
Backpropagation∗

March 15, 2022

1 Introduction

In the last lecture notes we saw how neural networks can learn their weights and biases
using the gradient descent algorithm. There was, however, a gap in our explanation: we
didn’t discuss how to compute the gradient of the cost function. That’s quite a gap! In
this lecture notes I’ll explain a fast algorithm for computing such gradients, an algorithm
known as backpropagation.

The backpropagation algorithm was originally introduced in the 1970s, but its impor-
tance wasn’t fully appreciated until a famous 1986 paper by David Rumelhart, Geoffrey
Hinton, and Ronald Williams. That paper describes several neural networks where back-
propagation works far faster than earlier approaches to learning, making it possible to
use neural nets to solve problems which had previously been insoluble. Today, the back-
propagation algorithm is the workhorse of learning in neural networks.

This lecture notes is more mathematically involved than the rest of the lectures. If
you’re not crazy about mathematics you may be tempted to skip the lecture notes, and
to treat backpropagation as a black box whose details you’re willing to ignore. Why take
the time to study those details?

The reason, of course, is understanding. At the heart of backpropagation is an expres-
sion for the partial derivative ∂C/∂w of the cost function C with respect to any weight
w (or bias b) in the network. The expression tells us how quickly the cost changes when
we change the weights and biases. And while the expression is somewhat complex, it
also has a beauty to it, with each element having a natural, intuitive interpretation. And
so backpropagation isn’t just a fast algorithm for learning. It actually gives us detailed
insights into how changing the weights and biases changes the overall behaviour of the
network. That’s well worth studying in detail.

2 Warm up: a fast matrix-based approach to com-

puting the output from a neural network

Before discussing backpropagation, let’s warm up with a fast matrix-based algorithm to
compute the output from a neural network. We actually already briefly saw this algorithm
near the end of the last lecture notes (section ??), but I described it quickly, so it’s worth

∗References
- Mickael Nielsen. Neural Networks and Deep Learning

1

http://www.nature.com/nature/journal/v323/n6088/pdf/323533a0.pdf
http://neuralnetworksanddeeplearning.com/

Course Notes GEO5017: Machine Learning for the Built Environment

revisiting in detail. In particular, this is a good way of getting comfortable with the
notation used in backpropagation, in a familiar context.

Let’s begin with a notation which lets us refer to weights in the network in an unam-
biguous way. We’ll use wl

jk to denote the weight for the connection from the k-th neuron
in the (l − 1)-th layer to the j-th neuron in the l-th layer. So, for example, the diagram
below shows the weight on a connection from the fourth neuron in the second layer to
the second neuron in the third layer of a network:

This notation is cumbersome at first, and it does take some work to master. But with a
little effort you’ll find the notation becomes easy and natural. One quirk of the notation
is the ordering of the j and k indices. You might think that it makes more sense to use j to
refer to the input neuron, and k to the output neuron, not vice versa, as is actually done.
I’ll explain the reason for this quirk below. We use a similar notation for the network’s
biases and activations. Explicitly, we use blj for the bias of the j-th neuron in the l-th
layer. And we use alj for the activation of the j-th neuron in the l-th layer. The following
diagram shows examples of these notations in use:

With these notations, the activation alj of the j-th neuron in the l-th layer is related
to the activations in the (l − 1)-th layer by the equation (compare Equation (??) and
surrounding discussion in the last lecture notes)

alj = σ

!
"

k

wl
jka

l−1
k + blj

#
, (23)

where the sum is over all neurons k in the (l − 1)-th layer. To rewrite this expression in
a matrix form we define a weight matrix wl for each layer, l. The entries of the weight
matrix wl are just the weights connecting to the l-th layer of neurons, that is, the entry

2

Course Notes GEO5017: Machine Learning for the Built Environment

in the j-th row and k-th column is wl
jk. Similarly, for each layer l we define a bias vector,

bl. You can probably guess how this works – the components of the bias vector are just
the values blj, one component for each neuron in the l-th layer. And finally, we define
an activation vector al whose components are the activations alj. The last ingredient we
need to rewrite (23) in a matrix form is the idea of vectorizing a function such as σ. We
met vectorization briefly in the last lecture notes, but to recap, the idea is that we want
to apply a function such as σ to every element in a vector v. We use the obvious notation
σ(v) to denote this kind of elementwise application of a function. That is, the components
of σ(v) are just σ(v)j = σ(vj). As an example, if we have the function f(x) = x2 then
the vectorized form of f has the effect

f

$%
2
3

&'
=

%
f(2)
f(3)

&
=

%
4
9

&
, (24)

that is, the vectorized f just squares every element of the vector.
With these notations in mind, Equation (23) can be rewritten in the beautiful and

compact vectorized form
al = σ(wlal−1 + bl). (25)

This expression gives us a much more global way of thinking about how the activations in
one layer relate to activations in the previous layer: we just apply the weight matrix to the
activations, then add the bias vector, and finally apply the σ function1. That global view
is often easier and more succinct (and involves fewer indices!) than the neuron-by-neuron
view we’ve taken to now. Think of it as a way of escaping index hell, while remaining
precise about what’s going on. The expression is also useful in practice, because most
matrix libraries provide fast ways of implementing matrix multiplication, vector addition,
and vectorization. Indeed, the code (see ??) in the last lecture notes made implicit use
of this expression to compute the behaviour of the network.

