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Today’s Agenda

• Previous Lecture: Classification

• Support Vector Machine
• Standard SVM
• Soft Margin SVM

• SVM Applications
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Classification

•We usually have a set of input data represented as feature 
vectors:

𝒙 = (𝑥!, 𝑥", 𝑥#…𝑥$)%

• Classification aims to specify which category/class 𝒚 some 
input data 𝒙 belong to
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Classification

• An example of point cloud semantic classification
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𝒙 = (𝑥, 𝑦, 𝑧, 𝑟, 𝑔, 𝑏, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦… )!
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Image source: https://www.sciencedirect.com/science/article/pii/S0924271620300605

𝒚:



Classification

• Two classification approaches:
• Generative approach: model the probability distribution of 

feature 𝒙 and label 𝒚
• Bayes classifier
• Gaussian mixture model

• Discriminative approach: model a function that directly map 
from feature 𝒙 to label 𝒚
• Linear classifier (Fisher, Logistic regression, SVM)
• Non-linear classifier (Decision tree, Neural networks)
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Classification

•Many classification or regression problems can be specified 
as:
• Find a suitable model / hypothesis

• Define a loss function (i.e., least squares, maximum likelihood …)

• Feed the data samples into the model and search for the model 
parameters that cause the least loss
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Classification

• Standard linear (Fisher) classifier: 
• Hypothesis: the decision boundary is a linear model of the input 

vector 𝒙: 
𝒘𝑻𝒙 + 𝑏 = 0

• Loss Function: least squares

• Logistic regression:
• Hypothesis: the posterior probability is a logistic sigmoid of a 

linear function of 𝒙
𝑃 𝑦|𝒙 = 𝜎(𝒘𝑻𝒙 + 𝑏)

• Loss Function: maximum likelihood
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Support Vector Machine

•We consider two-class (+1, -1) 
linearly separable task

• Constrain the weights so that the 
output is always larger than 1 or 
smaller than -1

.𝒘
𝑻𝒙𝒊 + 𝑏 ≥ +1 𝑖𝑓 𝑦# = +1

𝒘𝑻𝒙𝒊 + 𝑏 ≤ −1 𝑖𝑓 𝑦# = −1
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Support Vector Machine

• Given a set of data samples, we aim 
to find a decision boundary for the 
input vector space:

𝑔 𝒙 = 𝒘𝑻𝒙 + 𝑏 = 0
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Support Vector Machine

• Such a decision boundary is not unique
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Support Vector Machine

• The goal of SVM is to find a decision boundary that gives the 
maximum possible margin 𝜌
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Standard SVM

•What is the margin 𝜌 ?
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Standard SVM

•𝑤 is orthogonal to the line

𝑤$ 𝑥% − 𝑥& = 0

• 𝜌/2 is the projection of (x1, x3) 
over 𝑤

𝜌/2 =
𝑤$ 𝑥' − 𝑥&

𝑤
=

1
𝑤
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Standard SVM

• The margin 𝜌 can be 
represented as:

𝜌 =
1
𝒘

+
1
𝒘

=
2
𝒘

17



Standard SVM

• SVM aims to solve:

min
1
2
𝒘 𝟐

s.t. 7𝒘
𝑻𝒙𝒊 + 𝑏 ≥ +1 𝑖𝑓 𝑦$ = +1

𝒘𝑻𝒙𝒊 + 𝑏 ≤ −1 𝑖𝑓 𝑦$ = −1
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Standard SVM

• SVM aims to solve:

min
1
2
𝒘 𝟐

s.t. 7𝒘
𝑻𝒙𝒊 + 𝑏 ≥ +1 𝑖𝑓 𝑦$ = +1

𝒘𝑻𝒙𝒊 + 𝑏 ≤ −1 𝑖𝑓 𝑦$ = −1

Can be rewritten as:
s.t. 𝑦$ 𝒘𝑻𝒙𝒊 + 𝑏 − 1 ≥ 0
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Standard SVM: Optimization

•What is optimization
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Standard SVM: Optimization

• Discrete options

• Choose a brand of milk

• Choose where to rent

• Choose to study or to browse 
facebook this afternoon 

21Image source: google



Standard SVM: Optimization

• Continuous space

22Image source: desmos



Standard SVM: Optimization

•What is optimization?
• A goal (i.e., maximization, minimization)
• Some constraints
• Sometimes constraints might be compromised to achieve the goal

