Multi-view stereo

Nail Ibrahimli



What do
these
characters
have In
common?
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Limitations of single eye

M.C. Escher



Limitations of single eye

Escher

M.C.



Ask Al to recover geometry from a single image.




Good looking 2.5D != Good looking 3D

- SOTA 2019-2022 (MiDAS)
- Source (Patricio Gonzalez)
VGG-T


https://vgg-t.github.io/




Visual cues for
3D: Shading




Visual cues for 3D: Shading

Merle Norman Cosmetics

M.C. Escher



Texture

Visual cues for 3D

The Visual ClLiff by William Vandivert
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Visual cues for 3D: Focus, Motion

<5 T |

Image credit: James Hays
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Two-view stereo




We need at least two
observations to
estimate the
geometry.

Johann Zahn, 1685
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Other triangulation methods



Two-view
stereo




Stereo Rectification
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Two-view stereo

Slide credit: Fei-fei Li,
Andreas Geiger
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Stereo matching Lz =
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Slide credit: Andreas Geiger



Block matching

Seanline |

SSD = ZZ(Ileft — In-ght)z — Sum of squares difference

AD = ¥¥|(Liefe — Lrigne )| = Absolute difference

CC = ZZ(Ileft - In-ght) — Cross correlation

ZZ(Ileft‘Iright)

NCC =
VY (Liefe-Tieft) - VEX(Iright Iright)

— Normalized cross correlation




Jse) )J“ may look: di :ferent
eIdifferent al gle’s.

n g | A." ' '...-.
M.C. scher, 194 A

.-'.’ et
. B - —e

- o )

21%:




Repetitive structures
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Block matching (Failure cases) .

Image
Patch |

Occlusions

Slide credit: Andreas Geiger Non-Lambertian Surfaces



Other challenges:
A PhD trying to use block
matching

- Repetitive structures
- Lighting variations

- Vignetting effects

- Motion blur

- Sensor noise

- Color inbalance

- White inbalance

- etc.

M. C. Escher, 1958



Convolutional features

Low-Levell |Mid-Level ' Trainable
Feature Feature | Classifier

Slide credit: Yann Lecun
Image credit: Visualizing and Understanding Convolutional Networks (Zeiler & Fergus, 2013)
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Convolutional network architecture
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2D and 3D convolutions

Image credit:
https://biplabbarman097.medium.com/3d-
convolutions-and-its—applications-
6dd2d0e9e63f
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Block matching using deep learning

Learned Similarity: Cosine Similarity:
» |earn features & sim. metric » |[earn features & apply dot-product

» Potentially more expressive » Features must do the heavy lifting

» Slow (WxHxD MLP evaluations) » Fast matching (no network eval.)

Similarity score
A

Fully-connected, Sigmoid | Similarity score

A

Fully-connected. ReLLU |

: Dot product
Fully-connected, RelLU ' Normalize | [ Normalize
Fully-comnected, ReLLU | Convolution | | Convolution

Concatenate | :
| Convolution, ReLLU

Convolution, RelLU

Convolution, ReLLU l | Convolution, RelLU

Convolution, ReLU | Convolution, RelLU | |
Convolution, RelLU Convolution. RelLU A A
. _ _ - _ - Left input patch Right input patch
Convolution. ReLLU Convolution, RelLU |
A A
Left input patch Righ input patch

Zbontar and LeCun: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. JMLR, 2016.




Block matching

Left Input Image
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Siamese Network
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Standard Block Matching

Zbontar and LeCun: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. JMLR, 2016. 28



Block matching
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Y. Boykov, 0. Veksler, and R. Zabih, “Fast approximate energy minimization via
graph cuts”. PAMI(1999)

Zbontar and LeCun: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. JMLR, 2016.
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Semi-Global Matching Algorithm

Block matching

Left Disparity Map
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Right Disparity Map
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Left-Right Consistency Test

p(D) x exp 1 __ Wiataldi) — A Wemooth (i, dj .'}
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Y. Boykov, 0. Veksler, and R. Zabih, “Fast approximate energy minimization via
graph cuts”. PAMI(1999)

Zbontar and LeCun: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. JMLR, 2016. 30



DISPNET

e DispNet was one of the first end-to-end trained deep neural network for stereo
disparity

e It used a U-Net like architecture with skip-Connections to retain details

e It introduces correlation layer

e Multi-scale loss (disparity error 1in pixels), curriculum learning (easy-to-hard)

Mayer et al.: A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. 31

CVPR, 2016.



D
d* = E[d] =) softmax(—cy(d)) - d
a=0 p(d)

-—— "

Input Stereo Images 2D Convolution

Kendall, Martirosyan, Dasgupta and Henry: End-to-End Learning of Geometry and Context for Deep Stereo Regression. ICCV,

2017.

Cost Volume Multi-Scale 3D Convolution 3D Deconvolution Soft ArgMax Disparities

Key idea: calculate disparity cost volume and apply 3D

convolutions on 1t

Convert the learned matching cost c¢ to disparity via the
expectation(probability volume)

Slightly better performance but large memory requirements

(3D feature volume)

32



Multi-view stereo

« MVS Goal: To find a 3D shape that explains the
images.