When using Equation (25) to compute al, we compute the intermediate quantity
zl ≡ wlal−1 + bl along the way. This quantity turns out to be useful enough to be worth
naming: we call zl the weighted input to the neurons in layer l. We’ll make considerable
use of the weighted input zl later in the lecture notes. Equation (25) is sometimes
written in terms of the weighted input, as al = σ(zl). It’s also worth noting that zl has
components zlj =

(
k w

l
jka

l−1
k + blj, that is, z

l
j is just the weighted input to the activation

function for neuron j in layer l.

3 The two assumptions we need about the cost func-

tion

The goal of backpropagation is to compute the partial derivatives ∂C/∂w and ∂C/∂b
of the cost function C with respect to any weight w or bias b in the network. For
backpropagation to work we need to make two main assumptions about the form of the
cost function. Before stating those assumptions, though, it’s useful to have an example

1By the way, it’s this expression that motivates the quirk in the wl
jk notation mentioned earlier. If we

used j to index the input neuron, and k to index the output neuron, then we’d need to replace the weight
matrix in Equation (25) by the transpose of the weight matrix. That’s a small change, but annoying,
and we’d lose the easy simplicity of saying (and thinking) “apply the weight matrix to the activations”.

3

Course Notes GEO5017: Machine Learning for the Built Environment

cost function in mind. We’ll use the quadratic cost function from last lecture notes (c.f.
Equation (??)). In the notation of the last section, the quadratic cost has the form

C =
1

2n

"

x

))y(x)− aL(x)
))2

, (26)

where: n is the total number of training examples; the sum is over individual training
examples, x; y = y(x) is the corresponding desired output; L denotes the number of layers
in the network; and aL = aL(x) is the vector of activations output from the network when
x is input.

Okay, so what assumptions do we need to make about our cost function, C, in order
that backpropagation can be applied? The first assumption we need is that the cost
function can be written as an average C = 1

n

(
x Cx over cost functions Cx for individual

training examples, x. This is the case for the quadratic cost function, where the cost for
a single training example is Cx = 1

2
‖y − aL‖2. This assumption will also hold true for all

the other cost functions we’ll meet in this notes.
The reason we need this assumption is because what backpropagation actually lets us

do is compute the partial derivatives ∂Cx/∂w and ∂Cx/∂b for a single training example.
We then recover ∂C/∂w and ∂C/∂b by averaging over training examples. In fact, with
this assumption in mind, we’ll suppose the training example x has been fixed, and drop
the x subscript, writing the cost Cx as C. We’ll eventually put the x back in, but for
now it’s a notational nuisance that is better left implicit.

The second assumption we make about the cost is that it can be written as a function
of the outputs from the neural network:

For example, the quadratic cost function satisfies this requirement, since the quadratic
cost for a single training example x may be written as

C =
1

2

))y − aL
))2

=
1

2

"

j

*
yj − aLj

+2
, (27)

and thus is a function of the output activations. Of course, this cost function also depends
on the desired output y, and you may wonder why we’re not regarding the cost also as
a function of y. Remember, though, that the input training example x is fixed, and so
the output y is also a fixed parameter. In particular, it’s not something we can modify
by changing the weights and biases in any way, i.e., it’s not something which the neural
network learns. And so it makes sense to regard C as a function of the output activations
aL alone, with y merely a parameter that helps define that function.

4

Course Notes GEO5017: Machine Learning for the Built Environment

4 The Hadamard product, s⊙ t

The backpropagation algorithm is based on common linear algebraic operations – things
like vector addition, multiplying a vector by a matrix, and so on. But one of the operations
is a little less commonly used. In particular, suppose s and t are two vectors of the same
dimension. Then we use s⊙ t to denote the elementwise product of the two vectors. Thus
the components of s⊙ t are just (s⊙ t)j = sjtj. As an example,

%
1
2

&
⊙

%
3
4

&
=

%
1 ∗ 3
2 ∗ 4

&
=

%
3
8

&
. (28)

This kind of elementwise multiplication is sometimes called the Hadamard product or
Schur product. We’ll refer to it as the Hadamard product. Good matrix libraries usually
provide fast implementations of the Hadamard product, and that comes in handy when
implementing backpropagation.

