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Linear Classifiers

•What is the definition of linear classifiers?
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Negative class

Positive class



Linear Classifiers

•We use a linear functions of input 𝒙 to describe the decision 
boundary

𝒘𝑻𝒙 + 𝑏 = 0

• A decision boundary is a (D-1) dimension hyperplane of D 
dimension input feature space
• If 𝒙 is 1D, the decision boundary is a 0D point
• If 𝒙 is 2D, the decision boundary is a 1D line
• ……
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Linear Classifiers
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Standard Linear (Fisher) classifier Standard SVM
1D feature space 2D feature space



Linear Classifiers

• If there’s slight data class overlap, soft-margin SVM is used
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Linear Classifiers

•What if the classes highly overlap?
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Linear Classifiers

• Example #1: Abnormalities in real world
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Image source 1: https://savvygardening.com/narrow-trees-for-small-gardens/
Image source 2: https://9gag.com/gag/aOBNxmE



Linear Classifiers

• Example #2: XOR problem. 
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x1 x2 y

0 0 +1

0 1 -1

1 0 -1

1 1 +1



Non-Linear Classifiers

• Non-linear classifiers are designed to cope with non-linearly 
separable classes, which is quite common in real world

• Some popular non-linear classifiers:
• Decision tree
• Random forest
• Multi-layer perceptron
• (Deep) Neural network
• ……
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Decision Tree

• The feature space is split into unique regions, corresponding 
to classes, in a sequent manner
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Decision Tree

• Classifying of a data sample is done by a sequence of 
decisions along a path of the tree 
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Decision Tree

• Splitting rule: every split must generate subsets that are 
more class homogeneous

15



Decision Tree

• Splitting rule: every split must generate subsets that are 
more class homogeneous

16



Decision Tree

• Splitting rule: every split must generate subsets that are 
more class homogeneous

17



Decision Tree

• Splitting rule: every split must generate subsets that are 
more class homogeneous

18



Decision Tree

• Two impurity measures of a node t:
• Gini impurity

𝐼 𝑡 = 1 −+
"#$

%

𝑝(𝑦"|𝑡)&

• Entropy impurity

𝐼 𝑡 = −+
"#$

%

𝑝(𝑦"|𝑡)𝑙𝑜𝑔&𝑝(𝑦"|𝑡)
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Decision Tree

• Comparison between Gini and Entropy in 2-class problem
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Left: original Gini compared with Entropy; Right: Gini*2 compared with Entropy



Decision Tree

• Decision tree growing steps:
• Begin with the root node t of the original dataset 𝑋! = 𝑋
• For each feature 𝑥':
• For each candidate value 𝑎"# (n=1,2,3,…,):

• Divide the data into left node 𝑋!" and right node 𝑋!# by answering:
𝑥" < 𝑎$%

• Compute the Impurity decrease
∆𝐼 = 𝐼 𝑡 −

𝑁!"
𝑁!

𝐼 𝑡𝑌 −
𝑁!#
𝑁!

𝐼 𝑡𝑁

• Find the feature 𝑥' and value 𝑎'1 that lead to the most impurity 
decrease
• Continue splitting……
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Decision Tree

• Splitting stops until one of the following conditions meets:
• Using all possible splitting ways, we have:

∆𝐼 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

• The data size of 𝑋! in node t is too small

• The data 𝑋! in node t is pure now (i.e., contains only one class)
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Decision Tree

• Visualizing a decision tree trained by iris dataset
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Source code: 
https://gist.github.com/WillKoe
hrsen/ff77f5f308362819805a3d
efd9495ffd



Decision Tree Remarks

• Size of the tree must be large enough but too large. 
Otherwise, it overfits to particular data details

• Trees have high variance. A small change in data often leads 
to a very different tree
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Random Forest
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Random Forest

• Bagging
• Sample the original dataset with 

replacement (i.e., for the original 
set [1,2,3,4,5], we can sample 
[1,3,4,4,5])

• Create multiple tree classifiers, 
each with bagging. Summarize 
the results using majority vote.
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Random Forest

• Feature Randomness
• Each tree can pick only 

from a random subset 
of features

• This is to further ensure 
the independence 
among various trees
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Image source: towards data science



Random Forest Remarks

• Combining relatively uncorrelated classifiers together 
generally outperforms a single classifier

• Combining models also helps to reduce the variance

•With sufficient amount of trees, RF can achieve comparable 
performance as neural networks
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SUM: Semantic Urban Meshes

• Semantic mesh segmentation of urban environment
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SUM: Semantic Urban Meshes

• Algorithm workflow
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SUM: Semantic Urban Meshes

• Features to use
• Eigen features

Linearity: $!%$"$!

Sphericity: $#$!
Curvature change: $#

$!&$"&$#
Verticality: 1 − |𝒏𝟑 * 𝒏𝒛|

• Elevation features
Relative elevation: 𝑧 − 𝑧)"#
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SUM: Semantic Urban Meshes

• Features to use
• Color features

RGB (HSV) colors
Color variance within a local neighborhood

• Other mesh-based features
Mesh area
Triangle density
……
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SUM: Semantic Urban Meshes

• Segmentation performance compared with deep learning 
methods 
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SUM: Semantic Urban Meshes

• Visualization of the (part) result
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Data and Features

•Will more features lead to better performance?

