 8(a) are represented here by X; and X,, respectively.
Also, m and n from Prescription 8(a) are both equal to 5 here. From Problem 11.18, we have the test
values sf‘ =3.77 and sfh = 0.52. For the alternative hypothesis H,: on e afyl, the critical region is all

values s, /sX > F* or s/‘ /5%, > F* where F* is the F value satisfying P( (4,4) < F*) =1-0.05/2=
0.975. From Table A6 we find that F*=9.6. We have sX /sX =3.77/0.52 =17.25, and

s%r /sX =0.52/3.77 = 0.14. Since neither value is in the critical region, we do not reject the null hypothesis

that 01‘1 = 03‘2.
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11.21.

11.22.

11.23.

11.24.

Let X7, X5,...,X,, be m random variables with sample means X, X, ..., X,,, respectively, each
X, +X X,
based on random samples of size n. Let X = i tAa b ~. Show that, for each i =1,
m
N ¢ X;)(X; — X) = 0, where j runs from 1 to n in the summation.

Let i be any fixed integer from 1 to m. Then

Y- X)W - X) = (- X) (X - X) = (X - X) (Y, - nXy) =0

With reference to the definitions of V¢, Vg, and V, in Section 11.4, show that

% o 2
Ve:Z(le*Xl)2+Z(X2j7X2)2 +Z( mj m)
where in each summation, j runs from 1 to #.

By definition, ¥, = ¥y — Vr, where V' is a sum of summations 3 (X; — X)?; j runs from 1 to n in each
summation, and there is one summation for each integer ; from 1 to m (see Section 11.4). ¥V pis a sum of
terms n(Y; — .Y)Z; one term foreach i from 1 to m. Keeping i fixed and letting j run from 1 to n, we have

Y, - Y+ X, - X)

Y (X - X)) =2
S, - F 2N (X - X - D)+ (X
=2 (Y — X;)*+0 (Problem 11.20) + n(X; — X)*

=3 (¥, — %) +nX - X)

Adding the terms on the right side of the equality by letting i run from 1 to m, and then subtracting Vg, we
get the desired result.

Sketch a proof of Theorem 11.2.
From Problem 11.22,

I OIS CEE N

(o

(ij B Xm)2
2

Each summation on the right side is a chi-square random variable with n — 1 degrees of freedom (Theorem
7.7). Furthermore, the mn random variables .Y; are independent. Therefore, the sum of the summations
on the right side is a chi-square random vauable with m(n — 1) = mn — m degrees of freedom. Also, each
X, is normally distributed with mean p; and variance o*/n. If Hy is true, then ¥ is the sample mean of
(X — %)
2/
of freedom (Theorem 7.7). Finally, since Vy/o> = Va/o® + V,/o”, it can be shown that ¥V ;/o” is chi-
square with mn —m +m — 1 = mn — 1 degrees of freedom, provided H, is true; and it can also be shown
that all three chi-square random variables are independent.

X,. Therefore, if Hyistrue,then Vg/o? =S is a chi-square random variable with m — 1 degrees

Sketch a proof of Theorem 11.3.

The expected value of a chi-square random variable with k degrees of freedom isk. Since V,/ o? is chi-
square with mn — m degrees of freedom (Theorem 11.2), it follows that E(V,/o?) = mn — m, and therefore
E(V,/(mn—m)) = 0. To determine E(¥x/(m — 1)), first consider

(Y- X)) = (¥ -2XX + X7)
=S X7 2mX? + mX?
=Y ¥~ mX?
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where 7 runs from 1 to m in the summation. Therefore, since Vg/(m — 1) = n 1 S (X; — X)?, it follows
that " um "
E(Vr/(m—1)) = E(X}) - E(X?
(Vafm— 1) =0 52 B E ()

Now E(X2) = ¢? 4+ p? for any random variable X with mean p and variance o>, X, has mean p; and

“l+“2+"'+p“m

and variance o2 /mn.  Therefore,
m

variance o°/n, while X has mean p =

EWatn- D) = 5 (S 0) s (2 ?)

m m mn

noom 5 n

_ 2
Tm—1n’ erfl 2

n
=0 +—— 2 (1 — )
m—1

1 5 nm 5
o? —
m—1 mflM

Now
Y w) =X (0 = 2+ 45) = - 2p Y+
=mp® = 2mp + S =5 mp?
=3 (4 — 1)
Therefore, E(Vy/(m —1)) = o® +

n .
1 ST (1 — )%, as stated in the theorem.

11.25. Show that for each i=1, 2,...,m, the mean u; of X; is related to the grand mean
p= (g + py+ -+ py)/m by the equation p; = p + «;, where Y a; = 0.

e =)= p = m=mp—mp=0

TWO-WAY ANALYSIS OF VARIANCE

11.26. Find the P-value for the row test and for the column test in Example 11.5.

The P-value for the row test is the ?robability that an F-value, with 2 and 4 degrees of freedom, as large
as (.78 would occur if the hypothesis HOR): Hyj = Hy; = p3j forj = 1,2,3 were true. From Table A-4 in the
Appendix, we can conclude only that the P-value is greater than 0.1. Using computer software, we find that
the P-value is 0.52. The P-value for the column test is the probability that an F-value, with 2 and 4 degrees
of freedom, as large as 8.40 would occur if the hypothesis H, .C Dy = pp = py3 for i =1,2.3 were true.
From Tables A-5 and A-6, we see that the P-value is between 0.025 and 0.05. Using computer software, we

find that the P-value is 0.037.

11.27. Suppose that p; = p+ o + 3, where 3 ;o = 0 and > ; 3; = 0 (the notation indicates that 7 runs
from 1 to r in the first summation, and j runs from 1 to ¢ in the second summation). Show that

a; = py. —pand 3 = p; — p.

From the given equation p; = p + &; + [3;, we get

co; =) &= (g p- )=y py Yy po D = —cp 0
J J J J

J

Then, dividing both sides of ce; = cp;. — cp, we get &; = p; — p. The proof that 3; = p; — p is similar.

11.28. Suppose that p; = p + o; + 3, where a; = p. — p and f3; = p; — p. Show that }; o; =0 and
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From the given equation p; = p + &; + [3;, we get
Do =Dy B) =y rp =y ) =0
i i

The proof that 3, 3; = 0 is similar.

9 11 & 12
11.29. Let p; be the entry in the ith row and jth column of the matrix |4 6 3 7|. Show that
py = it g+ B, where Y 0 = 0 and 3, 3, = 0. 2 41 s

By Problem 11.28, it is sufficient to show that p; = p + &; + 3;, where &; = p;. — p, 3; = pj — p, and
M:M- THo At tpat ot
¥ c

is the grand mean. Averaging the row means gives p;. = 10,

. 10+5+3
o, =5, p3. = 3. The grand mean is p = OJF% = 6. Therefore, & =10 -6=4, &, =5—-6=—1,
and &3 =3 — 6 = —3. Averaging the column means gives p.1 =5, puy =7, p3 =4, ng =8 Therefore,

bi=5-6=-1,0,=7T-6=1,3=4—-6=-2,and 3, =8—-6=2.

We must now verify that p; = p+ e;+3; for all 12 means in the given matrix. For example,
pt+e+5=6+4+(-1)=9=p; and p+ e+ 3 =6+4+1=11=p;,. Continuing this way, we
will find that p + e; + 3; = p; holds in all 12 cases.

21 12 12
11.30. Let p; be the entry in the ith row and jth column of the matrix [ 15 18 21
9 6 12

(@) Show that the property p;; = p + c; + 3, where 3 o = 0and 3, 3; = 0, is not satisfied for
all of the entries in the matrix.

(b) Replace the entry in the ith row and jth column of the matrix with ji; = p; +p; —p to
obtain a new matrix that does satisfy the property fi; = p + o; + /3;, where ) ; o; = 0 and

(a) If the matrix did satisfy the desired property, then by Problem 11.27, the equation p; = p;. + p; — pt
21+ 12 +12
would have to hold for each p; in the matrix. Checking p;, we see that p). = % =15,

214+15+9 A +R2+12+15+184+214+9+6+ 12
po =g =15, and p = 9

154 15— 14 =16, but pu;; = 21. Therefore, the matrix does not have the desired property.

=14. Then py. +p; —p=

(b) To construct a matrix with the desired property, we first compute the remaining two row means and
two column means, which are py. = 18, p3. =9, py =12, p3 =15. We already have fi;; = 16. We
then compute fjp =py. +pp —p=15+12—-14 =13, iz =p;. + p3 —p=15+15—-14 = 16, and
continuing this way, we get fio; = 19, fiy, = 16, fiy3 = 19, fi3; = 10, fi3, = 7, and fiz3 = 10. The new

16 13 16
matrix is [ 19 16 19 | which, by its construction, has the desired property.
10 7 10

Supplementary Problems

CHI-SQUARE GOODNESS-OF-FIT TEST

11.31. In 150 tosses of a coin, 90 heads and 60 tails were observed. Test the hypothesis that the coin is fair by a
chi-square test at the 0.05 significance level.
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11.32.

11.33.

11.34.

11.35.

11.36.

CHI-SQUARE TESTS AND ANALYSIS OF VARIANCE [CHAP. 11

Repeat the test in Problem 11.31 at the 0.01 level of significance.