5 The four fundamental equations behind backprop-

agation

Backpropagation is about understanding how changing the weights and biases in a net-
work changes the cost function. Ultimately, this means computing the partial derivatives
∂C/∂wl

jk and ∂C/∂blj. But to compute those, we first introduce an intermediate quantity,

δlj, which we call the error in the j-th neuron in the l-th layer. Backpropagation will give
us a procedure to compute the error δlj, and then will relate δlj to ∂C/∂wl

jk and ∂C/∂blj.
To understand how the error is defined, imagine there is a demon in our neural

network:

The demon sits at the j-th neuron in layer l. As the input to the neuron comes in, the
demon messes with the neuron’s operation. It adds a little change ∆zlj to the neuron’s
weighted input, so that instead of outputting σ(zlj), the neuron instead outputs σ(zlj +
∆zlj). This change propagates through later layers in the network, finally causing the

overall cost to change by an amount ∂C
∂zlj

∆zlj.

Now, this demon is a good demon, and is trying to help you improve the cost, i.e.,
they’re trying to find a ∆zlj which makes the cost smaller. Suppose ∂C/∂zlj has a large
value (either positive or negative). Then the demon can lower the cost quite a bit by
choosing ∆zlj to have the opposite sign to ∂C/∂zlj. By contrast, if ∂C/∂zlj is close to zero,
then the demon can’t improve the cost much at all by perturbing the weighted input zlj.

5

Course Notes GEO5017: Machine Learning for the Built Environment

So far as the demon can tell, the neuron is already pretty near optimal2. And so there’s
a heuristic sense in which ∂C/∂zlj is a measure of the error in the neuron.

Motivated by this story, we define the error δlj of neuron j in layer l by

δlj ≡
∂C

∂zlj
. (29)

As per our usual conventions, we use δl to denote the vector of errors associated with
layer l. Backpropagation will give us a way of computing δl for every layer, and then
relating those errors to the quantities of real interest, ∂C/∂wl

jk and ∂C/∂blj.

You might wonder why the demon is changing the weighted input zlj. Surely it’d be
more natural to imagine the demon changing the output activation alj, with the result

that we’d be using ∂C
∂alj

as our measure of error. In fact, if you do this things work out

quite similarly to the discussion below. But it turns out to make the presentation of
backpropagation a little more algebraically complicated. So we’ll stick with δlj =

∂C
∂zlj

as

our measure of error3.
Plan of attack: Backpropagation is based around four fundamental equations. To-

gether, those equations give us a way of computing both the error δl and the gradient of
the cost function. I state the four equations below. Be warned, though: you shouldn’t
expect to instantaneously assimilate the equations. Such an expectation will lead to
disappointment. In fact, the backpropagation equations are so rich that understanding
them well requires considerable time and patience as you gradually delve deeper into the
equations. The good news is that such patience is repaid many times over. And so the
discussion in this section is merely a beginning, helping you on the way to a thorough
understanding of the equations.

Here’s a preview of the ways we’ll delve more deeply into the equations later in the
lecture notes: I’ll give a short proof of the equations, which helps explain why they are
true; we’ll restate the equations in algorithmic form as pseudocode, and see how the
pseudocode can be implemented as real, running Python code; and, in the final section of
the lecture notes, we’ll develop an intuitive picture of what the backpropagation equations
mean, and how someone might discover them from scratch. Along the way we’ll return
repeatedly to the four fundamental equations, and as you deepen your understanding
those equations will come to seem comfortable and, perhaps, even beautiful and natural.

An equation for the error in the output layer, δL: The components of δL are
given by

δLj =
∂C

∂aLj
σ′(zLj). (BP1)

This is a very natural expression. The first term on the right, ∂C/∂aLj , just measures
how fast the cost is changing as a function of the j-th output activation. If, for example,
C doesn’t depend much on a particular output neuron, j, then δLj will be small, which is
what we’d expect. The second term on the right, σ′(zLj), measures how fast the activation
function σ is changing at zLj .

2This is only the case for small changes ∆zlj , of course. We’ll assume that the demon is constrained
to make such small changes.

3In classification problems like MNIST the term “error” is sometimes used to mean the classification
failure rate. E.g., if the neural net correctly classifies 96.0 percent of the digits, then the error is 4.0
percent. Obviously, this has quite a different meaning from our δ vectors. In practice, you shouldn’t
have trouble telling which meaning is intended in any given usage.

6

Course Notes GEO5017: Machine Learning for the Built Environment

Notice that everything in Eq. (BP1) is easily computed. In particular, we compute zLj
while computing the behaviour of the network, and it’s only a small additional overhead
to compute σ′(zLj). The exact form of ∂C/∂aLj will, of course, depend on the form of
the cost function. However, provided the cost function is known there should be little
trouble computing ∂C/∂aLj . For example, if we’re using the quadratic cost function then
C = 1

2

(
j(yj − aLj)

2, and so ∂C/∂aLj = (aLj − yj), which obviously is easily computable.