38Image Source: https://www.mathworks.com/help/stats/visualize-high-dimensional-data-using-t-sne.html



Data and Features

• Curse of dimensionality
• Too few samples in too high dimensional space

• Computation complexity

• Feature correlations
• 1+1 is not always larger than 2
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Feature Selection

• How to measure if a feature subset is good or not?
• The best is to measure actual classification performance. However, 

it can be expensive

• How could we select the most important features?
• Limit the dimensionality (i.e., number of features)
• Retain the class discriminatory information
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Feature Selection

• Scatter matrices for feature selection criterion:
• Within-scatter matrix:

𝑆2 = +
"#$

%
𝑁"
𝑁
Σ"

• Between-scatter matrix:

𝑆3 = +
"#$

%
𝑁"
𝑁
(𝝁𝒌 − 𝝁)(𝝁𝒌 − 𝝁)5

K: total number of classes
𝝁: mean of all samples
𝝁𝒌, Σ': mean and covariance matrix of per-class samples 42



Feature Selection

• 𝑆!: the lower, the better;  𝑆": the higher, the better

• There’re several ways of combining them, e.g.,
𝐽 =

𝑡𝑟(𝑆3)
𝑡𝑟(𝑆2) 43



Feature Selection

•We want to select d out from p features, and choose the 
subset with optimal criterion value

• How many possible subsets in total?
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Feature Selection

• Some sub-optimal algorithms to search for the d features:
• (1) Choose the best individual d features

• (2) Forward search:
• Starting with the empty set, each time add one feature that optimizes the 

entire chosen feature set

• (3) Backward search:
• Starting with the whole set, each time drop one feature that optimizes the 

rest of the feature set 
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Feature Selection

• Besides feature selection, you can also extract new features 
by dimension reduction methods (e.g., PCA)

• Feature engineering is the focus of most classical ML 
methods
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Classifier Evaluation

• Common evaluation metrics:
• OA: overall accuracy
• Out of 500 objects, how many are correctly classified?

• mAcc: mean per-class accuracy
• How is the accuracy of each class? Average them.

• Confusion matrix

• mIoU: mean intersection over union
48



Classifier Evaluation

• Is it good to measure the performance of the classifier in the 
training dataset? Why?
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Classifier Evaluation

• Classification accuracy over training set can be biased, and 
optimistically estimated

•We’re interested in true accuracy of the classifier
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Classifier Evaluation

• Train-test split

51

Training and testing
on the same set will 
give a good 
classifier, but will 
yield a biased 
estimate of the 
model

A small independent 
test set yields an 
unbiased, but
unreliable
accuracy estimate 
for a well-trained
classifier

A large, 
independent test set
yields an unbiased 
and reliable 
accuracy estimate
for a badly trained 
classifier

7:3, 6:4, 5:5 ratios 
are commonly used 
in practice



Classifier Evaluation

• Sometimes a validation set is introduced (common in deep 
learning)
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Classifier Evaluation

• Cross Validation: making full use of data
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Questions?
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Review: SVM in Scikit Learn

• SVM has 3 classifiers 
• SVC: most commonly used in practice

• NuSVC: similar to SVC, has slightly different yet equivalent 
mathematical formulations and parameter set

• LinearSVC: faster implementation of SVM, but can only adopt 
linear kernels
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SVC: Documentation

• The most important hyper-parameters:
• C: the coefficient introduced in soft-margin SVM
• Kernel: a trick you can use to transform input features
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SVC: Documentation

• Other important hyper-parameters:
• Class_weight: specify the weight per class. You either input a 

dictionary of pre-fixed weights, or use ‘balanced’.
• Max_iter: hard limit on iterations within solver, or -1 for no limit.
• Decision_function_shape: 
• ‘ovr’: default, one versus the rest for multi-class
• ‘ovo’: one versus one for multi-class
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SVC vs LinearSVC

• SVC(kernel=linear) and LinearSVC both generate linear decision 
boundaries

• LinearSVC is faster implementation. Also, it uses slightly different loss 
functions.

• Both SVC and LinearSVC involves parameter tuning. Tutorials of 
parameter tuning can be found here:

https://medium.com/all-things-ai/in-depth-parameter-tuning-for-svc-
758215394769
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https://medium.com/all-things-ai/in-depth-parameter-tuning-for-svc-758215394769


RF in Scikit Learn

• Ensemble means RF is a collection of individual tree classifiers
• n_estimators: number of trees in the forest
• Criterion: splitting criterion
• max_features: the number of features in each tree to start splitting
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RF in Scikit Learn

• Bootstrap: whether bagging is used for building the trees
• max_samples: if bootstrap is true, then this is to determine how 

many max samples to draw from the original dataset (with 
replacement) to building each tree
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Some useful functions

• Train test split

• Evaluation
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A2: Point Cloud Classification

• Feature engineering is the most important part

• It’s not mandatory to implement the feature selection 
techniques (i.e., 𝑆! and 𝑆" matrices ), however the feature 
visualization should help
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A2: Point Cloud Classification

• Good features should:
• Describe the intrinsic similarity within the same class
• Distinguish as much as possible between classes
• With very good features, linear classifiers might work better than 

non-linear classifiers
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A2: Point Cloud Classification

•We focus on geometrical properties of the objects

• You can use a subset of the point cloud, or a patch, to 
describe the object

•We don’t evaluate your work only based on accuracy, we 
focus more on your analysis / feedback. If your algorithm 
fails, it’s fine. Please provide your insights and reflections on 
that
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Questions?
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