Neural Networks

Nail Ibrahimli

Perceptron - a.k.a. single neuron

```
A perceptron takes multiple inputs (e.g.: x1, \(x 2, x 3\) ) and produces a single binary output.
```


Perceptron - a.k.a. single neuron

```
A perceptron takes multiple inputs
\[
\text { output }= \begin{cases}0 & \text { if } \sum_{j} w_{j} x_{j} \leq \text { threshold } \\ 1 & \text { if } \sum_{j} w_{j} x_{j}>\text { threshold }\end{cases}
\]
``` (e.g.: \(\times 1, \times 2, \times 3\) ) and produces a single binary output.


\footnotetext{
That's all there is to how a perceptron works!
}

\section*{Perceptron - a.k.a. single neuron}
```

Output: Going to Gouda for cheese festival on Saturday.
X1: Is the weather good?
X2: Am I going with friend?
X3: Is the venue easy to commute?

```


\section*{Perceptron - a.k.a. single neuron}
```

Output: Going to Gouda for cheese festival on Saturday.
X1: Is the weather good?
X2: Am I going with friend?
X3: Is the venue easy to commute?
Let's say:

```

```

You don't mind that much going alone (X2), and
since it is at the Weekend you don't mind that much to commute for longer(X3).
But you hate bad weather and you would rather stay at home in bad weather (X1).

```

\section*{Perceptron - a.k.a. single neuron}
```

Output: Going to Gouda for cheese festival on Saturday.
X1: Is the weather good?
X2: Am I going with friend?
X3: Is the venue easy to commute?
Let's say:

```

```

You don't mind that much going alone (X2), and
since it is at the Weekend you don't mind that much to commute for longer(X3).
But you hate bad weather and you would rather stay at home in bad weather(X1).
w1 = 6, w2 = w3 = 2

```

\section*{Perceptron - a.k.a. single neuron}
```

Output: Going to Gouda for cheese festival on Saturday.
X1: Is the weather good?
X2: Am I going with friend?
X3: Is the venue easy to commute?
w1 = 6, w2 = w3 = 2

```
What would happen if threshold \(=5\) ?

\[
\text { output }= \begin{cases}0 & \text { if } \sum_{j} w_{j} x_{j} \leq \text { threshold } \\ 1 & \text { if } \sum_{j} w_{j} x_{j}>\text { threshold }\end{cases}
\]

\section*{Perceptron - a.k.a. single neuron}
```

Output: Going to Gouda for cheese festival on Saturday.
X1: Is the weather good?
X2: Am I going with friend?
X3: Is the venue easy to commute?
w1 = 6, w2 = w3 = 2
What would happen if threshold = 5?
What would happen if threshold = 3?

```

\[
\text { output }= \begin{cases}0 & \text { if } \sum_{j} w_{j} x_{j} \leq \text { threshold } \\ 1 & \text { if } \sum_{j} w_{j} x_{j}>\text { threshold }\end{cases}
\]

\section*{Perceptron - a.k.a. single neuron}

We can rewrite weighted sum as an inner product of two vectors.

We can assume that \(\mathrm{b}=-\) threshold.
\[
\sum_{j} w_{j} x_{j}=w \cdot x
\]

output \(= \begin{cases}0 & \text { if } \sum_{j} w_{j} x_{j} \leq \text { threshold } \\ 1 & \text { if } \sum_{j} w_{j} x_{j}>\text { threshold }\end{cases}\)

\section*{Perceptron - a.k.a. single neuron}

We can rewrite weighted sum as an inner product of two vectors.

We can assume that \(\mathrm{b}=-\) threshold.
\[
\sum_{j} w_{j} x_{j}=w \cdot x
\]

\[
\text { output }= \begin{cases}0 & \text { if } w \cdot x+b \leq 0 \\ 1 & \text { if } w \cdot x+b>0\end{cases}
\]

\section*{Layers of Perceptrons}

First layer:
Making simple three decisions
by weighing inputs

Second layer:
Making four decisions by weighing
up the results from first layer decisions making

Using multiple layers of perceptrons, neural networks can make more sophisticated decisions

\section*{Layers of Perceptrons}

First layer:
Making simple three decisions
by weighing inputs

Second layer:
Making four decisions by weighing up the results from first layer decisions making

Using multiple layers of perceptrons, neural networks can make more sophisticated decisions.

But how we set the weights (and biases)?