Equation (BP1) is a componentwise expression for δL. It’s a perfectly good expression,
but not the matrix-based form we want for backpropagation. However, it’s easy to rewrite
the equation in a matrix-based form, as

δL = ∇aC ⊙ σ′(zL). (BP1a)

Here, ∇aC is defined to be a vector whose components are the partial derivatives ∂C/∂aLj .
You can think of ∇aC as expressing the rate of change of C with respect to the output
activations. It’s easy to see that Equations (BP1a) and (BP1) are equivalent, and for
that reason from now on we’ll use (BP1) interchangeably to refer to both equations. As
an example, in the case of the quadratic cost we have ∇aC = (aL − y), and so the fully
matrix-based form of (BP1) becomes

δL = (aL − y)⊙ σ′(zL). (30)

As you can see, everything in this expression has a nice vector form, and is easily computed
using a library such as Numpy.

An equation for the error δl in terms of the error in the next layer, δl+1: In
particular

δl =
*
(wl+1)T δl+1

+
⊙ σ′(zl), (BP2)

where (wl+1)T is the transpose of the weight matrix wl+1 for the (l+1)-th layer. This
equation appears complicated, but each element has a nice interpretation. Suppose we
know the error δl+1 at the (l+1)-th layer. When we apply the transpose weight matrix,
(wl+1)T , we can think intuitively of this as moving the error backward through the net-
work, giving us some sort of measure of the error at the output of the l-th layer. We
then take the Hadamard product ⊙σ′(zl). This moves the error backward through the
activation function in layer l, giving us the error δl in the weighted input to layer l.

By combining (BP2) with (BP1) we can compute the error δl for any layer in the
network. We start by using (BP1) to compute δL, then apply Equation (BP2) to compute
δL−1, then Equation (BP2) again to compute δL−2, and so on, all the way back through
the network.

An equation for the rate of change of the cost with respect to any bias in
the network: In particular:

∂C

∂blj
= δlj. (BP3)

That is, the error δlj is exactly equal to the rate of change ∂C/∂blj. This is great news,
since (BP1) and (BP2) have already told us how to compute δlj. We can rewrite (BP3)
in shorthand as

∂C

∂b
= δ, (31)

where it is understood that δ is being evaluated at the same neuron as the bias b.

7

Course Notes GEO5017: Machine Learning for the Built Environment

An equation for the rate of change of the cost with respect to any weight
in the network: In particular:

∂C

∂wl
jk

= al−1
k δlj. (BP4)

This tells us how to compute the partial derivatives ∂C/∂wl
jk in terms of the quantities

δl and al−1, which we already know how to compute. The equation can be rewritten in
a less index-heavy notation as

∂C

∂w
= ainδout, (32)

where it’s understood that ain is the activation of the neuron input to the weight w, and
δout is the error of the neuron output from the weight w. Zooming in to look at just the
weight w, and the two neurons connected by that weight, we can depict this as:

A nice consequence of Equation (32) is that when the activation ain is small, ain ≈ 0, the
gradient term ∂C/∂w will also tend to be small. In this case, we’ll say the weight learns
slowly, meaning that it’s not changing much during gradient descent. In other words, one
consequence of (BP4) is that weights output from low-activation neurons learn slowly.

There are other insights along these lines which can be obtained from (BP1)–(BP4).
Let’s start by looking at the output layer. Consider the term σ′(zLj) in (BP1). Recall from
the graph of the sigmoid function in the last lecture notes that the σ function becomes
very flat when σ(zLj) is approximately 0 or 1. When this occurs we will have σ′(zLj) ≈ 0.
And so the lesson is that a weight in the final layer will learn slowly if the output neuron
is either low activation (≈ 0) or high activation (≈ 1). In this case it’s common to say
the output neuron has saturated and, as a result, the weight has stopped learning (or is
learning slowly). Similar remarks hold also for the biases of output neuron.

We can obtain similar insights for earlier layers. In particular, note the σ′(zl) term
in (BP2). This means that δlj is likely to get small if the neuron is near saturation. And
this, in turn, means that any weights input to a saturated neuron will learn slowly4.

Summing up, we’ve learnt that a weight will learn slowly if either the input neuron is
low-activation, or if the output neuron has saturated, i.e., is either high- or low-activation.

None of these observations is too greatly surprising. Still, they help improve our
mental model of what’s going on as a neural network learns. Furthermore, we can turn
this type of reasoning around. The four fundamental equations turn out to hold for any
activation function, not just the standard sigmoid function (that’s because, as we’ll see
in a moment, the proofs don’t use any special properties of σ). And so we can use these
equations to design activation functions which have particular desired learning properties.
As an example to give you the idea, suppose we were to choose a (non-sigmoid) activation
function σ so that σ′ is always positive, and never gets close to zero. That would prevent
the slow-down of learning that occurs when ordinary sigmoid neurons saturate. Later,

4This reasoning won’t hold if (wl+1)T δl+1 has large enough entries to compensate for the smallness
of σ′(zlj). But I’m speaking of the general tendency.

