GEO5017 Machine Learning for the Built Environment

Department of Urbanism Faculty of Architecture and the Built Environment Delft University of Technology

Lecture Classification

Shenglan Du

Today's Agenda

• Previous Lecture: Supervised Learning

- Bayes Classification
 - Probability Basics
 - Bayes Classifier

- Linear Classification
 - Fisher Classifier
 - Logistic Classifier

Today's Agenda

• Previous Lecture: Supervised Learning

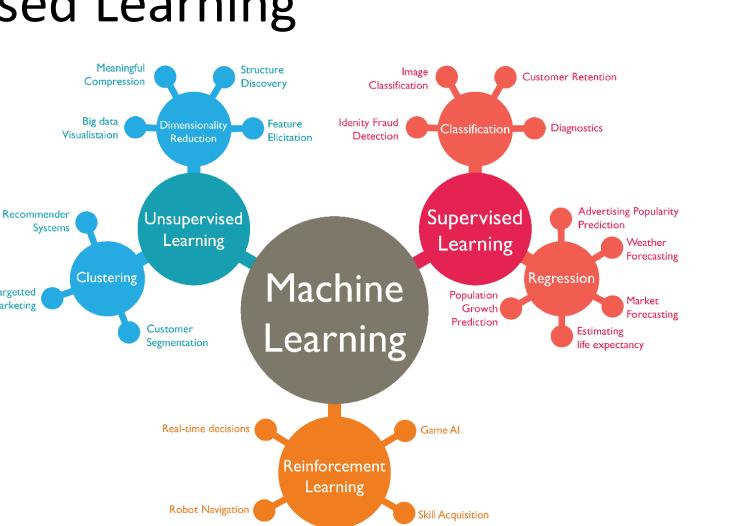
- Bayes Classification
 - Probability Basics
 - Bayes Classifier