Image credit: Svetlana Lazebnik



e Detect keypoints

¢ Triangulate a sparse set of initial matches

PMVS |n 1 Sl'de e |teratively expand matches to nearby locations

e Use visibility constraints to filter out false matches

e Perform surface reconstruction
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e at u re ete Ct I O n */* Detected features / M Features satisfying epipolar

(Harris/DoG) consistency (Harris/DoG)

1. Divide grid to cells (32x32)

2. Use Harris Detector and DoG to
find corners

3. Trytofind 4 good cornersineach
cell (uniform overage)

Epipolar line
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Patch Initialization

c(p) « Triangulation from from two patches

c(p) ‘P\T TA» n(p) < c(p)o(l;)/|c(p)O(;)| normalinitialization

~— P R(p) « I; reference image of p

Patch Model Initialization
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Patch Discrepancy

Patch Discrepancy

h(p, I, R(p)) =1 —NCC(p, I, R(p))
discrepancy function

1
9®) = 5o ry 21 \ ke MPLRE@))
Objective to minimize

S(p) < the set of images patch may seem



Patch True Discrepancy

T@) ={1171 € S, A(p.I.R(P)Y) = T3

1
TSR R(p)lzxe-r(-p) \ rRpd Q. I, RGP DD

True objective to minimize

gT(p) =

argrmittagccdy.cCpd g™ (@D
S(p) «— the set ofimages patch may seem
T () <« the set of images patch truly seem

(), c(p) «— find normal and center of patch that minimizes
objective

P
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True objective to minimize
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S(p) « the set of images patch may seem
T(p) « the set of images patch truly seem

n(p), c(p) « find normal and center of patch that minimizes
objective



Expansion

Identify neighbouring cells for possible expansion

neirghbors |
h% \ A patch . Testif there is already a patch very close to that region
lmage projeciion
. Test for depth discontinuity

" Expanded
a
_» Not expanded by

/f b the first condition

cel b
- N
S pa ) mmage sereen Filtering

ExpanSion and Filtering . Photometric consistency filter

2. Geometric consistency filter

3. Occlusion check




VisualSFM+PMVS
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Hans Holbein, The Ambassadors (1533)



MVSNet —
Differential
Homograph

........

Piero della Francesca, Flag;gélation (168)



Multi-view stereo - plane sweep stereo

%

o | K.T = (R.t)
2 Pose Known

Slide credit: W. Nicholas Greene



Multi-view stereo - plane sweep stereo
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Multi-view stereo - plane sweep stereo

Cost Volume Filter
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MVSNET

Yao Yao et. al.: MVSNet: Depth Inference for Unstructured Multi-view Stereo. ECCV 2018

s Conv + BN + RelLU, Stride
Conv + BN + RelLU, Stride
mm Conv, stride = 1
(© Concatenation
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DDLMVS

This video demonstrates visual comparisons with

COLMAP and PatchmatchNet
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Source: loanna Panagiotidou, Semantic MVS (2023) 50
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Surface Reconstruction
and Stylization

l. Collect masked calibrated
images

lI.  Compute surface using
rendering

lIl.  Apply stylization to the surface

Source: Fabian Visser, StyleSDF (2023)
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What is NeRF

The word Neural obviously means that there's a
Neural Network involved

Radiance refers to the radiance of the scene that the
Neural Network outputs. It is basically describing how
much light is being emitted by a point in space in each
direction, and

The word Field means that the Neural Network
models a continuous and non-discretized
representation of the scene that it learns.

NeRF revolution

(2,02, ¢

Assumptions:

Camera poses are known

Scene is static, objects do not move
The scene appearance is constant
Dense input capture

Architecture:

9 Layers MLP + RelLU

256 neurons in each layer

5D input (x,y,z) + view direction with PE
4D output representing RGB+density

53




NERE
mprovements

Geometry = NeusS, VolSDF
Speed — Plenoctrees, DVGO

Memory-Time trade-off —
TensorRF, Instant-NGP

Sparse images — ReconFusion,
DietNeRF

Stylization = ARF,

Sparse pointcloud input =
PointNeRF,

54


https://muviecast.github.io/
https://current-exhibition.com/laboratorio31/

GenAl for 3D:
Text-to-3D
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e Reconstruction (ReconFusmn)
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GenAI for 3D: Spars

g

3 views 6 views 9 views
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Source: Yingxin Feng,Oé;l)
4

JALTOE 3D):

IGng the

An adorable cottage A two-storey brick A three-storey brick building with grey ~ An exterior brick apartment
with a thatched roof townhouse with grey roof  roof and arched doors and windows

An exterior modern high glass An oude kerk delft A brick castle

window office



3D editting using Text Guidance

Cﬁ‘lu’Cﬁ mosque

Text guidance:
“make it a ...”

i = -

Unseen [Identity] views Make it a grizzly bear Make it a panda Make it a polar bear
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