\section*{Neural Networks}
1. Suppose that we know how small change in weights changes the output.
small change in any weight (or bias) causes a small change in the output

\section*{Neural Networks}
1. Suppose that we know how small change in weights changes the output.
2. Starting with random initialization we can iteratively update (supervise) the weights with small changes to bring the output to expected value.
small change in any weight (or bias) causes a small change in the output

\section*{Neural Networks}
1. Suppose that we know how small change in weights changes the output.
2. Starting with random initialization we can iteratively update (supervise) the weights with small changes to bring the output to expected value.
3. We control the learning process, by testing and validating it with data that were not used while weight optimization.
small change in any weight (or bias) causes a small change in the output

Problem with Perceptron: \(w+\Delta w\)
\[
\text { output }= \begin{cases}0 & \text { if } w \cdot x+b \leq 0 \\ 1 & \text { if } w \cdot x+b>0\end{cases}
\]

Problem with Perceptron: \(w+\Delta w\) aumes semald damese in the ouput
\[
\text { output }= \begin{cases}0 & \text { if } w \cdot x+b \leq 0 \\ 1 & \text { if } w \cdot x+b>0\end{cases}
\]

step function

Problem with Perceptron: waw ames smal danase in the output
\[
\text { output }= \begin{cases}0 & \text { if } w \cdot x+b \leq 0 \\ 1 & \text { if } w \cdot x+b>0\end{cases}
\]

step function

sigmoid function

\section*{Sigmoid Neuron}

A perceptron sigmoid neuron takes multiple inputs (e.g.: \(x 1, x 2, x 3\)) and produces a single binary output.

\section*{Sigmoid Neuron}

A perceptron sigmoid neuron takes multiple inputs (e.g.: \(x 1, x 2, x 3\)) and produces a single binary output.

sigmoid function
\[
\begin{aligned}
& z=w \cdot x+b \\
& \sigma(z)=\frac{1}{1+e^{-z}}
\end{aligned}
\]

\section*{First order Taylor approximation (Quick Lookup)}
```

Let's say we have function f, and value c,
for which function output value of f(c) is known.
f(x) \approx f'(c)(x-c)+f(c)
f(x)-f(c)\approxf,}(c)(x-c
\Deltaf \approx f'(c) \Deltax

```
For \(x\) in neighborhood of \(c\), output value \(f(x)\) can be approximated as:

\section*{Neural Networks:}

\section*{Feedforward Network architecture}

3 layers:
Input
Hidden
Output

Recognizing Digits with Neural Nets.

MNIST Data:
\(28 \times 28\) images
Greyscale (single channel)
Goal: classifying/recognizing images.

Recognizing Digits with Neural Nets.

\begin{tabular}{l|l|l|l|l|l|l|l|l|}
\hline 0 & 4 & 1 & 9 & 2 & 1 & 3 & 1 & 4 \\
\hline
\end{tabular}

\section*{Recognizing Digits with Neural Nets.}

For \(x\) representing digit 6:
\[
y(x)=(0,0,0,0,0,0,1,0,0,0)^{T}
\]
\[
C(w, b) \equiv \frac{1}{2 n} \sum_{x}\|y(x)-a\|^{2}
\]

Learning with gradient descent

Learning with gradient descent

Learning with gradient descent

\[
\Delta C \approx \frac{\partial C}{\partial v_{1}} \Delta v_{1}+\frac{\partial C}{\partial v_{2}} \Delta v_{2}
\]

Learning with gradient descent

\[
\begin{gathered}
\Delta C \approx \frac{\partial C}{\partial v_{1}} \Delta v_{1}+\frac{\partial C}{\partial v_{2}} \Delta v_{2} \\
\Delta C \approx \nabla C \cdot \Delta v
\end{gathered}
\]
\[
\nabla C \equiv\left(\frac{\partial C}{\partial v_{1}}, \frac{\partial C}{\partial v_{2}}\right)^{T}
\]

Learning with gradient descent

\(\nabla C \equiv\left(\frac{\partial C}{\partial v_{1}}, \frac{\partial C}{\partial v_{2}}\right)^{T}\)
\(\Delta C \approx \frac{\partial C}{\partial v_{1}} \Delta v_{1}+\frac{\partial C}{\partial v_{2}} \Delta v_{2}\)
\[
\Delta C \approx \nabla C \cdot \Delta v
\]
\[
\Delta v=-\eta \nabla C
\]
\[
v \rightarrow v^{\prime}=v-\eta \nabla C
\]