A random-digit generator on a calculator gave the distribution of digits shown in the table. Test the
hypothesis that the digits are random by a chi-square test at the 0.05 significance level.

Digit 0 1 2 3 4 5 6 7 g 9

Frequency 11 11 9 8 8 11 9 11 13 9

The standard normal random variable Z, with mean 0 and standard deviation 1, has a probability distribu-
tion, in terms of class intervals Iy, I, I, I,, Is, as shown in the first two columns of the following table. The
third column shows the class frequencies of 100 z scores chosen at random from some population. Apply a
chi-square test at the 0.05 significance level to the hypothesis that the z scores are a sample from a standard
normal population.

I 17 1
(—ce, —1.5) 0.0668 7

[-1.5,-0.5) | 02417 | 15

[-0.5, 0.5) 0.3830 45
[0.5, 1.5) 0.2417 25
[1.5, ce) 0.0668 g

Use the class frequency distribution of Problem 11.34 to apply a chi-square test at the 0.05 significance level
to the hypothesis that the following 50 test scores are approximately normally distributed.

30 66 71 78 88 40 66 72 78 79

42 67 72 80 90 52 67 73 80 90

55 68 74 82 92 60 68 74 &3 93

60 68 75 84 93 62 70 76 84 94

64 70 76 & 95 65 70 78 86 97
It is estimated that the political preference in a certain community is as follows: 50 percent Democrat, 25
percent Republican, 15 percent Independent, 10 percent other. A random sample of 200 people resulted in

90 Democrats, 65 Republicans, 25 Independents, and 20 other. Test the hypothesis that the estimate is
correct at the 0.1 significance level.

CHI-SQUARE TEST FOR EQUAL DISTRIBUTIONS

11.37.

Independently obtained random samples of two independent multinomial random variables, X and Y, each
with outcomes a;, a;, a3, a,, resulted in the following contingency table of frequencies. Apply a chi-square
test at the 0.05 significance level to the hypothesis that Y and Y have the same probability distribution.

' a A a, Totals
X 25 45 15 15 100
Y 45 50 35 10 140

Totals 70 95 50 25 240
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11.38. Perform the test in Problem 10.37 at the 0.01 significance level.

11.39. Each die of a pair of unbalanced dice, one red and one white, is tossed 200 times, resulting in the following
frequency distribution for the faces of the dice. Apply a chi-square test at the 0.01 significance level to the
hypothesis that the dice have the same probability distribution.

Side landing face-up

1 2 3 4 5 6 Totals

Red die 30 20 42 10 41 57 200
White die 44 30 24 20 50 32 200
Totals 74 50 66 30 91 &9 400

11.40. Random samples of 125 male graduates and 100 female graduates of a certain college resulted in the
following frequency table for the number of semesters in which a natural science was studied. Apply a
chi-square test at the 0.05 significance level to the hypothesis that male and female students at the college
take the same amount of natural science courses.

Semesters of natural science

1 2 3 4 Totals
Males 5 6 50 64 125
Females 8 14 34 44 100
Totals 13 20 84 108 225

11.41. Random samples of 200 first-year students and 150 transfer students at a given college resulted in the
following frequency table for the number of high-school years in which a foreign language was studied.
Apply a chi-square test at the 0.01 significance level to the hypothesis that first-year and transfer students
have the same high-school foreign language backgrounds.

Years of foreign-language
study in high-school

0 1 2 3 4 Totals
First-year students 10 11 75 61 43 200
Transfer students 20 18 54 30 28 150
Totals 30 29 129 91 71 350

11.42. Independently obtained random samples of three independent multinomial random variables, .Y, Y, and Z,
each with outcomes «;, a5, a5, resulted in the following contingency table of frequencies. Apply a chi-square
test at the 0.05 significance level to the hypothesis that X, Y, and Z have the same probability distribution.

LA L2 LE] Totals
X 33 25 12 70
Y 46 20 24 90
VA 50 14 26 90
Totals 129 59 62 250

11.43. Repeat the test in Problem 11.42 at the 0.01 significance level.



354 CHI-SQUARE TESTS AND ANALYSIS OF VARIANCE [CHAP. 11

CHI-SQUARE TESTS FOR INDEPENDENT ATTRIBUTES
11.44. Seventy-five exercise programs were rated for quality of exercise and motivational value. Each attribute
was classified as good, fair, or poor, and the cross-classification frequencies are indicated in the following
table. Apply a chi-square test at the 0.05 significance level to the hypothesis that quality of exercise and
motivational value are independent.

Motivational value

Good Fair Poor Totals
E ) Good 15 6 4 25
XETESE L Rair 12 6 25
value
Poor 5 8 12 25
Totals 27 26 22 75

11.45. Use Table A-3in the Appendix to find an approximate P-value for the test in Problem 11.44.

software is available, find the exact P-value of the test.)

(If computer

11.46. Sixty supermarket pizzas were rated for taste (fair, good, very good) and price (high, medium, low). The
cross-classification results are indicated in the following frequency contingency table. Apply a chi-square

test at the 0.05 significance level to the hypothesis that taste and price are independent.

Price
High Medium Low Totals
Very good g 6 4 18
Taste Good 6 g g 22
Fair 4 6 10 20
Totals 18 20 22 60

11.47. Use Table A-3 to find an approximate P-value for the test in Problem 11.46.

available, find the exact P-value of the test.)

(If computer software is

11.48. A random sample of 500 students at a given college was cross-classified according to gender and major
subject area of study chosen. The results are listed in the following table. Apply a chi-square test at

the 0.05 level of significance to the hypothesis that the attributes of gender and major subject area are

independent.
Major area of study
Business Liberal arts Nursing Education Totals
Gender Male 105 76 15 48 244
Female 71 94 31 60 256
Totals 176 170 46 108 500

11.49. Use Table A-3 to find an approximate P-value for the test in Problem 11.48.
available, find the exact P-value of the test.)

(If computer

software is
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ONE-WAY ANALYSIS OF VARIANCE

11.50.

11.51.

11.52.

11.53.

11.54.

A random sample of size 3 is taken from each of three independent, normally distributed random variables
X1, X7, X3 having equal but unknown variances. Test, at the 0.05 level of significance, the hypothesis that
X1, X,, and X; have equal means.

X, 94 8 M
X, 102 94 78
X, 76 68 70

Use Tables A-4 to A-7 in the Appendix to find an approximate P-value for the test in Problem 11.50. (If
computer software is available, find the exact P-value of the test.)

A home gardener wishes to determine the effect of different fertilizers on the average number of tomatoes
produced by her plants. She grows five tomato plants on each of four separate plots, X7, X;, X3, X4, and
uses a different fertilizer treatment on each plot. The number of tomatoes per plant are indicated in the
following table. Test, at the 0.05 level of significance, the hypothesis that plots Y;, X, X3, and X; have
equal average yields.

X 14 10 12 16 17

X> 9 11 12 g 10

X; 16 15 14 10 18

X, 10 11 11 13 g

Repeat the test in Problem 11.52 at the 0.01 significance level.

Use Tables A-4 to A-7 to find an approximate P-value for the test in Problem 11.52.  (If computer software
is available, find the exact P-value of the test.)

TWO-WAY ANALYSIS OF VARIANCE

11.55.

The table in Problem 11.50 is repeated here, but interpreted as a table obtained by cross-classifying attributes
A and B, in which A has three categories 4;, A2, A3, and B has three categories By, By, B;. Test, at the 0.05
significance level, the hypothesis that the row means are equal.

Attribute B

Row sample

B B, B; means
A, 94 82 84 86.67
Attribute 4 A, 102 94 78 91.33
As 76 68 70 71.33

Column
sample 90.67 81.33 77.33 83.11

means

Grand sample mean
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11.56.

11.57.

11.58.

11.59.

11.60.

11.31.
11.32.

11.33.

11.34.

11.35.
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Use the data in Problem 11.55 to test, at the 0.05 significance level, whether the column means are equal.

Using Tables A-4 to A-7, approximate the respective P-value of the tests in Problems 11.55 and 11.56. (If
computer software is available, find the exact P-values of the tests.)

The table in Problem 11.52 is repeated here, but interpreted as a table obtained by cross classifying four
types of fertilizers with 5 types of tomato plants. The entry in the row i and column j of the table represents
the yield from type j tomato plant treated with type i fertilizer. Test, at the 0.05 significance level, the
hypothesis that the row means are equal.

Plant type

Row sample
By By B3 By Bs means
A 14 10 12 16 17 13.8
Fertilizer A, 9 11 12 8 10 10
type As 16 15 14 10 18 14.6
Ay 10 11 11 13 g 10.6
Column
sample 12.25 11.75 12.25 11.75 13.25 12.25
means

Grand sample mean

Use the data in Problem 11.58 to test, at the 0.05 significance level, whether the column means are equal.

Using Tables A-4 to A-7, approximate the respective P-value of the tests in Problems 11.58 and 11.59. (If
computer software is available, find the exact P-values of the tests.)

Answers to Supplementary Problems

Critical region: ¥* > 3.84; test value: ¥* = 6.00; reject hypothesis that coin is fair (P-value=0.0143).
Critical region %* > 6.63; test value: §* = 6.00; do not reject hypothesis that coin is fair (P-value =0.0143).