• SVM optimization problem:
min

1
2
𝒘 𝟐
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s.t. 𝑦$ 𝒘𝑻𝒙𝒊 + 𝑏 − 1 ≥ 0, ∀𝑖 = 1,2,3, … , 𝑛



Standard SVM: Optimization

• A constrained optimization problem can often be solved with 
Lagrangian (this will not be asked in the exam)

𝐿 𝒘, 𝜆 =
1
2
𝒘 𝟐 −A

#)&

*

𝜆#(𝑦# 𝒘𝑻𝒙𝒊 + 𝑏 − 1)
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Standard SVM: Optimization

• Computing the derivative and making it to 0 we get:

𝜕𝐿 𝒘, 𝜆
𝜕𝒘

= 𝒘 −A
#)&

*

𝜆#𝑦#𝒙𝒊 = 𝟎

𝒘 =A
#)&

*

𝜆#𝑦#𝒙𝒊

• Solving 𝜆& requires Quadratic programming and thus is not 
covered in this lecture
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Standard SVM: Optimization

𝒘 =A
#)&

*

𝜆#𝑦#𝒙𝒊

• After solving the problem, a lot of 𝜆& becomes 0
• Only the objects 𝒙𝒊 with non-zero 𝜆& contribute to 𝒘
• These objects are called the “support vector”
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Standard SVM: Optimization

• Support vectors usually lie near the 
boundary

• Objects far away from boundary 
will have little influence on the 
model
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Standard SVM

• Overview: 
• Hypothesis: the decision boundary is a linear model of the input 

vector 𝒙: 
𝒘𝑻𝒙 + 𝑏 = 0

• Loss Function:

min
1
2
𝒘 𝟐

s.t. 𝑦$ 𝒘𝑻𝒙𝒊 + 𝑏 − 1 ≥ 0

• Aim: find a decision boundary that gives the maximum margin
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Today’s Agenda

• Previous Lecture: Classification

• Support Vector Machine
• Standard SVM
• Soft Margin SVM

• SVM Applications

29



Soft Margin SVM

•When classes are not linearly separable ……
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Soft Margin SVM

• Standard SVM will cause 
misclassifications

• For misclassified samples:

𝑦# 𝒘𝑻𝒙𝒊 + 𝑏 ≤ 1
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Soft Margin SVM

•We introduce a new slack variable 𝜉&, i=1,2,…,n, which refers 
to the soft margin

• Soft margin SVM aims to solve:

min !
"
𝒘 𝟐 + 𝐶 ∑&)!* 𝜉&

s.t. 𝑦# 𝒘𝑻𝒙𝒊 + 𝑏 ≥ 1 − 𝜉#
𝜉# ≥ 0

Where C is a constant term
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SVM Remarks

• Strengths: 
• It generalizes well in high-dimensional space with relatively low 

sample sizes
• It is little affected by data distribution / density

•Weaknesses:
• It is usually computational expensive
• It performs bad when classes are highly overlapped (although the 

soft-margin tricks have been developed to cope with overlapping 
issue)
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SVM Applications

• [1] Eigen-feature analysis of weighted covariance matrices for LiDAR 
point cloud classification (Lin et al, 2014, ISPRS Journal)
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SVM Applications

• [1] Eigen-feature analysis of weighted covariance matrices for LiDAR 
point cloud classification (Lin et al, 2014, ISPRS Journal)
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Top left: orthoimage; top right: point clouds;
Bot left: classification results from standard eigen features
Bot right: classification results from generated features



SVM Applications

• [2] Feature relevance assessment for the semantic interpretation of 
3D point cloud data. (Weinmann et al, 2013, ISPRS Annals)

37



SVM Applications

• Steps to apply SVM and other classical classifiers:
• Collect raw data

• Design and compute features 

• Feed the data and features to train the model

• Test and evaluate the model

•Most of the traditional machine learning works focus on 
feature engineering
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Questions?
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Scikit-Learn

2
Source: Scikit-Learn documentation



Scikit-Learn

• Installation with pip or conda
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SK-Learn for SVM

• SVM has three classifiers in the library
• SVC: most commonly used in practice

• NuSVC: similar to SVC, has slightly different yet equivalent 
mathematical formulations and parameter set

• LinearSVC: faster implementation of SVM, but can only adopt 
linear kernels
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SVC: Getting started

• X is input samples with features, y is the labels
• Model.fit() gives the trained model
• Model.predict() gives the predictions on other unseen samples
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SVC: Documentation

• The most important hyper-parameters:
• C: the coefficient introduced in soft-margin SVM
• Kernel: a trick you can use to transform input features
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SVC: Documentation

• Other important hyper-parameters:
• Class_weight: specify the weight per class. You either input a 

dictionary of pre-fixed weights, or use ‘balanced’.
• Max_iter: hard limit on iterations within solver, or -1 for no limit.
• Decision_function_shape: 
• ‘ovr’: default, one versus the rest for multi-class
• ‘ovo’: one versus one for multi-class
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SVC: Interesting Attributes

• n_features_in: int
• Number of features seen during fitting the model

• support_: ndarray of shape (n_SV)
• Indices of support vectors.