Learning with gradient descent

\[
\begin{gathered}
\nabla C \equiv\left(\frac{\partial C}{\partial v_{1}}, \ldots, \frac{\partial C}{\partial v_{m}}\right)^{T} \\
\Delta C \approx \nabla C \cdot \Delta v \\
\Delta v=-\eta \nabla C \\
v \rightarrow v^{\prime}=v-\eta \nabla C
\end{gathered}
\]

Learning with gradient descent

\[
\begin{gathered}
\nabla C \equiv\left(\frac{\partial C}{\partial v_{1}}, \ldots, \frac{\partial C}{\partial v_{m}}\right)^{T} \\
\Delta C \approx \nabla C \cdot \Delta v \\
\Delta v=-\eta \nabla C \\
v \rightarrow v^{\prime}=v-\eta \nabla C
\end{gathered}
\]

\section*{NN with gradient descent}

\[
\begin{aligned}
w_{k} & \rightarrow w_{k}^{\prime}=w_{k}-\eta \frac{\partial C}{\partial w_{k}} \\
b_{l} & \rightarrow b_{l}^{\prime}=b_{l}-\eta \frac{\partial C}{\partial b_{l}}
\end{aligned}
\]

Stochastic Gradient Descent

\[
\begin{gathered}
C_{x} \equiv \frac{\|y(x)-a\|^{2}}{2} \\
C=\frac{1}{n} \sum_{x} C_{x} \\
\nabla C=\frac{1}{n} \sum_{x} \nabla C_{x} \\
\frac{\sum_{j=1}^{m} \nabla C_{X_{j}}}{m} \approx \frac{\sum_{x} \nabla C_{x}}{n}=\nabla C
\end{gathered}
\]

Stochastic Gradient Descent
\[
\begin{gathered}
C_{x} \equiv \frac{\|y(x)-a\|^{2}}{2} \\
C=\frac{1}{n} \sum_{x} C_{x} \\
\nabla C=\frac{1}{n} \sum_{x} \nabla C_{x} \\
\frac{\sum_{j=1}^{m} \nabla C_{X_{j}}}{m} \approx \frac{\sum_{x} \nabla C_{x}}{n}=\nabla C \\
w_{k} \rightarrow w_{k}^{\prime}=w_{k}-\frac{\eta}{m} \sum_{j} \frac{\partial C_{X_{j}}}{\partial w_{k}} \\
b_{l} \rightarrow b_{l}^{\prime}=b_{l}-\frac{\eta}{m} \sum_{j} \frac{\partial C_{X_{j}}}{\partial b_{l}},
\end{gathered}
\]

\section*{BackPropagation}

YEAH. ALL THESE EQUATIONS ARE LIKE MIRACLES. YOU TAKE TWO NUMBERS AND WHEN YOU ADD THEM, THEY MAGICALLY BECOME ONE NEW NUMBER! NO ONE CAN SAY HOW IT HAPPENS. YOU EITHER BELIEVE IT OR YOU DONT.

\section*{BackPropagation: Notation}

\(w_{j k}^{l}\) is the weight from the \(k^{\text {th }}\) neuron in the \((l-1)^{\text {th }}\) layer to the \(j^{\text {th }}\) neuron in the \(l^{\text {th }}\) layer

\section*{BackPropagation: Notation}

\(w_{j k}^{l}\) is the weight from the \(k^{\text {th }}\) neuron in the \((l-1)^{\text {th }}\) layer to the \(j^{\text {th }}\) neuron in the \(l^{\text {th }}\) layer

BackPropagation: Cost function

\section*{BackPropagation}
\[
\begin{gathered}
C=\sum\left(y-a^{L}\right)^{2} \\
\frac{\partial C}{\partial a^{L}}=2\left(a^{L}-y\right)
\end{gathered}
\]

\section*{BackPropagation}

\[
\begin{array}{cc}
z^{L}=w^{L} \cdot a^{L-1}+b^{L} & C=\sum\left(y-a^{L}\right)^{2} \\
a^{L}=\sigma\left(z^{L}\right) & \frac{\partial C}{\partial a^{L}}=2\left(a^{L}-y\right)
\end{array}
\]

\section*{BackPropagation}

\section*{BackPropagation}

\section*{BackPropagation}

\section*{BackPropagation}

\section*{BackPropagation}

\section*{BackPropagation}
```

