3D geoinformation

Department of Urbanism Faculty of Architecture and the Built Environment Delft University of Technology

GEO5017 Machine Learning for the Built Environment

https://3d.bk.tudelft.nl/courses/geo5017/

Clustering Nearest Neighbor Classification

Liangliang Nan

https://3d.bk.tudelft.nl/liangliang/

Agenda

Overview

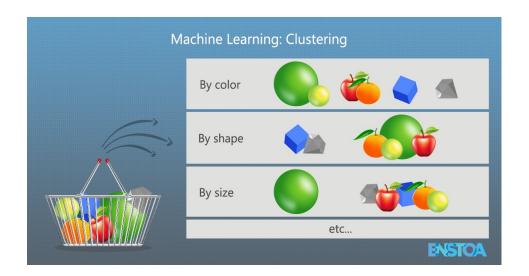
- What is clustering?
- Distance measure
- $\circ~$ Types of clustering algorithms

• Clustering algorithms

- K-means clustering
- Hierarchical clustering
- \circ Density-based clustering
- Nearest neighbor classification
- Features

What is clustering?

- Clustering
 - A process that **partitions** a given dataset into homogeneous groups based on given features such that **similar** objects are kept in a group whereas **dissimilar** objects are in different groups.



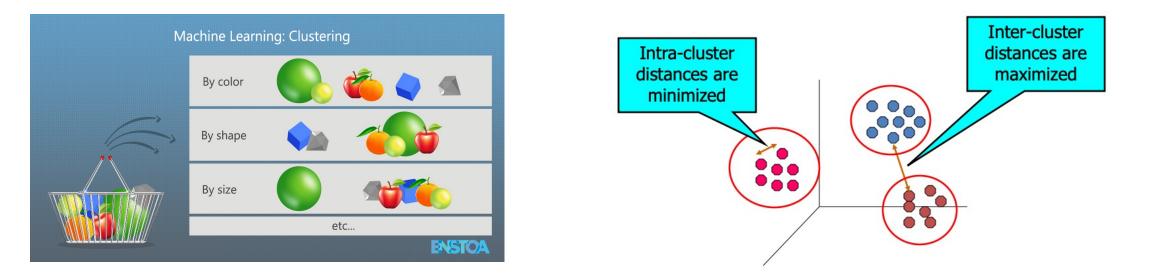
What is a cluster?

What constitutes a good cluster?

What is the "best" criterion for clustering?

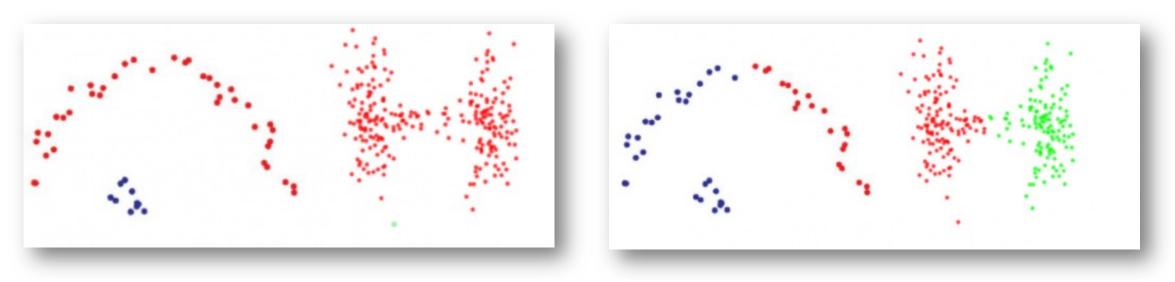
What is clustering?

- Clustering
 - A process that **partitions** a given dataset into homogeneous groups based on given features such that **similar** objects are kept in a group whereas **dissimilar** objects are in different groups.



What is clustering?

- Clustering: two components in an algorithm
 - \circ Distance measure \rightarrow defines similarities
 - $\,\circ\,$ Clustering algorithm \rightarrow partitions the dataset



Different distance measures lead to different clustering results

Distance measure

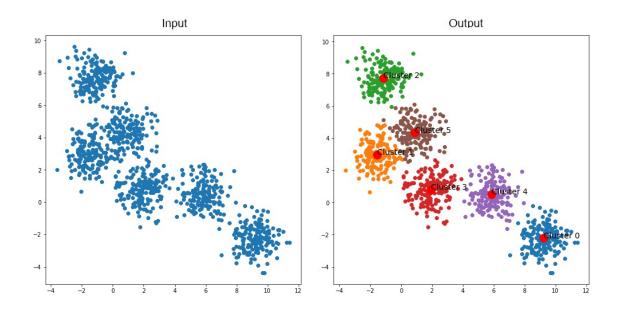
- Problem dependent
 - \circ Minkowski distance/metric is often used
 - Generalization of Euclidean distance (L²) and Manhattan distance (L¹)

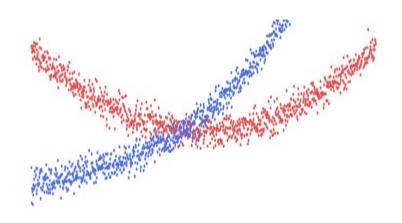
$$d(x_i, x_j) = \left(\sum_{k=1}^{d} |x_{i,k} - x_{j,k}|^p\right)^{\frac{1}{p}}$$

- $\circ~$ Domain knowledge is required
 - When components of data feature vectors not immediately comparable, e.g.,
 - color vs size
 - distance to city center vs energy label

Types of clustering algorithms

- Different criteria
 - $\circ~$ Exclusive vs overlapping
 - Whether a data point can belong to two or more clusters

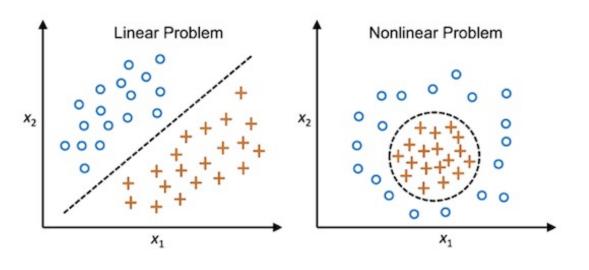


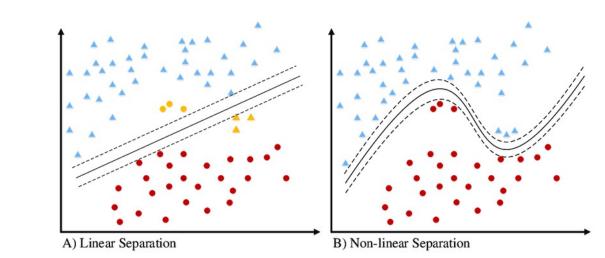


Types of clustering algorithms

• Different criteria

- $\circ~$ Exclusive vs overlapping
 - Whether a data point can belong to two or more clusters
- \circ Linear vs non-linear
 - The applicability to different types of data

