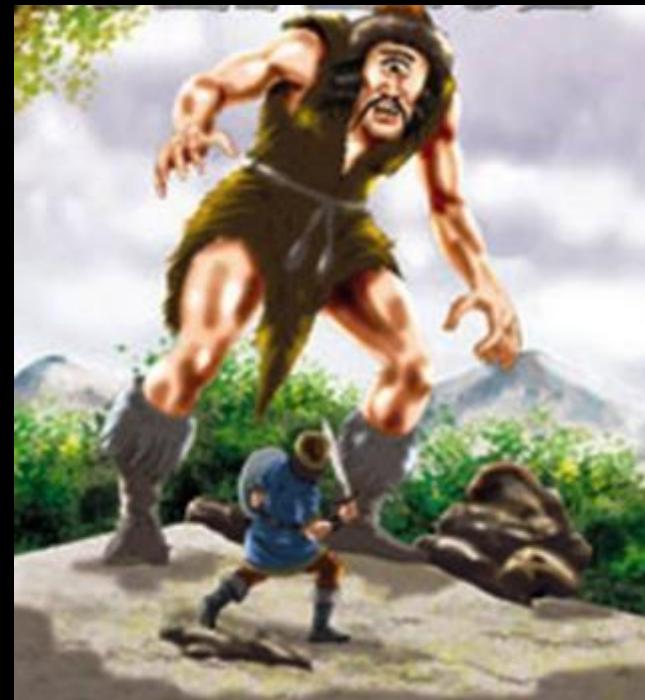
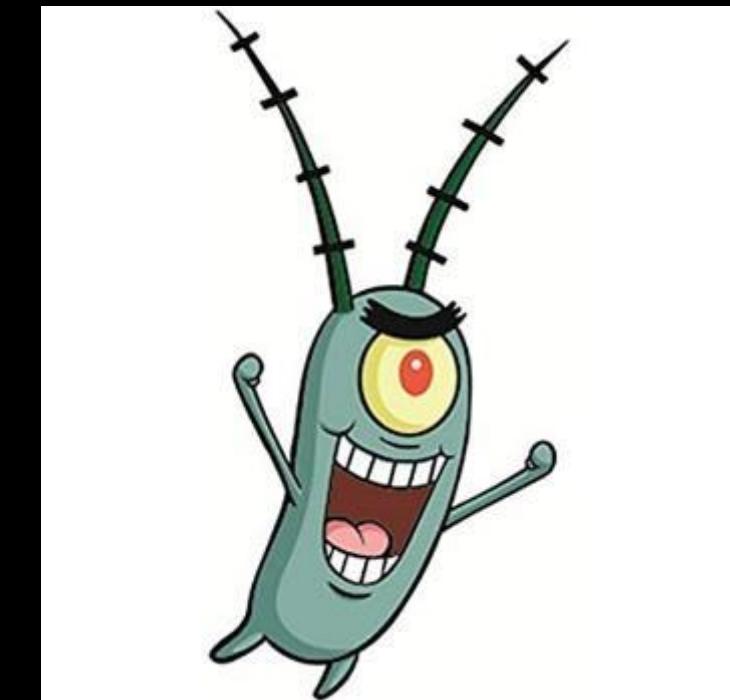


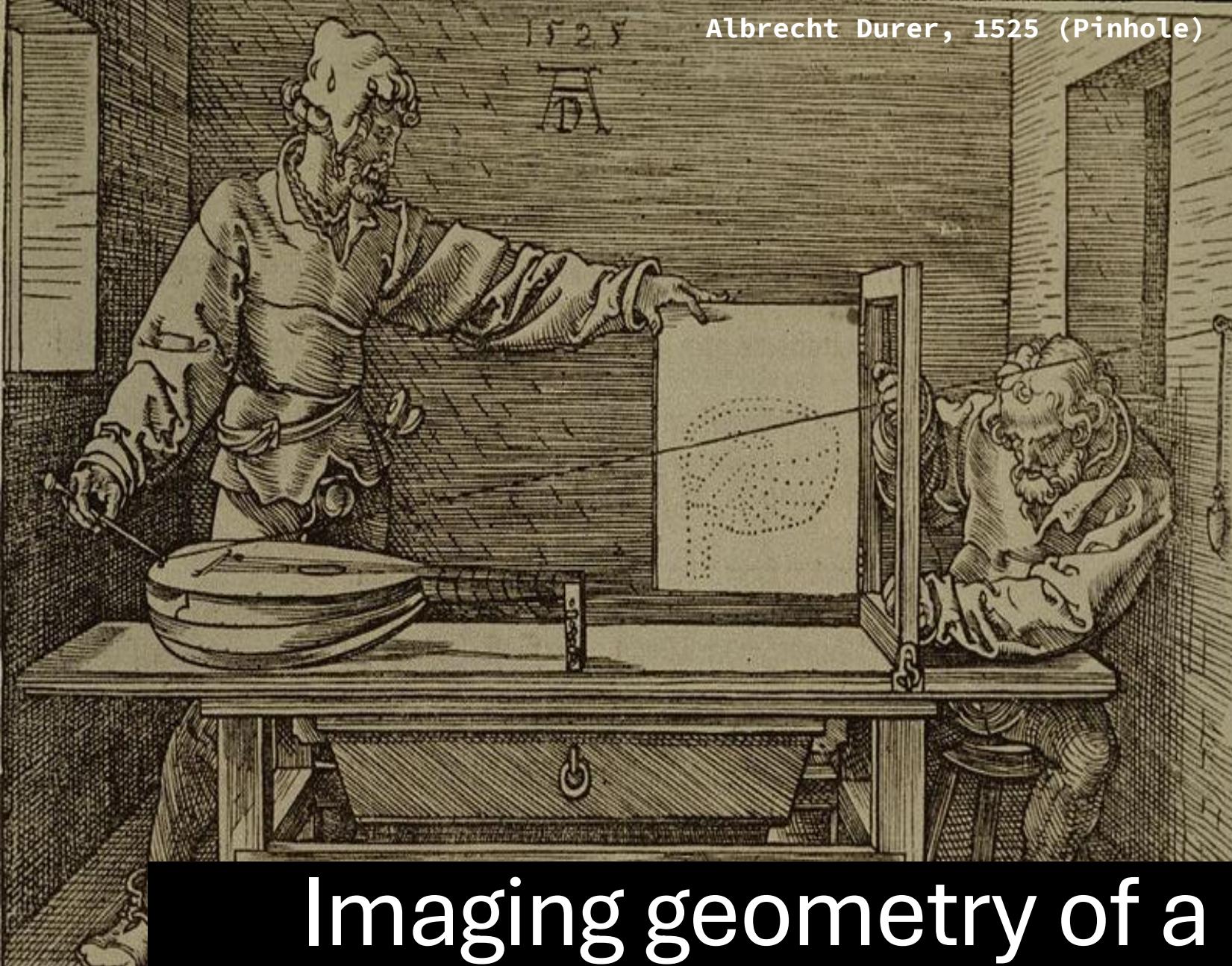
Multi-view stereo

Nail Ibrahimli

What do
these
characters
have in
common?



Albrecht Durer, 1525 (Pinhole)

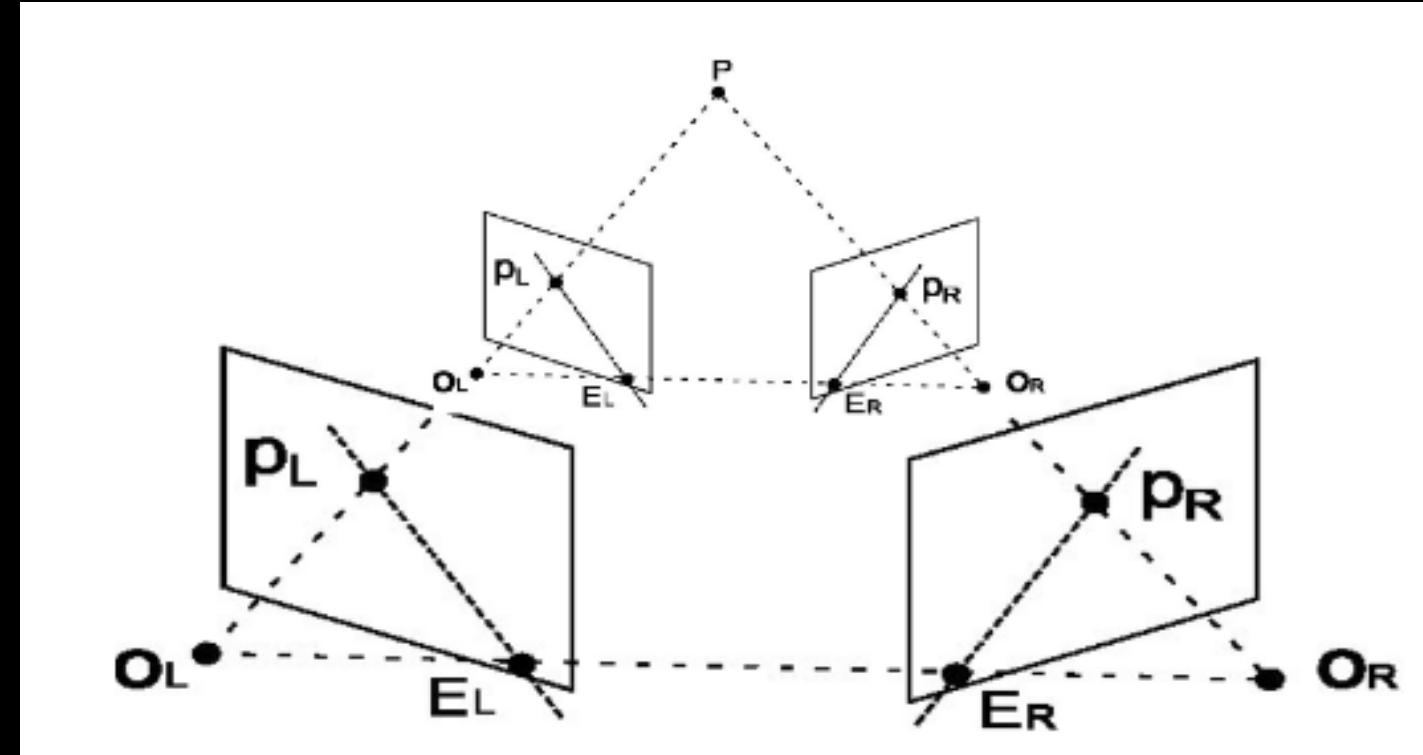


M. C. Escher, 1935 (Omnidirectional)

Imaging geometry of a single eye

Limitations of single eye

Limitations of single eye



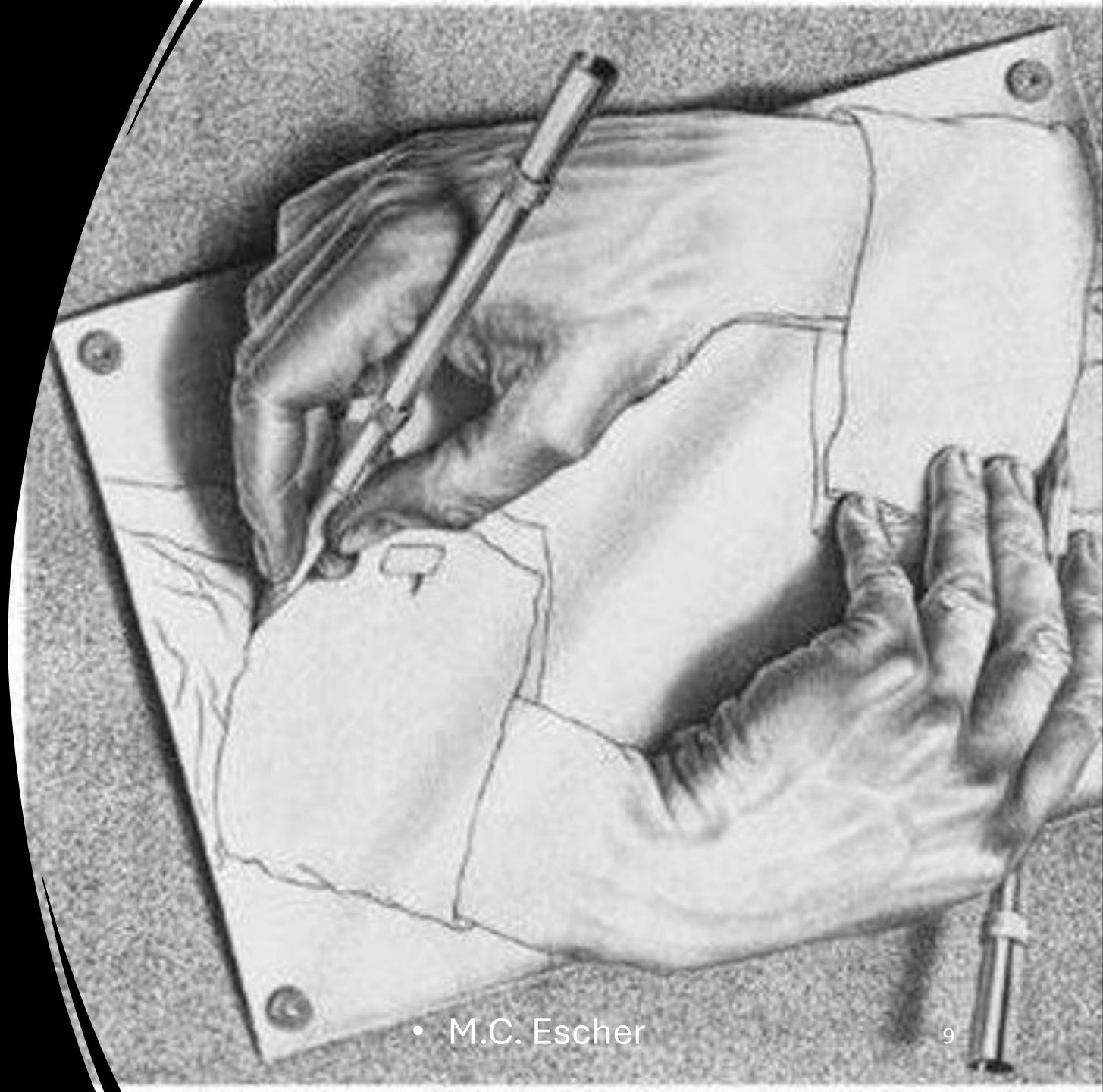
Ask AI to recover geometry from a single image.