- Linear Classification
 - Fisher Classifier
 - Logistic Classifier

Supervised Learning

Targetted

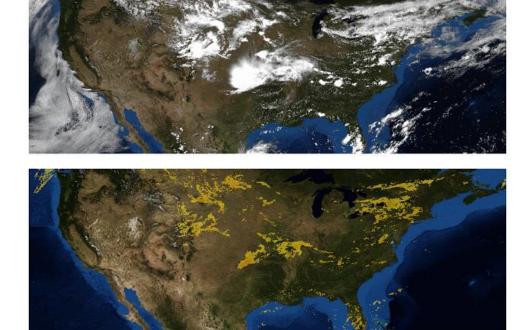
Marketing

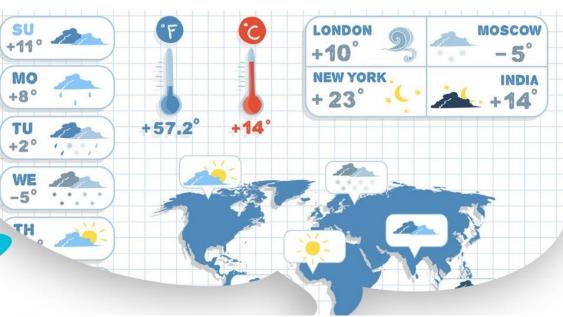


Learning Tasks

Supervised Learning

• An example: weather forecasting





Supervised Learning

• An example: image analysis

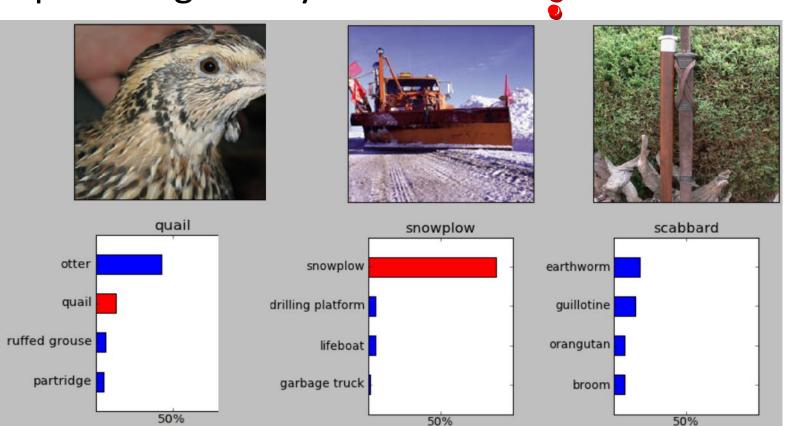


Image source: https://www.cs.toronto.edu/~hinton/coursera_slides.html

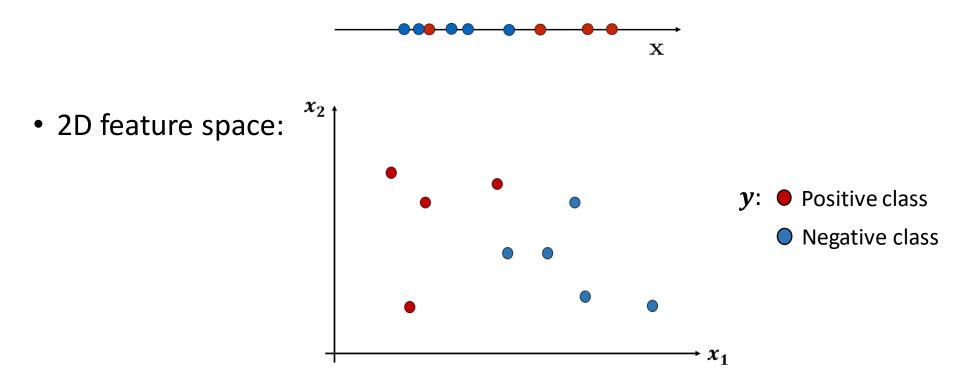
• We usually have a set of input data represented as feature vectors:

$$x = (x_1, x_2, x_3 \dots x_p)^T$$

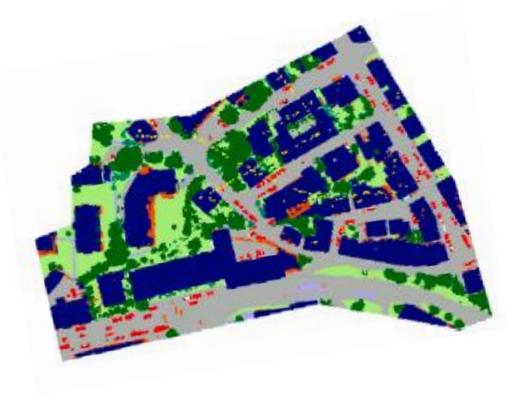
 Classification aims to specify which category/class y some input data x belong to

$$\boldsymbol{x} = (x_1, x_2, x_3 \dots x_p)^T$$

- P indicates the feature space dimension:
 - 1D feature space:



• An example of point cloud semantic classification



- Two classification approaches:
 - Generative approach: model the probability distribution of feature x and label y
 - Bayes classifier
 - Gaussian mixture model
 - Discriminant functions: model a function that directly map from feature \boldsymbol{x} to label \boldsymbol{y}
 - Linear classifier (Fisher, Logistic regression, SVM)
 - Non-linear classifier (Decision tree, Neural networks)

Today's Agenda

- Previous Lecture: Supervised Learning
- Bayes Classification \checkmark
 - Probability Basics
 - Bayes Classifier

- Linear Classification
 - Fisher Classifier
 - Logistic Classifier

Bayes Classification

• A simple scenario: A tree or a building?

