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Linear Classifiers
 What is the definition of linear classifiers?

g(x)

@® Positive class

® _ @ Negative class
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Linear Classifiers

* We use a linear functions of input x to describe the decision
boundary

wix+b=0

* A decision boundary is a (D-1) dimension hyperplane of D
dimension input feature space

 If X is 1D, the decision boundary is a OD point
 If X is 2D, the decision boundary is a 1D line



Linear Classifiers

Standard Linear (Fisher) classifier
1D feature space

Standard SVM
2D feature space



Linear Classifiers -

* If there’s slight data class overlap, soft-margin SVM is used

./" wix+b=0




Linear Classifiers

* What if the classes highly overlap?
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Linear Classifiers

* Example #1: Abnormalities in real world

ow Trees
nall gardens

Image source 1: https://savvygardening.com/narrow-trees-for-small-gardens/
Image source 2: https://9gag.com/gag/aOBNxmE



Linear Classifiers

* Example #2: XOR problem.

2 X2
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Non-Linear Classifiers

* Non-linear classifiers are designed to cope with non-linearly
separable classes, which is quite common in real world

* Some popular non-linear classifiers:
* Decision tree
 Random forest
* Multi-layer perceptron
* (Deep) Neural network
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Decision Tree

-

* The feature space is split into unique regions, corresponding
to classes, in a sequent manner
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Decision Tree

* Classifying of a data sample is done by a sequence of

decisions along a path of the tree
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Decision Tree

* Splitting rule: every split must generate subsets that are
more class homogeneous
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Decision Tree

more class homogeneous

)

-

* Splitting rule: every split must generate subsets that are

X1

e Y
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Decision Tree a

* Splitting rule: every split must generate subsets that are
more class homogeneous
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Decision Tree "

* Splitting rule: every split must generate subsets that are
more class homogeneous
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Decision Tree

* Two impurity measures of a node t:
* Gini impurity

IO =1-) pOilty
k=1

* Entropy impurity

1©) == ) pOilt)log:p(elt
k=1



Decision Tree

&

* Comparison between Gini and Entropy in 2-class problem
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Left: original Gini compared with Entropy; Right: Gini*2 compared with Entropy
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Decision Tree

* Decision tree growing steps:
* Begin with the root node t of the original dataset X, = X

* For each feature x;:

* For each candidate value a;, (n=1,2,3,...,):
* Divide the data into left node X;y and right node X;y by answering:
Xi < Ain
 Compute the Impurity decrease

Ny Nin
Al =1(t) ——1I(tY) ———I(tN)
Nt N¢

* Find the feature x; and value a;, that lead to the most impurity
decrease

e Continue splitting......
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Decision Tree

* Splitting stops until one of the following conditions meets:
* Using all possible splitting ways, we have:
Al < Threshold

* The data size of X, in node t is too small

* The data X, in node t is pure now (i.e., contains only one class)



Decision Tree

* Visualizing a decision tree trained by iris dataset

petal wi_dt_h (%rré)6<= 0.7
) ) . gini = 0.
e o . L] L] I - 92
iris stosa iris versicolor iris virginica AR
o class = virginica

True \;alse

petal length (cm) <= 4.95
gini = 0.5

samples = 66
value = [0, 47, 57]
class = virginica

o | /

Iris plants petal w;ﬁ Eie=Tes
petal  sepal petal sepal 45 - — samples = 36
4 [ + lris Setosa s - wareachieh

4 * |ris Versicolour
40+ oS j ~ lIris Virginica ||
oo g
Source code: ' ko 1
https://gist.github.com/WillKoe i RO LGFO

hrsen/ff77f5f308362819805a3d
efd9495ffd

sepal width

sepal width (cm) <= 3.0
gini = 0.44
samples = 3
value = [0, 1, 2]
class = virginica

petal width (cm) <= 1.65
gini = 0.44
samples = 2
value = [0, 1, 2]
class = virginica

50 60 70 80
senal lenath I1




Decision Tree Remarks

* Size of the tree must be large enough but too large.
Otherwise, it overfits to particular data details

* Trees have high variance. A small change in data often leads
to a very different tree
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Random Forest

Output

Input Data

Output

Output

Result
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Random Forest

¢ Bagging Input Data
* Sample the original dataset with

replacement (i.e., for the original
set [1,2,3,4,5], wecansample & © O O
[113141415])

* Create multiple tree classifiers, ! v
each with bagging. Summarize Besulk
the results using majority vote.