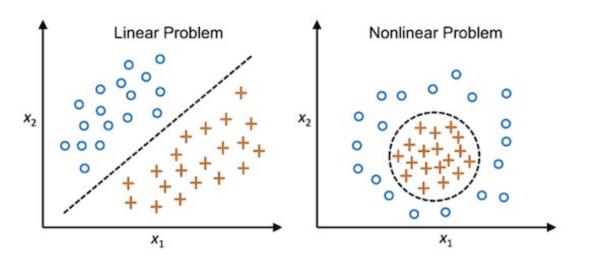




Types of clustering algorithms

• Different criteria

- Exclusive vs overlapping
 - Whether a data point can belong to two or more clusters
- \circ Linear vs non-linear
 - The applicability to different types of data



We will learn:

- Linear: K-means, hierarchical clustering
- Non-linear: density-based clustering

Agenda

Overview

- What is clustering?
- Distance measure
- $\circ~$ Types of clustering algorithms
- Clustering algorithms

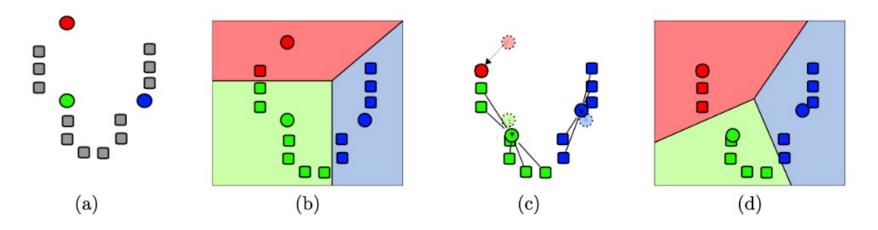
- K-means clustering
- \circ Hierarchical clustering
- \circ Density-based clustering
- Nearest neighbor classification
- Features

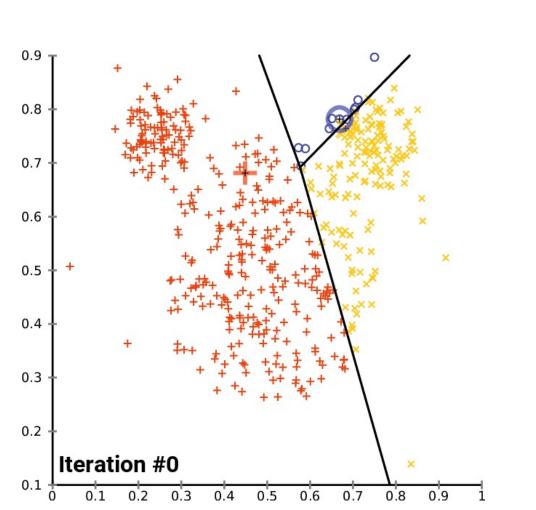
- 1) Initialize the k clusters $\ell^o = \{c_1^0, c_2^0 \dots c_k^0\}$ in a way such that the initial centroids are placed as far as possible from each other.
- 2) Calculate the centroids of the clusters: $u_j^i = \frac{1}{|c_j^i|} \sum_{x \in c_j^i} x$, where j = 1, ..., k and i denotes the *i*-th iteration.
- 3) Take each point belonging to a given data set and associate it to the nearest centroid:

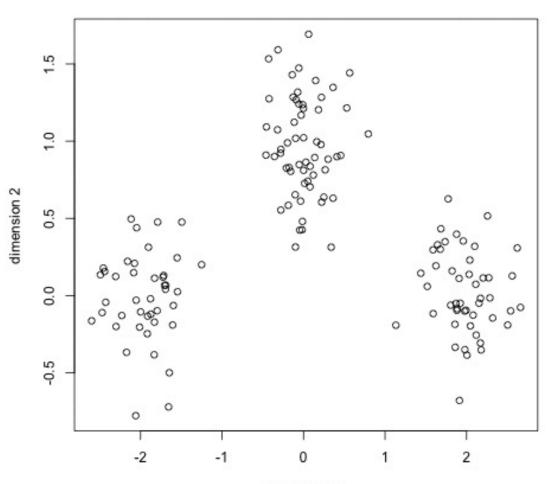
$$c_{j}^{i+1} = \left\{ x \mid d\left(x, u_{j}^{i}\right) \leq d\left(x, u_{j'}^{i}\right), \forall j', 1 \leq j' \leq k \right\} \\ \ell^{i+1} = \left\{ c_{j}^{i+1} \mid 1 \leq j \leq k \right\}$$

$$(2)$$

4) Repeat steps 2 and 3 until no more changes can be made to the clusters, i.e., $\ell^{i+1} = \ell^i$. In other words, centroids do not move any more.

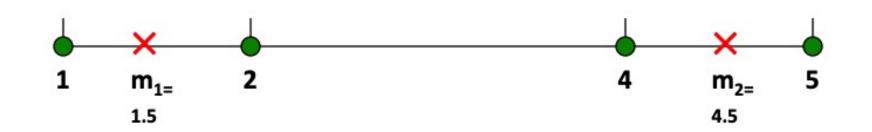






dimension 1

• Objective function \circ SSE (Sum of Squared Error) $J = \sum_{i=1}^{k} \sum_{x \in c_i} \|x - u_i\|^2$



 $SSE = (1 - 1.5)^2 + (2 - 1.5)^2 + (4 - 4.5)^2 + (5 - 4.5)^2 = 1$

- Objective function \circ SSE (Sum of Squared Error) $J = \sum_{i=1}^{k} \sum_{x \in c_i} ||x - u_i||^2$ • Convergence
 - K-means is exactly coordinate descent on J
 - Step 2: fix cluster assignment—compute cluster centroids that minimize the current error
 - Step 3: fix cluster centroids—find cluster assignment that minimizes the current error
 - 1) Initialize the k clusters $\ell^o = \{c_1^0, c_2^0 \dots c_k^0\}$ in a way such that the initial centroids are placed as far as possible from each other.
 - 2) Calculate the centroids of the clusters: $u_j^i = \frac{1}{|c_j^i|} \sum_{x \in c_j^i} x$, where j = 1, ..., k and i denotes the *i*-th iteration.
 - 3) Take each point belonging to a given data set and associate it to the nearest centroid:

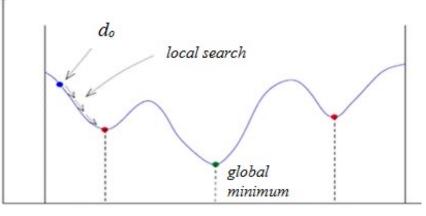
$$c_{j}^{i+1} = \left\{ x \mid d\left(x, u_{j}^{i}\right) \leq d\left(x, u_{j'}^{i}\right), \forall j', 1 \leq j' \leq k \right\} \\ \ell^{i+1} = \left\{ c_{j}^{i+1} \mid 1 \leq j \leq k \right\}$$
(2)

4) Repeat steps 2 and 3 until no more changes can be made to the clusters, i.e., $\ell^{i+1} = \ell^i$. In other words, centroids do not move any more.

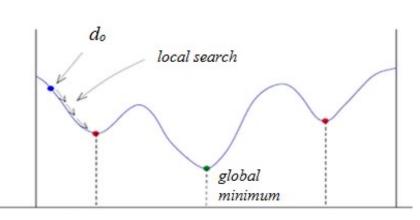
- Objective function \circ SSE (Sum of Squared Error) $J = \sum_{i=1}^{k} \sum_{x \in c_i} ||x - u_i||^2$ • Convergence
 - K-means is exactly coordinate descent on J
 - Step 2: fix cluster assignment—compute cluster centroids that minimize the current error
 - Step 3: fix cluster centroids—find cluster assignment that minimizes the current error

J monotonically decreases \rightarrow J converges a global minimum?

- Objective function \circ SSE (Sum of Squared Error) $J = \sum_{i=1}^{k} \sum_{x \in c_i} ||x - u_i||^2$ • Convergence
 - K-means is exactly coordinate descent on J
 - Step 2: fix cluster assignment—compute cluster centroids that minimize the current error
 - Step 3: fix cluster centroids—find cluster assignment that minimizes the current error
- Not necessarily the optimal configuration
 - $\circ~$ i.e., local minimum of the objective function



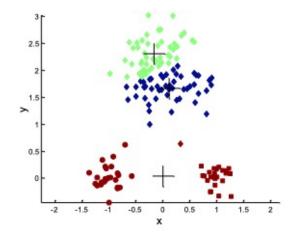
- Objective function \circ SSE (Sum of Squared Error) $J = \sum_{i=1}^{k} \sum_{x \in c_i} ||x - u_i||^2$ • Convergence
 - K-means is exactly coordinate descent on J
 - Step 2: fix cluster assignment—compute cluster centroids that minimize the current error
 - Step 3: fix cluster centroids—find cluster assignment that minimizes the current error
- Not necessarily the optimal configuration
 - $\circ~$ i.e., local minimum of the objective function
 - $\circ~$ Solution: repeat many times and pick the best
 - $\circ~$ Best configuration not guaranteed



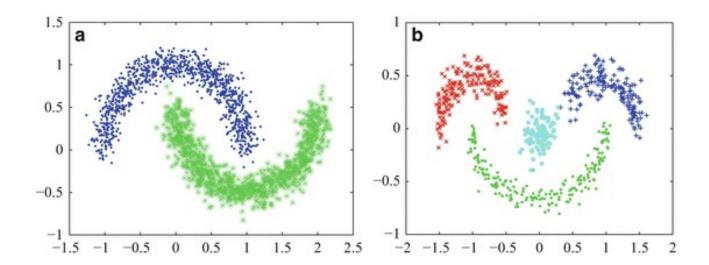
- $\circ~$ Fast and efficient
- $\circ~$ Given good results when groups are distinct or well separated from each other
- \circ Easy to implement

- $\circ~$ Fast and efficient
- $\circ~$ Given good results when groups are distinct or well separated from each other
- \circ Easy to implement
- Limitations

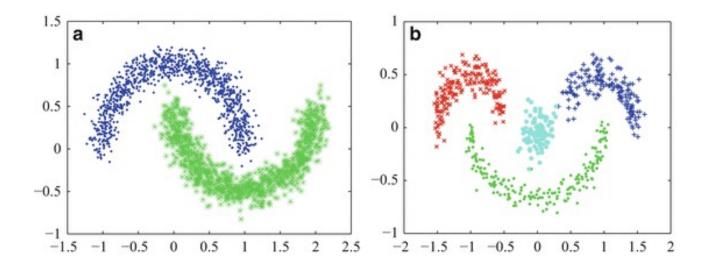
- $\circ~$ Fast and efficient
- $\circ~$ Given good results when groups are distinct or well separated from each other
- \circ Easy to implement
- Limitations
 - Requires a priori specification of the number (i.e., k) of clusters
 - \circ Local minima
 - Sensitive to initialization
 - Cannot guarantee optimal clusters
 - $\circ~$ Not invariant to non-linear transformations
 - e.g., cartesian coordinates vs polar coordinates

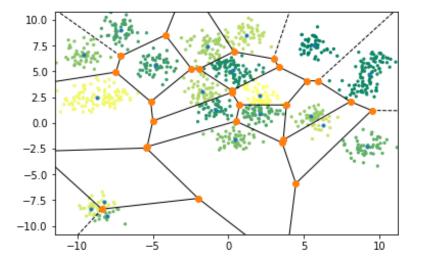


• Can k-means handle?

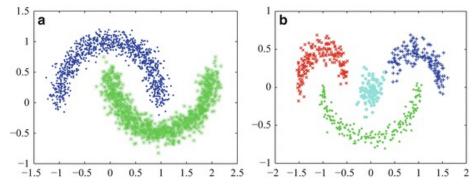


• Can k-means handle?