Image source 1: https://en.wikipedia.org/wiki/Tree#/media/File:Ash_Tree_-_geograph.org.uk_-_590710.jpg Image source 2: https://en.wikipedia.org/wiki/Wilder_Building#/media/File:WilderBuildingSummerSolstice.jpg

Bayes Classification

- A simple scenario:
 - Buildings have planar surfaces
 - Trees have noisy, near round surfaces

• The machine detected that the input object has planar surfaces. What the object do you guess to be?

Bayes Classification

• It's very likely to be a building!

• But how do machines interpretate the word "likely"?

Today's Agenda

• Previous Lecture: Supervised Learning

- Bayes Classification
 - Probability Basics 🥏
 - Bayes Classifier

- Linear Classification
 - Fisher Classifier
 - Logistic Classifier

• Product rule:

$$P(X,Y) = P(X) P(Y|X)$$

• Bayes rule:

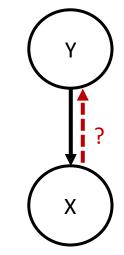
$$P(Y) P(X|Y) = P(X) P(Y|X)$$

$$P(Y|X) = \frac{P(Y) P(X|Y)}{P(X)}$$

• Given feature *x* and label *y*

$$P(y|\mathbf{x}) = \frac{P(y) P(\mathbf{x}|y)}{P(\mathbf{x})}$$

- $P(\mathbf{x}|\mathbf{y})$: class conditional probability
- P(y) : class prior probability
- $P(y|\mathbf{x})$: class posterior probability



• Assume equal priors for both buildings and trees

$$P(y = b) = P(y = t) = 0.5$$

 Assume we have the class conditional probabilities as follows

$$P(x = planar | y = b) = 0.8$$

$$P(x = round | y = b) = 0.2$$

$$P(x = planar | y = t) = 0.25$$

$$P(x = round | y = t) = 0.75$$

• building:

$$P(y = b | x = planar) = \frac{P(y = b) P(x = planar | y = b)}{P(x = planar)}$$

$$= \frac{0.5 * 0.8}{P(x = planar)}$$

• tree:

$$P(y = t | x = planar) = \frac{P(y = t) P(x = planar | y = t)}{P(x = planar)}$$
$$= \frac{0.5 * 0.25}{P(x = planar)}$$

• Prior:

$$P(y=b) = P(y=t)$$

• Posterior:

$$P(y = t | x = planar) \ll P(y = b | x = planar)$$

Today's Agenda

• Previous Lecture: Supervised Learning

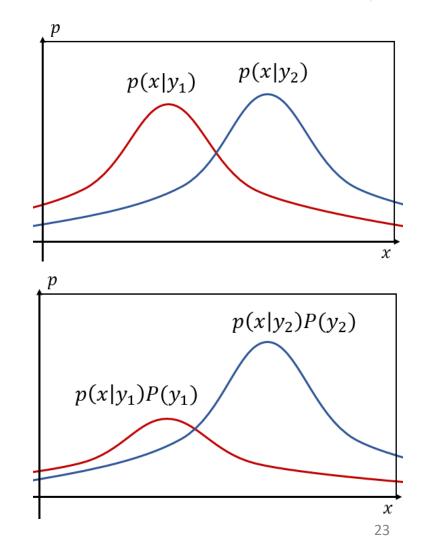
- Bayes Classification
 - Probability Basics
 - Bayes Classifier \checkmark
- Linear Classification
 - Fisher Classifier
 - Logistic Classifier

