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What do 
these 
characters 
have in 
common?
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Imaging geometry of a single eye

Albrecht Durer, 1525 (Pinhole)    M. C. Escher, 1935 (Omnidirectional)
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Limitations of single eye

4M.C. Escher



Limitations of single eye

5M.C. Escher



Ask AI to recover geometry from a single image.
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Good looking 2.5D  != Good looking 3D

- SOTA 2019-2022 (MiDAS)
- Source (Patricio Gonzalez)
VGG-T

https://vgg-t.github.io/
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Visual cues for 
3D:  Shading

9• M.C. Escher



Visual cues for 3D:  Shading

10M.C. Escher

Merle Norman Cosmetics



Visual cues for 3D: Texture

11

The Visual Cliff by William Vandivert



Visual cues for 3D:  Focus, Motion
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Image credit: James Hays



Two-view stereo



We need at least two 
observations to 

estimate the 
geometry.

14

Johann Zahn, 1685



Other triangulation methods
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Two-view 
stereo
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Stereo Rectification
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Two-view stereo

Slide credit: Fei-fei Li, 
Andreas Geiger
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z =
𝑏 ∙ 𝑓

𝑑

𝑑𝑒𝑝𝑡ℎ =
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ⋅ 𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ

𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦



Stereo matching

19
Slide credit: Andreas Geiger

𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 = 𝑥1 − 𝑥2

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑑𝑒𝑝𝑡ℎ
=

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦

𝑑𝑒𝑝𝑡ℎ − 𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ

𝑑𝑒𝑝𝑡ℎ =
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ⋅ 𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ

𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦



Block matching

20

Type equation here.

𝑆𝑆𝐷 = ∑∑ 𝐼𝑙𝑒𝑓𝑡 − 𝐼𝑟𝑖𝑔ℎ𝑡
2

 → Sum of squares difference

A𝐷 = ∑∑ 𝐼𝑙𝑒𝑓𝑡 − 𝐼𝑟𝑖𝑔ℎ𝑡 → Absolute difference

𝐶𝐶 = ∑∑ 𝐼𝑙𝑒𝑓𝑡 ⋅ 𝐼𝑟𝑖𝑔ℎ𝑡 → Cross correlation

𝑁𝐶𝐶 =
∑∑ 𝐼𝑙𝑒𝑓𝑡⋅𝐼𝑟𝑖𝑔ℎ𝑡

√∑∑ 𝐼𝑙𝑒𝑓𝑡⋅𝐼𝑙𝑒𝑓𝑡 ⋅. √∑∑ 𝐼𝑟𝑖𝑔ℎ𝑡⋅𝐼𝑟𝑖𝑔ℎ𝑡
→ Normalized cross correlation



The same object may look different 
from different angle.

M. C. Escher, 1945 21



Block matching (Failure cases)

Slide credit: Andreas Geiger

Repetitive structures



Other challenges:

- Repetitive structures
- Lighting variations
- Vignetting effects
- Motion blur
- Sensor noise
- Color inbalance
- White inbalance
- etc.

M. C. Escher, 1958
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A PhD trying to use block 
matching



Convolutional features

24
Slide credit: Yann Lecun
Image credit: Visualizing and Understanding Convolutional Networks (Zeiler & Fergus, 2013)



Convolutional network architecture

25Slide credit: Andrej Karpathy



2D and 3D convolutions

26

Image credit: 
https://biplabbarman097.medium.com/3d-
convolutions-and-its-applications-
6dd2d0e9e63f



Zbontar and LeCun: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. JMLR, 2016.

Block matching using deep learning



Block matching

28Zbontar and LeCun: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. JMLR, 2016.



Block matching

29Zbontar and LeCun: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. JMLR, 2016.

Huang, Lee and Mumford: Statistics of Range Images. CVPR, 2000.

Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via 
graph cuts”. PAMI(1999)



Block matching

30Zbontar and LeCun: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. JMLR, 2016.

Semi-Global Matching Algorithm

Huang, Lee and Mumford: Statistics of Range Images. CVPR, 2000.

Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via 
graph cuts”. PAMI(1999)



DISPNET

31Mayer et al.: A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. 
CVPR, 2016.

● DispNet was one of the first end-to-end trained deep neural network for stereo 
disparity 

● It used a U-Net like architecture with skip-Connections to retain details 
● It introduces correlation layer 
● Multi-scale loss (disparity error in pixels), curriculum learning (easy-to-hard)



GC-net

32Kendall, Martirosyan, Dasgupta and Henry: End-to-End Learning of Geometry and Context for Deep Stereo Regression. ICCV, 
2017.

● Key idea: calculate disparity cost volume and apply 3D 
convolutions on it 

● Convert the learned matching cost c to disparity via the 
expectation(probability volume) 

● Slightly better performance but large memory requirements 
(3D feature volume)



Multi-view stereo

• MVS Goal: To find a 3D shape that explains the 
images.