- $\circ~$ Fast and efficient
- \circ Given good results when groups are distinct or well separated from each other
- \circ Easy to implement
- Limitations
 - Requires a priori specification of the number (i.e., k) of cluster centers
 - \circ Local minima
 - Sensitive to initialization
 - Cannot guarantee optimal clusters
 - $\circ~$ Not invariant to non-linear transformations
 - e.g., cartesian coordinates vs polar coordinates
 - Cannot process non-linear datasets



Agenda

Overview

- What is clustering?
- **Distance measure** \bigcirc
- Types of clustering algorithms
- Clustering algorithms
 - K-means clustering
 - Hierarchical clustering
 - Density-based clustering
- Nearest neighbor classification
- Features

Given a set of N objects $S = \{s_1, s_2, ..., s_N\}$ to be clustered and a function of distance between two clusters c_i and c_j , build a hierarchy tree on S such that for every $c_i, c_j \in S$, $c_i \cap c_j = \emptyset$. The basic process of hierarchical clustering is as follows:

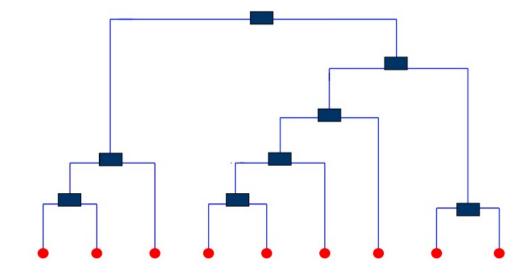
- 1) Start by assigning each object to a cluster $c_i = s_i (i = 1, ..., N)$, so that if you have N objects, you have N clusters $\ell = \{c_1, c_2, ..., c_N\}$, each containing just one item.
- 2) Find the pair of clusters (c_i, c_j) such that $D(c_i, c_j) \leq D(c_{i'}, c_{j'})$, $\forall c_{i'} \neq c_{j'} \in \ell$ and merge them into a single cluster $c_k = c_i \cup c_j$. Delete c_i and c_j from ℓ and insert c_k into ℓ so that now you have one cluster less.
- 3) Compute distances (similarities) between the new cluster and each of the old clusters.
- 4) Repeat steps 2) and 3) until all items are clustered into a single cluster of size N.

• Example •1 3 • 5 0.2 0.15 • 3 6 0.1 0.05 •4 4 0 3 6 2 5 4 1

An example of hierarchical clustering

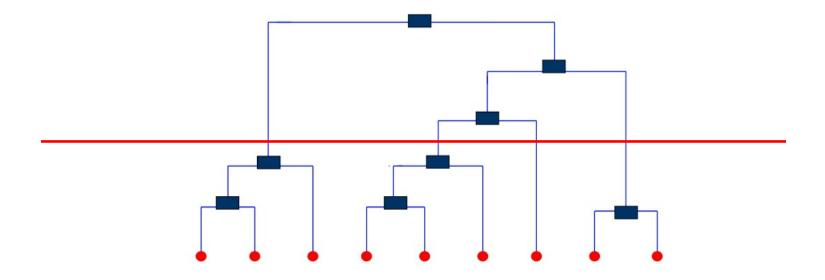
• Dendrogram

- $\circ~$ A tree that shows how clusters are merged/split hierarchically
- $\circ~$ Each node on the tree is a cluster; each leaf node is a singleton cluster

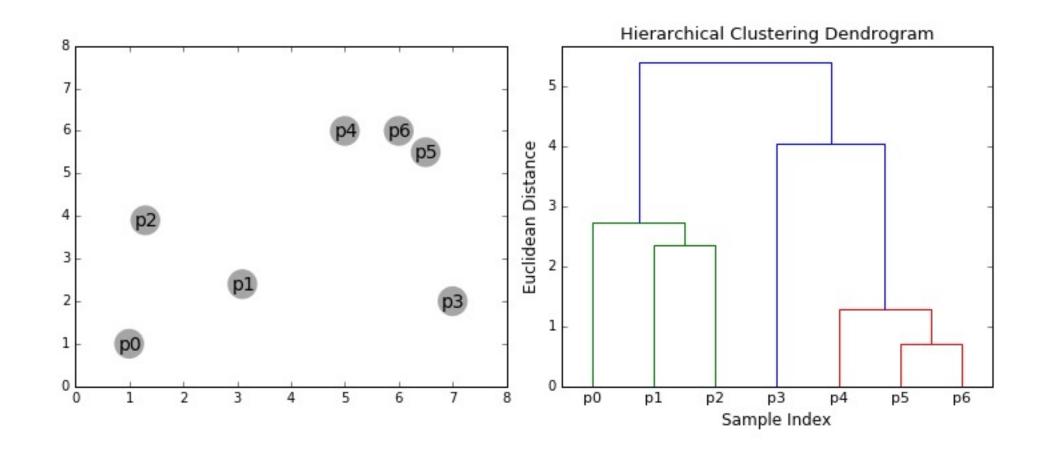


Dendrogram

- $\circ~$ A tree that shows how clusters are merged/split hierarchically
- $\circ~$ Each node on the tree is a cluster; each leaf node is a singleton cluster
- A clustering is obtained by cutting the dendrogram at the desired level (then each connected component forms a cluster)



• Example



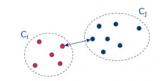
- Three different distance measures
 - Single-nearest distance: single linkage
 - Complete-farthest distance: complete linkage
 - $\circ~$ Average distance: average linkage

- 1) Start by assigning each object to a cluster $c_i = s_i (i = 1, ..., N)$, so that if you have N objects, you have N clusters $\ell = \{c_1, c_2, ..., c_N\}$, each containing just one item.
- 2) Find the pair of clusters (c_i, c_j) such that $D(c_i, c_j) \leq D(c_{i'}, c_{j'})$, $\forall c_{i'} \neq c_{j'} \in \ell$ and merge them into a single cluster $c_k = c_i \cup c_j$. Delete c_i and c_j from ℓ and insert c_k into ℓ so that now you have one cluster less.
- 3) Compute distances (similarities) between the new cluster and each of the old clusters.

4) Repeat steps 2) and 3) until all items are clustered into a single cluster of size N.