Bayes Classifier

• Step 1: estimate the class conditional probabilities

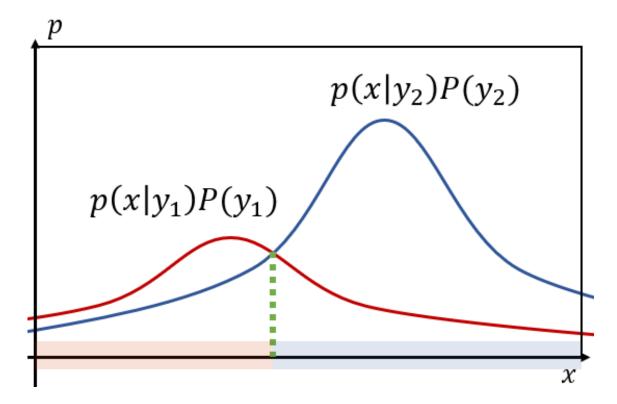
• Step 2: multiply with class priors

• Step 3: compute the class posterior probabilities



Bayes Classifier

• Step 4: find the classification boundary

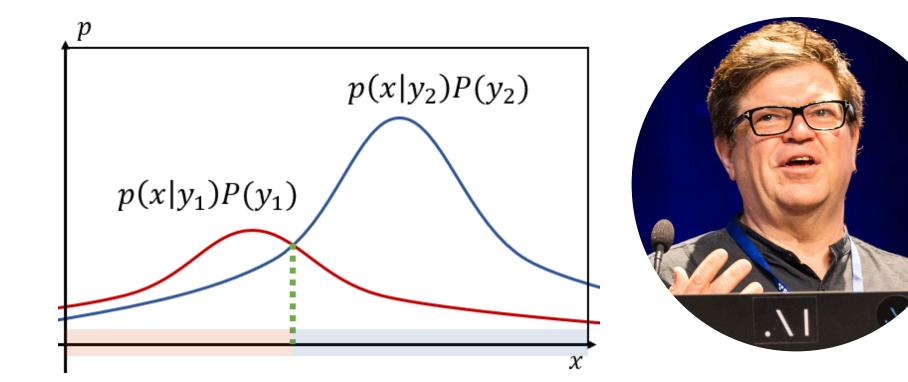


Bayes Classifier

• The Bayes rule provides an approach of describing the uncertainty quantitatively, allowing for the optimal prediction given the observations present

Bayes serves as the foundation for the modern machine learning

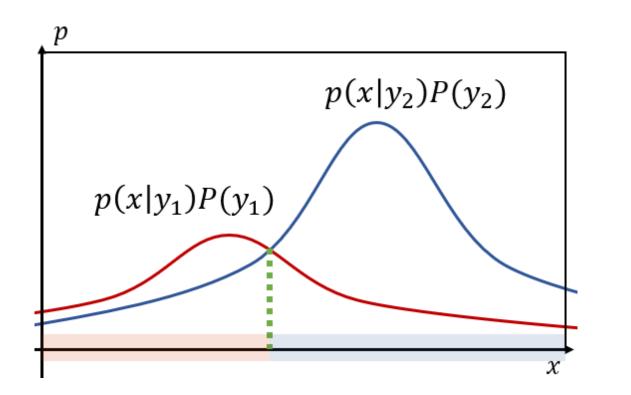
• All models are wrong but some are useful... --LeCun