• support_vectors_: ndarray of shape (n_SV, n_features)
• Support vectors.
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Kernel SVM

• An example: based on observations of dosage of a medicine, 
determine if a dosage is effective or not

9
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not effective
effective



Kernel SVM

• Transforming features to higher dimensions
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Kernel SVM

• Recall the SVM solution for weights:

𝒘 =#
!"#

$

𝜆!𝑦!𝒙𝒊

• For an input x:

𝑓 𝒙 = 𝒘𝑻𝒙 + 𝑏 =#
!"#

$

𝜆!𝑦!𝒙𝒊𝑻 𝒙 + 𝑏

11



Kernel SVM

• Assume we transfer x to Φ(𝒙), we have

𝑓 Φ(𝒙) =#
!"#

$

𝜆!𝑦!Φ(𝒙𝒊)𝑻Φ 𝒙 + 𝑏
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𝐾(𝒙𝒊, 𝒙)Kernel, also can be written as



Polynomial Kernel (Optional)

• A simple polynomial kernel in 1D dimension:

𝐾 𝑥! , 𝑥" = (𝑥!𝑥" +
1
2
)#
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Polynomial Kernel (Optional)

𝐾 𝑥' , 𝑥( = (𝑥'𝑥( +
1
2
))= 𝑥'𝑥( + 𝑥')𝑥() +

1
4
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Polynomial Kernel (Optional)

• A general polynomial kernel in multi-feature dimension:

𝐾 𝒙𝒂, 𝒙𝒃 = (𝒙𝒂𝑻𝒙𝒃 + 𝑟)'
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RBF Kernel (Optional)

• A simple RBF kernel in 1D dimension:

𝐾 𝑥! , 𝑥" = 𝑒(
)
#(+!(+")

#
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RBF Kernel (Optional)

• RBF naturally contains a polynomial kernel in infinite space

𝐾 𝑥! , 𝑥" = 𝑒(
)
#(+!(+")

#
= 𝑒(

)
#(+!

#-+"#)-+!+"
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RBF Kernel (Optional)

• RBF naturally contains a polynomial kernel in infinite space

𝑒+ = 1 + 𝑥 +
𝑥#

2!
+
𝑥.

3!
+ ⋯+

𝑥/

∞!
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RBF Kernel (Optional)

• RBF naturally contains a polynomial kernel in infinite space

𝐾 𝑥! , 𝑥" = 𝑒(
)
#(+!

#-+"#) 𝑒+!+"
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RBF Kernel (Optional)

• A general RBF kernel in multi-feature dimension:

𝐾 𝒙𝒂, 𝒙𝒃 = 𝑒(
)
0#( 𝒙𝒂(𝒙𝒃 )#

• It measures the influence one sample has over another sample
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Kernel SVM

•We don’t actually conduct feature transformation, i.e., x to 
Φ(𝒙)

• Instead, we apply kernel trick to obtain the dot product of 
the transformed features in high dimensional space
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Kernel SVM

• Kernel options provided by Scikit-Learn: ‘linear’, ‘poly’, ‘rbf’, 
‘sigmoid’, ‘precomputed’ 

22Image source: https://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html



Two SVC Demos
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• (1) Maximum margin separating hyperplane
• (2) Plot different kernels using iris dataset



A2: Point Cloud Classification
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• You will use a classical ML model to perform point cloud 
classification (again, on object level)

• You are allowed to use libraries such as scikit learn

• You will need to evaluate the performance of the classifier



A2: Evaluation of the Model
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• OA: overall accuracy
• Out of 500 objects, how many are correctly classified?

•mAcc: mean per-class accuracy
• How is the accuracy of each class? Average them.



A2: Evaluation of the Model
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•Confusion Matrix:
• Row is the actual class, while column is the predicted class

Count Building Car Fence Pole Tree

Building

Car

Fence

Pole

Tree

True classes

Pred. classes



Questions?
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