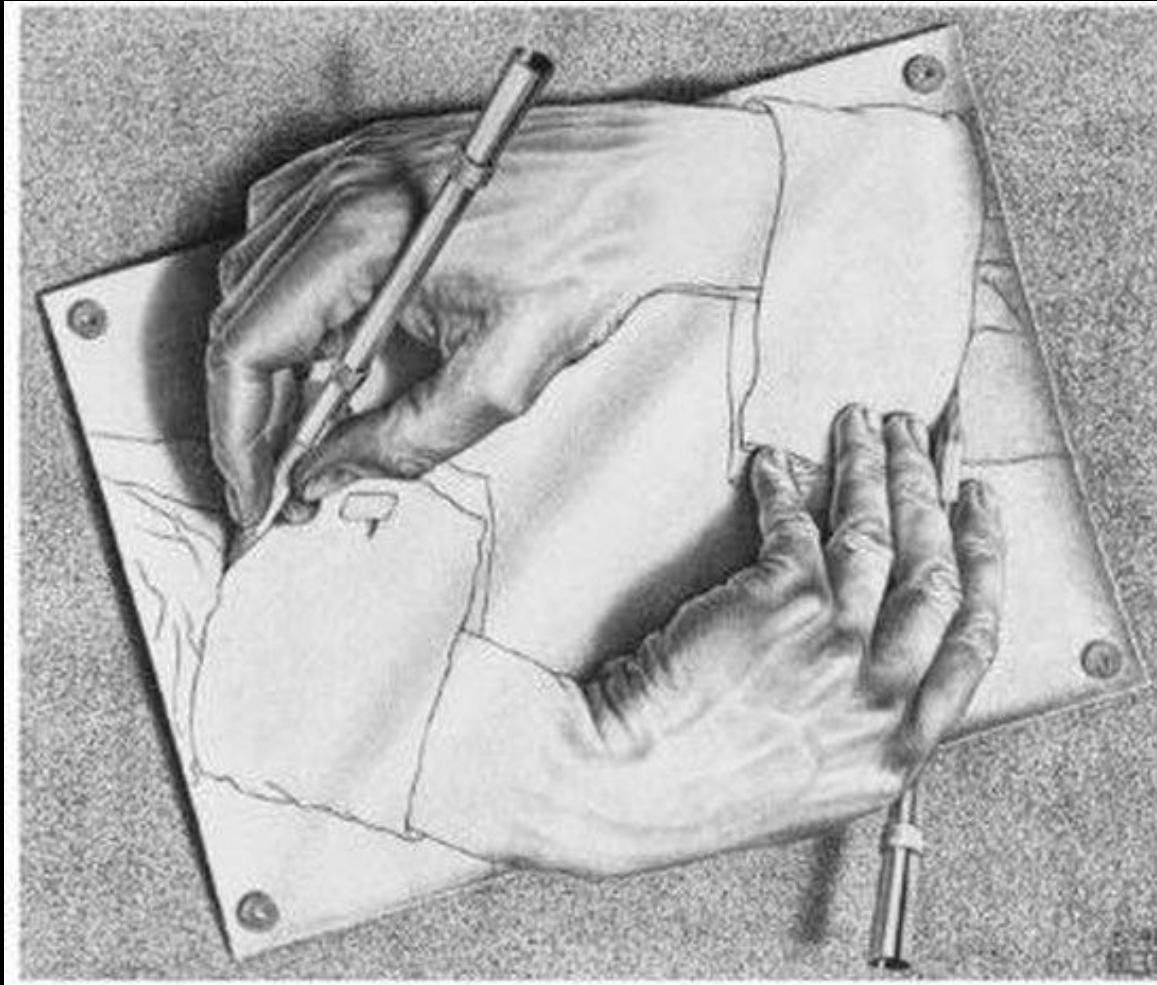
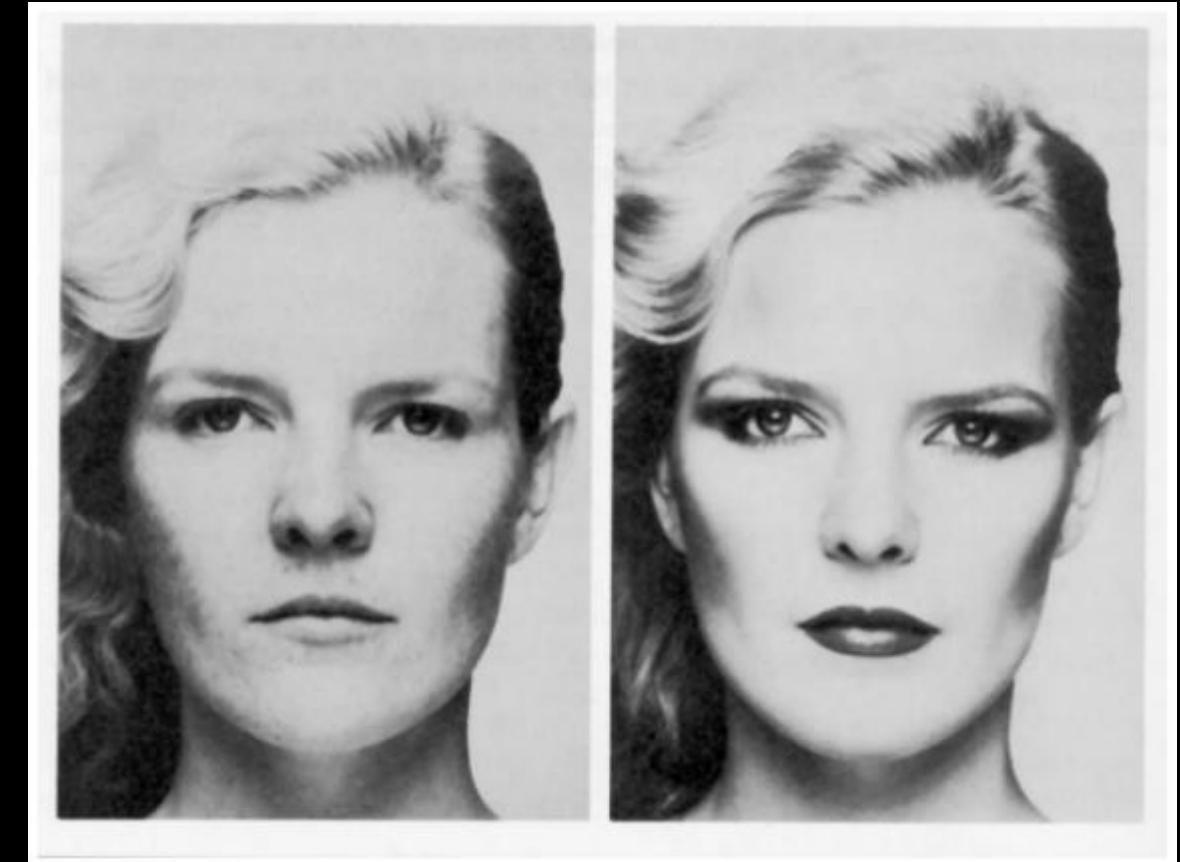
Good looking 2.5D != Good looking 3D

- SOTA 2019-2022 (MiDAS)
- Source (Patricio Gonzalez)
[VGG-T](#)

Visual cues for 3D: Shading

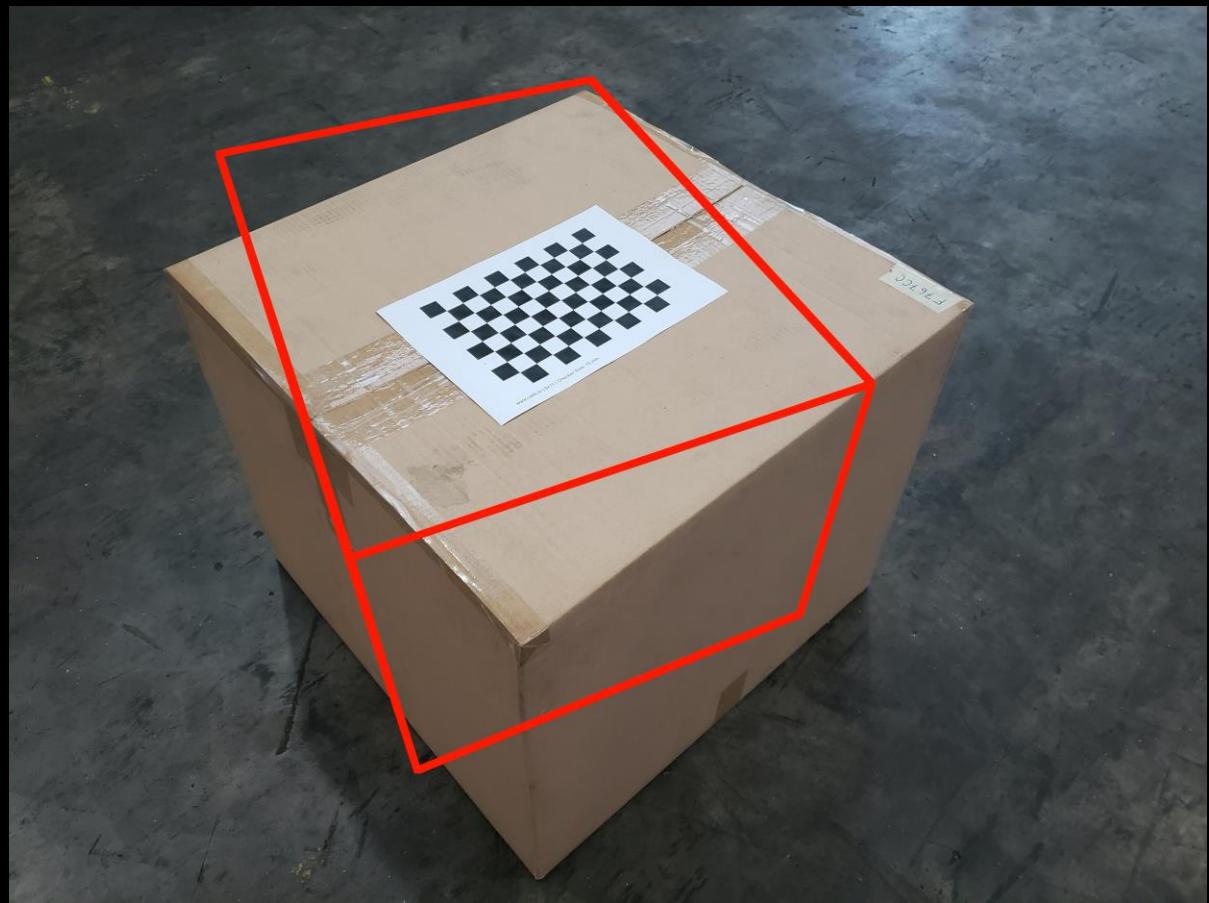


Visual cues for 3D: Shading



Merle Norman Cosmetics

Visual cues for 3D: Texture



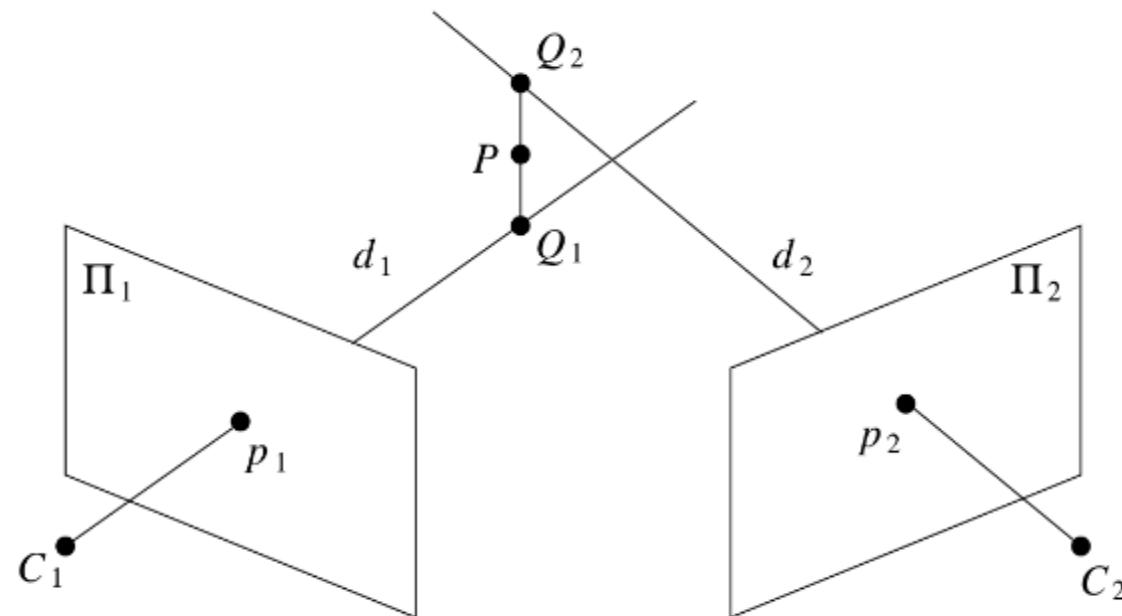
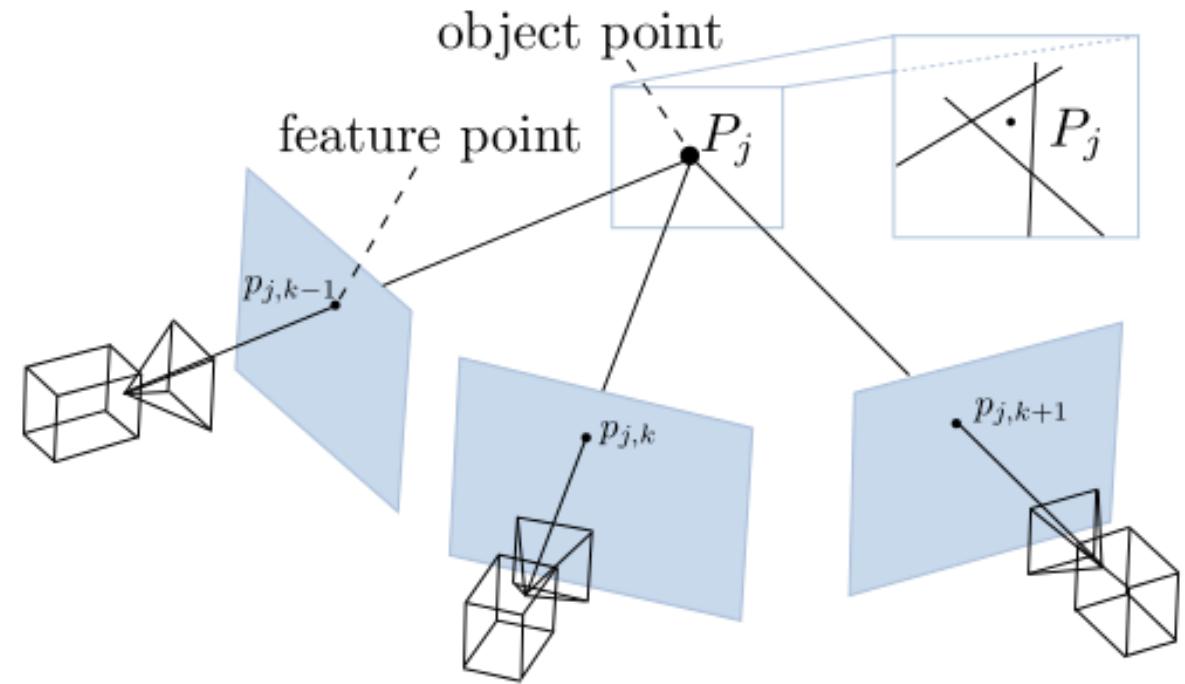
The Visual Cliff by William Vandivert

Visual cues for 3D: Focus, Motion

Two-view stereo

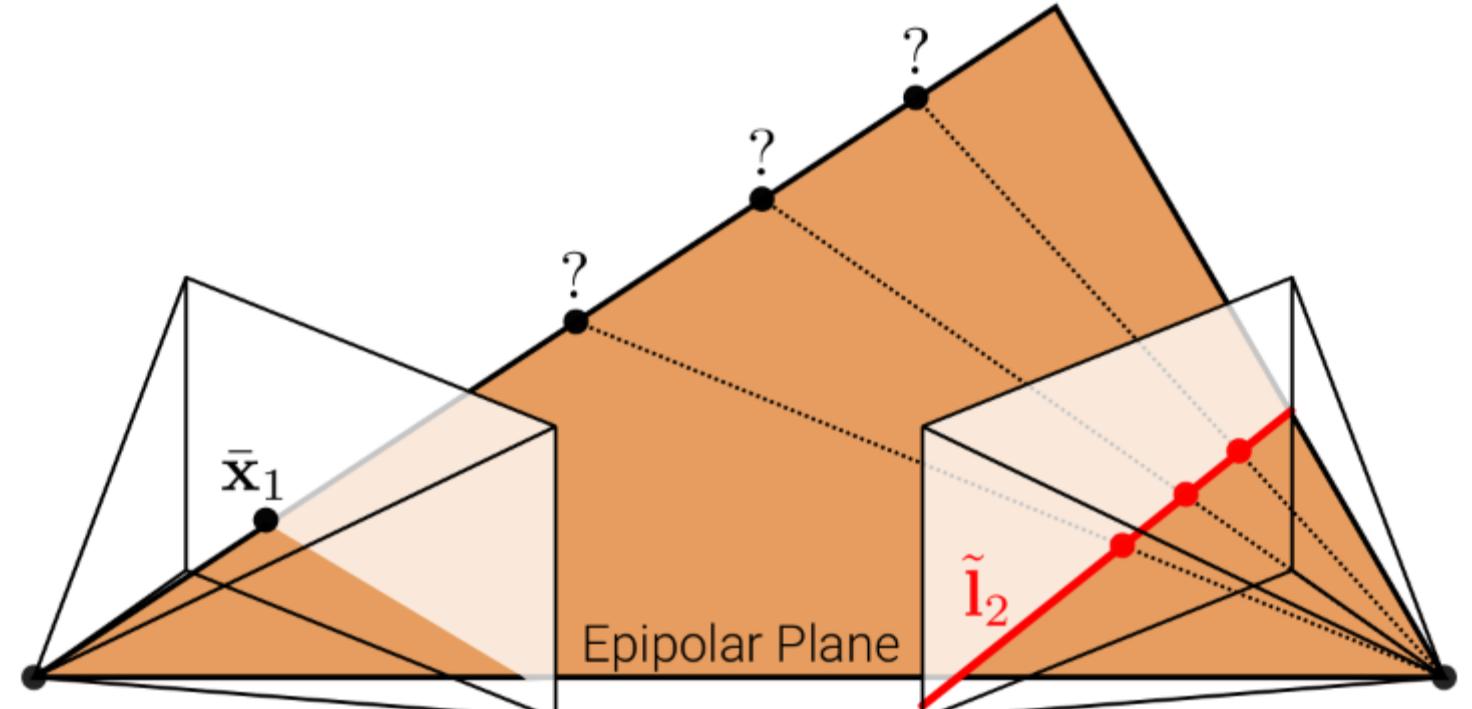
We need at least two observations to estimate the geometry.