Image credit: Svetlana Lazebnik 



PMVS in 1 slide

• Detect keypoints Detect

• Triangulate a sparse set of initial matches Triangulate

• Iteratively expand matches to nearby locations Expand

• Use visibility constraints to filter out false matches Filter

• Perform surface reconstructionPerform



Feature Detection

1.  Divide grid to cells (32x32) 

2.  Use Harris Detector and DoG to 
find corners

3.  Try to find 4 good corners in each 
cell (uniform overage)



Patch Geometry
36



Patch Model Initialization

37

Patch Initialization

𝑐 𝑝 ← Triangulation from from two patches

 𝑛 𝑝 ← 𝑐 𝑝 𝑂(𝐼𝑖)/|𝑐 𝑝 𝑂 𝐼𝑖 | normal initialization

 𝑅(𝑝) ← 𝐼𝑖  reference image of p



Patch Discrepancy

38

Patch Discrepancy

 ℎ(𝑝, 𝐼, 𝑅(𝑝)) = 1 − 𝑁𝐶𝐶(𝑝, 𝐼, 𝑅(𝑝)) 
discrepancy function

 𝑔 𝑝 =
1

|𝑆 𝑝  \ 𝑅 𝑝 |
∑𝐼∈𝑆 𝑝  \ 𝑅(𝑝)

 ℎ(𝑝, 𝐼, 𝑅(𝑝 )) 

Objective to minimize

 𝑆 𝑝 ← the set of images patch may seem



Patch True Discrepancy

39

Patch True Discrepancy

𝑇 𝑝 = 𝐼 𝐼 ∈ 𝑆 𝑝 , ℎ 𝑝, 𝐼, 𝑅 𝑝 ≤ 𝜏}

 𝑔∗ 𝑝 =
1

|𝑇 𝑝  \ 𝑅 𝑝 |
∑𝐼∈𝑇 𝑝  \ 𝑅(𝑝)

 ℎ(𝑝, 𝐼, 𝑅(𝑝 )) 

True objective to minimize

𝑎𝑟𝑔𝑚𝑖𝑛𝑛(𝑐),𝑐(𝑝) 𝑔∗ (𝑝)

 𝑆 𝑝 ← the set of images patch may seem

 T 𝑝 ← the set of images patch truly seem

 𝑛(𝑝), 𝑐(𝑝) ← find normal and center of patch that minimizes 
objective



Expansion and Filtering

40

Expansion

1. Identify neighbouring cells for possible expansion

2. Test if there is already a patch very close to that region

3. Test for depth discontinuity

Filtering

1.   Photometric consistency filter

2. Geometric consistency filter

3.    Occlusion check



VisualSFM+PMVS



MVSNet – 
Differential 
Homography

42Hans Holbein, The Ambassadors (1533)



MVSNet – 
Differential 
Homography

43
Piero della Francesca,  Flaggelation (1468)

Criminisi et. al. (2002): Bringing Pictorial Space to Life



Multi-view stereo - plane sweep stereo

44Slide credit: W. Nicholas Greene



Multi-view stereo - plane sweep stereo

45Slide credit: W. Nicholas Greene



Multi-view stereo - plane sweep stereo

46Slide credit: W. Nicholas Greene



MVSNET
Yao Yao et. al.: MVSNet: Depth Inference for Unstructured Multi-view Stereo. ECCV 2018
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DDLMVS

49



50Source: Ioanna Panagiotidou,  Semantic MVS (2023)

Semantic MVS

Input image            Semantic               Groundtruth 
                                Reconstruction
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Differentiable 
Surface 
Rendering



Surface Reconstruction
 and Stylization
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I. Collect masked calibrated 
images

II. Compute surface using 
rendering 

III. Apply stylization to the surface

Source: Fabian Visser,  StyleSDF (2023)
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                NeRF revolution

What is NeRF

● The word Neural obviously means that there's a 
Neural Network involved

● Radiance refers to the radiance of the scene that the 
Neural Network outputs. It is basically describing how 
much light is being emitted by a point in space in each 
direction, and

● The word Field means that the Neural Network 
models a continuous and non-discretized 
representation of the scene that it learns.

Assumptions:

● Camera poses are known
● Scene is static, objects do not move
● The scene appearance is constant 
● Dense input capture

Architecture:

● 9 Layers MLP + ReLU

● 256 neurons in each layer

● 5D input (x,y,z) + view direction with PE

● 4D output representing RGB+density



NeRF 
Improvements MuVieCAST

Gaussian Splatting

• Geometry → NeuS, VolSDF

• Speed → Plenoctrees, DVGO

• Memory-Time trade-off →  
TensorRF, Instant-NGP

• Sparse images → ReconFusion, 
DietNeRF

• Stylization → ARF, MuVieCAST

• Sparse pointcloud input → 
PointNeRF, Gaussian Splatting
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https://muviecast.github.io/
https://current-exhibition.com/laboratorio31/


GenAI for 3D: 
Text-to-3D 
Generation 
(DreamFusion)
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GenAI for 3D: Sparse Reconstruction (ReconFusion)
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3 views                       6 views                          9 views



GenAI for 3D: 
Texturing the 
Geometry
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Source: Yingxin Feng, (2024)



3D editting using Text Guidance

3D
 e

di
tt

in
g



Thanks for 
listening.
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