- Three different distance measures
 - Single-nearest distance (single linkage): shortest distance between any pair

$$D(c_i, c_j) = \min d(a, b), \forall a \in c_i \text{ and } b \in c_j$$

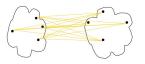


• Complete-farthest distance (complete linkage): greatest distance between any pair

$$D(c_i, c_j) = \max d(a, b), \forall a \in c_i \text{ and } b \in c_j$$

• Average distance or average linkage: greatest distance between all pairs

$$D\left(c_{i},c_{j}
ight)=rac{1}{\left|c_{i}
ight|\left|c_{j}
ight|}\sum_{a\in c_{i},b\in c_{j}}d(a,b)$$



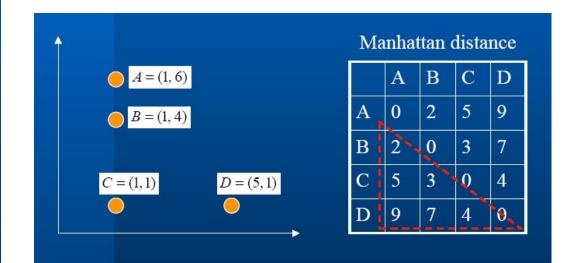
• Example: clustering 4 data items in 2D space



• Method: *single-linkage* clustering

Single linkage	
2 A B C D	dist((A, B), C) = min{dist(A, C), dist(B, C) = min{5, 3} = 3 dist((A, B), D) = min{dist(A, D), dist(B, D)} = min{9, 7} = 7 dist(C, D) = 4
A B C D	dist((A, B, C), D) = min{dist((A, B), D), dist(C, D)} = min{7, 4} = 4

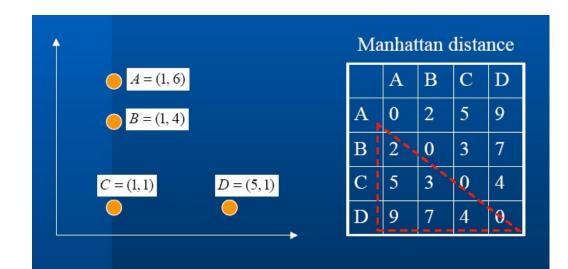
$$D(c_i, c_j) = \min d(a, b), \forall a \in c_i \text{ and } b \in c_j$$



• Method: complete-linkage clustering

Complete linkage	
2 A B C D	$dist((A, B), C) = max \{dist(A, C), dist(B, C) \\ = max \{5, 3\} = 5$ $dist((A, B), D) = max \{dist(A, D), dist(B, D)\}$ $= max \{9, 7\} = 9$ $dist(C, D) = 4$
9 2 4 A B C D	dist((C, D), (A, B)) = max {dist(C, (A, B)), dist(D, (A, B))} = 9

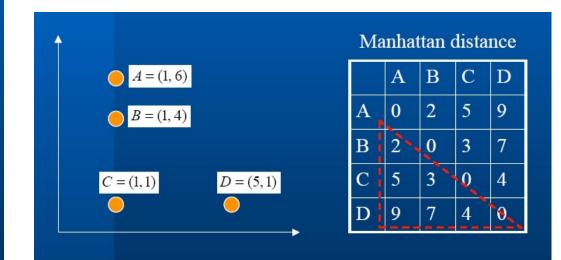
$$D(c_i, c_j) = \max d(a, b), \forall a \in c_i \text{ and } b \in c_j$$



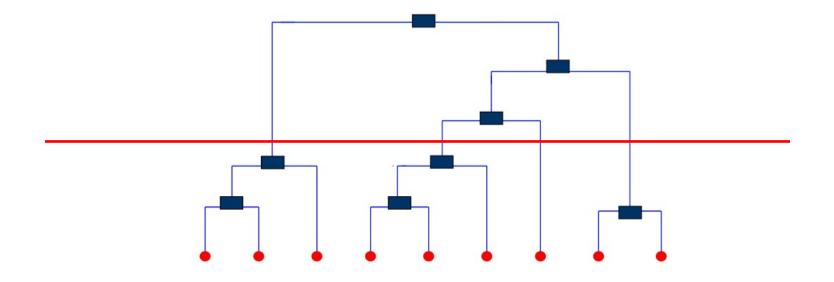
• Method: average-linkage clustering

Average linkage	
2 A B C D	dist((A, B), C) = avg{dist(A, C), dist(B, C) = $(5+3)/2 = 4$ dist((A, B), D) = avg{dist(A, D), dist(B, D)} = $(9+7)/2 = 8$ dist(C, D) = 4
6 2 4 A B C D	dist((C, D), (A, B)) = avg{dist(C, (A, B)), dist(D, (A, B))} = (4+8)/2 = 6

$$D(c_i, c_j) = \frac{1}{|c_i||c_j|} \sum_{a \in c_i, b \in c_j} d(a, b)$$



- $\circ~$ No a priori information about the number of clusters required
 - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level
- $\circ~$ Easy to implement and gives best result in some cases

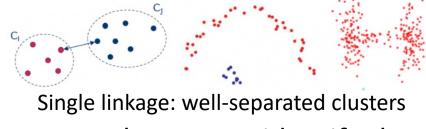


Advantages

- $\circ~$ No a priori information about the number of clusters required
- Easy to implement and gives best result in some cases

• Limitations

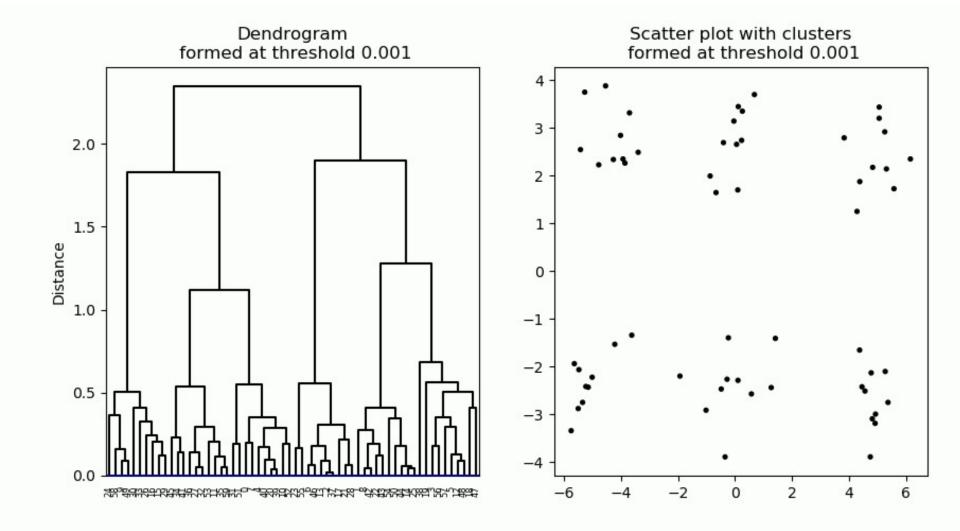
- Can never undo what (i.e., merging two clusters) was done previously
- Can be slow if a large number data points (due to pairwise distance computation)
- It may not be easy to choose a proper distance measure