Johann Zahn, 1685

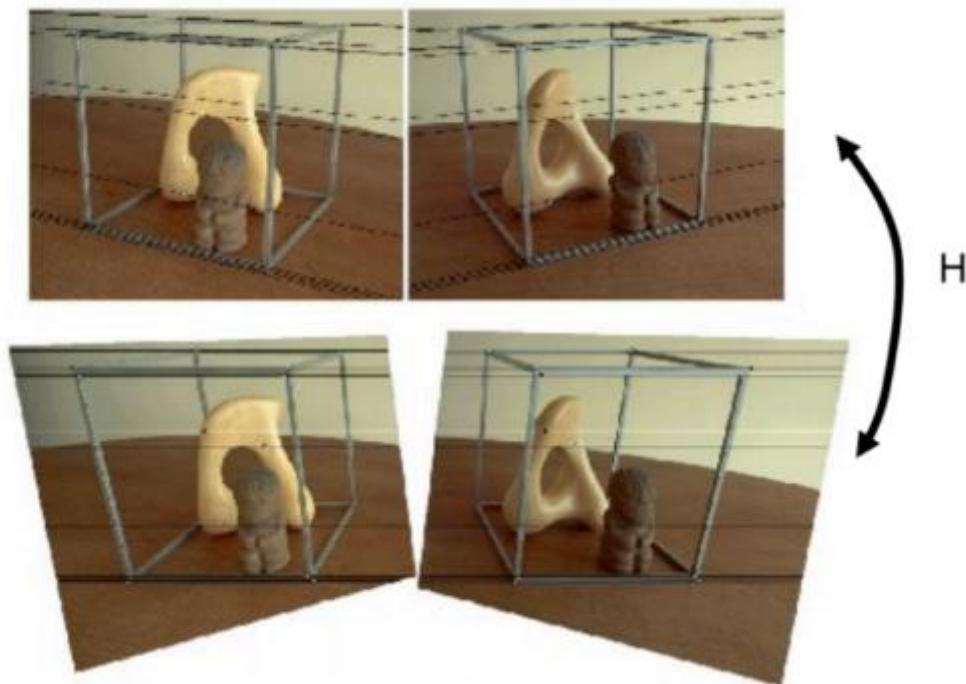
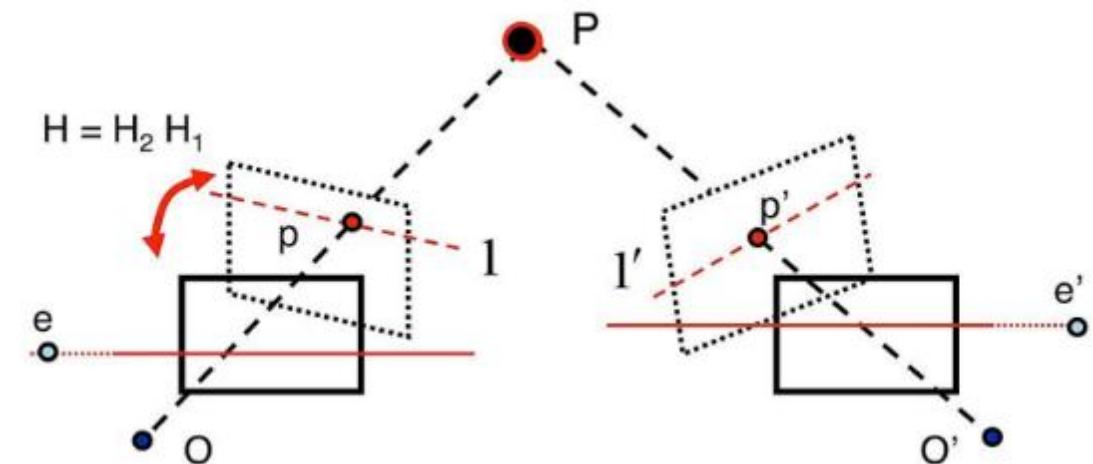


Other triangulation methods

Two-view stereo

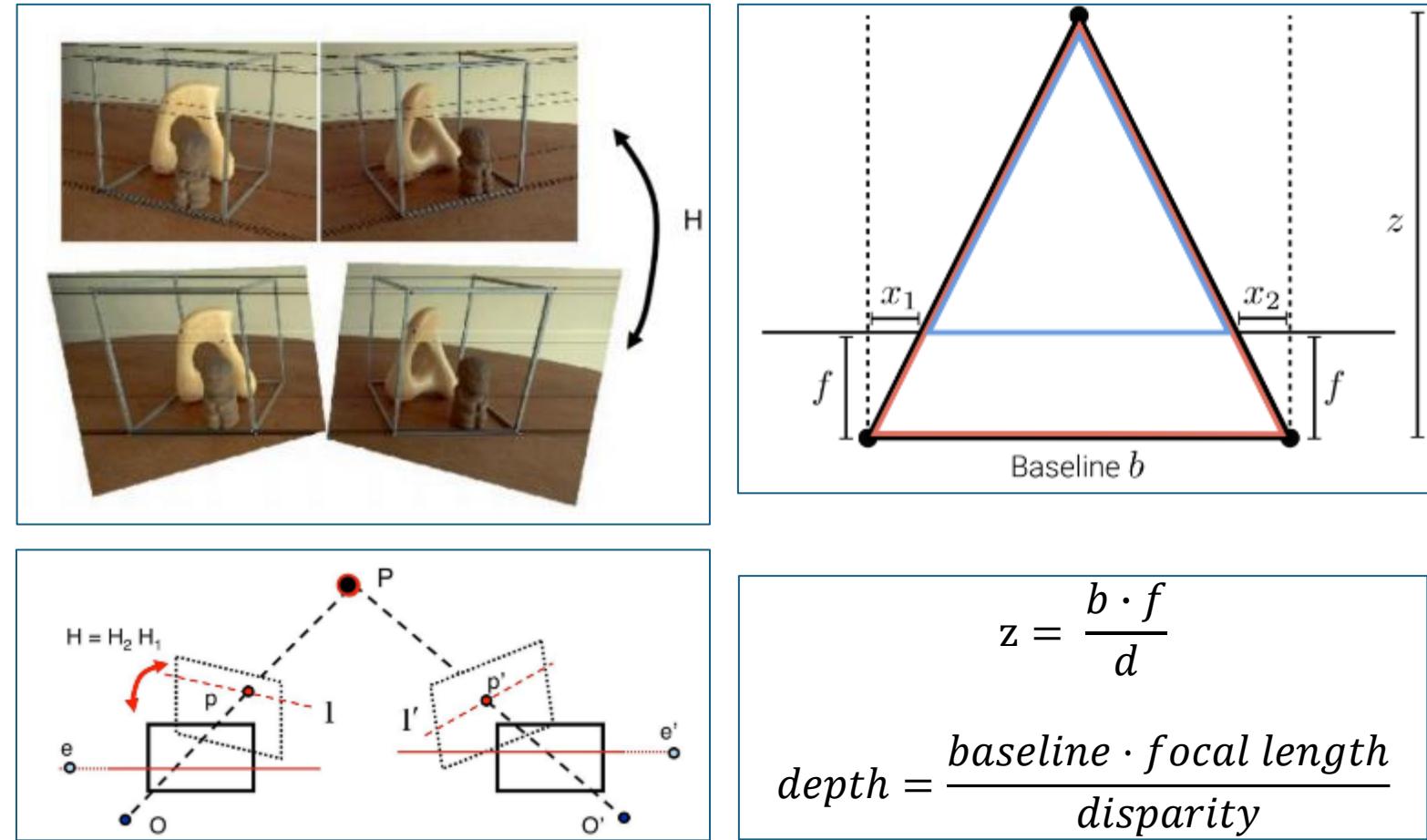


Stereo Rectification



Two-view stereo

Slide credit: Fei-fei Li,
Andreas Geiger



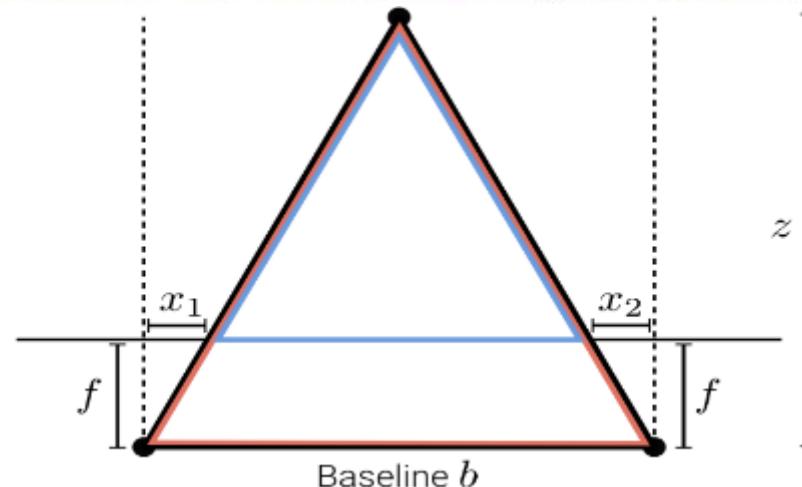
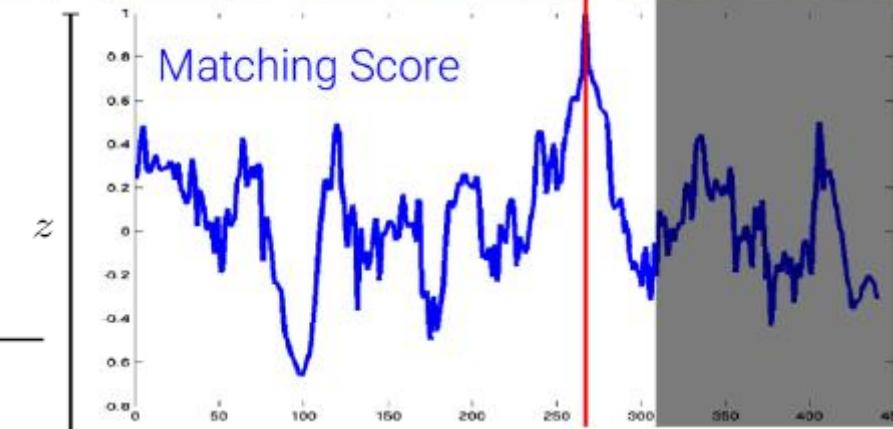
Stereo matching



$$disparity = x_1 - x_2$$

$$\frac{baseline}{depth} = \frac{baseline - disparity}{depth - focal length}$$

$$depth = \frac{baseline \cdot focal length}{disparity}$$



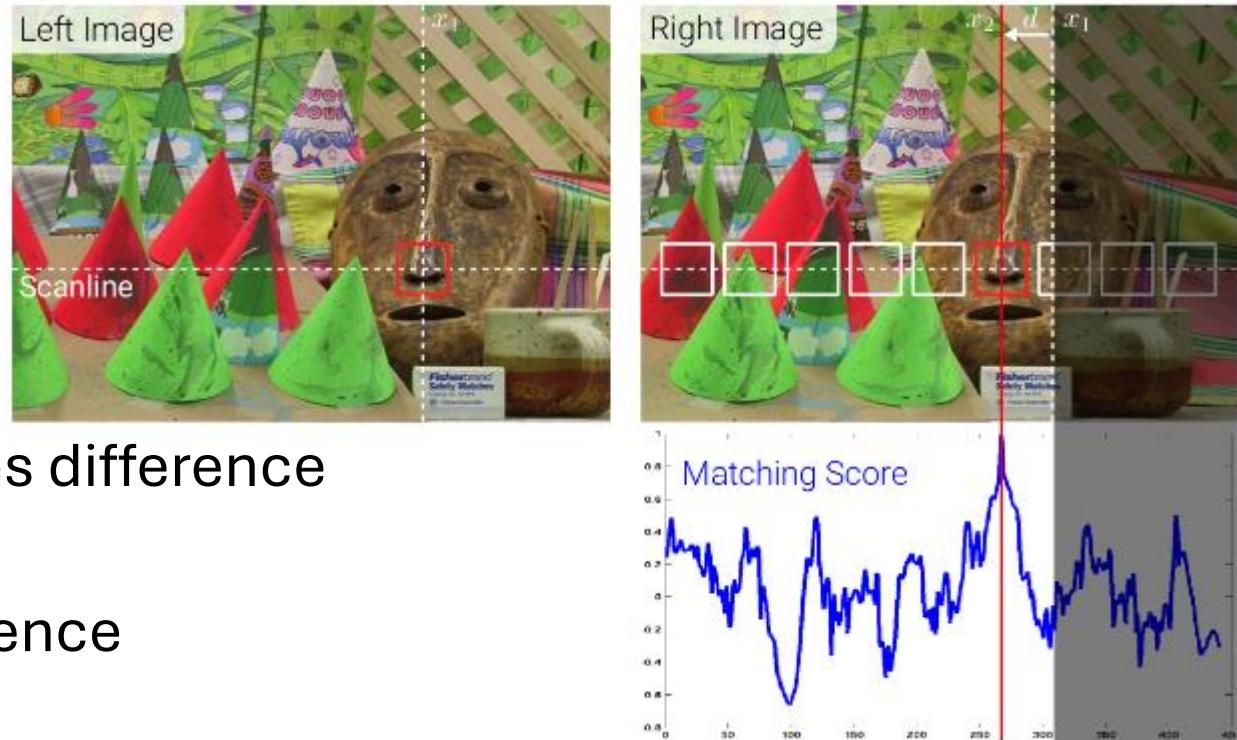
Block matching

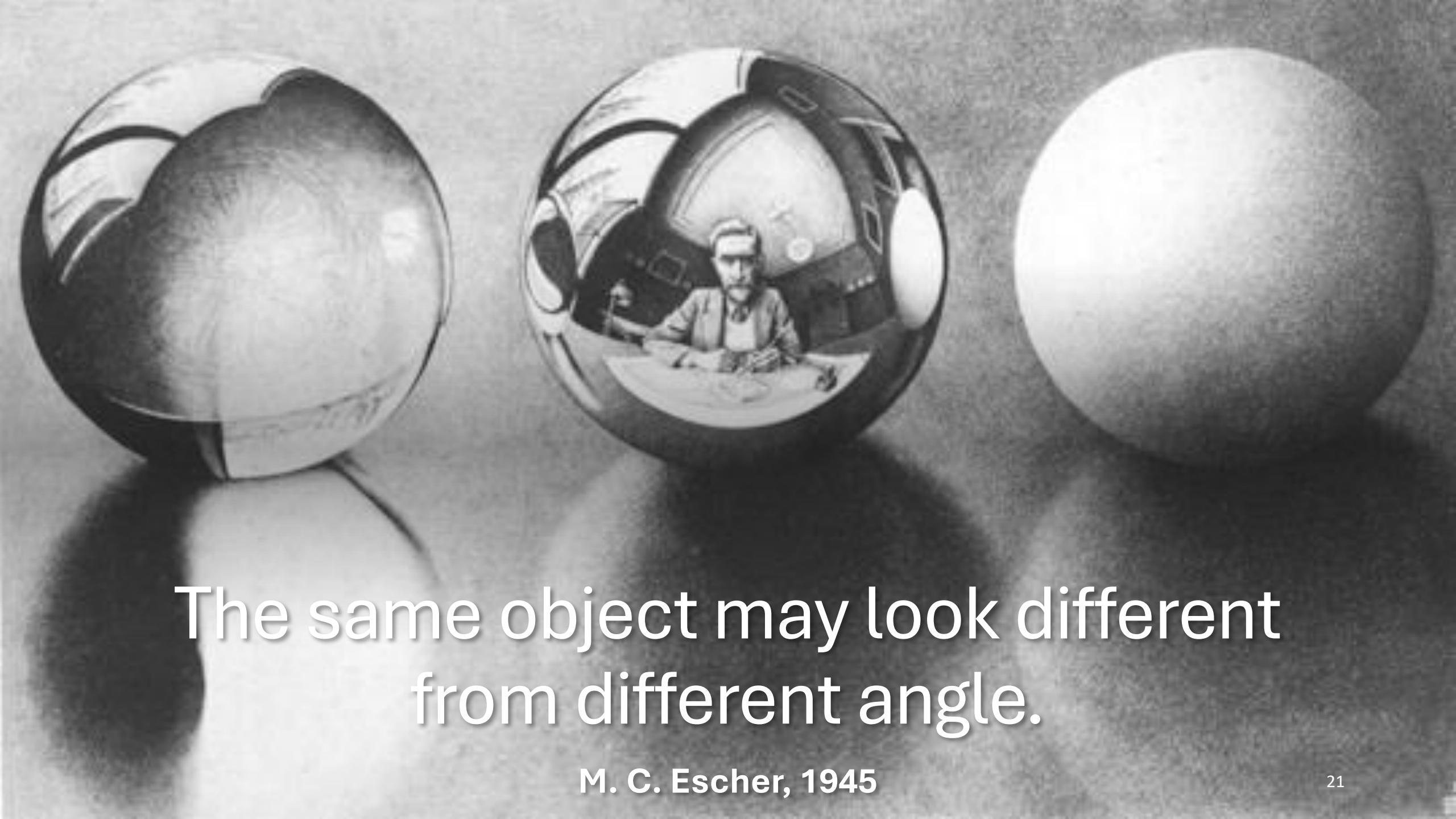
$SSD = \sum \sum (I_{left} - I_{right})^2 \rightarrow \text{Sum of squares difference}$