Critical region: %° > 16.9; test value: > =2.4; do not reject hypothesis that the digits are random
(P-value =0.983).

Critical region: %% > 9.49; test value: %2 = 4.96; do not reject hypothesis that the z scores are from a normal
population (P-value=0.291).

Sample mean: X = 73.84; sample standard deviation: s = 14.40; z score: z = (x — X)/s; class frequencies of z
scores:

L b Ji
(—ce, —1.5) 0.0668 4
[-1.5, —0.5) 0.2417 g
(0.5, 0.5) 0.3830 22

[0.5, 1.5) 0.2417 15
[1.5, ce) 0.0668 1
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11.36.

11.37.

11.38.

11.39.

11.40.

11.41.

11.42.

11.43.

11.44.

11.45.

11.46.

11.47.
11.48.
11.49.

11.50.
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Critical region: %2 > 9.49; test value: ¥*> = 4.28; do not reject hypothesis that the test scores are approxi-
mately normally distributed (P-value =0.369).

Critical region: %> 6.25; test value: %° = 6.33; reject hypothesis that the estimate is correct (P-
value =0.097).

Critical region: > > 7.81; test value: §°* = 8.55; reject hypothesis that X and Y have the same probability
distribution (P-value =0.036).

Critical region: > > 11.3; test value: ¥° = 8.55; do not reject hypothesis that .Y and Y have the same
probability distribution (P-value =0.036).

Critical region: ¥* > 15.1; test value: ¥* = 20.8; reject hypothesis that the dice have the same probability
distribution (P-value =0.0009).

Critical region: %% > 7.81; test value: §* = 7.96; reject hypothesis that males and females take the same
amount of science courses (P-value =0.047).

Critical region: %2 > 13.3; test value: %> = 15.34; reject hypothesis that first-year and transfer students have
the same high-school foreign language backgrounds (P-value =0.004).

Critical region: ¥° > 9.49; test value: ¥ = 9.83; reject hypothesis that ¥, Y, and Z have the same probability
distribution (P-value =0.0434).

Critical region: ¥° > 13.3; test value: %> = 9.83; do not reject hypothesis that X, Y, and Z have the same
probability distribution (P-value =0.0434).

Critical region: %% > 9.49; test value: ¥> = 13.1; reject hypothesis that quality of exercise and motivational
value are independent.

0.01 < P-value < 0.025 (P-value=0.011).

Critical region: §> > 9.49; test value: %> = 4.09; do not reject hypothesis that taste and price are indepen-
dent.

0.25 < P-value < 0.5 (P-value =0.393).

11.51. 0.05 < P-value< 0.1 (P-value = 0.0583).

Critical region: ¥* > 7.81; ¥* = 15.09; reject hypothesis that gender and major subject area are independent.
0.001 < P-value < 0.005 (P-value =0.002).
Square variation Degrees of freedom Mean square F
Between row samples YR _ 3e s Va/(m—1) 4
vrp = 656.89 m—1=2 m—1 V,/(mn — m)
Random error Yo _ o3
v, = 416 mn—m==6 mn —m
Total
vy = 1072.89 mn—1=28

Critical region: F(2,6) > 5.14; test value: ¥ = 4.74; do not reject the hypothesis of equal means.
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11.52. Square variation Degrees of freedom Mean square F
Between row samples YR _ e s Ve/(m—1) — 459
vp = 78.55 m—1=3 m—1 V,/(mn — m)
Random error Yo _s-
v, =91.2 mn—m=16 mn—m
Total
vy = 169.75 mn—1=19

11.53. Critical region: F(3,16) > 5.29; test value: £ = 4.59; do not reject the hypothesis of equal average yields.

11.54. 0.01 < P-value <0.025 (P-value =0.0167).

11.35. Square variation Degrees of freedom Mean square F
Between rows Va
=328.45 A
Va = 656.89 r—1=2 r—1 F® =972
Between columns Ve
= 140.45 R
Ve =280.89 c—1=2 -1 0 FO =416
Random error v, _ 1378
vV, =135.11 (r—1(c—-1)=4 (r—=1(c—-1)
Total
Vy=1072.89 re—1=8

Critical region: F(3,16) > 3.24; test value: F = 4.59; reject the hypothesis of equal average yields.

Critical region: F U‘)(z, 4) > 6.94; test value: F & — 9.72; reject hypothesis that row means are equal.

11.56. Critical region: £ ©) (2,4) > 6.94; test value: F (©) = 4.16; do not reject hypothesis that column means are
equal.

11.57. Problem 11.55: 0.025 < P-value < 0.05 (P-value= 0.0291); Problem 11.56: P-value > 0.1 (P-value = 0.1054).

11.58. Square variation Degrees of freedom Mean square F
Between rows Va
=26.18 .
Ve =78.55 r—1=3 r—1 F®) =369
Between columns Ve
=15 e
Ve=6 c—1=4 c—1 F© =021
Random error v, 71
v, =852 (r—1(c—1)=12 (r—1(c—1) "
Total
Vy=169.75 re—1=19

Critical region: F (R)(S‘, 12) > 3.49; test value: ® — 3.69; reject hypothesis that row means are equal.

11.59. Critical region: F ©) (4,12) > 3.26; test value: F (®) — 0.21; do not reject hypothesis that column means are
equal.

11.60. Problem 11.58: 0.025 < P-value < 0.05 (P-value = 0.0432); Problem 11.59: P-value > 0.1 (P-value = 0.9279).
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Table A-1 Standard normal distribution F=2E

The table entries are the probabilities p lor which

P(0 < Z < z), where z ranges [rora 0.00 to 3.99. 0z
z 0 1 3 3 4 S5 6 7 8
0.0 0000 0040 0080 .0120 .0160 0199 .0239 0279 0319
0.1 0398 0438 0478 .0517 .0557 0596 .0636 0675 .0714
0.2 0793 .0832 .0871 .0910 0948 0987 1026 1064 1103
0.3 21179 1217 1255 1293 419331 1368 14006 .1443 1480
0.4 1554 1591 1628 1664 1700 1736 1772 1808 .1844
0.5 1915 1950 1985 2019 2054 .2088 .2123 2157 2190
0.6 2258 22291 2324 2357 2389 2422 2454 2486 2518
0.7 2580 22612 2042 2673 2704 2734 2764 2794 2823
0.8 .2881 2910 2939 2967 129906 3023 3051 3078 3100
0.9 3159 3186 3212 3238 3264 3289 83715 13340 3365
1.0 3413 3438 3461 3485 .3508 3531 3554 O] 3599
1.1 3643 3665 3686 3708 3729 3749 3770 3790 3810
19 3849 3869 3888 3907 3925 3944 3962 3980 3997
I3 4032 4049 400606 4082 4099 4115 4131 4147 4102
1.4 4192 4207 4222 4236 4251 4265 4279 4292 4300
1.5 4332 4345 4357 4370 4382 4394 4406 4418 4429
1.6 4452 4463 4474 4484 4495 4505 4515 4525 4535
1.7 4554 4564 4573 4582 4591 4599 4608 4616 4625
1.8 4641 4649 4656 4664 4671 4678 .4686 4693 4699
1.9 4713 4719 4726 4732 4738 4744 4750 4756 .4761
2.0 4772 4778 4783 4788 4793 4798 4803 4808 4812
2.1 4821 4826 4830 4834 4838 4842 48406 4850 4854
2.2 .4861 4864 4868 .4871 4875 4878 .4881 4884 4887
23 4893 4896 4898 4901 4904 4906 4909 4911 4913
24 4918 4920 4922 4925 4927 4929 4931 4932 4934
25 4938 4940 4941 4943 4945 4946 4948 4949 495
2.6 4953 4955 4956 4957 4959 4960 4961 4962 4963
2.7 4965 4966 4967 4968 4969 4970 4971 4972 4973
28 4974 4975 4976 4977 4977 4978 4979 4979 4980
2.9 4981 4982 4982 4983 4984 4984 4985 4985 4986
30 4987 4987 4987 4988 4988 4989 4989 4989 4990
3.1 4990 4991 4991 4991 4992 4992 4992 4992 4993
3.2 4993 4993 4994 4994 4994 4994 4994 4995 4995
X3 4995 4995 4995 4996 4996 4996 4996 4996 4996
34 4997 4997 4997 4997 4997 4997 4997 4997 4997
3.5 4998 4998 4998 4998 4998 4998 4998 4998 4998
3.6 4998 4998 4999 4999 4999 4999 4999 4999 4999
3 4999 4999 4999 4999 4999 4999 4999 4999 4999
38 4999 4999 4999 4999 4999 4999 4999 4999 4999
3.9 5000 5000 5000 5000 5000 S000 5000 5000 5000

359
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Table A-2 The ¢ distribution

The entry in row k (degrees of [reedom)
under column heading p (probability) is the
value /* for which P(0 </ < %) = p.