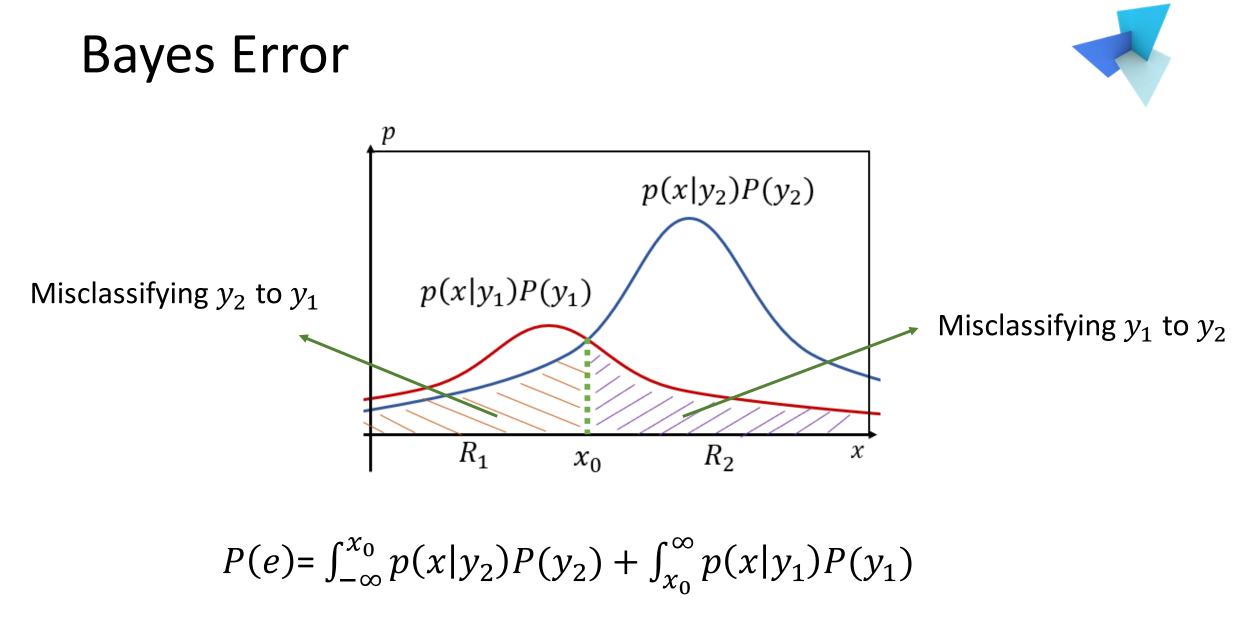


- Where is the error?
 - All trees have spherical surfaces
 - All buildings have cube-shapes
 - All rabbits have long ears
 - All Scotland sheeps are black

•

• Where is the error?





• It's the minimum attainable error using any kinds of existing models (SVM, RF, Neural networks)

• It doesn't depend on the ML model that you apply, but only on the data distribution

 We cannot obtain it as we don't have true distributions of real world

Minimizing the Risk

- Healthy or ill?
 - Assigning healthy to ill will cause panic to the patient
 - Assigning ill to healthy has more severe outcome

Minimizing the Risk

- Assume: $y_1 = healthy$, $y_2 = ill$, λ_{ij} is the cost of assign class i to j
- Classifying with risk we have:
 - Assign \mathbf{x} to y_1 if

 $\lambda_{21} p(\boldsymbol{x}|y_2) P(y_2) < \lambda_{12} p(\boldsymbol{x}|y_1) P(y_1)$

• Assign **x** to y_2 otherwise

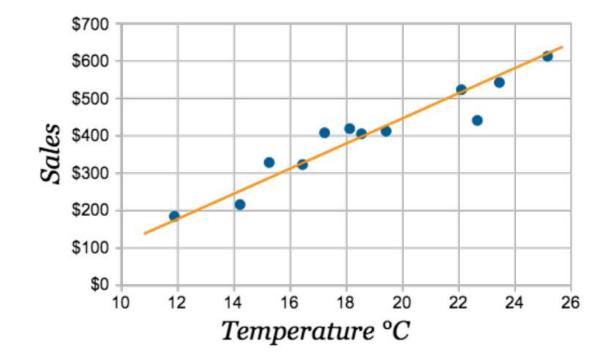
Today's Agenda

• Previous Lecture: Supervised Learning

- Bayes Classification
 - Probability Basics
 - Bayes Classifier
- Linear Classification \checkmark
 - Fisher Classifier
 - Logistic Classifier

Linear Classification

• Review Linear Regression:



Linear Classification

• Review Linear Regression:

$$y_i = \boldsymbol{w}^T \boldsymbol{x_i} + \boldsymbol{b}$$

- $\boldsymbol{x_i} = (x_1, x_2, x_3 \dots x_p)^T$
- $\boldsymbol{w} = (w_1, w_2, w_3 \dots w_p)$
- *b* is the bias scalar value
- y_i is the output scalar which should be continuous in its domain