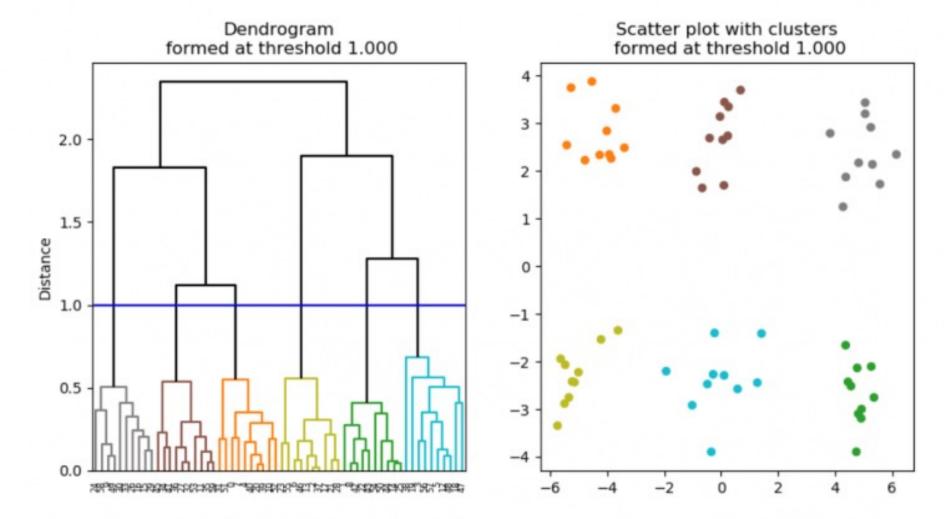




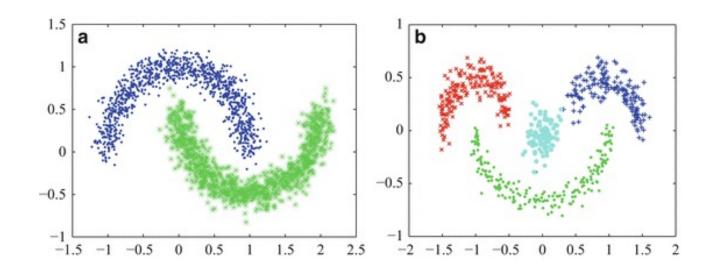
Complete linkage: compact clusters

 $\circ~$ It may not be easy to identify the correct number of clusters by the dendrogram





• Can hierarchical clustering method handle?



Agenda

Overview

- What is clustering?
- Distance measure
- $\circ~$ Types of clustering algorithms
- Clustering algorithms
 - K-means clustering
 - \circ Hierarchical clustering
 - \circ Density-based clustering

- Nearest neighbor classification
- Features

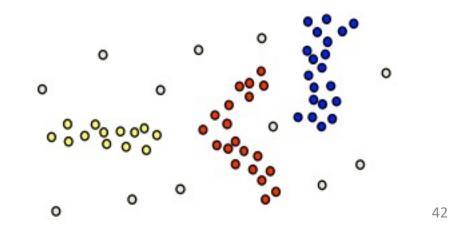
Density-based clustering

• Basic ideas

- Clusters are contiguous regions of high density in the data space, separated by regions of lower data density
- $\circ~$ A cluster is defined as a maximal set of density connected points

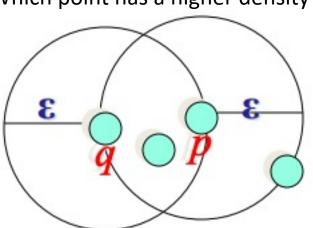
• DBSCAN

 $\circ~$ Density-Based Spatial Clustering of Applications with Noise



Density definition: two parameters

- ϵ -neighborhood: objects within a radius of ϵ from an object $N_{\varepsilon}(p): \{q \mid d(p,q) \leq \varepsilon\}$
- The minimum number of points required to form a cluster
 - High density: ϵ -neighborhood of an object contains at least *minPts* of objects.

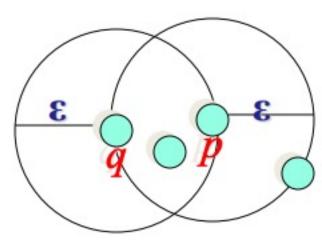


Which point has a higher density?

 ϵ -neighborhood of p and q

Density definition: two parameters

- ϵ -neighborhood: objects within a radius of ϵ from an object $N_{\varepsilon}(p): \{q \mid d(p,q) \leq \varepsilon\}$
- The minimum number of points required to form a cluster
 - High density: ε-neighborhood of an object contains at least minPts of objects.



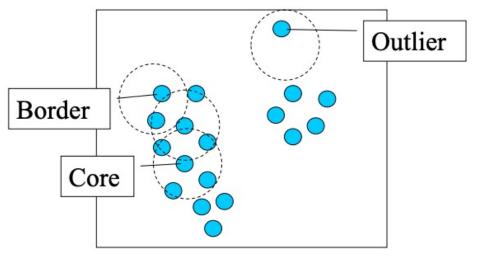
If *minPts* = 4:

- Density of *p* is "high"
- Density of q is "low"

 $\epsilon\text{-neighborhood of }p$ and q

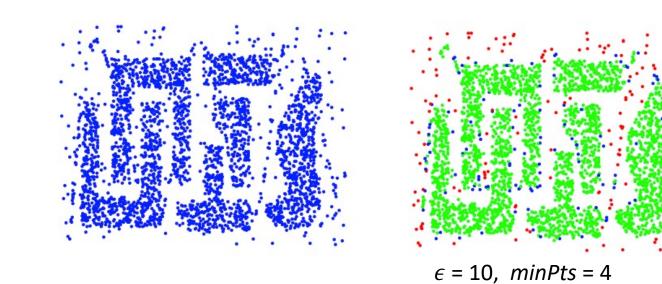
Three types of data points

- Given ϵ and *minPts*
 - \circ Core point: has at least *minPts* neighbors within its ϵ -neighborhood
 - At the interior of a cluster
 - \circ Border point
 - has fewer than *minPts* neighbors within its ϵ -neighborhood
 - is within the ϵ -neighborhood of a core point
 - \circ Outlier/Noise
 - Any point that is neither core nor border



Three types of data points

• Example

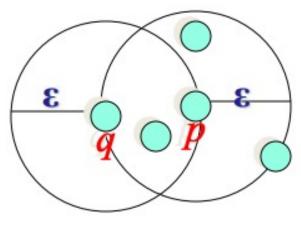


Original Points

Point types: core, border and outliers

Density definition: two concepts

- Density reachability
 - A point q is said to be density reachable from a point p if
 - p is a core point (i.e., has at least minPts points within ϵ -neighborhood)
 - point *q* is within the *ε*-neighborhood of *p*

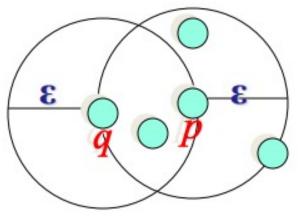


minPts = 4

In this example, q is density reachable from p. Is p also density reachable from q?