Random Forest

 Feature Randomness

* Each tree can pick only
from a random subset
of features

e This is to further ensure
the independence
among various trees

Image source: towards data science

Decision Tree

Feature 2

Feature 3

Feature 4

Left Right
Node Node
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Random Forest Random Forest

Tree 1 Tree 2

Feature 3 Feature 3

ool b

Left Right Left Right
Node Node Node Node
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Random Forest Remarks *

* Combining relatively uncorrelated classifiers together
generally outperforms a single classifier

* Combining models also helps to reduce the variance

* With sufficient amount of trees, RF can achieve comparable
performance as neural networks
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SUM: Semantic Urban Meshes

* Semantic mesh segmentation of urban environment
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SUM: Semantic Urban Meshes

* Algorithm workflow

As new training data

(b) Over-segmentation (e) Annotation and refinement (f) Ground truth

B Terrain
Building

I High vegetation
Water

I coat

(d) Predict data B Vehicle
‘ Legend of ground truth

Low _ - N High

(c) Features

Random Forest
Classifier
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SUM: Semantic Urban Meshes

* Features to use
* Eigen features

: o A=A
Linearity: =——
Aq
.. A3
Sphericity: =
A1
L A3
Curvature change: PRI

Verticality: 1 — |n3 - n,|

* Elevation features
Relative elevation: z — z,,,i,,

33



SUM: Semantic Urban Meshes

* Features to use

 Color features
RGB (HSV) colors
Color variance within a local neighborhood

e Other mesh-based features
Mesh area
Triangle density



SUM: Semantic Urban Meshes R

* Segmentation performance compared with deep learning

methods

High
Terrain Vegeta- Building Water Vehicle Boat mloU OA mAcc mF1 - F

tion
PointNet [14] 56.3 14.9 66.7 83.8 0.0 0.0 369+23 ‘7421 A6FE26 MEEI2 1.8
RandLaNet [53] 38.9 59.6 81.5 27.7 22.0 2.1 386146 749132 533:E51 4991+48 168
SPG [15] 56.4 61.8 87.4 36.5 34.4 6.2 AT +24 79928 648E12 596+19 1718
PointNet++ [52] 68.0 3.1 84.2 69.9 0.5 1.6 4953+ 27 855+09 5HiB:EILB 5fl+ 1.7 2.8
RF-MRF [43] 774 87.5 91.3 83.7 23.8 1.7 609 +00 91.2+00 65900 68.1%0.0 1.1
KPConv [16] 86.5 88.4 92.7 7.7 54.3 13.3 688+ 57 B33:E15 F3.7L5H4 F6M 58 235
Baseline 83.3 90.5 92.5 86.0 37.3 74 662100 930+00 (0600 I3.81+00 1.2
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SUM: Semantic Urban Meshes

(a) Original (b) Segments (c) Predictions (d) Truth (e) Error maps
I Terrain ‘Building || water [l High vegetation [l Vehicle Il Boat 36
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Data and Features

* Will more features lead to better performance?
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Image Source: https://www.mathworks.com/help/stats/visualize-high-dimensional-data-using-t-sne.html



Data and Features

* Curse of dimensionality
* Too few samples in too high dimensional space

 Computation complexity

e Feature correlations
* 1+1 is not always larger than 2
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Feature Selection

-

* How to measure if a feature subset is good or not?

* The best is to measure actual classification performance. However,
it can be expensive

* How could we select the most important features?
 Limit the dimensionality (i.e., number of features)
e Retain the class discriminatory information



Feature Selection

e Scatter matrices for feature selection criterion:
* Within-scatter matrix: .
Ny,
= 3
* Between-scatter maKtrlx )
— z % (e — (e — "
k=1

K: total number of classes
p: mean of all samples
Ui, 2. mean and covariance matrix of per-class samples



Feature Selection

* S, : the lower, the better; Sg: the higher, the better

Class 2

* There’re several ways of combining them, e.g.,
tr(Sg)

tr(Sw)

43



Feature Selection

-

* We want to select d out from p features, and choose the
subset with optimal criterion value

* How many possible subsets in total?
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Feature Selection

* Some sub-optimal algorithms to search for the d features:
* (1) Choose the best individual d features

* (2) Forward search:

 Starting with the empty set, each time add one feature that optimizes the
entire chosen feature set

* (3) Backward search:

 Starting with the whole set, each time drop one feature that optimizes the
rest of the feature set



&

* Besides feature selection, you can also extract new features
by dimension reduction methods (e.g., PCA)

Feature Selection

* Feature engineering is the focus of most classical ML
methods

Fixed Trainable

Input 4[ Fr:zaturt.e
Engineering

Output
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Classifier Evaluation

* Common evaluation metrics:

* OA: overall accuracy
* Out of 500 objects, how many are correctly classified?

* mAcc: mean per-class accuracy
 How is the accuracy of each class? Average them.

e Confusion matrix

* mloU: mean intersection over union



Classifier Evaluation Y

* Is it good to measure the performance of the classifier in the
training dataset? Why?