Linear Classification

• Review Linear Regression:

$$y_i = \boldsymbol{w}^T \boldsymbol{x_i} + \boldsymbol{b}$$

- Parameters are determined by minimizing the square of errors
- Optimization is achieved by gradient descent
- A close form solution can be found:

$$(X^T X)^{-1} X^T Y$$

Linear Classification

• We consider constructing linear functions of input *x* to describe decision boundaries

$$y = w^T x + b$$

- y = const determines a decision boundary
- A decision boundary is a (D-1) dimension hyperplane of D dimension input feature space

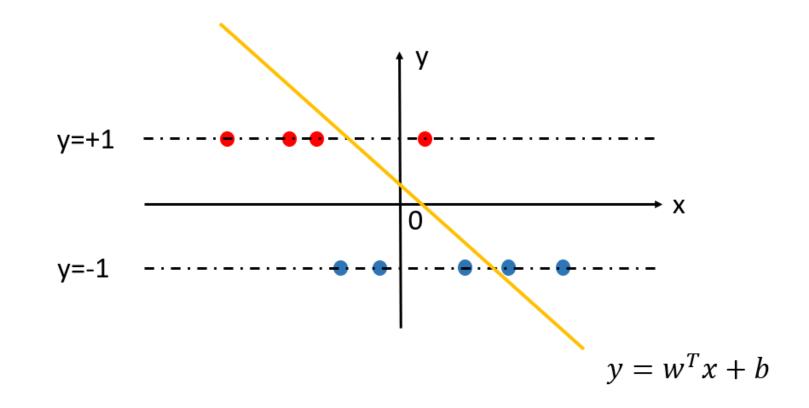
Today's Agenda

• Previous Lecture: Supervised Learning

- Bayes Classification
 - Probability Basics
 - Bayes Classifier

- Linear Classification
 - Fisher Classifier 🥏
 - Logistic Classifier

• Also refers to the standard linear classifier in the context of this course

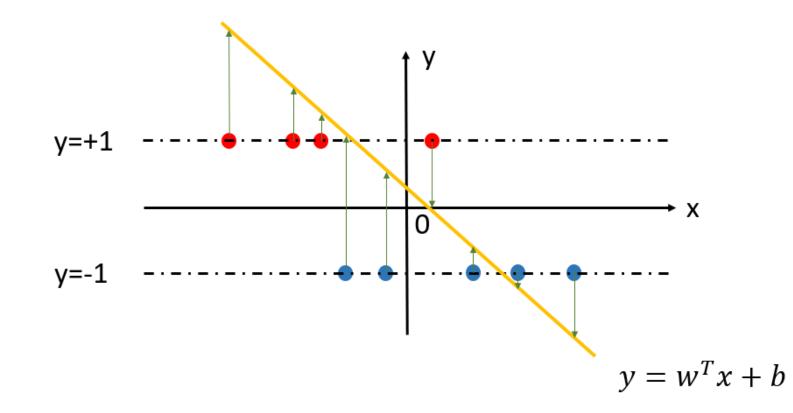


• By fitting a linear line of (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) where

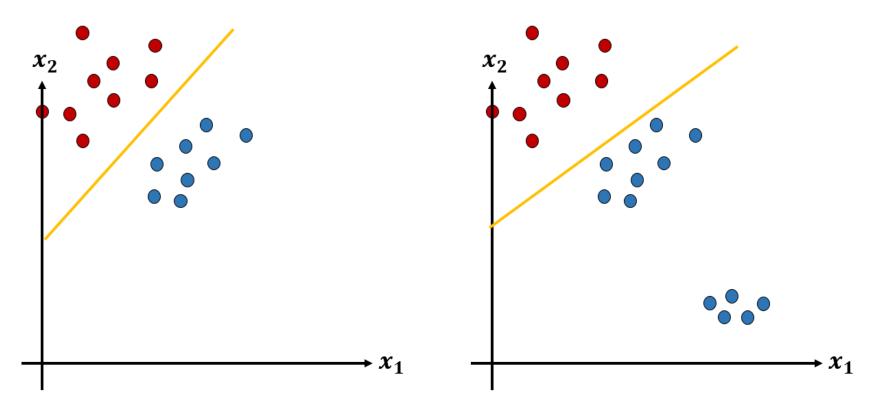
$$y_i = \begin{cases} +1, if \ the \ class \ is \ positive \\ -1, if \ the \ class \ is \ negative \end{cases}$$