$AD = \sum \sum |(I_{left} - I_{right})| \rightarrow \text{Absolute difference}$

$CC = \sum \sum (I_{left} \cdot I_{right}) \rightarrow \text{Cross correlation}$

$NCC = \frac{\sum \sum (I_{left} \cdot I_{right})}{\sqrt{\sum \sum (I_{left} \cdot I_{left})} \cdot \sqrt{\sum \sum (I_{right} \cdot I_{right})}} \rightarrow \text{Normalized cross correlation}$



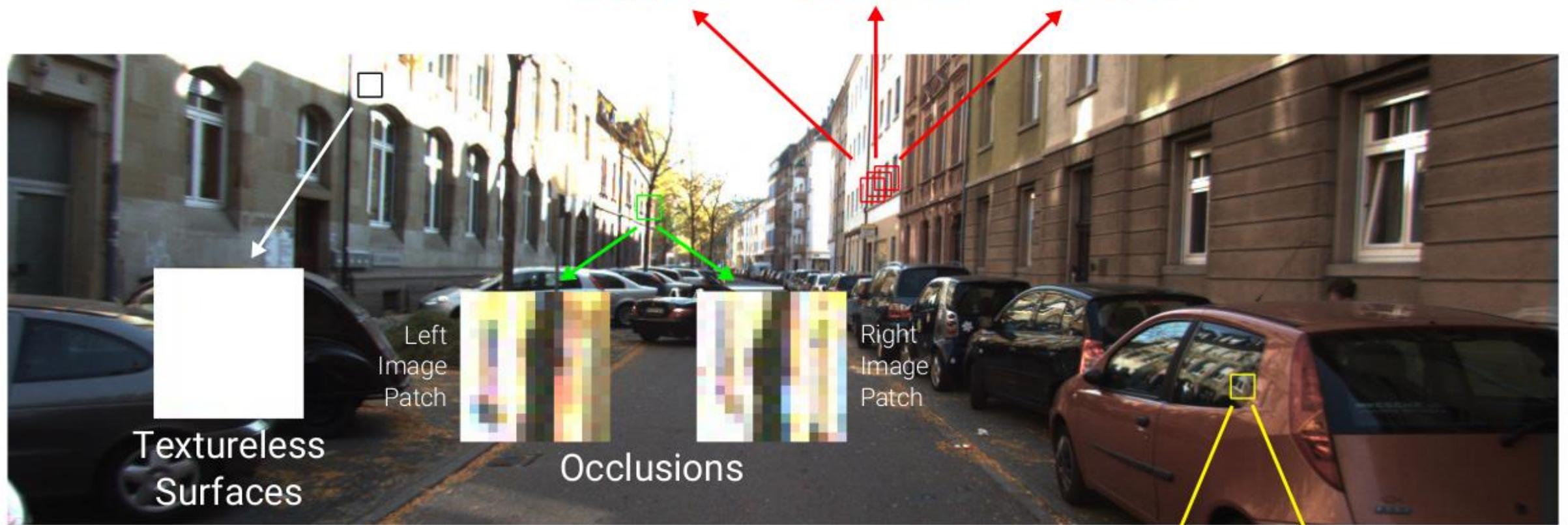


The same object may look different
from different angle.

M. C. Escher, 1945



Repetitive structures



Block matching (Failure cases)

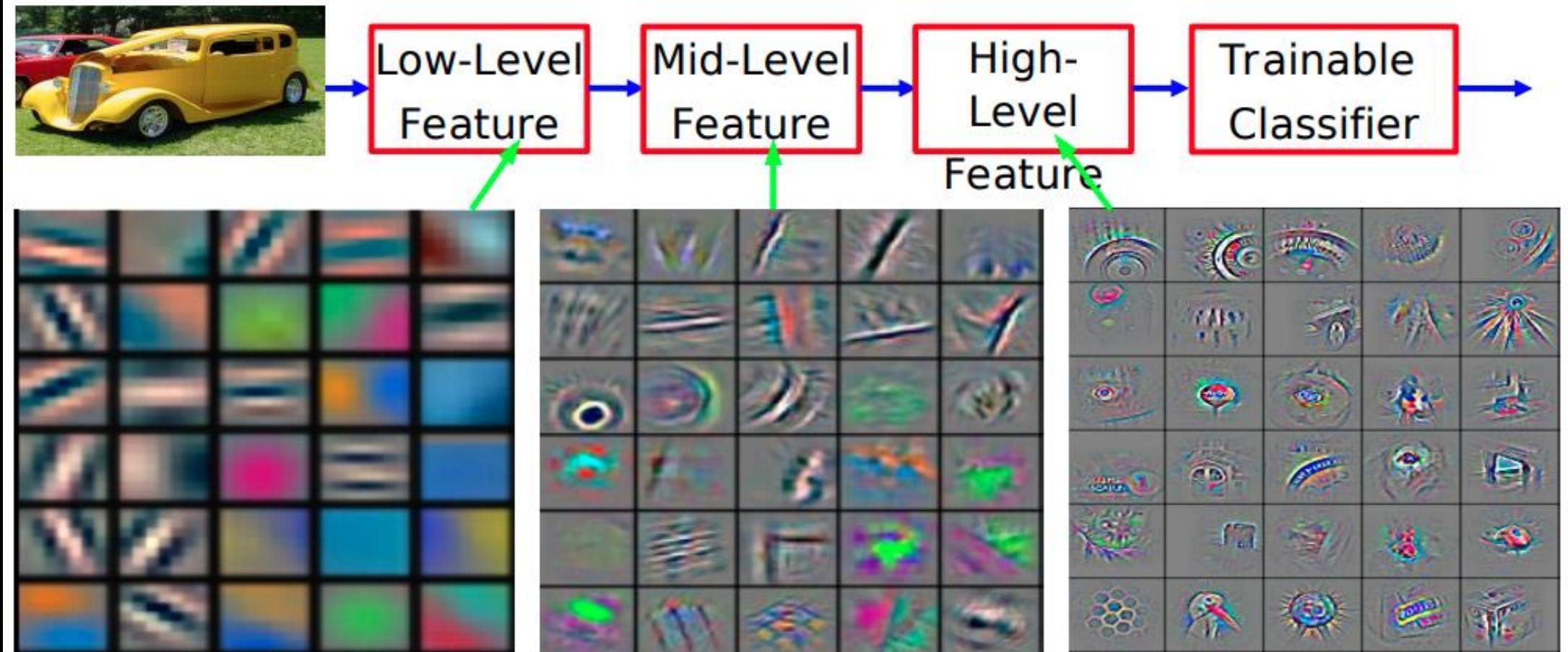
Other challenges:

- Repetitive structures
- Lighting variations
- Vignetting effects
- Motion blur
- Sensor noise
- Color imbalance
- White imbalance
- etc.

M. C. Escher, 1958

A PhD trying to use block matching

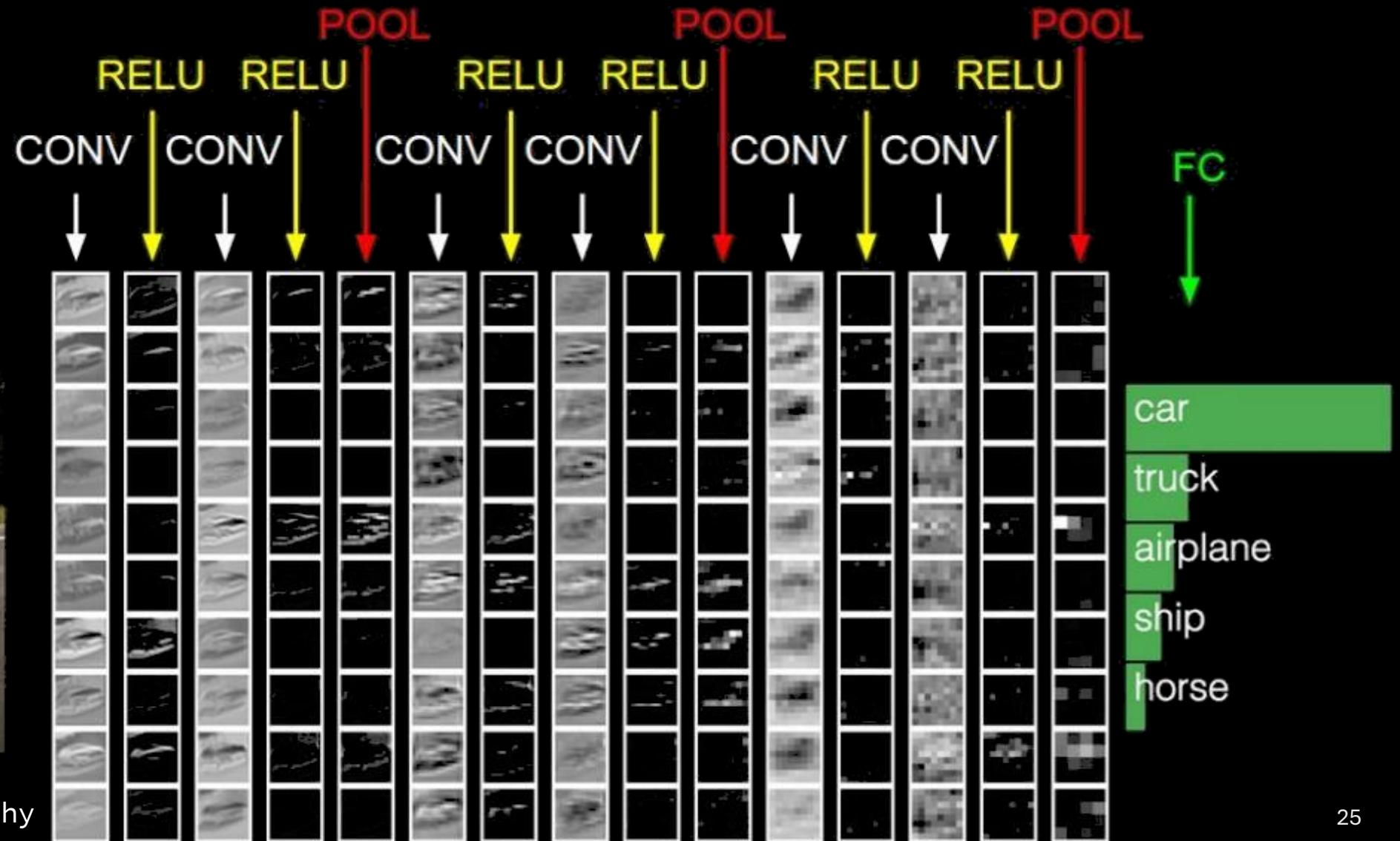
Convolutional features



Slide credit: Yann Lecun

Image credit: Visualizing and Understanding Convolutional Networks (Zeiler & Fergus, 2013)