Density definition: two concepts

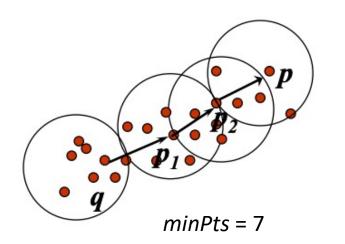
- Density reachability
 - A point q is said to be density reachable from a point p if
 - p is a core point (i.e., has at least minPts points within ϵ -neighborhood)
 - point q is within the e-neighborhood of p
 - \circ Density-reachability is asymmetric



minPts = 4

Density definition: two concepts

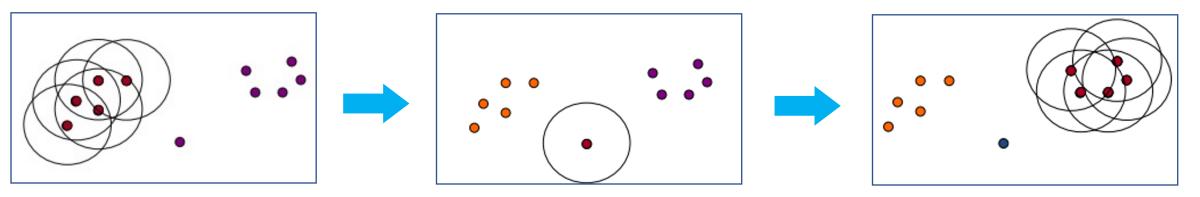
- Density reachability
- Density connectivity
 - A point *p* and *q* are said to be density connected if
 - There exists another point r that has at least minPts points within its ϵ -neighborhood
 - And both p and q are within *\epsilon*-neighborhood of r
 - Density connectivity is transitive (i.e., it forms a chain)



Example:

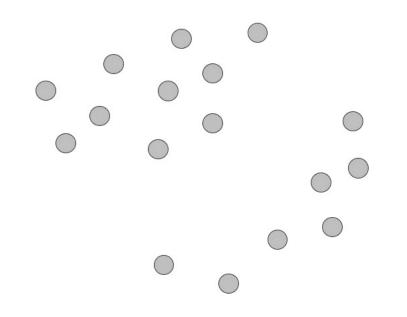
- p is density connected by p_2
- p_2 is density connected by p_1
- p_1 is density connected by q
- So we say: *p* is density connected by *q*

for each $o \in D$ do if o is not yet classified then if o is a core-object then collect all objects density-connected by o, and assign them to a new cluster. else assign o to NOISE



An example of DBSCAN clustering: $\epsilon = 1$ cm, *minPts* = 3

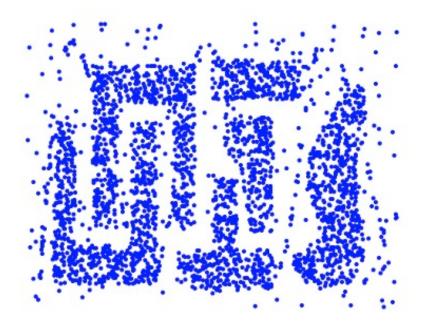
• Illustration

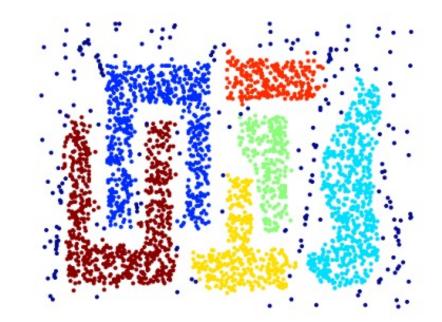


• Illustration Ó 00 ္လွ္လွ်ို့တွင္လ မုနိုင္လဲမွာ စာမုနာ g 3 0 0 0 0 C 888 888 000 0000

epsilon = 1.00 minPoints = 4

• Example

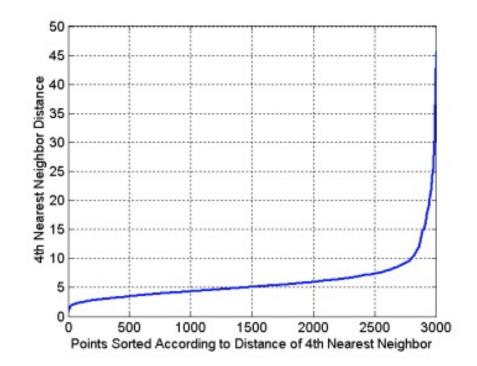




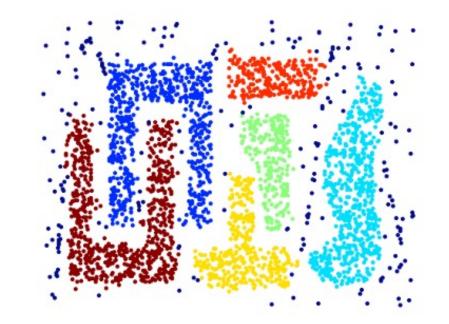
Original Points

Clusters

- Determining the two parameters
 - o minPts
 - minPts = 1?
 - minPt2 = 2?
 - minPt2 = 2 * dimension
 - $\circ \epsilon$ (distance threshold)
 - k-distance graph (k = minPts 1)
 - Look for the "elbow"

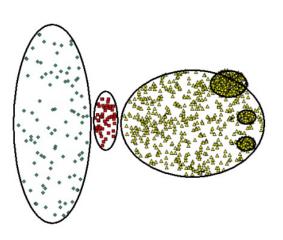


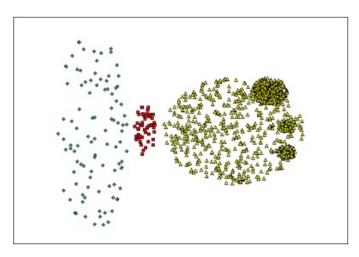
- Advantages
 - $\circ~$ Resistant to Noise
 - $\circ~$ Robust to clusters of different shapes and sizes