• We obtain the linear decision boundary of the input space

• Solution can also be given by least squares



• Standard Linear Classifier (least squares) is sensitive to data distribution



Today's Agenda

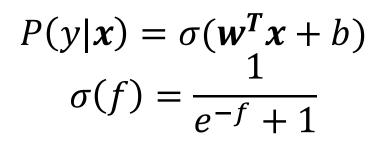
• Previous Lecture: Supervised Learning

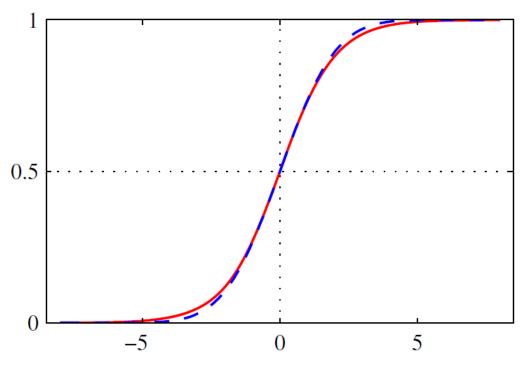
- Bayes Classification
 - Probability Basics
 - Bayes Classifier

- Linear Classification
 - Fisher Classifier
 - Logistic Classifier \checkmark

- Also known as logistic regression, although it is a model for classification rather than regression
- It assumes the posterior probability of y is a logistic sigmoid of a linear function of x

$$P(y|\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x} + b)$$
$$\sigma(f) = \frac{1}{e^{-f} + 1}$$





• Consider samples of $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ where

$$y_i = \begin{cases} +1, if \ the \ class \ is \ positive \\ -1, if \ the \ class \ is \ negative \end{cases}$$

- We use maximum likelihood to estimate the parameters
- The goal is to maximize:

$$P(\boldsymbol{y}|\boldsymbol{x}) = P(y_1|\boldsymbol{x_1})P(y_2|\boldsymbol{x_2}) \dots P(y_n|\boldsymbol{x_n})$$

• Which equals to maximizing:

$$log P(y|x) = \sum_{i=1}^{n} log P(y_i|x_i)$$

• If y_i =+1,
 $P(y_i|x_i) = \frac{1}{e^{-f(x_i)} + 1}$
• If y_i =-1,
 $P(y_i|x_i) = 1 - \frac{1}{e^{-f(x_i)} + 1} = \frac{1}{e^{f(x_i)} + 1}$

• Which equals to maximizing:

$$logP(\mathbf{y}|\mathbf{x}) = \sum_{i=1}^{n} log \frac{1}{e^{-y_i f(x_i)} + 1} = -\sum_{i=1}^{n} log(e^{-y_i f(x_i)} + 1)$$

• Therefore, the problem transfers to minimizing $\sum_{i=1}^{n} log(e^{-y_i f(x_i)} + 1)$

$$\sum_{i=1}^{n} log(e^{-y_i f(x_i)} + 1)$$

- Robust to outliers
- Can be solved by gradient descent
- There is no close form solution
- The solution really depends on the initialization etc.

Conclusions

- Many classification or regression problems can be specified as:
 - Find a suitable model / hypothesis
 - Define a loss function (i.e., least squares, maximum likelihood ...)
 - Feed the data samples into the model and search for the model parameters that cause the least loss