

GEO5017 Machine Learning for the Built Environment

Lab Session Using SVM with Scikit Learn

Shenglan Du

scikit-learn

Machine Learning in Python

Getting Started

Release Highlights for 1.0

GitHub

- Simple and efficient tools for predictive data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license

Classification

https://scikit-learn.org/stable/

Identifying which category an object belongs to.

Applications: Spam detection, image recognition. Algorithms: SVM, nearest neighbors, random forest,

and more...

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices.

Algorithms: SVR, nearest neighbors, random forest,

and more...

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering, mean-

shift, and more...

Scikit-Learn

- A free machine learning library in Python, featuring:
 - Classification
 - Regression
 - Clustering

Supports algorithms such as SVM, Random forest, K-means, etc.

Online documentation: https://scikit-learn.org/stable/

Scikit-Learn: Getting Started

Install using either pip or conda

```
$ pip install -U scikit-learn
```

In case you would like to check your installation

```
$ python -m pip show scikit-learn # to see which version and where scikit-learn is installed
$ python -m pip freeze # to see all packages installed in the active virtualenv
$ python -c "import sklearn; sklearn.show_versions()"
```

Scikit-Learn: SVM

- 3 versions of SVM classifiers are provided
 - SVC: commonly used in practice
 - NuSVC: similar to SVC, has slightly different yet equivalent mathematical formulations and parameter set
 - LinearSVC: faster implementation of SVM, but can only adopt linear kernels

A Complete SVC Classifier

sklearn.svm.SVC1

class sklearn.svm.SVC(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random_state=None) [source]

Documentation:

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC

• User guide:

https://scikit-learn.org/stable/modules/svm.html#svm-classification

Hyperparameters and Arguments

- C: the coefficient introduced in soft-margin SVM
- kernel: a trick you can use to transform input features
- class_weight: specify the weight per class
- max_iter: hard limit on iterations within solver, or -1 for no limit.
- decision_function_shape:
 - 'ovr': one to rest, default
 - 'ovo': one to one

Support Vector Machine using Kernels

Why Kernel SVM?

Classification on a 1D feature space

- -1
- +1

Why Kernel SVM?

Transforming features to higher dimensions to fit g(x)

Why Kernel SVM?

Classification on a high-dimensional feature space

Kernel SVM: How?

Recall the SVM solution:

$$\mathbf{w} = \sum_{i=1}^{n} \lambda_i y_i \mathbf{x_i}$$

Bring this solution back to the model:

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \sum_{i=1}^{N} \lambda_i y_i \mathbf{x_i}^T \mathbf{x} + b$$

Kernel SVM: How?

• After applying a feature transformation function $\Phi(x)$

$$f(\Phi(\mathbf{x})) = \sum_{i=1}^{n} \lambda_i y_i \Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}) + b$$

Kernel, also can be written as $K(x_i, x)$

Feature Transformation

• Apply a function, i.e., $\Phi(x)$, that transforms the raw feature vectors to a set new feature vectors

Main goal: to enhance the representation capability

Widely used in classical machine learning models

 Deep learning has strong power to automatically transform features into very high dimensions

SVM Kernels

- Scikit Learn provides various options for choosing kernels
 - Polynomial kernel, i.e., 'poly'
 - Gaussian kernel, i.e., 'rbf'

SVM Kernels

$$f(\Phi(x)) = \sum_{i=1}^{n} \lambda_i y_i \Phi(x_i)^T \Phi(x) + b$$

• We don't conduct feature transformation, i.e., x to $\Phi(x)$

 Instead, we apply kernel trick to obtain the dot product of the transformed features in high dimensional space

Polynomial Kernel (Optional)

A polynomial kernel in 1D dimension:

$$K(x_a, x_b) = (x_a x_b + \frac{1}{2})^2$$

Polynomial Kernel (Optional)

$$K(x_a, x_b) = (x_a x_b + \frac{1}{2})^2 = x_a x_b + x_a^2 x_b^2 + \frac{1}{4}$$
$$= \left\{x_a, x_a^2, \frac{1}{2}\right\}^T \left\{x_b, x_b^2, \frac{1}{2}\right\}$$

Polynomial Kernel (Optional)

A general polynomial kernel in abstract high dimension:

$$K(\boldsymbol{x_a}, \boldsymbol{x_b}) = (\boldsymbol{x_a}^T \boldsymbol{x_b} + r)^d$$

• An RBF kernel in 1D dimension:

$$K(x_a, x_b) = e^{-\frac{1}{2}(x_a - x_b)^2}$$

RBF naturally contains a polynomial kernel in infinite space

$$K(x_a, x_b) = e^{-\frac{1}{2}(x_a - x_b)^2} = e^{-\frac{1}{2}(x_a^2 + x_b^2) + x_a x_b}$$
$$= e^{-\frac{1}{2}(x_a^2 + x_b^2)} e^{x_a x_b}$$

RBF naturally contains a polynomial kernel in infinite space

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^{\infty}}{\infty!}$$

$$e^{x_a x_b} = 1 + x_a x_b + \frac{(x_a x_b)^2}{2!} + \frac{(x_a x_b)^3}{3!} + \dots + \frac{(x_a x_b)^\infty}{\infty!}$$

$$= \left\{ 1, x_a, \frac{x_a^2}{2!}, \frac{x_a^3}{3!}, \dots, \frac{x_a^\infty}{\infty!} \right\}^T \left\{ 1, x_b, \frac{x_b^2}{2!}, \frac{x_b^3}{3!}, \dots, \frac{x_b^\infty}{\infty!} \right\}$$

RBF naturally contains a polynomial kernel in infinite space

$$K(x_a, x_b) = e^{-\frac{1}{2}(x_a^2 + x_b^2)} e^{x_a x_b}$$

$$= e^{-\frac{1}{2}(x_a^2 + x_b^2)} \left\{ 1, x_a, \frac{x_a^2}{2!}, \frac{x_a^3}{2!}, \dots, \frac{x_a^\infty}{\infty!} \right\}^T \left\{ 1, x_b, \frac{x_b^2}{2!}, \frac{x_b^3}{2!}, \dots, \frac{x_b^\infty}{\infty!} \right\}$$

• A general RBF kernel in multi-feature dimension:

$$K(x_a, x_b) = e^{-\frac{1}{\sigma^2}(\|x_a - x_b\|)^2}$$

 It measures the influence one sample has over another sample

Using SVC to perform Multi-Class Prediction

SVC for Iris Classification

- 3 types of irises in total: Setosa, Versicolour, Virginica
- 4 features: Sepal Length, Sepal Width, Petal Length and Petal Width

SVC for Iris Classification

Import libraries

```
from sklearn import svm, datasets import sklearn.model_selection as model_selection from sklearn.metrics import accuracy_score
```

Load dataset

```
iris = datasets.load_iris()
X = iris.data[:, :2]
y = iris.target
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, train_size=0.60, test_size=0.40, random_state=101)
```

SVC for Iris Classification

Construct SVC classifiers on the training set

```
rbf = svm.SVC(kernel='rbf', gamma=0.5, C=0.1).fit(X_train, y_train)
poly = svm.SVC(kernel='poly', degree=3, C=1).fit(X_train, y_train)
```

Perform predictions on the test set

```
poly_pred = poly.predict(X_test)
rbf_pred = rbf.predict(X_test)
```

Accuracy evaluation. Many metrics can be used

A2: Point Cloud Classification

 You will use a classical ML model to perform point cloud classification (on object level)

 You are allowed to use third-party libraries such as scikit learn only for training your classifiers

We talk more about performance in the next lab session

Questions?