8

Course Notes GEO5017: Machine Learning for the Built Environment

we’ll see examples where this kind of modification is made to the activation function.
Keeping the four equations (BP1)–(BP4) in mind can help explain why such modifications
are tried, and what impact they can have.

6 Proof of the four fundamental equations (optional)

We’ll now prove the four fundamental equations (BP1)–(BP4). All four are consequences
of the chain rule from multivariable calculus. If you’re comfortable with the chain rule,
then I strongly encourage you to attempt the derivation yourself before reading on.

Let’s begin with Equation (BP1), which gives an expression for the output error, δl.
To prove this equation, recall that by definition

δLj =
∂C

∂zLj
. (36)

Applying the chain rule, we can re-express the partial derivative above in terms of partial
derivatives with respect to the output activations,

δLj =
"

k

∂C

∂aLk

∂aLk
∂zLj

, (37)

where the sum is over all neurons k in the output layer. Of course, the output activation
aLk of the k-th neuron depends only on the weighted input zLj for the j-th neuron when
k = j. And so ∂aLk /∂z

L
j vanishes when k ∕= j. As a result we can simplify the previous

equation to

δLj =
∂C

∂aLj

∂aLj
∂zLj

. (38)

Recalling that aLj = σ(zLj) the second term on the right can be written as σ′(zLj), and the
equation becomes

δLj =
∂C

∂aLj
σ′(zLj), (39)

which is just (BP1), in component form. Next, we’ll prove (BP2), which gives an equation
for the error δl in terms of the error in the next layer, δl+1. To do this, we want to rewrite
δlj = ∂C/∂zlj in terms of δl+1

k = ∂C/∂zl+1
k . We can do this using the chain rule,

δlj =
∂C

∂zlj
=

"

k

∂C

∂zl+1
k

∂zl+1
k

∂zlj
=

"

k

∂zl+1
k

∂zlj
δl+1
k , (42)

9

Course Notes GEO5017: Machine Learning for the Built Environment

where in the last line we have interchanged the two terms on the right-hand side, and
substituted the definition of δl+1

k . To evaluate the first term on the last line, note that

zl+1
k =

"

j

wl+1
kj alj + bl+1

k =
"

j

wl+1
kj σ(zlj) + bl+1

k . (43)

Differentiating, we obtain
∂zl+1

k

∂zlj
= wl+1

kj σ′(zlj). (44)

Substituting back into (42) we obtain

δlj =
"

k

wl+1
kj δl+1

k σ′(zlj). (45)

This is just (BP2) written in component form.
The final two equations we want to prove are (BP3) and (BP4). These also follow

from the chain rule, in a manner similar to the proofs of the two equations above. I leave
them to you as an exercise.

That completes the proof of the four fundamental equations of backpropagation. The
proof may seem complicated. But it’s really just the outcome of carefully applying the
chain rule. A little less succinctly, we can think of backpropagation as a way of computing
the gradient of the cost function by systematically applying the chain rule from multi-
variable calculus. That’s all there really is to backpropagation – the rest is details.

7 The backpropagation algorithm

The backpropagation equations provide us with a way of computing the gradient of the
cost function. Let’s explicitly write this out in the form of an algorithm:

1) Input x: Set the corresponding activation a1 for the input layer.

2) Feedforward: For each l = 2, 3, . . . , L compute zl = wlal−1 + bl and al = σ(zl).

3) Output error δL: Compute the vector δL = ∇aC ⊙ σ′(zL).

4) Backpropagate the error: For each l = L − 1, L − 2, . . . , 2 compute δl =
((wl+1)T δl+1)⊙ σ′(zl).

5) Output: The gradient of the cost function is given by ∂C
∂wl

jk
= al−1

k δlj and
∂C
∂blj

= δlj.

Examining the algorithm you can see why it’s called backpropagation. We compute the
error vectors δl backward, starting from the final layer. It may seem peculiar that we’re
going through the network backward. But if you think about the proof of backpropaga-
tion, the backward movement is a consequence of the fact that the cost is a function of
outputs from the network. To understand how the cost varies with earlier weights and
biases we need to repeatedly apply the chain rule, working backward through the layers
to obtain usable expressions.

As I’ve described it above, the backpropagation algorithm computes the gradient of
the cost function for a single training example, C = Cx. In practice, it’s common to
combine backpropagation with a learning algorithm such as stochastic gradient descent,

10

Course Notes GEO5017: Machine Learning for the Built Environment

in which we compute the gradient for many training examples. In particular, given a
mini-batch of m training examples, the following algorithm applies a gradient descent
learning step based on that mini-batch:

1) Input a set of training examples

2) For each training example x: Set the corresponding input activation ax,1, and per-
form the following steps:

• Feedforward: For each l= 2, 3, . . . , L compute zx,l = wlax,l−1 + bl and ax,l =
σ(zx,l).