Convolutional network architecture



2D and 3D convolutions

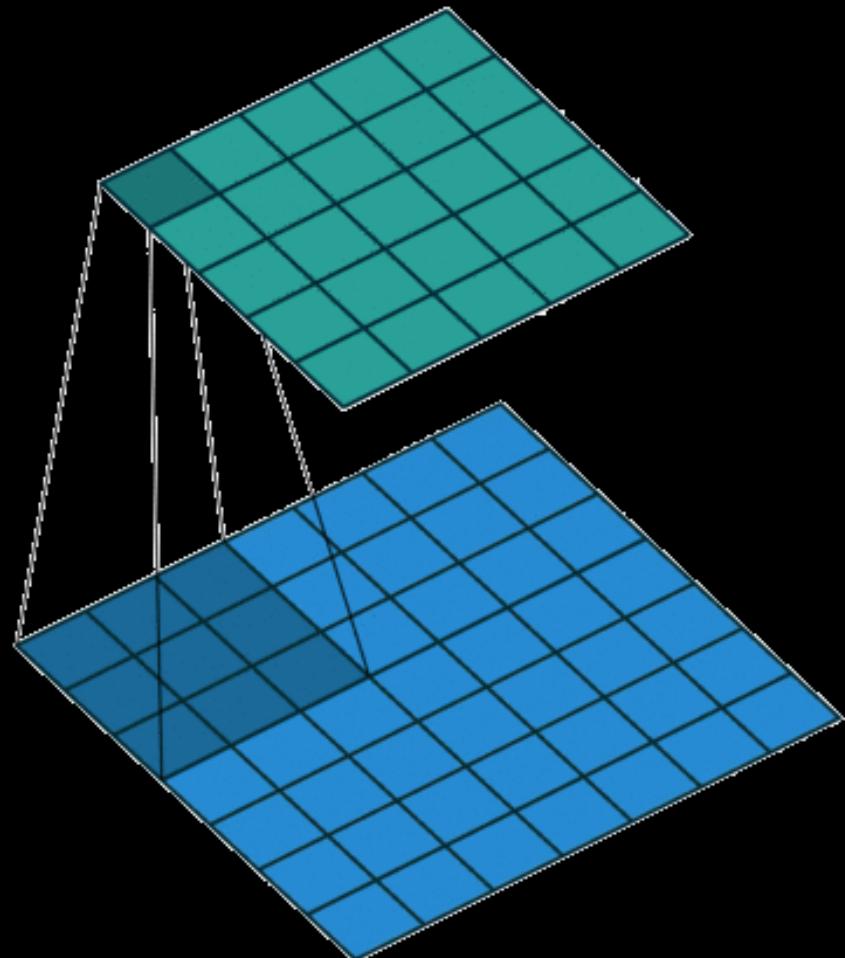
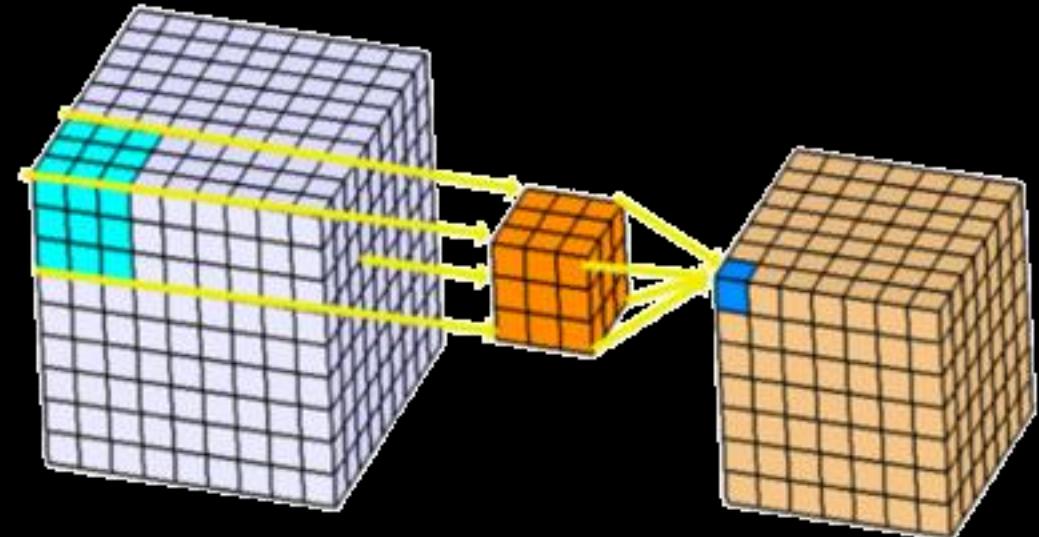
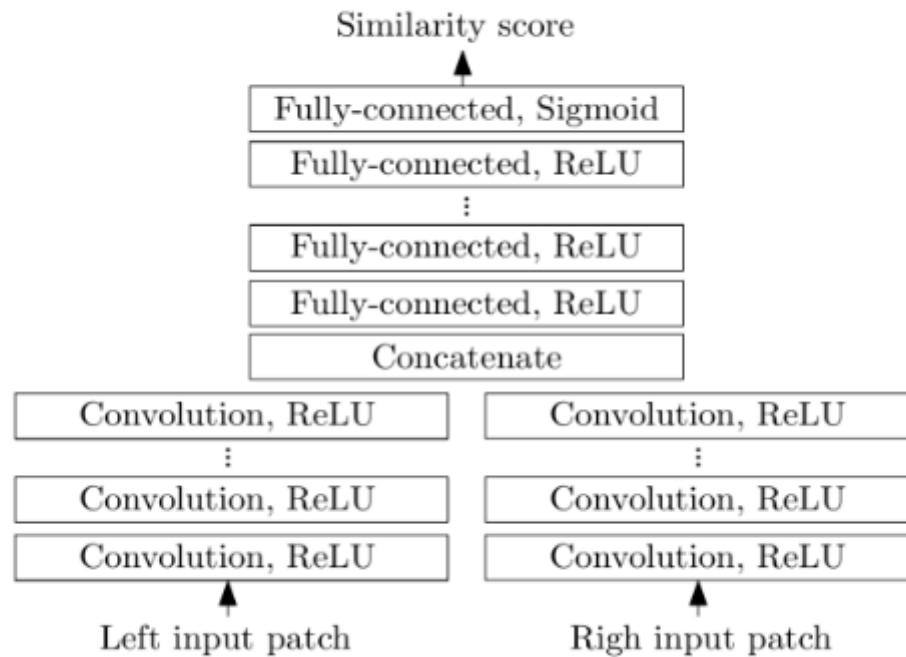


Image credit:
<https://biplabbarman097.medium.com/3d-convolutions-and-its-applications-6dd2d0e9e63f>

Block matching using deep learning

Learned Similarity:

- ▶ Learn features & sim. metric
- ▶ Potentially more expressive
- ▶ Slow (WxHxD MLP evaluations)



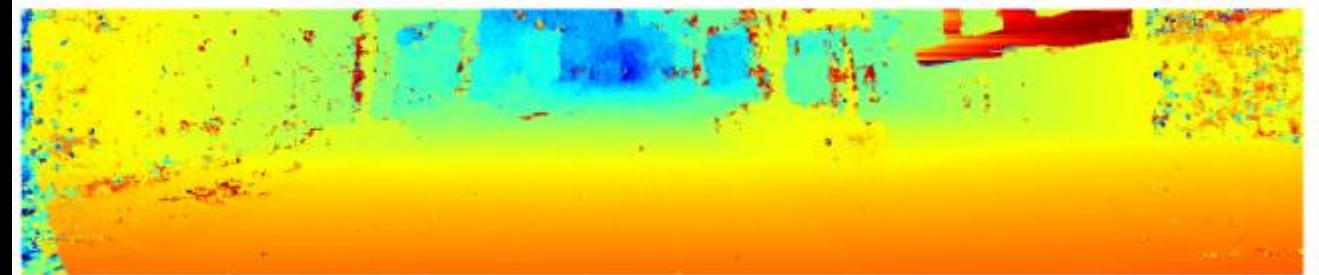
Cosine Similarity:

- ▶ Learn features & apply dot-product
- ▶ Features must do the heavy lifting
- ▶ Fast matching (no network eval.)

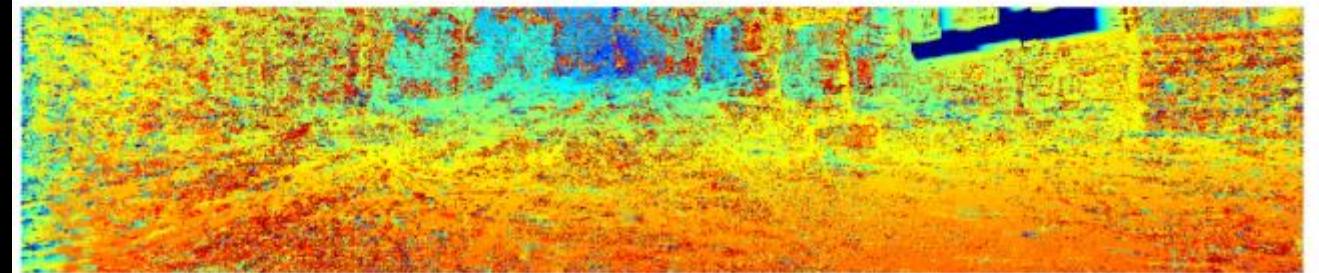


Block matching

Left Input Image

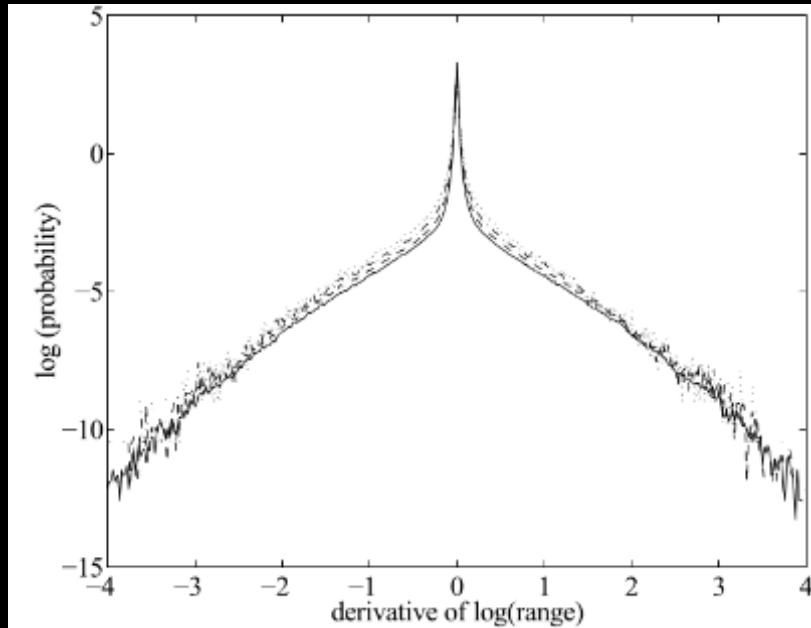


Siamese Network



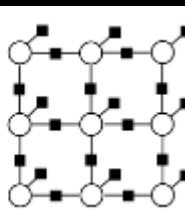
Standard Block Matching

Block matching



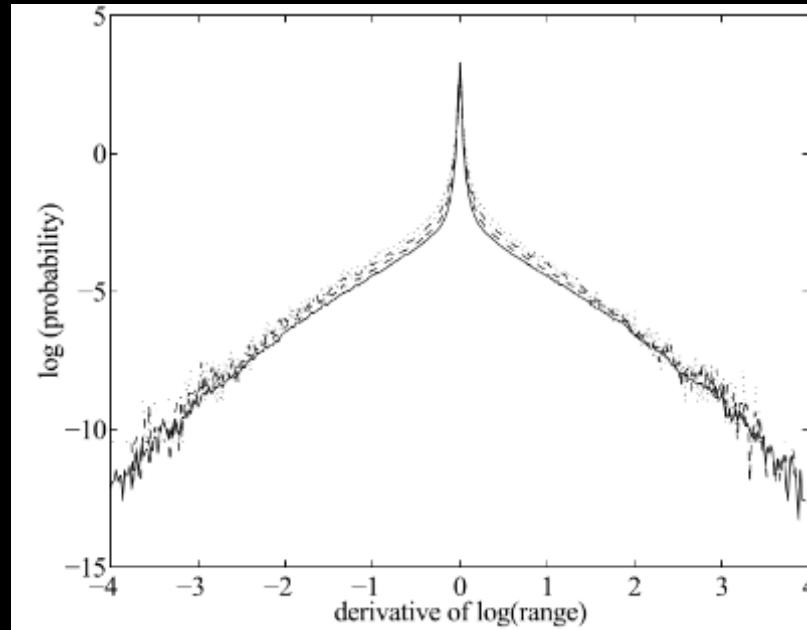
Huang, Lee and Mumford: Statistics of Range Images. CVPR, 2000.

$$p(\mathbf{D}) \propto \exp \left\{ - \sum_i \psi_{data}(d_i) - \lambda \sum_{i \sim j} \psi_{smooth}(d_i, d_j) \right\}$$



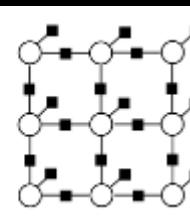
Y. Boykov, O. Veksler, and R. Zabih, "Fast approximate energy minimization via graph cuts". PAMI(1999)

Block matching

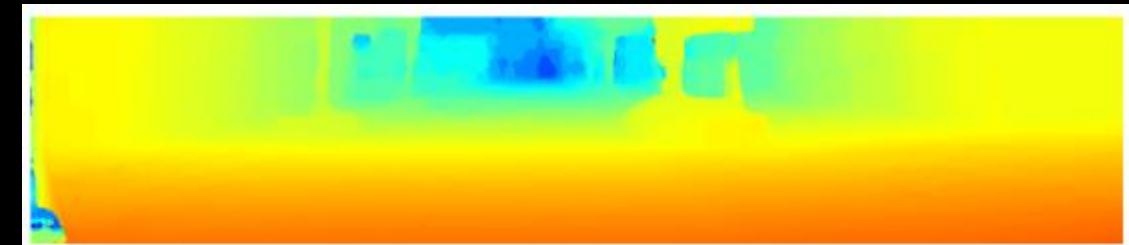


Huang, Lee and Mumford: Statistics of Range Images. CVPR, 2000.

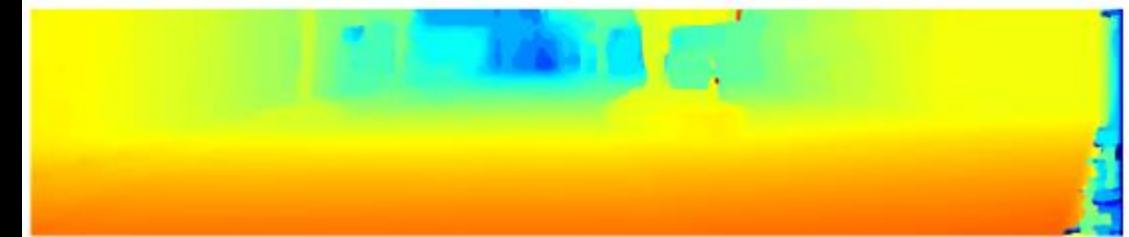
$$p(\mathbf{D}) \propto \exp \left\{ - \sum_i \psi_{data}(d_i) - \lambda \sum_{i \sim j} \psi_{smooth}(d_i, d_j) \right\}$$



Semi-Global Matching Algorithm



Left Disparity Map



Right Disparity Map

Left-Right Consistency Test

Y. Boykov, O. Veksler, and R. Zabih, "Fast approximate energy minimization via graph cuts". PAMI(1999)

DISPNET



- DispNet was one of the first end-to-end trained deep neural network for stereo disparity
- It used a U-Net like architecture with skip-Connections to retain details
- It introduces correlation layer
- Multi-scale loss (disparity error in pixels), curriculum learning (easy-to-hard)

GC-net

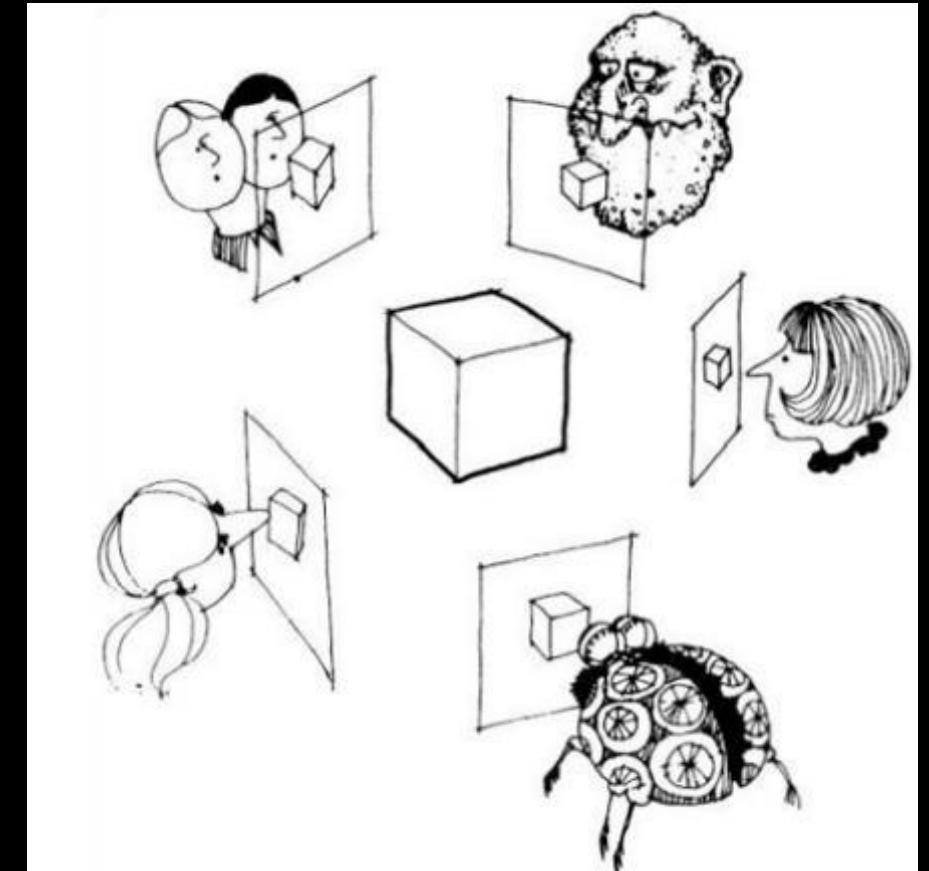
$$d^* = \mathbb{E}[d] = \sum_{d=0}^D \underbrace{\text{softmax}(-c_\theta(d)) \cdot d}_{p(d)}$$



- Key idea: calculate disparity cost volume and apply 3D convolutions on it
- Convert the learned matching cost c to disparity via the expectation(probability volume)
- Slightly better performance but large memory requirements (3D feature volume)

Multi-view stereo

- MVS Goal: To find a 3D shape that explains the images.