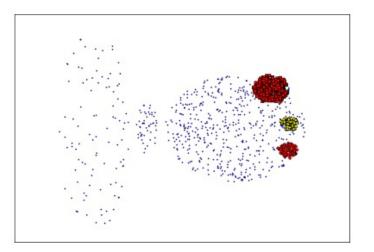


• Limitations

- Cannot handle varying densities
- $\circ~$ Hard to determine a good set of parameters







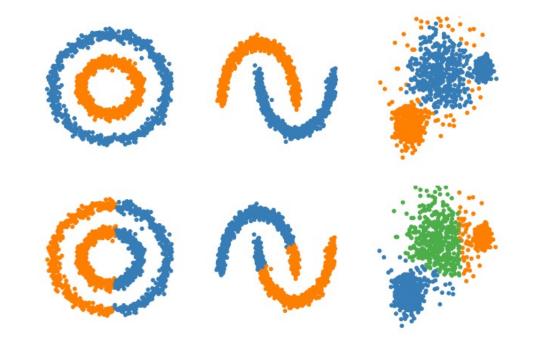
minPts = 4, ϵ = 75

Original points

minPts = 4, ϵ = 9.92

Question

• Which method (DBSCAN or k-means) was used to produce each result?



Agenda

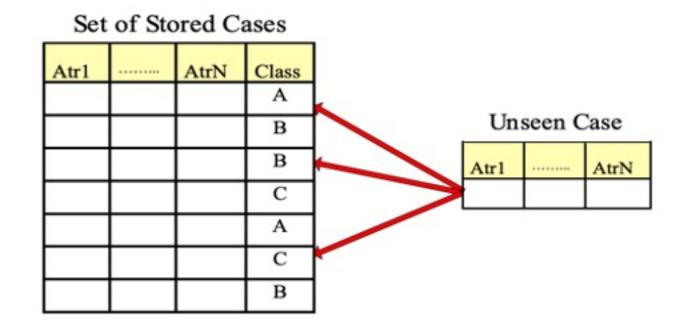
Overview

- What is clustering?
- Distance measure
- $\circ~$ Types of clustering algorithms
- Clustering algorithms
 - K-means clustering
 - Hierarchical clustering
 - Density-based clustering
- Nearest neighbor classification

Features

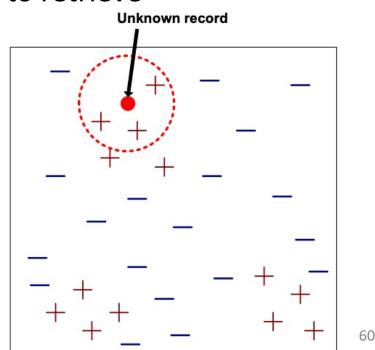
Nearest neighbor classification

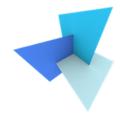
- Basic ideas
 - $\circ~$ Store the training records
 - $\circ~$ Use training records to predict the class label of unseen cases



Nearest neighbor classification

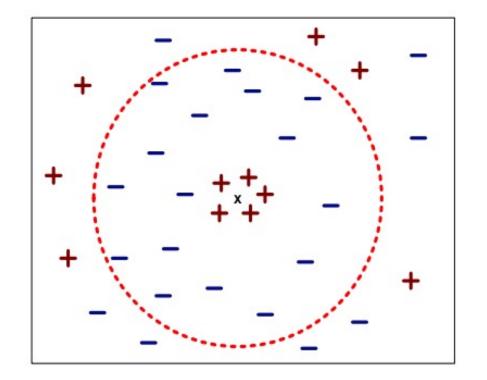
- Requires three things
 - $\circ~$ The set of stored records
 - Distance metric to compute distance between records
 - $\circ~$ The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of the k nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)





Nearest neighbor classification

- Choosing the value of k
 - $\circ~$ If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes



Agenda

Overview

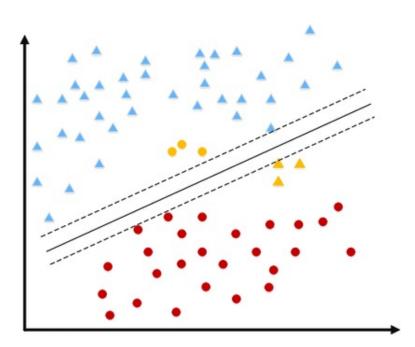
- What is clustering?
- Distance measure
- $\circ~$ Types of clustering algorithms

• Clustering algorithms

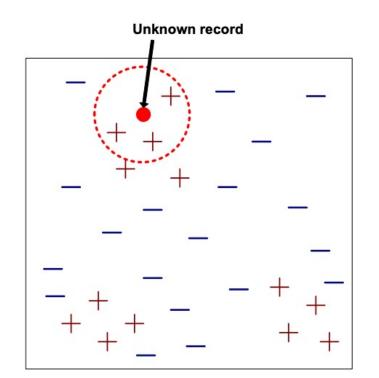
- K-means clustering
- \circ Hierarchical clustering
- $\circ~$ Density-based clustering
- Nearest neighbor classification
- Features

Features

- A set of attributes of an object
- Typically stored as a vector feature vector



Data points in clustering



Features

- A set of attributes of an object
- Typically stored as a vector feature vector
- Scaling issue: distance measure dominated by one of the attributes
 - Example
 - height of a person [1.5m, 1.8m]
 - weight of a person [40kg, 100kg]
 - Income of a person [€10K, €1M]
 - Solution

$$d(\mathbf{p},\mathbf{q}) = \sqrt{\sum_{i=1}^n (q_i-p_i)^2}$$

Normalization, i.e., <u>each attribute value</u>
 <u>max possible value of this attribute</u>

You should have learned

- Clustering
 - \circ The basic ideas, strengths, and weaknesses of the 3 clustering methods
 - o K-means
 - How is K-means interpreted as an optimization problem?
 - Hierarchical clustering
 - Several ways of defining inter-cluster distance
 - $\circ~$ Density-based clustering
 - The parameters and the definitions of neighborhood and density in DBSCAN
- Classification
 - $\circ~$ The basic idea of k-nearest neighbor classifier

Next Lecture

• Linear regression & gradient decent