• Output error δx,L: Compute the vector δx,L = ∇aCx ⊙ σ′(zx,L).

• Backpropagate the error: For each l = L − 1, L − 2, . . . , 2 compute δx,l =
((wl+1)T δx,l+1)⊙ σ′(zx,l).

3) Gradient descent: For each l = L,L − 1, . . . , 2 update the weights according to
the rule wl → wl − η

m

(
x δ

x,l(ax,l−1)T , and the biases according to the rule bl →
bl − η

m

(
x δ

x,l.

Of course, to implement stochastic gradient descent in practice you also need an outer
loop generating mini-batches of training examples, and an outer loop stepping through
multiple epochs of training. I’ve omitted those for simplicity.

8 The code for backpropagation

The code for these methods is a direct translation of the algorithm described above. In
particular, the update mini batch method updates the Network’s weights and biases
by computing the gradient for the current mini batch of training examples:

class Network(object):

...

def update_mini_batch(self , mini_batch , eta):

""" Update the network ’s weights and biases by applying

gradient descent using backpropagation to a single mini batch

.

The "mini_batch" is a list of tuples "(x, y)", and "eta"

is the learning rate."""

nabla_b = [np.zeros(b.shape) for b in self.biases]

nabla_w = [np.zeros(w.shape) for w in self.weights]

for x, y in mini_batch:

delta_nabla_b , delta_nabla_w = self.backprop(x, y)

nabla_b = [nb+dnb for nb , dnb in zip(nabla_b , delta_nabla_b

)]

nabla_w = [nw+dnw for nw , dnw in zip(nabla_w , delta_nabla_w

)]

self.weights = [w-(eta/len(mini_batch))*nw

for w, nw in zip(self.weights , nabla_w)]

self.biases = [b-(eta/len(mini_batch))*nb

for b, nb in zip(self.biases , nabla_b)]

11

Course Notes GEO5017: Machine Learning for the Built Environment

Most of the work is done by the line delta nabla b, delta nabla w = self.backprop(x,
y) which uses the backprop method to figure out the partial derivatives ∂Cx/∂b

l
j and

∂Cx/∂w
l
jk. The backprop method follows the algorithm in the last section closely. There

is one small change – we use a slightly different approach to indexing the layers. This
change is made to take advantage of a feature of Python, namely the use of negative list
indices to count backward from the end of a list, so, e.g., l[-3] is the third last entry in a
list l. The code for backprop is below, together with a few helper functions, which are
used to compute the σ function, the derivative σ′, and the derivative of the cost function.
With these inclusions you should be able to understand the code in a self-contained way.
If something’s tripping you up, you may find it helpful to consult the original description
(and complete listing) of the code.

class Network(object):

...

def backprop(self , x, y):

""" Return a tuple "(nabla_b , nabla_w)" representing the

gradient for the cost function C_x. "nabla_b" and

"nabla_w" are layer -by -layer lists of numpy arrays , similar

to "self.biases" and "self.weights "."""

nabla_b = [np.zeros(b.shape) for b in self.biases]

nabla_w = [np.zeros(w.shape) for w in self.weights]

feedforward

activation = x

activations = [x] # list to store all the activations , layer

by layer

zs = [] # list to store all the z vectors , layer by layer

for b, w in zip(self.biases , self.weights):

z = np.dot(w, activation)+b

zs.append(z)

activation = sigmoid(z)

activations.append(activation)

backward pass

delta = self.cost_derivative(activations [-1], y) *

sigmoid_prime(zs[-1])

nabla_b [-1] = delta

nabla_w [-1] = np.dot(delta , activations [-2]. transpose ())

Note that the variable l in the loop below is used a little

differently to the notation in the notes. Here ,

l = 1 means the last layer of neurons , l = 2 is the

second -last layer , and so on. It’s a renumbering of the

scheme in the notes , used here to take advantage of the

fact

that Python can use negative indices in lists.

for l in xrange(2, self.num_layers):

z = zs[-l]

sp = sigmoid_prime(z)

delta = np.dot(self.weights[-l+1]. transpose (), delta) * sp

nabla_b[-l] = delta

nabla_w[-l] = np.dot(delta , activations[-l-1]. transpose ())

return (nabla_b , nabla_w)

...

