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scikit-learn

Simple and efficient tools for predictive data analysis
Accessible to everybody, and reusable in various contexts
Built on NumPy, SciPy, and matplotlib

Open source, commercially usable - BSD license

Machine Learning tn Python

Classification

Identifying which category an object belongs to.

Applications: Spam detection, image recognition.
Algorithms: SVM, nearest neighbors, random forest,
and more...

https://scikit-learn.org/stable/

Regression

Predicting a continuous-valued attribute associated
with an object.

Applications: Drug response, Stock prices.
Algorithms: SVR, nearest neighbors, random forest,
and more...

Boosted Decision Tree Regression
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Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping
experiment outcomes

Algorithms: k-Means, spectral clustering, mean-
shift, and more...

K-means clustering on the digits dataset (PCA-reduced data)
Centroids are marked with white cross




Scikit-Learn

* A free machine learning library in Python, featuring:
* Classification
* Regression
* Clustering

e Supports algorithms such as SVM, Random forest, K-means,
etc.

* Online documentation: https://scikit-learn.org/stable/



Scikit-Learn: Getting Started

* Install using either pip or conda

$ pip install -U scikit-learn

* In case you would like to check your installation

$ python -m pip show scikit-learn # to see which version and where scikit-learn is installed
$ python -m pip freeze # to see all packages installed in the active virtualenv
$ python -c "import sklearn; sklearn.show versions()"



Scikit-Learn: SVM

* 3 versions of SVM classifiers are provided
* SVC: commonly used in practice

* NuSVC: similar to SVC, has slightly different yet equivalent
mathematical formulations and parameter set

* LinearSVC: faster implementation of SVM, but can only adopt
linear kernels
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A Complete SVC Classifier

sklearn.svm.SVCT

class sklearn.svm.SVC(*, C=1.0, kernel="rbf', degree=3, gamma="scale', coef0=0.0, shrinking=True, probability=False, tol=0.001,
cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape="ovr', break_ties=False,
random_state=None) [source]

* Documentation:
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC

e User guide:
https://scikit-learn.org/stable/modules/svm.html#svm-classification



https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/svm.html

Hyperparameters and Arguments

* C: the coefficient introduced in soft-margin SVM
* kernel: a trick you can use to transform input features
* class_weight: specify the weight per class
* max_iter: hard limit on iterations within solver, or -1 for no
limit.
* decision function_shape:
e ‘ovr’: one to rest, default
* ‘ovo’: one to one



Support Vector Machine
using Kernels



Why Kernel SVM?

* Classification on a 1D feature space
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Why Kernel SVM? A 2

* Transforming features to higher dimensions to fit g(x)

X2 1 g(x)
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Why Kernel SVM? J

* Classification on a high-dimensional feature space

Input Space Feature Space

Adapted from WI4635, TUDelft 11



Kernel SVM: How?

e Recall the SVM solution:

n
W = z Aiyix;
i=1

* Bring this solution back to the mrf)delz

Fx) =wlx+ b = z AyixT x + b
=1



Kernel SVM: How? *

* After applying a feature transformation function ®(x)

F@@) = ) Ayi@(x)T @) + b

\

Kernel, also can be written as K (x;, X)



Feature Transformation o™

* Apply a function, i.e., ®(x), that transforms the raw feature
vectors to a set new feature vectors

* Main goal: to enhance the representation capability
* Widely used in classical machine learning models

* Deep learning has strong power to automatically transform
features into very high dimensions



SVM Kernels

&

* Scikit Learn provides various options for choosing kernels
* Polynomial kernel, i.e., ‘poly’
e Gaussian kernel, i.e., ‘rbf’

SVM Decision Boundary accuracy=1.0 (Kernel=poly SVM Decision Boundary accuracy=1.0 (Kernel=rbf
C=1.0 coef0=10.0 gamma=0.1 degree=4) C=10.0 gamma=0.1)
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Image source: https://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html 15



SVM Kernels

F@@) = ) Ay@(x) @) + b

* We don’t conduct feature transformation, i.e., x to ®(x)

* Instead, we apply kernel trick to obtain the dot product of
the transformed features in high dimensional space



Polynomial Kernel (Optional)

A polynomial kernel in 1D dimension:

1
K(xq, xp) = (xqxp + E)Z
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Polynomial Kernel (Optional)

K(xa;xb) = (Xgxp + 5)2: XaXp T xaszz + —

1) 1
— {xarxaz'z} {xb:xbz;z}
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Polynomial Kernel (Optional)

* A general polynomial kernel in abstract high dimension:

K(xq, xp) = (xaTxb T r)d
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RBF Kernel (Optional)

e An RBF kernel in 1D dimension:

1
K(x,, x,) = e zFa=%0)’
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RBF Kernel (Optional) o™

* RBF naturally contains a polynomial kernel in infinite space

2 2
Xa—X Xq TX +XaX
K(xa,xb)—e 2(“ b)" = ¢ 2(“ b")+XaXp



RBF Kernel (Optional) o™

* RBF naturally contains a polynomial kernel in infinite space
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RBF Kernel (Optional) o™

* RBF naturally contains a polynomial kernel in infinite space

K(x,, x,) =e z(xa +xp?) o XaXb
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RBF Kernel (Optional)

* A general RBF kernel in multi-feature dimension:

K(x,, x,) = e o2 Iaxbl)’
a’

* [t measures the influence one sample has over another
sample
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Using SVC to perform Multi-
Class Prediction



SVC for Iris Classification J

* 3 types of irises in total: Setosa, Versicolour, Virginica
e 4 features: Sepal Length, Sepal Width, Petal Length and Petal Width
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https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html



SVC for Iris Classification

* Import libraries

from sklearn import svim, datasets
import sklearn.model_selection as model_selection
from sklearn.metrics import accuracy_score

e Load dataset

iris = datasets.load_iris ()

X = iris.data[:, :2]

y = iris.target

X_train, X_test, y_train, y_test = model_selection.train_test_split (X, y,

train_size=0.60, test_size=0.40, random_state=101)
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SVC for Iris Classification

* Construct SVC classifiers on the training set
rbf = svin.SVC(kernel="rbf’ ", gamma=0.5, C=0.1).fit (X_train, y_train)
poly = svm.SVC( kernel="poly ', degree=3, C=1). fit (X_train, y_train)

* Perform predictions on the test set
poly_pred = poly.predict(X_test)
rbf_pred = rbf.predict(X_test)

* Accuracy evaluation. Many metrics can be used



A2: Point Cloud Classification o™

* You will use a classical ML model to perform point cloud
classification (on object level)

* You are allowed to use third-party libraries such as scikit
learn only for training your classifiers

* We talk more about performance in the next lab session



Questions?