49
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* Classification accuracy over training set can be biased, and
optimistically estimated

Classifier Evaluation

* We're interested in true accuracy of the classifier

Training

Testing

50




Classifier Evaluation

* Train-test split

and
on the same set will
give a good
classifier, but will
yield a biased
estimate of the
model

A

yields an
unbiased, but
unreliable
accuracy estimate
for a
classifier

A

yields an unbiased
and reliable
accuracy estimate
for a

classifier

., 00, 5 ratios
are commonly used
in practice



Classifier Evaluation a

* Sometimes a validation set is introduced (common in deep
learning)

Training

Validation

Classifier with
optimal hyper- Accuracy
parameters

Testing

52




Classifier Evaluation

* Cross Validation: making full use of data

Rotate

Run 1

Run 2

Run 3

Run 4

Final accuracy

53
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Review: SVM in Scikit Learn

* SVM has 3 classifiers
* SVC: most commonly used in practice

* NuSVC: similar to SVC, has slightly different yet equivalent
mathematical formulations and parameter set

* LinearSVC: faster implementation of SVM, but can only adopt
linear kernels



SVC: Documentation o™

class sklearn.svm.SVC(*

sklearn.svm.SVC

C=1.0, kernel="rbf,

legree=3, gamma="scale', coef0=0.0, shrinking=True, probability=False, tol=0.001,

cache_size=200, class_weight=None, verbose=False, max_iter=- 1, decision_function_shape="ovr', break_ties=False,

random_state=None)

[source]

* The most important hyper-parameters:
* C: the coefficient introduced in soft-margin SVM
* Kernel: a trick you can use to transform input features



-

SVC: Documentation

sklearn.svm.SVC

class sklearn.svm.SVC(* C=1.0, kernel="rbf', degree=3, gamma='scale’, coef0=0.0, shrinking=True, probability=False, tol=0.001,
cache_size=200, class_weight=None, verbose=False, max_iter=- 1, decision_function_shape="ovr', break_ties=False,
random_state=None) [source]

* Other important hyper-parameters:

* Class_weight: specify the weight per class. You either input a
dictionary of pre-fixed weights, or use ‘balanced’.

* Max_iter: hard limit on iterations within solver, or -1 for no limit.
* Decision_function_shape:

* ‘ovr’: default, one versus the rest for multi-class

* ‘ovo’: one versus one for multi-class



SVC vs LinearSVC N o

* SVC(kernel=linear) and LinearSVC both generate linear decision
boundaries

* LinearSVC is faster implementation. Also, it uses slightly different loss
functions.

e Both SVC and LinearSVC involves parameter tuning. Tutorials of
parameter tuning can be found here:

https://medium.com/all-things-ai/in-depth-parameter-tuning-for-svc-
758215394769



https://medium.com/all-things-ai/in-depth-parameter-tuning-for-svc-758215394769

RF in Scikit Learn

E

sklearn)ensemble/RandomForestClassifier1

class sklearn.ensemble.Random ForestCIassifierd/?_esti/nator's: 100, * [criterion="gint}, max_depth=None, min_samples_split=2,

min_samples_leaf=1, min_weight_fraction_leaf=0.0,

max_features="auto,

max_leaf_nodes=None, min_impurity_decrease=0.0,

bootstrap=True] oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None,

ccp_alpha=0.0,Imax_samples=None

[source]

* Ensemble means RF is a collection of individual tree classifiers

* n_estimators: number of trees in the forest

* Criterion: splitting criterion

* max_features: the number of features in each tree to start splitting



RF in Scikit Learn

«

sklearn)ensemble/RandomForestClassifier1

class sklearn.ensemble.Random ForestCIassifierdn_estimators: 100, * [criterion="gint}, max_depth=None, min_samples_split=2,

min_samples_leaf=1, min_weight_fraction_leaf=0.0,

max_features="auto,

max_leaf_nodes=None, min_impurity_decrease=0.0,

bootstrap=True] oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None,

ccp_alpha=0.0,Imax_samples=None

[source]

* Bootstrap: whether bagging is used for building the trees

* max_samples: if bootstrap is true, then this is to determine how
many max samples to draw from the original dataset (with
replacement) to building each tree



Some useful functions

* Train test split

sklearn.model_selection.train_test_split1

sklearn.model_selection.train_test_split(*arrays, test_size=None, train_size=None, random_state=None, shuffle=True, stratify=None)
[source]

e Evaluation

sklearn.metrics.accuracy_score

sklearn.metrics.accuracy_score(y_true, y_pred, *, normalize=True, sample_weight=None) [source]




A2: Point Cloud Classification

* Feature engineering is the most important part

Fixed Trainable
f_l_\ |

Input ‘ Fgaturg
Engineering

* It’s not mandatory to implement the feature selection
techniques (i.e., Sy and S matrices ), however the feature
visualization should help

Output




A2: Point Cloud Classification

* Good features should:
* Describe the intrinsic similarity within the same class
* Distinguish as much as possible between classes

* With very good features, linear classifiers might work better than
non-linear classifiers
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A2: Point Cloud Classification

* We focus on geometrical properties of the objects

* You can use a subset of the point cloud, or a patch, to
describe the object

* We don’t evaluate your work only based on accuracy, we
focus more on your analysis / feedback. If your algorithm
fails, it’s fine. Please provide your insights and reflections on
that



Questions?
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