
Support Vector Machine∗

March 1, 2022

1 Standard SVM

1.1 Separable Classes

In the previous lectures, we explored a class of linear classification models. In this lecture,
an alternative rationale for designing linear classifiers will be adopted. Similarly, We will
only discuss the two-class linearly separable task.
Let xi(i ∈ {1, 2, 3, ..., n}) be the feature vectors of the training set X. These belong to
either of two classes, y1, y2, which are assumed to be linearly separable. The goal, once
more, is to design a decision boundary

g(x) = wTx+ b = 0

that classifies correctly all the training vectors. Apparently, such a decision boundary is
not unique (Figure 1).

Figure 1: Multiple decision boundaries can correctly classify the training samples in a
2D feature space.

∗References
- Christopher Bishop. Pattern Recognition and Machine Learning. 2006
- Sergios Theodoridis, Konstantinos Koutroumbas. Pattern Recognition. 2009
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However, which one would any sensible engineer choose as the classifier for operation in
practice, where data outside the training set will be fed to it? No doubt the answer is: the
purple one. The reason is that this boundary leaves more “room ”on either side, so that
data in both classes can move a bit more freely, with less risk of causing an error. Thus
such a boundary can be trusted more, when it is faced with the challenge of operating
with unknown data (Figure 2).
Here we have touched a very important issue in the classifier design stage. It is known as
the generalization performance of the classifier. This refers to the capability of the
classifier, designed using the training data set, to operate satisfactorily with data outside
this set.

Figure 2: A natural choice of decision boundary would be the one that generates the
maximum margin of both classes.

After the above brief discussion, we are ready to accept that a very sensible choice for
the boundary would be the one that leaves the maximum margin from both classes. Let’s
now quantify the margin that a decision boundary leaves from both classes.
We have two classes, one positive class y1 with the label +1, one negative class y2 with
the label -1. We start from the assumption that the weight vector w and the bias b are
constrained so that the output of the linear model is always larger than 1 or smaller than
-1.

!
wTx+ b ≥ +1 if yi = +1

wTx+ b ≤ −1 if yi = −1

First, we consider the direction of w. We have two points x1 and x2 both of which lie on
the boundary. Because g(x1) = g(x2) = 0, we have:

wT (x1 − x2) = 0

and hence the w is orthogonal to every vector lying within the boundary, and so w
determines the orientation of the decision boundary (Figure 3).
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Figure 3: The margin from the closest points of both classes to the decision boundary.

For computing the margin ρ, we start by looking at the closest distance from point x3 of
the positive class to the boundary. This can be computed by projecting the line segment
vector x3 − x1 over the orientation vector w:

1

2
ρ =

wT (x3 − x1)

‖w‖ =
(wTx3 + b)− (wTx1 + b)

‖w‖ =
1

‖w‖
where ‖ · ‖ means the norm (i.e., magnitude) of a vector. For the closest point x4 of the
negative class, we derive the distance in the same way. Therefore, we obtain the margin:

ρ =
2

‖w‖
which means that to maximize the margin ρ we need to minimize the norm of the weight
vector w.
Based on the analysis above, our task now becomes: find a decision boundary with the
parameters w and b so as to:

min
w,b

1

2
‖w‖2

s.t. yi(w
Txi + b)− 1 ≥ 0 ∀i = 1, 2, .., n

1.2 SVM Model Optimization (Optional)

Obviously, minimizing the norm ‖w‖ makes the margin maximum ρ. This is a nonlinear
(quadratic) optimization task subject to a set of linear inequality constraints. A common
way to tackle such problem is Lagrangian method. In this section, we derive the steps
for optimizing a standard SVM model.
Note: This section is discussed as we would like to present what data points are “support
vectors” and why they are named in such way. We don’t require you to command the
content of this section, thus we will NOT ask any related questions in the final exam.
The SVM optimization problem has 1 objective and n corresponding constraints (n is
the number of input sample vectors). For the ith constraint, we apply a non-negative
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Lagrangian multiplier λi. The overall Lagrangian function of the original problem is
given by:

L(w, b,λ) =
1

2
‖w‖2 −

n"

i=1

λi(yi(w
Txi + b)− 1)

where λ is the vector that contains all the Lagrangian multipliers (λ1,λ2, ...,λn). Applying
KKT 1 conditions, we know that the minimizer of the Lagrangian function must satisfy:

yi(w
Txi + b)− 1 ≥ 0

λi ≥ 0

λi(yi(w
Txi + b)− 1) = 0

∂L(w, b,λ)

∂w
= 0

∂L(w, b,λ)

∂b
= 0

From the KKT conditions above we obtain:

w =
N"

i=1

λiyixi

N"

i=1

λiyi = 0

After computation a lot of λi will become 0. Only those vectors lying on the margin
hyperplanes wTxi + b = ±1 will have positive λi. This means the Lagrangian multiplier
vector λ is a sparse vector. Thus, the vector parameter w of the optimal solution is a
linear combination of Ns ≤ N feature vectors that are associated with λi ≥ 0. That is,

w =
Ns"

i=1

λiyixi.

These input vectors which contribute to w are known as support vectors and the
optimum decision boundary derived is know as a Support Vector Machine (SVM).

1.3 Geometrical Interpretation

Figure 4 gives an illustration of the support vectors in a SVM model. Intuitively, we
can see that only samples located on the margin of each class will determine the decision
boundary. Samples farther away from the margin have little influence on the boundary.
This, again, verifies the conclusions from Section 1.2, that only those vectors lying on the
margin hyperplanes wTxi + b = ±1 will contribute to w.

1Reference
- Stephen Boyd. Convex Optimization. Chapter 5. 2004.
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Figure 4: Support vectors on the class margin.

SVM has several interesting properties:

• The optimal decision boundary of a SVM is unique. Intuitively, we can see that
there cannot exist multiple decision boundaries achieving the same maximum mar-
gin. From a mathematical point of view, the loss function in Section 1.2 is a strict
convex one. This guarantees that any local minimum is also global and unique.

• SVM is robust to data outliers, as vectors farther away from the margin of the
classes have no influence over the model.

• SVM is also little affected by data distribution and density.

• SVM appears to work well in high dimensional feature spaces. One possible expla-
nation is that SVM is determined by the support data vectors and not directly by
the features.

Nevertheless, SVM has its own limitations. It is usually computational expensive due to
the optimization technique it adopts. Moreover, it performs bad when classes are highly
overlapped. If classes are slightly overlapped, the soft-margin SVM can be adopted. We
will introduce this in the Section 2.

2 Soft-Margin SVM

When the classes are not separable, the above setup is no longer valid. Figure 5 illustrates
the case in which the two classes are not separable. Any attempt to draw a decision
boundary will never end up with a class separation band with no data points inside it,
as was the case in the linearly separable task. Recall that the margin is defined as the
distance between the pair of parallel hyperplanes described by:

wTx+ b = ±1
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Figure 5: Non-separable classes.

The feature vectors now belong to one of the following three categories (Figure 6):

• Vectors that fall outside the band and are correctly classified. These vectors comply
with the constraints:

yi(w
Txi + b) ≥ 1

• Vectors falling inside the band and are correctly classified. They satisfy:

0 ≤ yi(w
Txi + b) < 1

• Vectors that are misclassified. They are enclosed by circles and obey the inequality:

yi(w
Txi + b) < 0

Figure 6: Misclassified data samples.

All three cases can be treated under a single type of constraints by introducing a new set
of variables, namely:

yi(w
Txi + b) ≥ 1− ξi
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The first category of data corresponds to ξi = 0, the second to 0 < ξi ≤ 1, and the third
to ξi > 1. The variables ξi are known as slack variables.
The goal now is to make the margin as large as possible but at the same time to keep the
number of vectors with ξi as small as possible. In mathematical terms, this is equivalent
to adopting to minimize the cost function:

min
w,b,ξ

1

2
‖w‖2 + C

N"

i=1

ξi

s.t. yi(w
Txi + b) ≥ 1− ξi ∀i = 1, 2, .., n

ξi ≥ 0 ∀i = 1, 2, ..., n

where C is a constant term and can be tuned by users. The larger the C, the smaller ξ
we allow that the input vectors deviate from the decision boundary. Otherwise, we give
more tolerance to the vectors that could be wrongly classified by the decision boundary.
The soft-margin SVM can be solved using the similar optimization technique described
in Section 1.2.
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