i 4 0.05 0.1 0.2 0.25 0.3 0.4 0.45 0.475 0.49 0.495
1 158 325 27 1.000 1.376 3.08 6.31 i12.71 31.82 63.66
2 142 289 617 .816 1.061 1.89 292 430 6.96 9.92
3 137 297 .584 765 978 1.64 2.35 3.18 4.54 5.84
4 134 .27 .569 741 941 1.53 2.13 2718 7S 4.60
S 132 267 2559 127 920 1.48 2.02 257/ 3.36 4.03
6 131 265 .553 718 3506 1.44 1.94 245 3.14 3.71
7 130 263 549 a1 .896 1.42 1.90 236 3.00 3.50
8 130 262 546 706 889 1.40 1.86 2.31 290 3.36
9 129 261 .543 703 883 1.38 1.83 226 2.82 3.25

10 129 .260 542 700 879 1.37 1.81 223 2.76 3.17
11 129 .260 .540 .697 876 1.36 1.80 2.20 2.72 3.1
12 128 259 .539 695 873 1.36 1.78 2.8 2.68 3.06
13 128 259 538 694 870 1.35 1.77 2.16 2.65 3.01
14 A28 258 .537 692 .868 1.34 1.76 2.14 2.62 298
1S 128 258 .536 .691 .866 1.34 L.75 2.13 2.60 295
16 128 258 535 690 865 1.34 1=75 2412 2.58 292
1% 128 257 534 689 863 1.33 1.74 2.11 2251 290
18 x| 25k 357 .534 688 862 1.33 1.73 2.10 2.55 2.88
1% 127 259 D33 688 .861 1.33 1.73 2.09 2.54 2.86
20 o |26 257 533 .687 .860 1.32 1.72 2.09 2.53 2.84
21 127 £ YA 332 686 859 1.32 1.72 208 2.52 2.83
22 127 256 532 686 .858 1.32 1.72 207 2.51 282
23 27 256 532 685 858 1.32 1.71 207 2.50 2.81
24 127 256 531 .685 857 1.32 1.71 2.06 249 2.80
25 127 256 531 684 856 1.32 1.71 2.06 2.48 279
26 127 256 531 684 856 1.32 1.71 2.06 2.48 278
27 127 256 531 684 .855 1.31 1.70 2.05 2.47 77
28 o |26 256 .530 683 855 1.31 1.70 2.05 247 276
29 A7 256 .530 683 854 1.31 1.70 2.04 2.46 2.76
30 127 256 .530 683 854 1.31 1.70 2.04 2.46 2.75
49 126 .255 .529 .68l .8sl1 1.30 1.68 2.02 2.42 2.70
60 126 254 527 679 848 1.30 1.67 2.00 2.39 2.66
120 126 254 .526 677 845 1.29 1.66 1.98 2.36 2.62
o 126 299 .524 674 842 1.28 1.645 1.96 2.33 2.58

Souwrce:  R. A. Fisher and F. Yates. Statistical Tables for Biological. Agriculural and Medical Research. published by Lengiman
Group Ltd.. London (previously published by Oliver and Boyd. Edinburgh). and by permission of the authors and
publishers.
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Tabile A-3 The chi-squarc distribution

The entry in row k (degrees of freedom)

under column heading p (probability) is the £
value y* for which 72(0 < X <x*)=p v x*

) r 0.005 | 001 [ 0.025| 0.05] 0.10 | 0.25] 0.50| 0.75] 090 | 0.95| 0.975( 0.99( 0.995( 0.999
[ | .0000 | .0002| .0010 [ .0039(.0158 | .102 | .455| 132 2.71 | 3.84| 502 | 6.63| 7.88 10.8
2 | .0100 [ .0201| .0506 | .103 [ .2I1 | .575| L39| 277 4.61 | 599 738 | 9.21| 10.6 | 13.8
31 .0717 IS | 216 ) 352 584 | L.21| 237 401 625 7.81] 935 | 11.3| 128 16.3
4 1 207 297 | 484 | 711 | 106 1921 336 539 7.78 | 9.49| 11.1 | 13.3| 149 | 185
S| 412 554 | 831 LIS | 1.61 | 2.67| 435 6.63| 924 | 1L.1| 128 | 15.1] 16.7 | 20.5
6 | 676 872 1.24 | 1.64 | 2.20 | 3.45| 5.35( 7.84| 106 | 12.6| 144 | 16.8| 8.5 | 225
71 989 124 [ 169 | 2.17 | 2.83 [ 4.25]| 635]| 9.04| 120 | 14.1| 16.0 [ 18.5| 203 | 24.3
8 1.34 1.65 2.18 | 273 | 3.49 [ 507 | 734 102] 13.4| 1585| 17.5 | 20| 220 | 26.1
9 1.73 209 270 | 333 4.17 | 590 | 834 14| 147 169| 19.0 | 21.7( 236 | 279

10 | 2.16 256 | 325 | 394 | 487 | 6.74| 934 12.5]| 16.0| 183 205 23.2] 252 | 296
11| 260 3.05 | 382 | 457 | 558 | 7.58 103 13.7] 17.3| 19.7] 21.9 | 24.7| 268 | 31.3
12 | 3.07 357 | 440 | 523 | 630 | 844 | 11.3| 148] 18.5| 21.0| 233 | 26.2 283 | 329
13 | 3.97 441 501 | S8 | 7.04 | 930 | 123 16.0( 19.8| 224 | 247 | 27.7( 29.8 | 345
14 | 4.07 4.66 | 563 [ 6.57 779 | 10.2] 13.3| 17.0( 21.1 | 237 261 | 29.1| 31.3 | 36.1
15 | 4.60 523 | 626 | 7.26 | 855 | 11.0| 143] 18.2| 223 250 275 30.6| 328 | 37.7
16 | 5.14 S8 [ 691 | 796 | 9.31 | 11.9| 153 194 235 263 | 288 | 32.0| 343 | 393
17 | 570 6.41 | 7.56 | 8.67 | 10.1 | 12.8| 16.3| 205| 248 | 27.6| 30.2 | 33.4| 357 | 4038
18 | 6.26 7.0l | 823 ) 939|109 | 137|173 21.6] 26.0| 28.9| 315 | 348| 37.2 | 423
19 | 6.84 7.63 | 8.91 100 | 11.7 | 146 183 227 27.2| 301 | 329 | 36.2] 386 | 438

20 | 7.43 826 959 | 109 ] 124 | 155|193 23.8| 284 | 31.4| 342 | 37.6| 400 | 453
21 | 8.03 890 | 103 | 11.6 | 13.2 | 16.3]203| 249| 296 327 355 38.9| 414 | 46.8
22 | 8.64 954 | 11.0 | 123 | 14.0 | 17.2|21.3| 260| 308 | 339 | 36.8 | 403| 428 | 483
23 | 9.26 102 1L.7 ] 131 ] 148 [ 181223 27.1] 32.0| 352 38.1 | 41.6( 442 | 49.7
24 |1 9.89 109 124 | 13.8 | 157 | 19.0] 23.3| 282 33.2| 364 | 394 | 430 456 | 51.2
25 10.5 11.5 ] 13.1 146 | 16.5 | 199|243 293 344 | 37.7| 406 | 443| 469 | 52.6
26 11.2 12.2 13.8 | 154 | 17.3 | 208 25.3| 30.4| 356 389| 419 | 456| 483 | 54.1
27 11.8 129 146 | 162 | 181 | 21.7 | 26.3| 31.5] 36.7| 40.1 | 432 | 470 49.6 | 55.5
28 1275 13.6 [ 153 | 169 | 189 | 227 27.3]| 326 379 | 41.3| 445 | 483 5.0 [ 56.9
29 13.1 14.3 160 | 17.7 | 19.8 | 23.6| 283 33.7| 39.1 | 426| 457 | 49.6] 523 | 583
30 13.8 150 16.8 | 185 ] 206 | 245]29.3| 34.8| 403 | 438 47.0 | 509 53.7 [ 59.7
40 | 207 222 | 244 [ 265 2901 | 337|393 456 S51.8| 558 593 | 63.7| 668 | 73.4
50 | 28.0 297 | 324 | 348 | 37.7 | 429|493 | 56.3| 63.2| 67.5| 7.4 76.2( 79.5 | 86.7
60 | 355 37.5 | 405 | 432 ] 46.5 | 523593 67.0| 744 79.01 | 833 | 88.4( 92.0 [ 99.6
70 | 433 454 | 488 [ 517 553 | 61.7]69.3| 77.6( 85.5] 90.5| 950 | 100| 104 1312
80 | 51.2 53.5 | 57.2 ) 604 643 | 71.1[ 793 88.1] 96.6| 102 | 107 17121 116 125
90 | 59.2 61.8 | 656 | 69.1 | 733 | 806 89.3| 986 108 | 113 | 118 124 128 137
160 | 67.3 70.1 742 | 779 824 | 90.1 1993 109 118 | 124 | 130 | 136| 140 149

Seurce: E. S. Pearson and H. O. Hactley, Biemetrika Tables for Siatisticians. Vol. 1 (1966), Table 8, pages 137 and 138. by
permission.
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Table A-4 99th pereentries for the £ distribution