12

Course Notes GEO5017: Machine Learning for the Built Environment

def cost_derivative(self , output_activations , y):

""" Return the vector of partial derivatives \partial {} C_x /

\partial {} a for the output activations."""

return (output_activations -y)

def sigmoid(z):

""" The sigmoid function."""

return 1.0/(1.0+ np.exp(-z))

def sigmoid_prime(z):

""" Derivative of the sigmoid function."""

return sigmoid(z)*(1- sigmoid(z))

9 In what sense is backpropagation a fast algorithm?

In what sense is backpropagation a fast algorithm? To answer this question, let’s con-
sider another approach to computing the gradient. Imagine it’s the early days of neural
networks research. Maybe it’s the 1950s or 1960s, and you’re the first person in the world
to think of using gradient descent to learn! But to make the idea work you need a way
of computing the gradient of the cost function. You think back to your knowledge of cal-
culus, and decide to see if you can use the chain rule to compute the gradient. But after
playing around a bit, the algebra looks complicated, and you get discouraged. So you
try to find another approach. You decide to regard the cost as a function of the weights
C = C(w) alone (we’ll get back to the biases in a moment). You number the weights
w1, w2, . . ., and want to compute ∂C/∂wj for some particular weight wj. An obvious way
of doing that is to use the approximation

∂C

∂wj

≈ C(w + εej)− C(w)

ε
, (46)

where ε > 0 is a small positive number, and ej is the unit vector in the j-th direction. In
other words, we can estimate ∂C/∂wj by computing the cost C for two slightly different
values of wj, and then applying Equation (46). The same idea will let us compute the
partial derivatives ∂C/∂b with respect to the biases.

This approach looks very promising. It’s simple conceptually, and extremely easy to
implement, using just a few lines of code. Certainly, it looks much more promising than
the idea of using the chain rule to compute the gradient!

Unfortunately, while this approach appears promising, when you implement the code
it turns out to be extremely slow. To understand why, imagine we have a million weights
in our network. Then for each distinct weight wj we need to compute C(w+ εej) in order
to compute ∂C/∂wj. That means that to compute the gradient we need to compute the
cost function a million different times, requiring a million forward passes through the
network (per training example). We need to compute C(w) as well, so that’s a total of a
million and one passes through the network.

What’s clever about backpropagation is that it enables us to simultaneously compute
all the partial derivatives ∂C/∂wj using just one forward pass through the network, fol-
lowed by one backward pass through the network. Roughly speaking, the computational
cost of the backward pass is about the same as the forward pass5. And so the total cost

5This should be plausible, but it requires some analysis to make a careful statement. It’s plausible
because the dominant computational cost in the forward pass is multiplying by the weight matrices,

13

Course Notes GEO5017: Machine Learning for the Built Environment

of backpropagation is roughly the same as making just two forward passes through the
network. Compare that to the million and one forward passes we needed for the approach
based on (46)! And so even though backpropagation appears superficially more complex
than the approach based on (46), it’s actually much, much faster.

This speedup was first fully appreciated in 1986, and it greatly expanded the range of
problems that neural networks could solve. That, in turn, caused a rush of people using
neural networks. Of course, backpropagation is not a panacea. Even in the late 1980s
people ran up against limits, especially when attempting to use backpropagation to train
deep neural networks, i.e., networks with many hidden layers. Later we’ll see how modern
computers and some clever new ideas now make it possible to use backpropagation to
train such deep neural networks.

10 Backpropagation: the big picture

As I’ve explained it, backpropagation presents two mysteries. First, what’s the algorithm
really doing? We’ve developed a picture of the error being backpropagated from the
output. But can we go any deeper, and build up more intuition about what is going
on when we do all these matrix and vector multiplications? The second mystery is how
someone could ever have discovered backpropagation in the first place? It’s one thing to
follow the steps in an algorithm, or even to follow the proof that the algorithm works. But
that doesn’t mean you understand the problem so well that you could have discovered
the algorithm in the first place. Is there a plausible line of reasoning that could have led
you to discover the backpropagation algorithm? In this section I’ll address both these
mysteries.

To improve our intuition about what the algorithm is doing, let’s imagine that we’ve
made a small change ∆wl

jk to some weight in the network, wl
jk:

That change in weight will cause a change in the output activation from the corresponding
neuron:

while in the backward pass it’s multiplying by the transposes of the weight matrices. These operations
obviously have similar computational cost.

14

Course Notes GEO5017: Machine Learning for the Built Environment

That, in turn, will cause a change in all the activations in the next layer:

Those changes will in turn cause changes in the next layer, and then the next, and so on
all the way through to causing a change in the final layer, and then in the cost function:

The change ∆C in the cost is related to the change ∆wl
jk in the weight by the equation

∆C ≈ ∂C

∂wl
jk

∆wl
jk. (47)

This suggests that a possible approach to computing ∂C/∂wl
jk is to carefully track how

a small change in wl
jk propagates to cause a small change in C. If we can do that, being

careful to express everything along the way in terms of easily computable quantities, then
we should be able to compute ∂C/∂wl

jk.

