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1 Linear Classification

1.1 Background

In the previous lectures, we explored a class of linear regression models that have par-
ticularly simple analytical and computational properties. We now discuss an analogous
class of linear models for solving classification problems. The goal in classification is to
take an input vector x and to assign it to one of the multiple discrete classes Y . In the
most common scenario, the classes are taken to be disjoint, so that each input is assigned
to one and only one class. The input space is thereby divided into decision regions whose
boundaries are called decision boundaries or decision surfaces.
In this lecture, we consider linear models for classification, by which we mean that the
decision boundaries are linear functions of the input vector x and hence are defined
by D − 1 dimensional hyperplanes within the D dimensional input space. Datasets
whose classes can be separated exactly by linear decision surfaces are said to be linearly
separable.
Our course includes two types of classification approaches:

• Generative approach. It first solves the inference problem of determining the class-
conditional densities p(x|yi) for each class yi individually. Then, it uses Bayes’
theorem in the form:

P (yi|x) =
p(x|yi)P (yi)

p(x)

to find the posterior class probabilities P (yi|x). Equivalently, we can model the joint
distribution p(x, yi) directly and then normalize to obtain the posterior probabili-
ties. Having found the posterior probabilities, we use decision theory to determine
class membership for each new input x. Approaches that explicitly or implicitly
model the distribution of inputs, as well as outputs, are known as generative models.

• Discriminant function: Find a function f(x), called a discriminant function, which
maps each input x directly onto a class label. For instance, in the case of two-class
problems, f might be binary valued and such that f = 1 represents class y1 and
f = −1 represents class y2. In this case, probabilities play no role.

∗References
- Christopher Bishop. Pattern Recognition and Machine Learning. 2006
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1.2 Standard Linear (Fisher) Classification

Linear classification (also known in some textbooks as Fisher classification) is one of the
simplest representations of a discriminant function, obtained by taking a linear function
of the input vector so that

y(x) = wTx+ b, (1)

where w is called a weight vector, and b is a bias. An input vector x is assigned to class
y1 if y(x) > 0 and to class y2 otherwise. The corresponding decision boundary is therefore
defined by the relation

y(x) == 0, (2)

which corresponds to a D − 1 dimensional hyperplane within the D dimensional input
space.
Given a set of input x with corresponding class labels y, there are several approaches for
learning the parameters w and b in this linear discriminant function (i.e., least squares,
Fisher’s linear discriminant, perceptron algorithm). In this lecture, we focus only on
the first approach. Recall that in the lecture on linear regression, we saw that the
minimization of a sum-of-squares error function led to a simple closed-form solution
for the parameter values. Similarly, we can use least squares for solving a classification
problem. This is done by treating discrete class labels as the output values. Figure 1
gives an illustration.

Figure 1: Least squares for classification.

In this example, the input feature vector x is a scalar. Class y1 is assigned with the value
+1, and class y2 is assigned with the value -1. In such a way, the classification problem is
approximated to a regression problem and could be solved using least-squares introduced
in previous lectures.
The least-squares approach gives an exact closed-form solution for the discriminant func-
tion parameters. However, it lacks robustness to outliers. As illustrated in Figure 2, we
see that the additional data points in the right-hand figure produce a significant change
in the location of the decision boundary, even though these points would be correctly
classified by the original decision boundary in the left-hand figure.

2



Course Notes GEO5017: Machine Learning for the Built Environment

Figure 2: Linear classification problem in a 2D feature space. Different colors of dots
indicate different classes. The left figure shows the original decision boundary obtained
from least squares. The right figure shows that adding extra points will cause a non-trivial
change to the classifier.

2 Logistic Regression

Logistic regression, despite its name, is a classification model rather than a regression
model. Logistic regression is a simple and more efficient method for binary and linear
classification problems. It is a classification model that is very easy to realize and achieves
very good performance with linearly separable classes. The primary difference between
linear regression and logistic regression is that logistic regression’s range is bounded be-
tween 0 and 1. In addition, as opposed to linear regression, logistic regression does not
require a linear relationship between inputs and output variables 1.

2.1 Logistic Model

In contrast to Section 1, we turn next to a probabilistic view of classification and show
how models with linear decision boundaries arise from simple assumptions about the
distribution of the data. Here we adopt a generative approach in which we model the
posterior probabilities P (y|x). Again, consider a two-case classification problem where
we aim to assign the input vector x to either class y1 or class y2. This is achieved by
computing the posterior probabilities P (y1|x) and P (y2|x) using Bayes theorem, and
comparing their quantities. One common criterion for classification is given by

l = log(P (y1|x))− log(P (y2|x)),

where log(P (y|x)) is also known as log-likelihood. It measures given x present, how much
likely the vector will belong to a certain class. Log-likelihood is widely used. One possible
reason is that many ML generative models have Gaussian assumptions, and using the log
operation will facilitate the computation to a large extent.
Constructing a logistic model assumes that the differences of the log-likelihood of the two
classes can be modeled with a linear function

log(P (y1|x))− log(P (y2|x)) = wTx+ b = f(x).

1https://www.sciencedirect.com/topics/computer-science/logistic-regression
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Based on this assumption, we have

P (y1|x)
P (y2|x)

= ef(x).

Meanwhile, due to the two-case classification problem, we also have

P (y1|x) + P (y2|x) = 1.

From all the formulas above we can obtain (the derivation steps are omitted, but you can
also derive on your own)

P (y1|x) =
1

1 + e−f(x)
= σ(f(x)), (3)

where σ(a) = 1/(1 + e−a) is known as the logistic sigmoid function which is plotted
in Figure 3. The term “sigmoid” means S-shaped. This type of function is sometimes
also called a “squashing function” because it maps the whole real axis into a finite interval.
The logistic sigmoid plays an important role in many classification algorithms.

Figure 3: The logistic sigmoid function.

2.2 Maximizing the Likelihood

We use maximum likelihood to determine the parameters involved in a logistic model,
which is extensively used in many generative ML models. Given a set of input vectors
together with the class labels

(x1, y1), (x2, y2), (x3, y3), ..., (xn, yn),

where yi(i ∈ n) is the class label of the i-th sample xi, i.e.,

yi =

!
+1 if yi is in class 1

−1 if yi is in class 2
.

Assume we draw the sample vectors x1,x2, ...,xn independently and identically from
the same input data distribution, according to the independent rule introduced in the
probability basic, we have

P (y|x) = P (y1|x1)P (y2|x2)...P (yn|xn).
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Applying log operation on both ends of the equation we have:

logP (y|x) =
n"

i=1

logP (yi|xi)),

where P (yi|xi) can be modeled using the logistic sigmoid function

• if yi = +1, P (yi|xi)) =
1

1+e−f(xi)

• if yi = −1, P (yi|xi)) = 1− 1
1+e−f(xi)

= 1
1+ef(xi)

Therefore, we have:

logP (y|x) =
n"

i=1

log
1

1 + e−yif(xi)
= −

n"

i=1

log(1 + e−yif(xi))

The problem becomes minimizing the log-likelihood term:
#n

i=1 log(1 + e−yif(xi)).
It is worth noting that maximum likelihood can exhibit severe over-fitting for data sets
that are linearly separable. However, the maximum likelihood doesn’t provide a closed-
form solution as least squares. Moreover, it provides no way to favor one such solution over
another, and which solution is found in practice will depend on the choice of optimization
algorithm and on the parameter initialization.
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