PMVS in 1 slide

Detect

- Detect keypoints

Triangulate

- Triangulate a sparse set of initial matches

Expand

- Iteratively expand matches to nearby locations

Filter

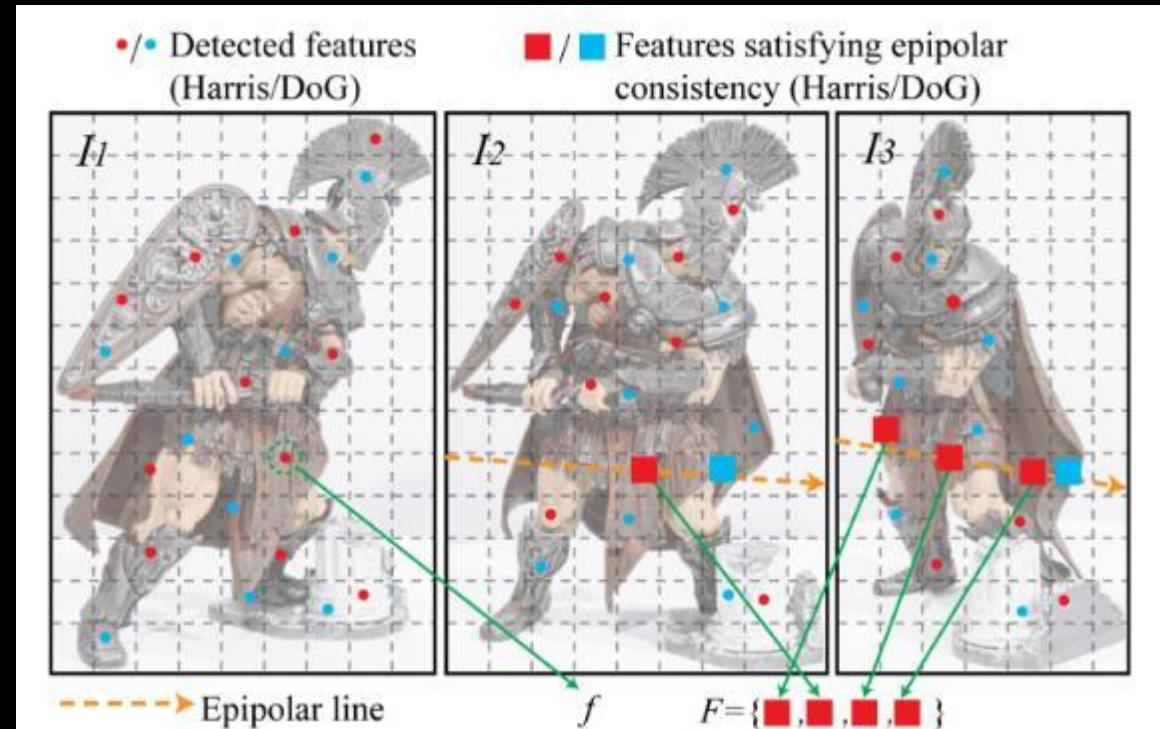
- Use visibility constraints to filter out false matches

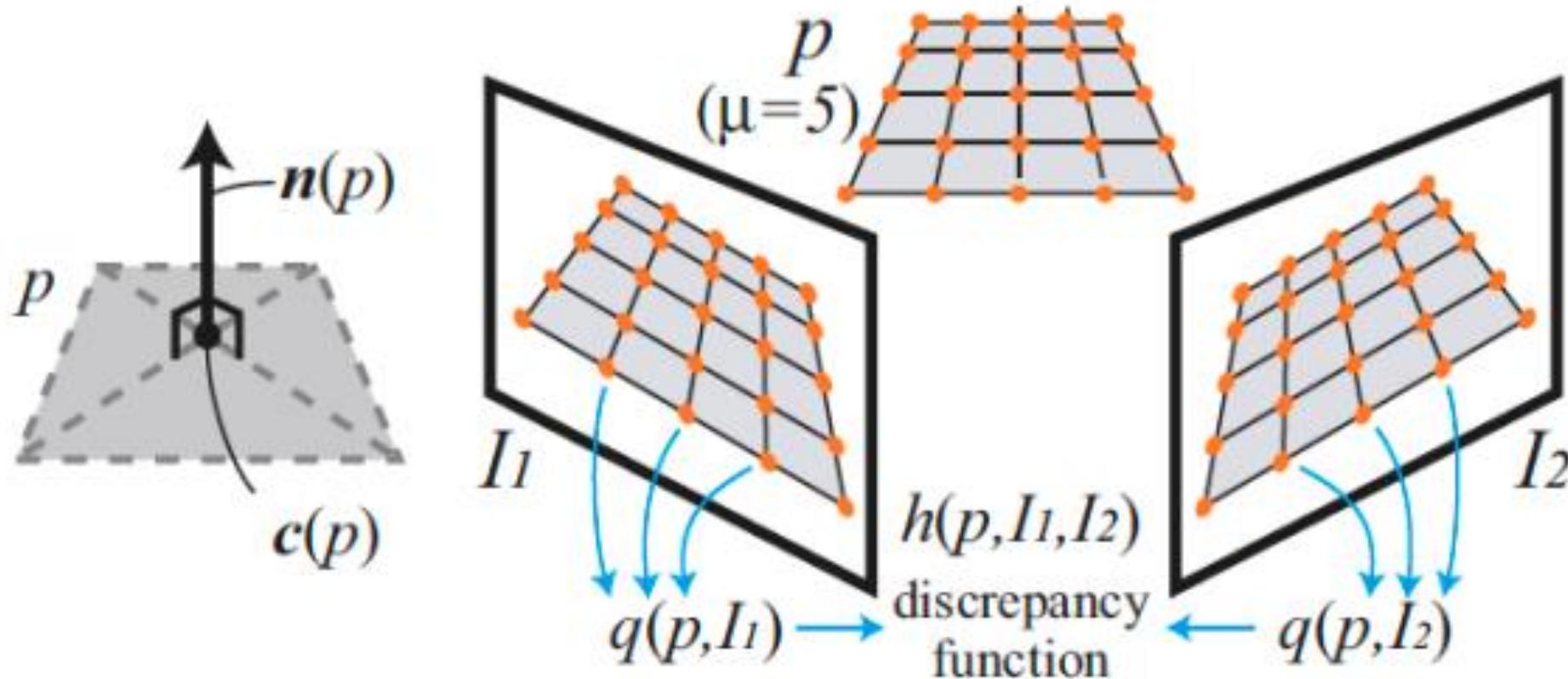
Perform

- Perform surface reconstruction

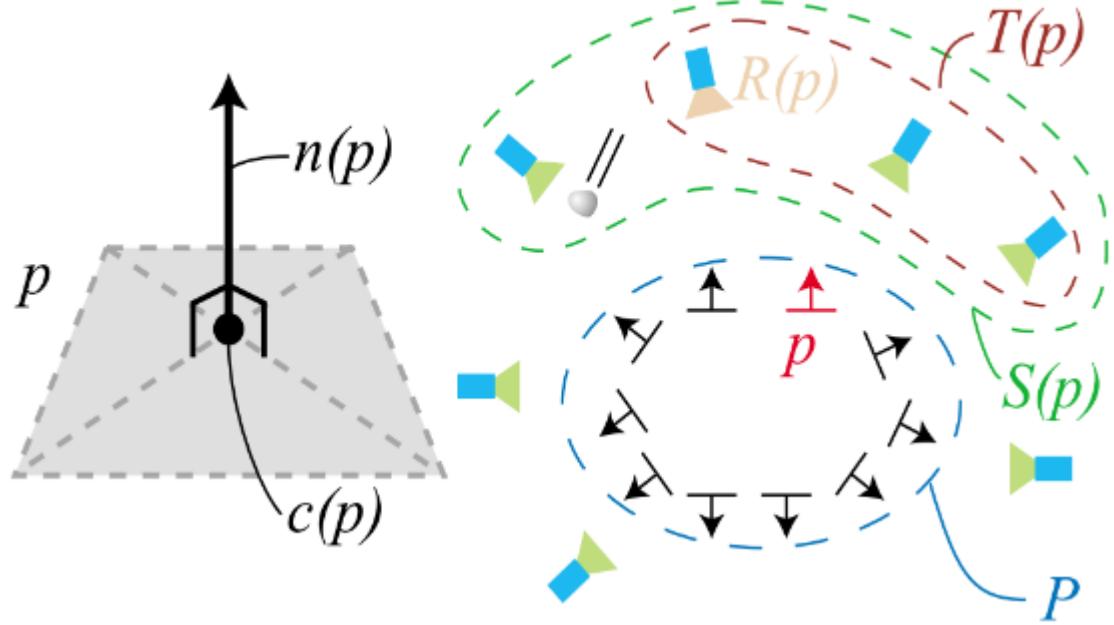
Feature Detection

1. Divide grid to cells (32x32)
2. Use Harris Detector and DoG to find corners
3. Try to find 4 good corners in each cell (uniform coverage)





Patch Geometry



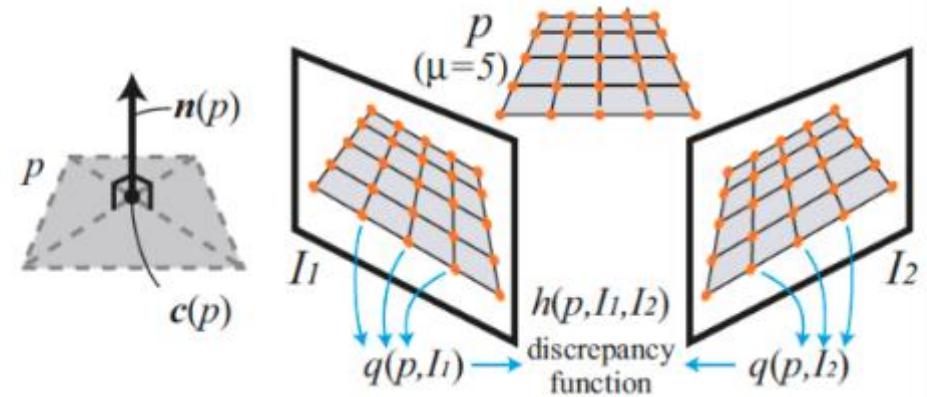
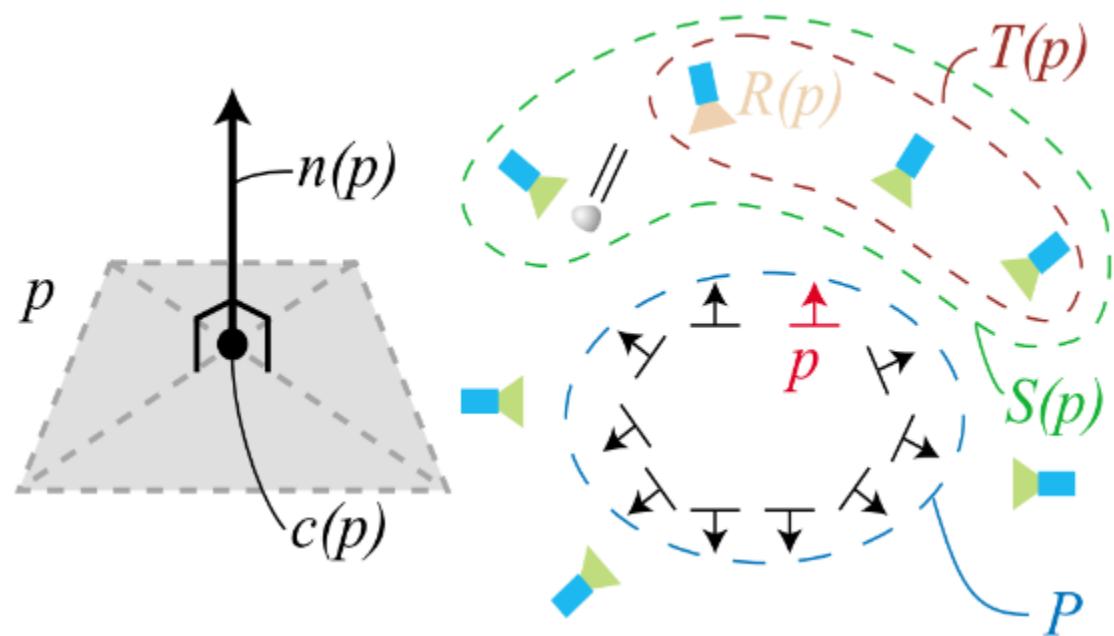
Patch Model Initialization

Patch Initialization

$c(p) \leftarrow$ Triangulation from two patches

$n(p) \leftarrow c(p)O(I_i)/|c(p)O(I_i)|$ normal initialization

$R(p) \leftarrow I_i$ reference image of p



Patch Discrepancy

$$h(p, I, R(p)) = 1 - NCC(p, I, R(p))$$

discrepancy function

$$g(p) = \frac{1}{|S(p) \setminus R(p)|} \sum_{I \in S(p) \setminus R(p)} h(p, I, R(p))$$

Objective to minimize

$S(p) \leftarrow$ the set of images patch may seem

Patch Discrepancy

Patch True Discrepancy

$$T(p) = \{I \mid I \in S(p), h(p, I, R(p)) \leq \tau\}$$

$$g^*(p) = \frac{1}{|T(p) \setminus R(p)|} \sum_{I \in T(p) \setminus R(p)} h(p, I, R(p))$$

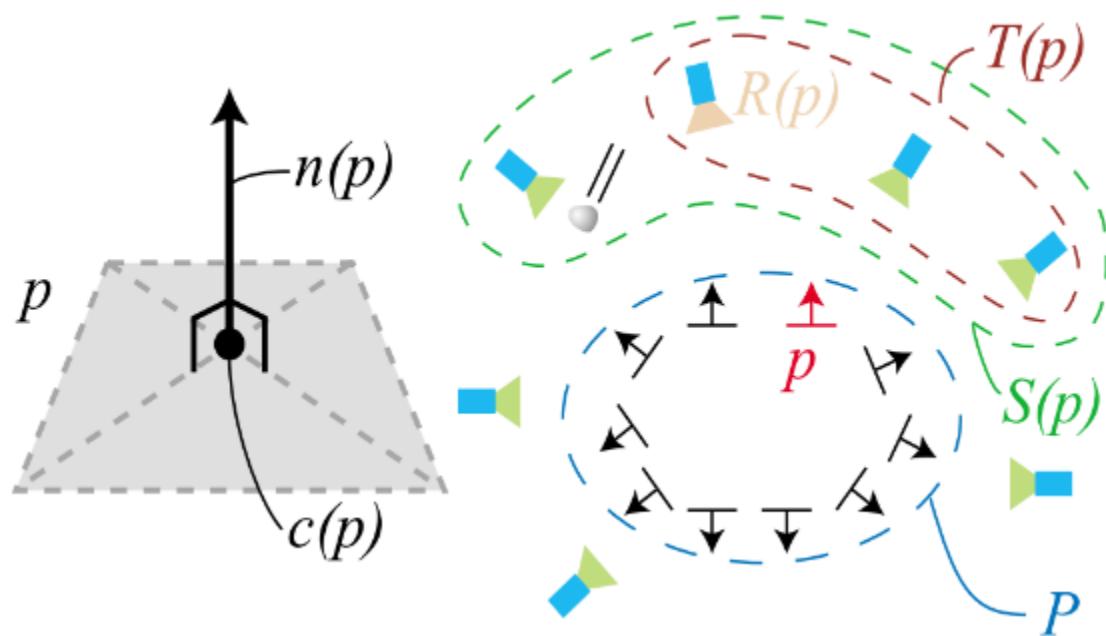
True objective to minimize

$$\operatorname{argmin}_{n(c), c(p)} g^*(p)$$

$S(p) \leftarrow$ the set of images patch may seem

$T(p) \leftarrow$ the set of images patch truly seem

$n(p), c(p) \leftarrow$ find normal and center of patch that minimizes objective



Patch True Discrepancy

Patch True Discrepancy

$$T(p) = \{I \mid I \in S(p), h(p, I, R(p)) \leq \tau\}$$

$$g^*(p) = \frac{1}{|T(p) \setminus R(p)|} \sum_{I \in T(p) \setminus R(p)} h(p, I, R(p))$$