The entry in colunn m, tow # is the value £* for which (0 < F(n,n) < F%) = 0.90.
m = degrees of freedoni in numerator; 2 = degrees of freedom in denominator

wll v 23 fa s e 789 |0 |12f1s 202 [25]3]40 |60 |120] oe
1/39.9 [49.5 |53.6 | 558 |57.2 |58.2 |58.9 [59.4 [599 [60.2 |60.7 |61.2 |61.7 [ 62.0 |62.1 |62.3 | 62.5 |62.8 [63.1 | 633
2| 853 900 9.16| 9.24| 9.29] 9.33[ 9.35| 9.37| 9.38[ 9.39| 9.41] 9.42| 9.4 9.43 9.45 9.a6[ 9.47| 9.47| 9.48| 9.49
3| 554 s.a6| 5.39| 5.34] 5.51| 5.28] 5.27| 5.25| 5.24f 5.23) 522 5.20] 5.8 5.8 517 5.7 s.06| 5.05| s.04f 5.3
4| 454 432) 4.a9[ 4.1 4.05| 4.01) 3.98| 3.95| 3.94| 3.9 390 3.87| 384 383[ 3.83 3.82| 3.80| 3.79| 3.78| 3.76
5| 4.06 3.78] 3.62| 3.52[ 3.45| 3.40[ 3.37| 3.34[ 3.32| 330 3.27 3.24| 3.21| 3.19] 3.19] 3.17| 3.16] 3.14| 3.12[ 301
6| 3.78 3.46| 3.29| 3.8 3.11| 3.0 3.01| 2.98| 2.9¢[ 2.94| 2.90| 2.87| 2.84| 282 2.81 280 2.78| 2.76| 2.7a| 2.72
7| 359 3.26| 3.07| 2.96| 2.88| 2.83[ 2.78| 2.75| 2.72| 2.70| 2.67| 2.63 2.59| 2.58] 2.57 2.56 2.54 2.51| 2.49( 247
8| 346 311 2.92] 2.81] 2.73| 2.67 2.62( 2.59( 2.56] 2.54| 2.50[ 2.46| 2.42| 2.40( 2.40[ 2.38| 2.36| 2.34( 2.32| 2.29
9| 3.36] 3.01] 2.81 2.69( 2.61| 2.55| 2.51| 2.47| 2.44| 2.42| 238 2.34] 2.30| 2.28 227 2.25| 2.23| 2.21| 2.18]| 2.16
10 3.29 2.92| 2.73| 2.61f 2.52| 2.46| 2.41| 2.38| 2.35| 2.32] 2.28) 2.24| 2.20 2.18] 2.17| 2.16| 2.13[ 2.11| 2.08| 2.06
11| 3.23 286 2.66| 2.54| 245 2.39| 2.34| 230 227 2.25 2.21] 2.17| 2.12| 2.10| 2.10[ 2.08 2.05| 2.03| 2.00( 1.97
12| 3.18] 2.81| 2.61| 2.48| 2.39( 2.33| 2.28| 2.24| 2.21| 2.19{ 215 2.10[ 2.06] 204 2.03 201| 1.99| 1.96| 193 1.90
13| 3040 276 2.56| 2.43] 235 228 2.23| 220| 2.16| 2.14| 2.10{ 205 2.01] 198 1.98) 1.96] 1.93| 190| 1.88] 1.85
14| 3000 273 252 239] 2.31f 224) 2.19| 25| 2.12| 2.10[ 2.05 2.01[ 196 1.94 1.93 1.91] 1.89| 1.86] 1.83] 1.80
15| 3.07 270 249( 236| 2.27| 2.21| 2.16| 2.12| 2.09] 2.06 202 197 192] 1.90] 1.89| 1.87| 1.85| 182| 179 176
16| 3.05 2.67| 2.46| 2.33[ 2.24| 2.18] 2.13[ 2.09( 2.06| 2.03 1.99| 1.94| 1.89] 1.87 1.8 1.84| 1.81| 1.78] 1.75| 1.72
17| 3.03] 2.64| 2.44| 2.31f 2.22 2.15[ 2.10] 2.06| 2.03| 2.00{ 1.96 1.91] 1.8 1.84] 1.83f 1.81] 1.78[ 1.75| 1.72| 1.69
18| 3.01 2.62| 242( 229[ 2.20] 2.13| 2.08[ 2.04f 2.00| 1.98 1.93 1.89| 1.84] 1.81| 1.80] 1.78| t.75| 1.72| 169] 166
19| 2.99 2.61f 240 2.27] 2.18 2.11| 2.06| 2.02| 1.98| 196 1.91] 1.86| 181 1.79] 1.78) 1.76| 1.73| 1.70| L67| 1.63
20 297 259| 2.38| 2.25| 2.16| 2.09] 2.04| 2.00( 1.96] 1.94) 189 1.84| 1.79 1.77 1.76] 1.74[ 1.71] 1.68| 164| 1.61
21| 2.96 2.57| 2.36| 2.23] 2.14| 2.08| 2.02[ 198 1.95| 1.92[ 1.87) 1.83| 1.78] 1.75| 1.74 1.72] 1.69| 1.66| 162 1.59
22 295 2.56| 2.35| 2.22| 2.13] 2.06| 2.01| 1.97( 1.93] 1.90| 1.86( 1.81| 1.76] 1.73] 1.73[ 1.70| 1.67 1.64| 1.60| 157
23 2.94 2.55| 2.34] 2.21] 2.11] 2.05| 1.99| 1.95 1.92| 1.89| 1.84 1.80| 1.74] 1.72| 1L.71f 1.69] 1.66[ 1.62| 159 1.55
24| 293 254 2.33| 219 2.10| 2.04] 198 1.94] 1.91] 1.88| 1.83f 1.78| 1.73[ 170 1.70] 1.67| 1.64| 1.61| 1.57[ 1.53
25| 2.92 2.53| 2.32| 218 2.09[ 202 1.97| 1.93| 1.89] 1.87| 1.82 1.77| 1.72| 1.69| 1.68) 1.66| 1.63| 1.59| 1.56| 1.52
26| 2.91) 2.52 231 27| 2.08 2.01| 1.96| 1.92| 1.88| 1.86| 1.81] 1.76| 1.71| 1.68] 1.67 1.65| 1.61| 1.58] 1.54] 1.50
27| 290 2.51] 230[ 2.17| 2.07| 2.00] 1.95| 1.91| 1.87) 1.85[ 1.80 1.75| 1.70] 1.67] 1.66] 1L64| 1.60 1.57| 153 1.49
28| 2.89 2.50 229 2.16| 2.06 2.00| 1.94] 1.90| 1.87) 184 1.79[ 1.74| 169 1.6 1.65 1.63] 1.59| 1.56 152| 148
29| 2.89 2.50| 2.28[ 2.15[ 2.06| 1.99] 193| 1.89| 1.86| 1.83 1.78) 1.73| 1.68] 1.65| 1.64 162 1.58] 155 151| 147
20| 2.88 2.49| 2.28| 2.14| 2.05] 198 1.93| 1.88| 1.85| 1.82 1.77 1.72| 1.67 164 163 1.61 1.57| 1.54 150| 1.46
40( 2.84 2.44| 223 2.09[ 2.00| 1.93( 1.87| 1.83[ 1.79| 1.76] 1.71| 66| 1.61| 1.57 157 1.54[ 1.51] 1.47| 1.42[ 1.38
60| 2.79) 2.39( 2.18[ 2.04| 195 1.87) 1.82| 1.77| 1.74| 1.71| 1.66 L60| 1.54 1.51] 1.50 1.48| 1.44| 1.0 1.35| 1.29
120] 2.75 2.35| 2.13] 1.99] 1.90| 1.82) 1.77 L72[ 1.68] 165 1.60[ 1.54] 1.48] 145 1.44 1.41| 1.37( 1.32 126/ 1.19
oo [ 271 230| 2.08| 194] 1.85| 1.77) 1.72| 1.67| 163| 1.60| 1.55 1.49| 1.42 138| 1.38 134 130 124 117[ 1.00
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Tahle A-5 95th percentiles for the £ distribution