Let’s try to carry this out. The change ∆wl
jk causes a small change ∆alj in the

activation of the j-th neuron in the l-th layer. This change is given by

∆alj ≈
∂alj
∂wl

jk

∆wl
jk. (48)

The change in activation ∆alj will cause changes in all the activations in the next layer,
i.e., the (l+1)-th layer. We’ll concentrate on the way just a single one of those activations
is affected, say al+1

q ,

15

Course Notes GEO5017: Machine Learning for the Built Environment

In fact, it’ll cause the following change:

∆al+1
q ≈

∂al+1
q

∂alj
∆alj. (49)

Substituting in the expression from Equation (48), we get:

∆al+1
q ≈

∂al+1
q

∂alj

∂alj
∂wl

jk

∆wl
jk. (50)

Of course, the change ∆al+1
q will, in turn, cause changes in the activations in the next

layer. In fact, we can imagine a path all the way through the network from wl
jk to C, with

each change in activation causing a change in the next activation, and, finally, a change
in the cost at the output. If the path goes through activations alj, a

l+1
q , · · · , aL−1

n , aLm then
the resulting expression is

∆C ≈ ∂C

∂aLm

∂aLm
∂aL−1

n

∂aL−1
n

∂aL−2
p

. . .
∂al+1

q

∂alj

∂alj
∂wl

jk

∆wl
jk, (51)

that is, we’ve picked up a ∂a/∂a type term for each additional neuron we’ve passed
through, as well as the ∂C/∂aLm term at the end. This represents the change in C due
to changes in the activations along this particular path through the network. Of course,
there’s many paths by which a change in wl

jk can propagate to affect the cost, and we’ve
been considering just a single path. To compute the total change in C it is plausible that
we should sum over all the possible paths between the weight and the final cost, i.e.,

∆C ≈
"

mnp...q

∂C

∂aLm

∂aLm
∂aL−1

n

∂aL−1
n

∂aL−2
p

. . .
∂al+1

q

∂alj

∂alj
∂wl

jk

∆wl
jk, (52)

where we’ve summed over all possible choices for the intermediate neurons along the path.
Comparing with (47) we see that

∂C

∂wl
jk

=
"

mnp...q

∂C

∂aLm

∂aLm
∂aL−1

n

∂aL−1
n

∂aL−2
p

. . .
∂al+1

q

∂alj

∂alj
∂wl

jk

. (53)

Now, Equation (53) looks complicated. However, it has a nice intuitive interpretation.
We’re computing the rate of change of C with respect to a weight in the network. What
the equation tells us is that every edge between two neurons in the network is associated
with a rate factor which is just the partial derivative of one neuron’s activation with
respect to the other neuron’s activation. The edge from the first weight to the first
neuron has a rate factor ∂alj/∂w

l
jk. The rate factor for a path is just the product of the

rate factors along the path. And the total rate of change ∂C/∂wl
jk is just the sum of

the rate factors of all paths from the initial weight to the final cost. This procedure is
illustrated here, for a single path:

16

Course Notes GEO5017: Machine Learning for the Built Environment

What I’ve been providing up to now is a heuristic argument, a way of thinking about
what’s going on when you perturb a weight in a network. Let me sketch out a line of
thinking you could use to further develop this argument. First, you could derive explicit
expressions for all the individual partial derivatives in Equation (53). That’s easy to do
with a bit of calculus. Having done that, you could then try to figure out how to write
all the sums over indices as matrix multiplications. This turns out to be tedious, and
requires some persistence, but not extraordinary insight. After doing all this, and then
simplifying as much as possible, what you discover is that you end up with exactly the
backpropagation algorithm! And so you can think of the backpropagation algorithm as
providing a way of computing the sum over the rate factor for all these paths. Or, to put
it slightly differently, the backpropagation algorithm is a clever way of keeping track of
small perturbations to the weights (and biases) as they propagate through the network,
reach the output, and then affect the cost.

Now, I’m not going to work through all this here. It’s messy and requires consider-
able care to work through all the details. If you’re up for a challenge, you may enjoy
attempting it. And even if not, I hope this line of thinking gives you some insight into
what backpropagation is accomplishing.

What about the other mystery – how backpropagation could have been discovered in
the first place? In fact, if you follow the approach I just sketched you will discover a proof
of backpropagation. Unfortunately, the proof is quite a bit longer and more complicated
than the one I described earlier in this lecture notes. So how was that short (but more
mysterious) proof discovered? What you find when you write out all the details of the
long proof is that, after the fact, there are several obvious simplifications staring you in
the face. You make those simplifications, get a shorter proof, and write that out. And
then several more obvious simplifications jump out at you. So you repeat again. The
result after a few iterations is the proof we saw earlier6 – short, but somewhat obscure,
because all the signposts to its construction have been removed! I am, of course, asking
you to trust me on this, but there really is no great mystery to the origin of the earlier
proof. It’s just a lot of hard work simplifying the proof I’ve sketched in this section.

6There is one clever step required. In Equation (53) the intermediate variables are activations like
al+1
q . The clever idea is to switch to using weighted inputs, like zl+1

q , as the intermediate variables. If

you don’t have this idea, and instead continue using the activations al+1
q , the proof you obtain turns out

to be slightly more complex than the proof given earlier in the lecture notes.

17