True objective to minimize

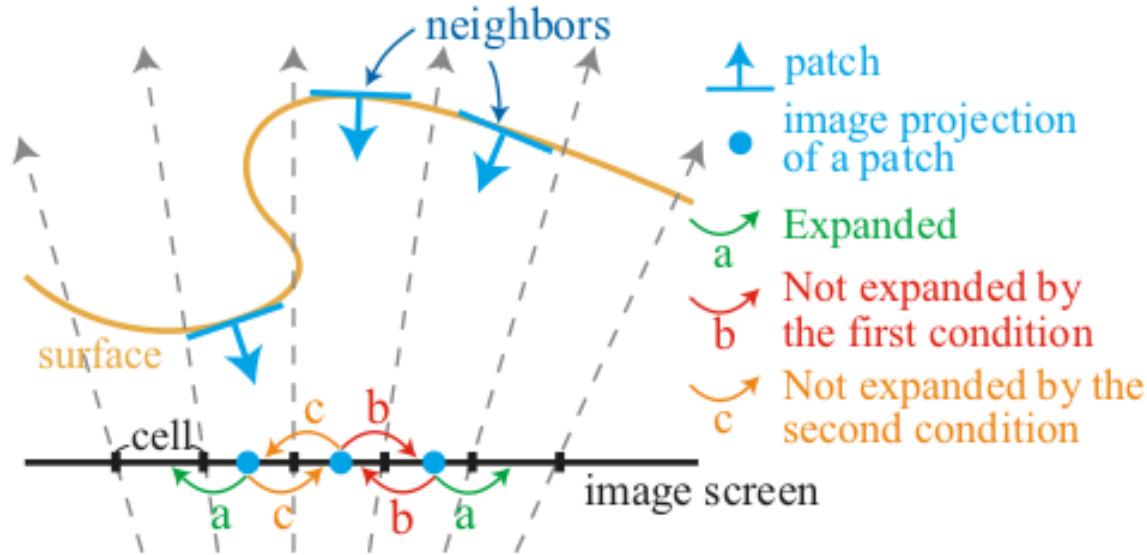
$$\operatorname{argmin}_{n(c), c(p)} g^*(p)$$

$S(p) \leftarrow$ the set of images patch may seem

$T(p) \leftarrow$ the set of images patch truly seem

$n(p), c(p) \leftarrow$ find normal and center of patch that minimizes objective

Expansion and Filtering



Expansion

1. Identify neighbouring cells for possible expansion
2. Test if there is already a patch very close to that region
3. Test for depth discontinuity

Filtering

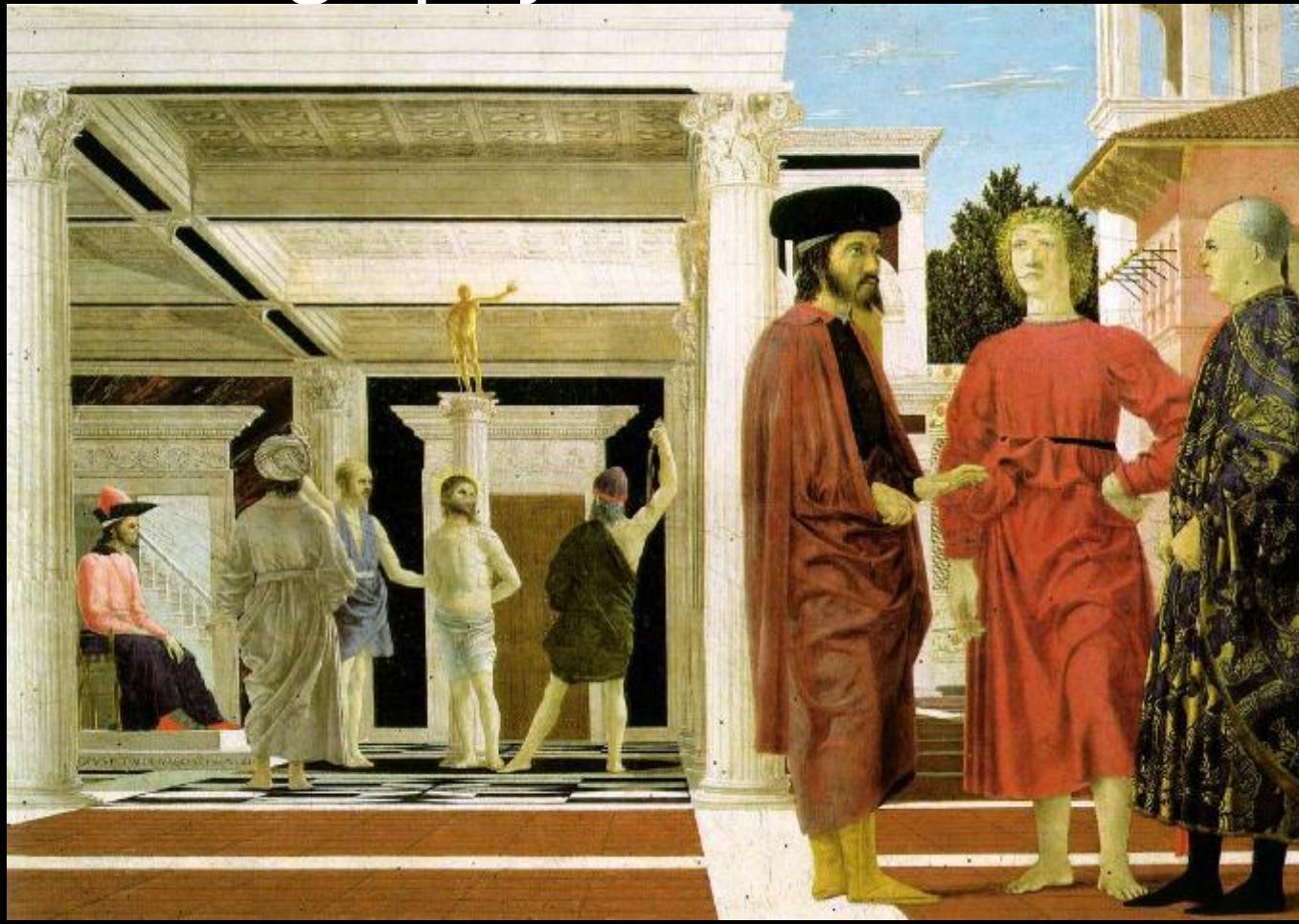
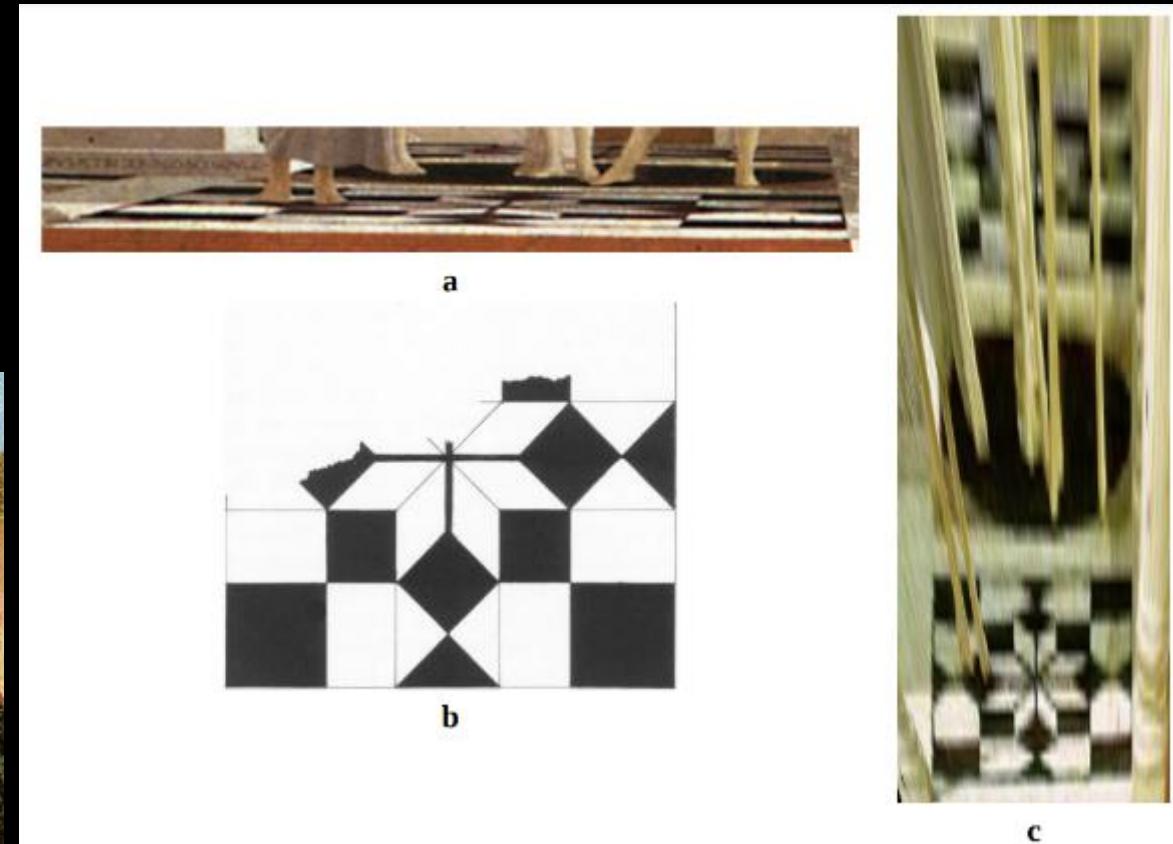
1. Photometric consistency filter
2. Geometric consistency filter
3. Occlusion check

VisualSFM+PMVS

MVSNet – Differential Homography

Hans Holbein, The Ambassadors (1533)

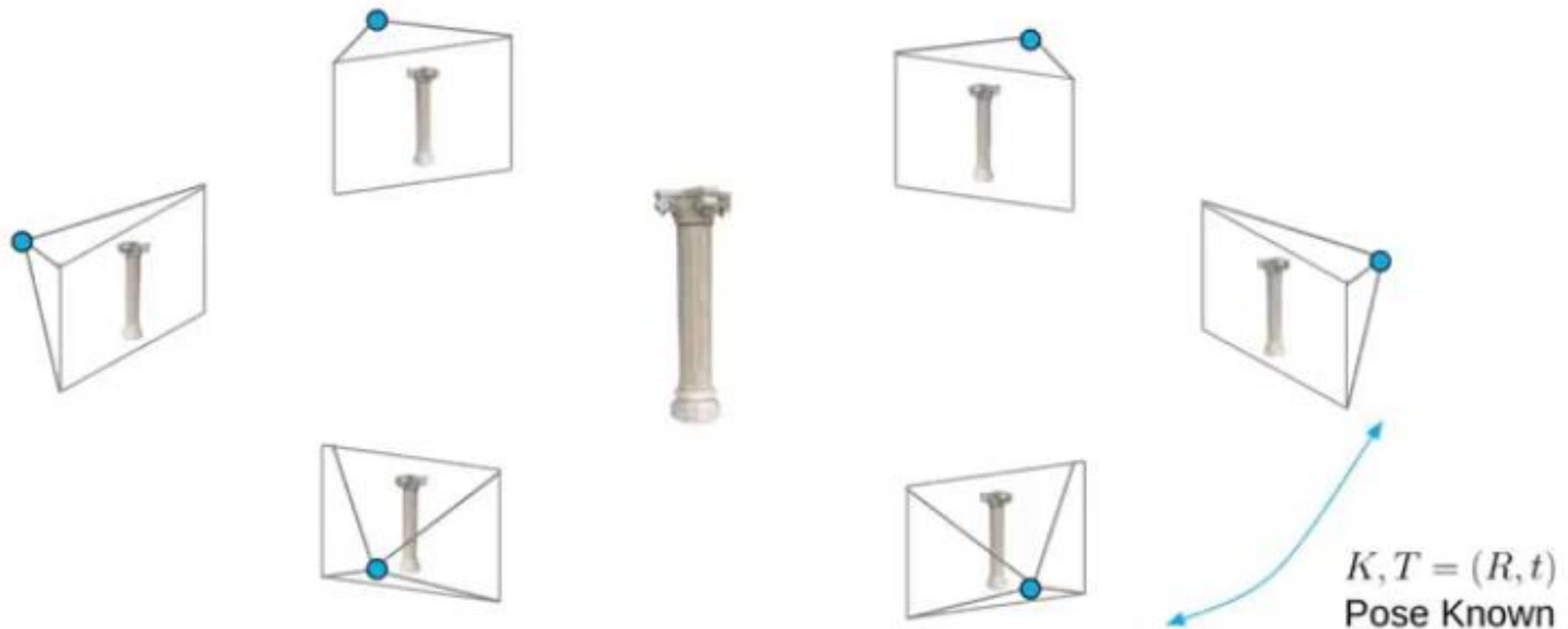
MVSNet – Differential Homography



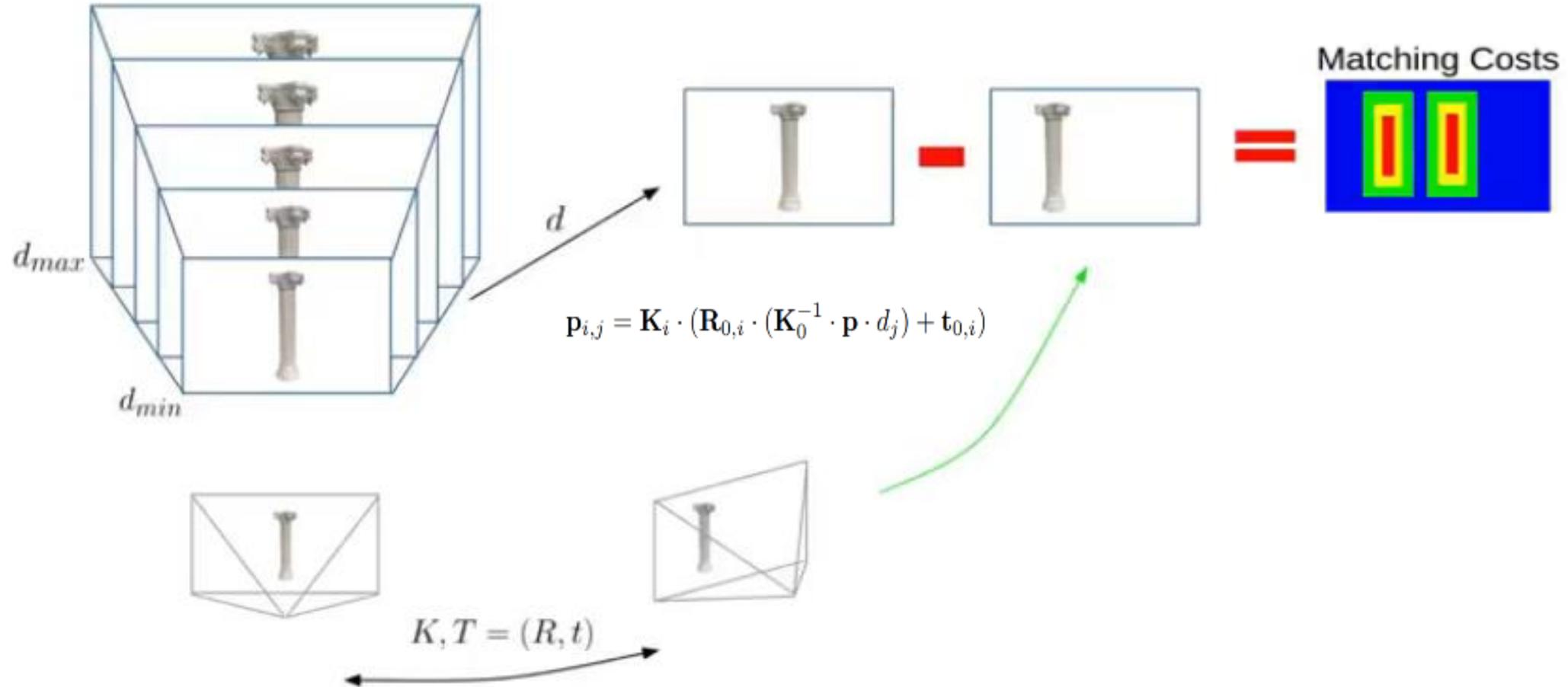
$$\mathbf{p}_{i,j} = \mathbf{K}_i \cdot (\mathbf{R}_{0,i} \cdot (\mathbf{K}_0^{-1} \cdot \mathbf{p} \cdot d_j) + \mathbf{t}_{0,i})$$