The catry in column i, row 4 is the valuc F*
for which P(0 < F(mu) < F*) =0.95.
m = dcgrees of frccdom in nuincrator

st = dcgreces of frecdowt in dcnominator

""'12345678910121520242530406012000
1| 161 200 216 | 225 230 | 234 | 237 | 239 | 241 [ 242 | 244 | 246 | 248 | 249 | 249 | 250 | 251 | 252 [ 253 | 254
2 11850190 192]192]193] 193] 19.4]19.4 [ 194|194 19.4[19.4]19.4] 195 | 19.5]19.5] 19.5[ 195[19.5] 19.5
31 10.1]955]928]9.12|9.01 | 8.94]| 8.89|5.85 [ 8.81 879 [5.74(8.70| 8.66 | 8.64 | 8.63| 8.62 | 8.59[8.57 [ 8.55| 8.53
4 | 771694 659639626 | 6.16] 609|604 | 6.00]|596(591|586|580|577(577|575|572|569]5.66| 5.63
5 | 6.61]579]5.41[5.19]5.05|4.95| 4.88|4.82 [4.77 [ 4.74 | 4.68 [4.62| 4.56| 4.53 | 4.52| 4.50| 4.46 |4.43 | 440 4.37
6 | 599[5.14|4.76|4.53|4.39 [ 428 4.21[4.15 [ 4.10| 4.06 [ 4.00|3.94|3.87| 3.84 [3.83]| 3.81 [ 3.77(3.74|3.70| 3.67
7 | 559(4.74)4.35|4.12(3.97 (387 3.79(3.73 [ 3.68 | 3.64 [ 3.57| 5.51| 3.44| 3.41 | 3.40| 3.38 | 3.34[3.30( 3.27| 3.23
8 | 5.32|4.46|4.07[384]|3.69|3.58]| 3.50(3.44 [ 3.39[3.35(3.28|3.22(3.15|3.12|3.11|3.08 | 3.04(3.01 [ 2.97| 2.93
9 | 5.12(4.26]|3.86|3.63|3.48 [ 3.37]| 329(3.23 [ 3.18 | 3.14 [ 3.07 | 3.01 | 2.94| 2.90 [ 2.89| 2.86 [ 2.83 [2.79| 2.75| 2.71
10 | 4.96] 410 3.71 [3.48[3.33 | 3.22[ 3.14(3.07 | 3.02[2.98 | 2.91 | 2.85[ 2.77| 2.74 | 2.73[ 2.70| 2.06 | 2.62| 2.58 | 2.54
11 | 484]3.98]3.59(3.36]3.20 | 3.09] 3.01[295]| 2.90| 2.85| 279 | 272 [ 2.65]| 2.61 | 2.60| 2.57 | 2.53 | 2.49| 2.45 [ 2.40
12 | 4.75] 3.89] 349 [326]3.11 | 3.00| 291 [2.85]| 2.80| 2.75| 2.69 | 2.62 [ 2.54| 2.51 | 2.50| 2.47 | 2.43 | 2.38 | 2.34 2.30
13 | 4.67)3.81|3.41(3.18]3.03]| 2.92| 283|277 | 271 | 2.67| 2.60 [ 2.53| 2.46 [ 2.42 | 2.41] 2.38 | 2.34 (230 2.25] 2.21
14 | 4.60[ 374334311296 | 2.85| 2.76|2.70 | 2.65| 2.60 [ 2.53 [2.46] 2.39 [ 2.35 [ 2.34] 2.31 | 2.27|2.22[ 2.18| 2.13
15 | 4.54] 3.68]3.29[3.06]2.90 | 2.79| 2.71|2.64 | 2.59|2.54| 2.48 | 2.40 [ 2.33| 2.29 | 2.28| 2.25 | 2.20 | 2.16] 2.11 | 2.07
16 | 449 3.63|3.24[3.01|285]274]2.66]2.59 | 254 2.49| 2.42|2.35[2.28| 224 | 2.23] 2.19| 2.15 | 2.11| 2.06 | 2.01
17 | 4.45|359[3.20(2.96(2.81]| 2.70| 2.61|2.55 | 2.49 | 2.45 | 2.38 [ 2.31 [ 2.23[ 2.19 | 2.18| 2.15| 2.10 | 2.06 | 2.01 | 1.96
18 | 4.41]|355]|3.16(293]2.77] 2.66] 258 (2.5t | 2.46|2.41| 234 2.27(2.19] 2.15 | 2.14] 2.1 | 2.06 | 2.02]| 1.97 1.92
19 | 438 352|313 290|274 2.63[ 254248 | 242 238 | 231 | 223 [ 2.6 2.10 | 211 | 2.07 [ 2.03]| 1.98] 1.93 [ 1.88
20 | 4.35| 349|310 (287|271 2.60]| 2.51|2.45 | 239|235 [ 2.28|2.20] 2.12| 2.08 | 2.07]| 2.04 | 199[1.95[1.90| 1.84
21 | 4.32] 347|307 (284|268 |2.57|249(242| 237|232 225]|2.18(2.10]2.05|2.05|2.01] 1.96|1.92]| 1.87| 1.81
22 | 4.30] 3.44[3.05|2.82[2.66 | 2.55[ 246(2.40|234|230]2.23]2.15|2.07| 203 [2.02[ 1.98 | 1.94]| 1.89]| 1.84( 1.78
23 | 4.28)3.42(3.03 [2.80[264]2.53[ 244|237 232(2.27] 220(2.13[ 2.05[2.01| 2.00[ 1.96] 1.91]|1.86[ 1.81 1.76
24 | 4.26] 3.40(3.01 [2.78(2.62|2.51| 242|236 | 230 [ 2.25] 2.18 [ 2.11 [ 2.03 [ 1.98 | 1.97[ 1.94| 1.89| 1.84 [ 1.79 1.73
35 | 4.24]339(2.992.76|2.60 | 2.49| 2.40|2.34 | 2.28 [ 2.24| 2.16 [ 2.09 [ 2.01 [ 1.96 | 1.96[1.92] 1.87|1.82[ 1.77| 1.71
26 | 423|337[2.98[274(259] 2.47[ 239|232 2.27[222]|2.15[2.07(1.99] 1.95 | 1.94] 1.90| 1.85| 1.80| 1.75] 1.69
27 | 4.210335(2962.73(2.57| 2.46 2.37]2.31 | 2.25[ 2.20| 2.13 | 2.06 [ 1.97 [ 1.93 | 1.92 1.88 | 1.84| 1.79 [ 1.73 | 1.67
28 | 420(3.34[ 295|271 256 | 2.45| 236|229 [ 224|209 [ 2.12 [ 204|196 [ 1.91 [1.91| 1.87| 182 1.77| 1.71] 1.65
29 | 4.18]3.33|293[2.70]2.55 | 2.43[ 2.35[228 | 2.22| 2.18 | 2.10| 2.03 [ 1.94] 1.90 | 1.89| 1.85| 1.81|1.75| 1.70 1.64
30 | 407)3.32[292]2.69]2.53|2.42| 233|227 [ 221|216 209 [ 2.01| 1.93| 1.89 | 1.88]| 1.84]| 1.79 [ 1.74 | 1.68 | 1.62
40 | 4.08] 323|284 [2.61]2.45]2.34] 225(2.18 | 2.12|2.08|2.00]|1.92[1.84] 1.79 | 1.78] 1.74| 1.69 | 1.64| 1.58| 1.51
60 | 4.00[3.15]2.76 | 253|237 (225|217([2.10 [ 204|199 [ 192 1.84| 1.75| 1.70 [ 1.69]| 1.65 | 1.59 | 1.53| 1.47| 1.39
120 | 3.92|3.07|2.68 [245[2.29]2.18[ 209|220 | 1.96[1.91] 1.83 [ 1.75| 1.66 | 1.61 | 1.60| 1.55] 1.50 | 1.43 | 1.35] 1.25
oo | 3.84[3.00|260]237|2.21 (210 2.01[1.94 [ 1.88]1.83[1.75]| 1.67| 1.57| 1.52 | 1.51| 1.46 | 1.39 [ 1.32] 1.22] 1.00

Seurce: E. S. Pearson and . O. Hartley, Biometrika ablesfor Statisticians. Vol. 2 (1972), Table 5. page 178. by permission.
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Tahle A-6 97.5 percentiles for the F distribution

The entry in column i, row n is the value #* for which P(0 < #(im,n) < £%)=0.975.
m = degrees of [reedom in numerator; # = degrees of [reedom in denominator

[APP. A

"
n

2

4

(¥

8

9

10

12

15

20

30

60

120

647.8
38.5
17.4
12:2
10.0
8.81
8.07
7857
7.21
6.94
6.72
6553
6.41
6.30
6.20
6.12
6.04
598
5.92
5.87
5.83
57
5.75
572
5.69
5.66
5.63

5.61
5.59

L L th et
D 4 th ot
35

s
5.02

799.5
39.0
16.0
10.6
843
76
654
6.06
5.71
5.46
5.26
5.10
4.97
436
4177
4.69
4.62
4.56
451
446
4.42
438
435
4.32
4.29
427
4.24
422
420
418
4.05
393
380
3.69

864.2
39.2
15.4
9.98
7.76
6.60
5.89
S42
5.08
4.83
4.63
4.47
435
4.4
415
4.08
4.01
3.95
3.90
3.86
3.82
3.78
3.75
3.72
3.69
3.67
3.65
3.63
3.61
3.59
3.46
334
393
3.02

899.6
39.2
15.)
9.60
7.39
6.23
5452
5.05
4.72
4.47
4.28
4.12
4.00
3389
380
373
3.66
3.0l
356
351
3.48
34
3.4)
3.38
3.35
333
3.3
329
3.2
3.25
3.13
3.0l
289
279

921.9
39.3
149
9.36
7.15
5.99
$:29
4.82
4.48
4.24
4.04
3.89
3.77
3.66
3.58
3.50
344
338
333
39
3.25
32
3.18
3.15
3.13
30
3.08
3.06
3.04
3.03
290
79
267
2.87

9371
393
14.7
9.20
698
5.82
5.2
4.65
432
4.07
3.88
3573
3.60
3.50
3.41
3.34
3.28
332
317
313
3.09
305
3.02
299
297
294
292
290
2.88
287
2.74
2.63
52
241

948.2
394
14.6
9.07
685
5.70
4.99
453
4.20
3.95
3.76
3.61
348
338
3.29
822
3.16
310
3.05
3.01
2.97
2193
2.90
2.87
2.85
282
2.30
2,78
2.76
75
2.62
251
2.39
2.29

956.7
394
14.5
8.98
6.76
5.60
4.90
443
4.10
3.85
3.66
3.51
339
329
3.20
312
3.06
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2.96
291
2.87
284
2.81
2.78
2.78
2.73
271
2.69
2.67
2.65
253
2.4)
2.30
2.19
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8.90
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5.8
4.32
436
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2.80
2.76
273
2.70
2.68
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292
287
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2.64
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2.59
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253
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216
205
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8.75
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Table A-7 99th percentiies for the £ distribution

The entry in column m, yow # is the value F*
for which P(8 < F(im,m) < £%) =0.99.
11 =degrees of [reedom in numerator

n = degrees of [teedom in denominator

”’"|234567391012152024253040601200.
1 | 4052| 5000|5403 | 5625|5764 5859 5928|5981 | 6023 [ 6856 [6106]| 6157|6209 | 6235|6248 6261 | 6287 6313|6339 6366
2 | 98.5]99.0199.2(99.2(99.3]99.3]| 99.4(99.4 [99.4 [99.4]|99.4| 99.4]|99.4|99.5|99.5([99.5| 99.5]|99.5]| 995| 99.5
3 | 34.1|30.8]295(28.7|282]27.9|27.7|27.5(27.3|27.2| 27.1 [26.9]26.7| 26.6 | 26.6| 26.5 | 26.4[26.3[26.2] 26.1
a4 | 212]180]16.7[160[155]152]150[148[ 147 [14.5]14.4)14.2[14.0|13.9]|13.9[138[13.7]13.7| 13.6] 13.5

v
o\
w

2 1331120 [ 11.4(11.0] 10.7{10.5( 103 102(10.119.89[9.72(9.55(9.47(9.45|9.389.29(920|9.11| 9.02
6 | 13.7(10.9]9.78 9151 8.75| 8.47[8.26(8.10 | 798 | 7.87 | 7.72 [ 7.56 | 740 | 7.31 | 7.30| 7.23 | 7.14| 7.06| 6.97] 6.88
12.2]1 9.55|8.45| 7851 7.46] 7.19| 6.99|6.84 ] 6.72 [ 6.62 | 6.47 | 6.31 [ 6. 16| 6.07 | 6.06| 5.99 [ 5.91 | 582 5.74] 5.65
11.3] 8.65]|7.59 [ 7.01 [ 6.63| 6.37| 6.18[6.03 | 5.91 [ 5.81|5.675.52(5.36(5.28(5.26)| 5.20 | 5.12| 5.03| 4.95| 4.86
9 | 10.6/8.0216.99(6.42| 6.06| 5.80| 5.61(5.47|535|5.26|5.11]14.96|4.81 (4.7314.71|4.65| 4.57|4.48]|4.40( 4.31
10 | 10.8| 7.56|06.5535.99] 5.64| 5.39] 5.20(5.06|4.94|4.85]|4.71 | 4.56|4.41 |4.33]1431|4325(4.17|4.08|4.00( 3.91

11 | 9.65] 7.21|6.22( 3.67| 5.32| 5.07| 4.89|4.74 | 4.63 | 4.54| 4.40 | 4.25]14.10 [ 4.02| 4.01| 3.94 | 3.80 | 3.78 | 3.69| 3.60
12 1 9331 6.93]5.95[35.41|5006]| 4.82|4.64(4.50|439(4.30|4.16(4.01 (3.80|3.78 |3.76| 3.70 | 3.62 | 3.54| 3.45| 3.30
13 | 9.07[ 670 574]5.21486| 462|4.44|430)4.19|4.10 | 3.96| 382 3.60|3.59|3.57|3.51 | 3.43|3.34| 3.25| 3.17
14 | 8.86|6.51|5.56(5.04|4.70|4.46( 4.28|4.144.03 |3.94|3.80 | 3.66 |3.51 [ 3.43|3.41|3.35|3.27| 3.18| 3.09( 3.00
15 | 8.68] 636|542 |4.8914.56(4.32| 4.14(4.00 [ 389 [3.80 | 3.67 [ 3.52|3.37|3.29|3.28| 3.21 | 3.13|3.05(2.96 2.87
16 | 8.53] 6.23]5.2914.77(4.44| 420| 4.03|3.89 | 3.78 [3.69 | 3.55( 3.41 [3.26|3.18 [ 3.16| 3.10 | 3.02(2.93| 2.84| 2.75
17 | 840)6.11|5.19[4.674344.10]|3.93(3.793.68 [3.59|3.46|3.31|3.16(3.08(3.07| 3.00|2.92|2.83|2.75| 2.65
18 | 8.29| 6.01(5.09(4.58)4.25]|4.01 | 3.84|3.71 [ 3.60 | 3.51 | 3.37 | 3.23 [ 3.08 | 3.00 [ 2.98| 2.92 | 2.84| 275 | 2.66| 2.57
19 | 8.18] 5.93]5.01(4.50|4.17 | 3.94| 3.77(3.63|3.52[3.4313.30|3.15(3.00|2.92|2.91|2.84(2.76| 2.67| 2.58| 2.49
20 | 8.10( 5.85]4.94(4.43|14.10| 3.87(3.70(3.56|3.46|3.37|3.23|3.09]294 (2.86|2.84|2.78 | 2.69|2.61]2.52 2.42
21 | 8.02]|5.78|4.87|437(4.04|3.81|3.64|3.51 (340331 (3.17[3.03|288|280(2.79(2.72|2.64|2.55| 2.46]| 2.36
22 | 7.95]5.7214.8214.31|3.99] 3.76]| 3.59|3.45|3.35[3.26 [ 3.122.98 [ 2.83 | 2.75[ 2.73[ 2.67 | 2.58 [ 2.50 | 2.40| 2.3I
23 | 7.88] 5.66[4.76|4.26]| 3.94 3.71 | 3.54(3.41 (3.30 |3.21[3.07[2.93]|2.78 | 270 2.69|2.62 | 2.54|245[2.35( 2.26
24 | 7.82|5.61(4.7214.22|3.90| 3.67| 3.50|3.36 | 3.26 | 3.17 [ 3.03|2.89|2.74 | 2.66| 2.64| 2.58 | 2.492.40| 2.31 | 2.2]
25 | 7771 557|468 |4.18|3.86] 3.63| 3.46(3.32|3.223.1312.99[2.85(2.70|2.62|2.60| 2.54 | 2.45[2.36| 2.27| 2.17
26 | 7.72]| 5.53|4.64|4.14]3.82| 3.59| 3.42(3.29( 3.18 [ 3.09 | 2.96 [ 2.82 | 2.606 | 2.58 | 2.57| 2.50 | 2.42]2.33 2.23| 2.13
27 | 7.68| 5.49|4.080 | 4.11|3.78 | 3.56| 3.39(326 [ 3.15[3.06[2.93[ 2.78 | 2.63 | 2.55 | 2.54| 2.47 [ 2.38|2.29( 2.20( 2.10
28 | 7.64| 5.45|4.57 | 4.07|3.75(3.53| 3.36(3.23(3.123.03[2.90(2.75]|2.60|2.52]2.51|2.44 | 2.35|2.20( 2.17| 2.00
29 | 7.00( 5.42|4.54(4.04|3.73|3.50( 3.33(3.20|3.09|3.00 | 2.87|2.73|2.57| 249 2.48| 2.41 | 2.33]2.23| 2.14| 2.03
30 | 7.56(5.39(4.51|4.02|3.70| 3.47|3.30|3.17|3.07 | 298 (2.84]2.70|2.55|2.47|2.45( 2.39 | 2.30(2.21| 2.11 | 2.01
40 | 7.31| 5.18[4.31|3.83]3.51 | 329 3.12(2.99( 289 | 2.80 [ 2.66 | 2.52| 237 | 229 2.27| 2.20( 2.11 | 2.02| 1.92| 1.80
60 | 7.08| 4.98[4.13]3.65|3.343.12|2.95(2.82(2.722.63[2.50[2.35]|220|2.12]2.10| 203 1.94| 1.84| 1.73| 1.60
120 | 6.85(4.79(3.953.48]3.17 | 296 2.79|2.66 | 2.56 | 2.47 [2.342.19|2.03 | 1.95| 1.93[ 1.86| 1.76[ 1.66| 1.53| 1.38
o0 6.63(4.61[3.783.32|3.02|280(2.64(2.512.41232|2.i8|2.04]|188(1.79|1.78|1.70 | 1.59] 1.47 | 1.32 1.00

Source: E. S. Pearsen and H. O. Hartley. Biometrika Tablesfor Statisticians, Vel. 2 (1972}, Table 5, page 180, by permissien.






Addition rule, 91

Additive property, 91
Algebra of sets, 49, 54, 65
Alternative hypothesis, 261
Approximate curve, 23
Axes, 16

Axioms of probability, 90

B(n,p), 180
Bar graph, 4
Bayes’ theorem (formula), 113, 121
Bernoulli trials, 180
Best-fitting:
curve, 23
line, 21
Biased:
estimator, 236, 237
point estimate, 236
Bimodal, 14
Binomial:
coefficients, 57, 71
distribution, 181, 192
normal approximation, 187
experiment B(n, p), 180
Birthday problem, 95
Bivariate data, 15, 31
Boundaries, class, 3

C(n,r), 61
Cartesian plane R?, 16
Central limit theorem (CLT), 188, 215, 216
for sample proportions, 217
Central tendency, 5
Chebyshev’s inequality, 151, 165, 172
Chi-square:
distribution, 218
goodness-of-fit test, 322, 339, 352
tests, 322
for equal distributions, 324, 341, 352
for independent attributes, 326, 343, 354
Circular graph, 4
Class, 3, 45
Classes of sets, 53, 69
Coefficient:
confidence, 239
correlation, 18
Coefficient of variation, 13

Index
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Combinations, 60, 75
Comparison, 13
Complement, 49
rule, 91
Composite hypothesis, 262
Conditional probability, 109, 117
Confidence:
coefficient, 239
interval, 237, 251, 257
Confidence intervals for:
difference of means, 291-293, 307, 316
difference of proportions, 297, 298, 312, 318
means, 240-242, 252, 258
proportions, 244, 254, 258
ratios of variance, 301, 302, 304, 313, 318
single population, 236
standard deviation, 247
variances, 245, 246, 256, 259
Confidence level, 239
Contingency table, 327, 328
Continuous:
random variable, 132, 148
sample space, 89, 94
Coordinates, 16
Correlation, 17, 143
coefficient, 18
negative, 18
positive, 17
Countable sets, 51
Counting, 55, 66,73
product rule, 56
sum rule, 55
Counting numbers P, 46
Covariance Cov(Y, V), 143
Critical:
region, 263
value, 243
Cumulative:
distribution function, 150
frequency, 4
Curve fitting, 23

Data:
bivariate, 19, 31
qualitative, 4
Deck of cards, 90
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Degrees of freedom for:
chi-square distribution, 218, 219
F distribution, 301
¢t distribution, 242, 292, 293, 297

DeMorgan’s laws, 49

Density function, 148

Deviation, 8

Dice, pair of, 89

Difference of sets, 49

Discrete:
random variable, 132, 147
sample space, 89, 94

Disjoint sets, 47

Dispersion, 7

Distribution, 134
chi-square, 218
F, 301
frequency, 3, 24
normal, 182
Poisson, 190
probability, 93
sampling, 210
standard normal, 182
t, 242

Dotplot, 26

Duality, 50, 65

Element, 45
Elementary event, 88
Empty set, 46

Equal distributions, chi-square test for, 324

Equiprobable space, 92, 98
Error:
square, 21
Type I and 11, 265
Estimator, 218, 236, 237
Event, 88, 97
Expectation, 96, 103
discrete random variable, 148
finite random variable, 136, 153
random variable, 149
Expected value, 96
Exponential curve, 23

F distribution, 301
Factorial, 56, 71
Fair game, 96, 138
Finite:
probability space, 92, 100
sets, 50
Five-number summary, 13
Frequency:
distribution, 3, 24
table, 2
Function, 132
of a random variable, 146

INDEX

Grand mean, 15

Hy, null hypothesis, 261

H,, alternative hypothesis, 261
Histogram, 2

Hypotheses testing, 261, 270, 278
Hypotheses tests for:

difference of means, 294-297, 309, 317
difference of proportions, 299, 300, 313, 318

means, 268-271, 278, 286
proportions, 273, 282, 287

ratios of variances, 304-306, 315, 319

variances, 274, 275, 284, 287

Image of a function, 132
Impossible event, 88
Inclusion—exclusion, 51
Independent:
events, 114, 122
three or more, 115
random variables, 144
continuous, 150
trials, 115, 124
Index, 1
Indexed classes of sets, 54
Induction, 54, 71
Inferences for two populations, 291
Inferential statistics, 210
Infinite sets, 50
Integers Z, 46
Intersection, 48
Interval, 1
estimate, 237

Joint distribution, 142, 161

K(p;), power of a test, 266
Kurtosis, 248

Law of large numbers, 153, 172
Least squares:
curve, 23
line, 21
method of, 20
Level, confidence, 239
Limits, class, 3

Margin of error, 238
Marginal distribution, 142
Mathematical induction, 54, 71
Mean, 5, 27
difference of, 291, 294
grand, 15

hypotheses test for, 268-271, 278, 286

sample, 213, 222, 230
weighted, 15
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Mean of: Population (Cent.):
binomial distribution, 181 standard deviation, 9
normal distribution, 182 variance, 9
Poisson distribution, 190 Position, 11
random variable, 139, 157 Positive correlation, 17
F(m,n), 302 Power:
P, 217 curve, 23
§%, 219 set, 53
k), 242 Power of a test, 266
X, 213, 214, 216 Powerful test, 267
X2 (k), 242 Probability, 87, 90
Measurable sets, 89 distribution, 93, 134
Median, 6, 27 function, 90
Midrange, 15 space, 90
Mode, 14 discrete, 94
of F(m,n), 302 finite, 93
Moment, 167 Product:
Multinomial distribution, 191 rule principle, 56
Multinomial random variable, 322 set, 52, 68
Multiplication theorem, 110 Proper subset, 45
Mutually exclusive, 88 Proportions, sample, 216, 226
hypotheses tests for, 273, 282, 287
N, 46 P-value of a test, 262
Natural numbers N, 46
Negative correlation, 18 Quadrants, 16
Normal approximation to B(n,p), 187, 200 Qualitative data, 4
Normal distribution, 182, 197 Quartiles, 11, 29
evaluation of, 185
Normal equations, 36, 41 R, 1,46
Null hypothesis, 261 Random:
confidence interval, 238
One-sided: sample, 210, 236
alternative, 262 Random variable, 132, 153
test, 262 continuous, 132
One-way analysis of variance, 330, 345, 355 discrete, 132
Ordered pairs, 52 function of, 146
Origin, 16 sample, 236
sums and products, 133
P, 46 Range, 14
P(n,r), 57 space, 132
Parabolic curve, 23, 35 Range of a function, 132
Parameters, 95, 236, 248 Real numbers R, 46
Partition, 53, 69 line, 1
Pascal’s triangle, 57 Reasonable doubt, hypothesis testing, 267
Percentiles, 11, 29 Regression line, 21
Permutations, 58, 74 Relative:
with repetitions, 59 frequency, 87
Pie graph, 4 variation, 13
Point estimate, 236 Repeated trials, 115, 124
Poisson distribution, 190, 202 Robust confidence interval, 247
Polynomial curve, 23
Pooled: S», pooled estimator of oy and oy, 292, 295
estimator of common standard deviation, 292, 295 Sample:
sample proportion, 299 mean, 5, 132, 152, 213, 222, 230
Population, 210 proportion, 216, 226, 231

mean, 6 random, 210, 236
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Sample (Cent.):
space, 88, 97
discrete, 94
finite, 92
uncountable, 95
standard deviation, 8
variance, 8, 217, 228, 230
Sampling, 60, 210, 219, 230
from large populations, 216
with replacement, 210, 219, 230
without replacement, 211, 219, 230
Sampling distribution, 210
of (n—1)8%/5°S, 219
of X, 213-215
Scatterplots, 17
Sets, 45, 63
countable, 51
finite, 50
Significance level of a test, 263
Simple hypothesis, 262
Small samples, 243
Space, probability, 90
Square:
deviation, 331, 335
between columns, 335
between row samples, 331, 335
variations, 331, 335
Squares error, 21
Standard deviation, 7, 27, 139, 148, 157
Standard deviation of:
binomial distribution, 181
normal distribution, 182
Poisson distribution, 190
F(m, n), 302
P, 217
§%, 219
1(k), 242
X, 213, 214, 216
(k) 218
Standard units, 13, 185
Standardized:
normal distribution, 183
random variable, 141
Statistic, 236, 248, 257
Statistical significance, 263
Statistics, 5, 236, 248
Stem-and-leaf, 26
Stirling’s approximation, 57
Stochastic process, 111, 119
Subscript, 1

INDEX

Subset, 45, 63
Sum rule principle, 55
Summation symbol, 1

¢t distribution, 242
Tally count, 3, 24
Test statistic, 292
Tests:
chi-square, 322
significance level, 263
Total:
probability, 112, 121
square deviation, 331, 335
Tree diagram, 62, 76, 111
Two-sided:
alternative, 262
test, 262
Two-way analysis of variance, 334, 350
Type I error, 265
probability of, 266
Type II error, 265
probability of, 266

Unbiased:

estimator, 218, 236

point estimate, 237
Uncountable spaces, 95, 101
Unimodal, 14
Union of sets, 48
Universal set U, 46

V¢, square deviation between columns, 331
V., square deviation due to random error, 331, 336
Va, square deviation between row samples, 331, 335
V7, total square deviation, 331, 335
Value, class, 3
Variance, 7, 27, 139, 148, 157, 217
confidence interval, 245
hypotheses tests for, 274, 275, 284, 287
sample, 217, 228, 232
Variance of:
binomial distribution, 181
normal distribution, 182
Poisson distribution, 190
Variation, coefficient of, 13
Venn diagrams, 47, 65

Weighted mean, 15

Z., integers, 46
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