Criminisi et. al. (2002): Bringing Pictorial Space to Life

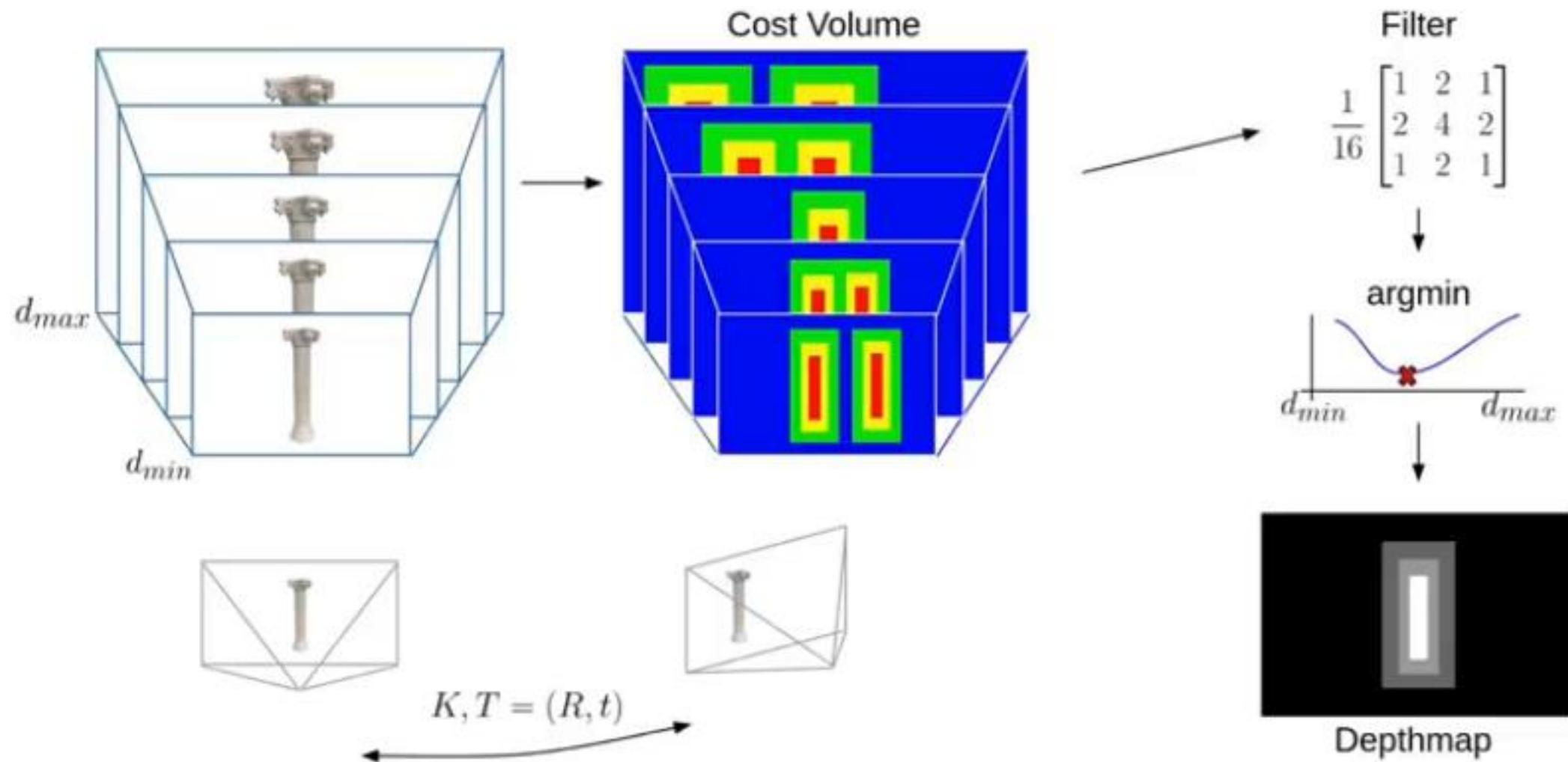
Multi-view stereo - plane sweep stereo



Multi-view stereo - plane sweep stereo

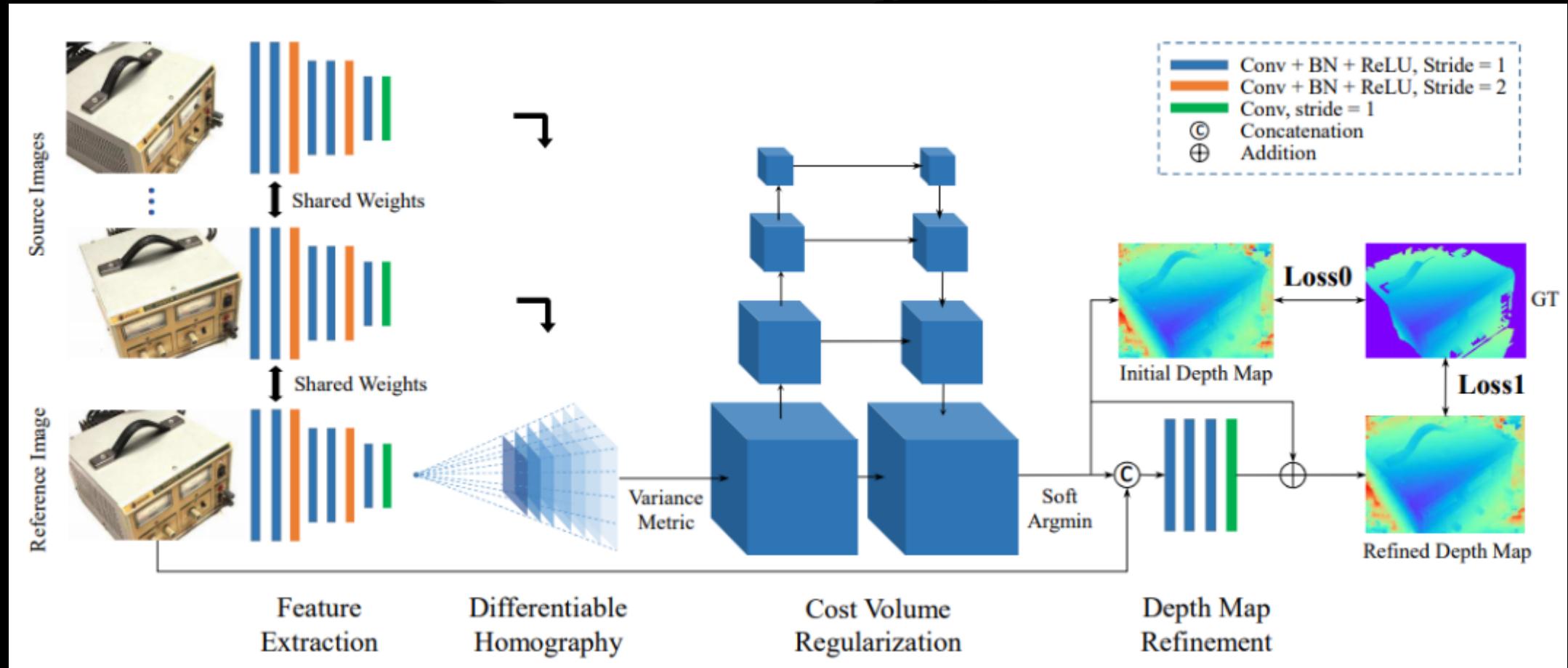


Multi-view stereo - plane sweep stereo



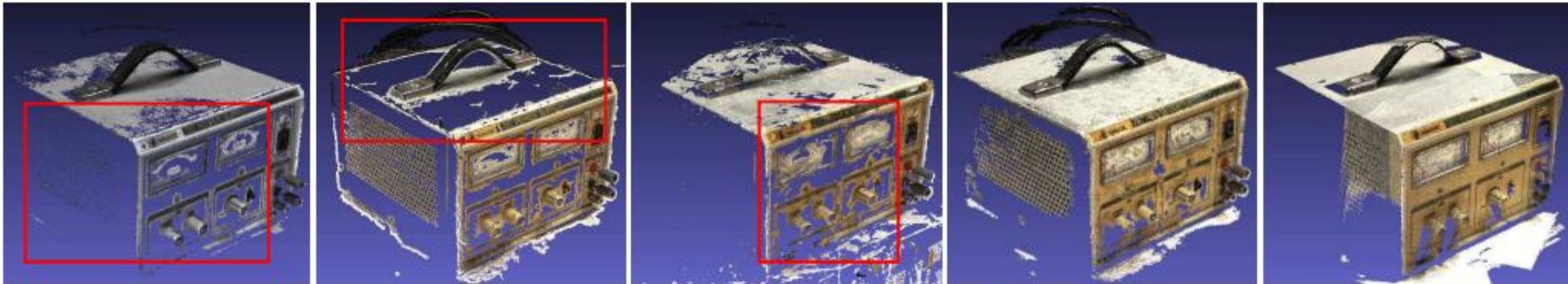
MVSNET

Yao Yao et. al.: MVSNet: Depth Inference for Unstructured Multi-view Stereo. ECCV 2018



Scan 9

Scan 11



Scan 75

Gipuma

PMVS

SurfaceNet

MVSNet (Ours)

Ground Truth

DDLMVS

This video demonstrates visual comparisons with
COLMAP and PatchmatchNet

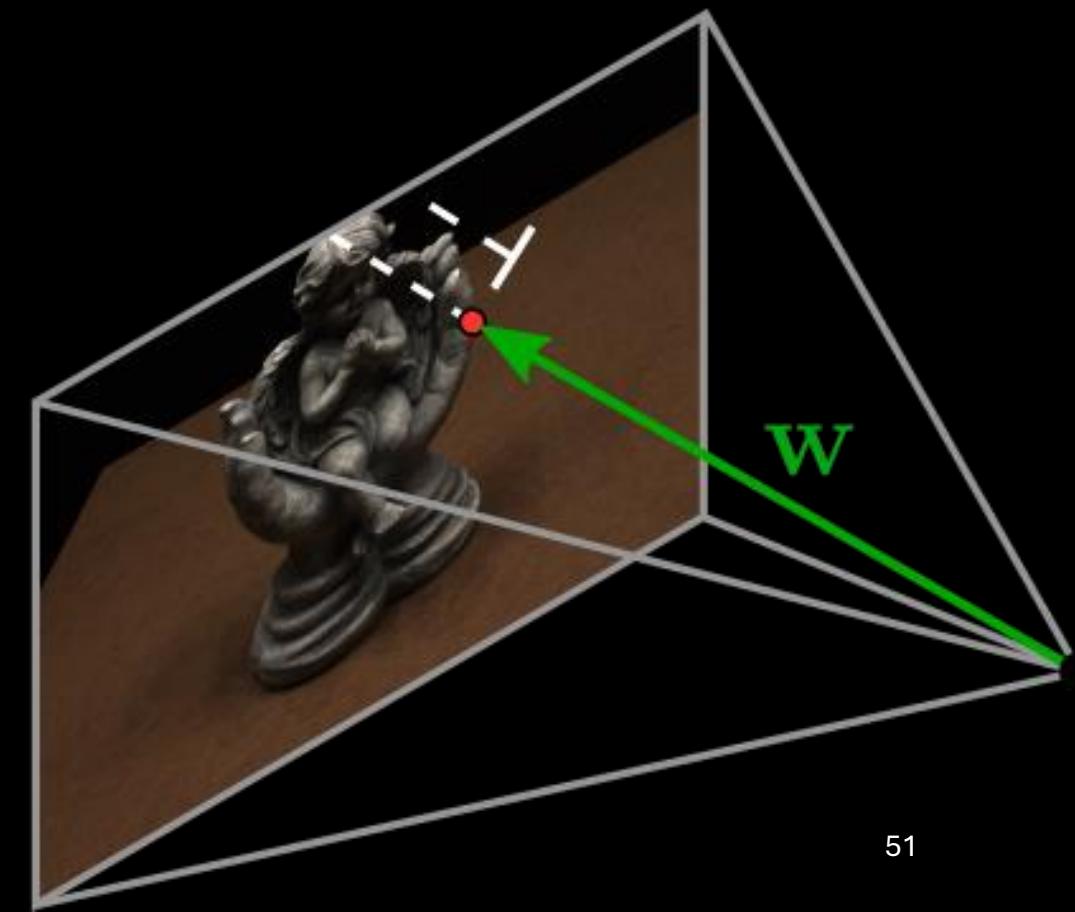
Semantic MVS

Input image

Semantic
Reconstruction

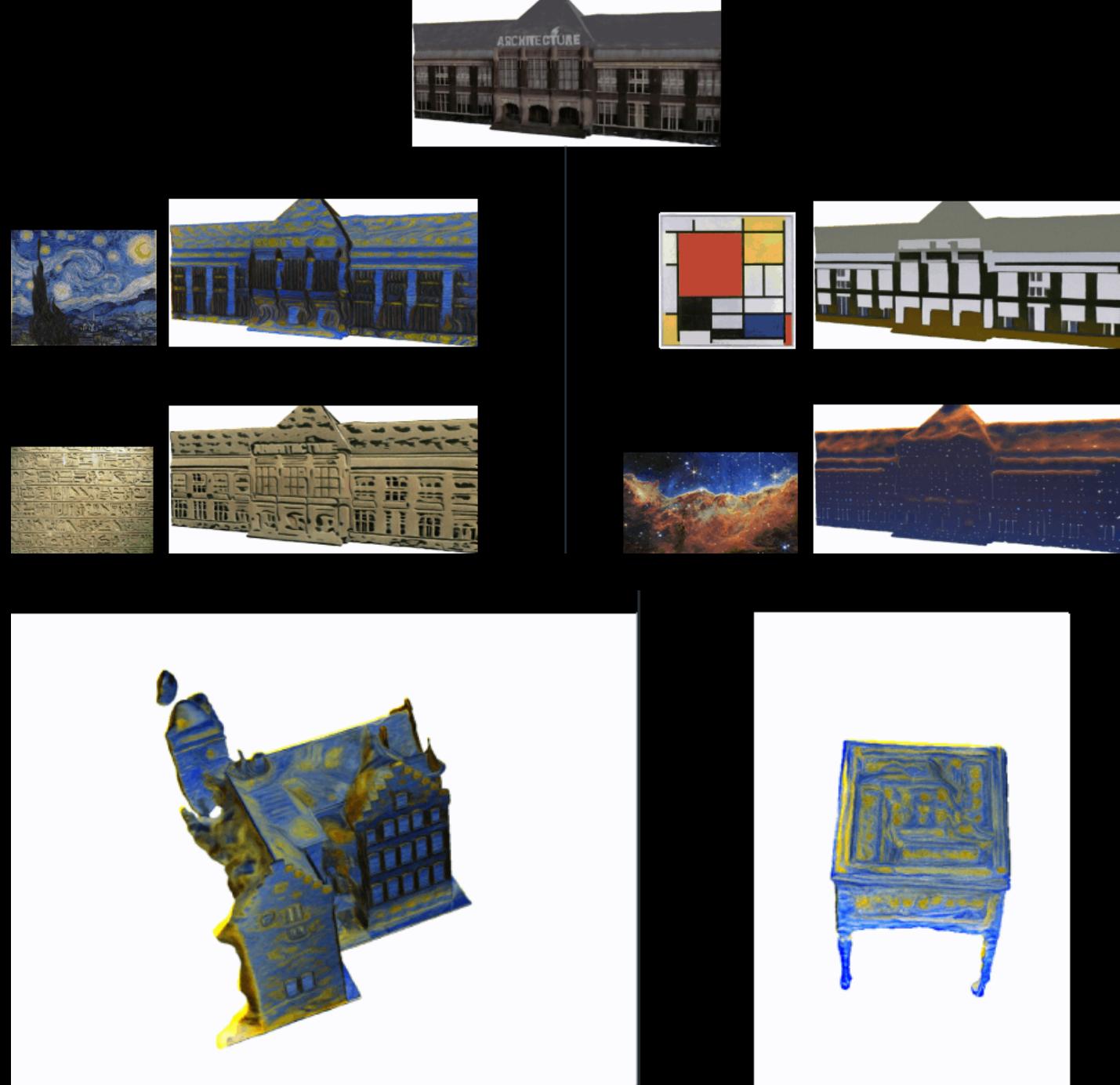
Groundtruth

Differentiable Surface Rendering



Surface Reconstruction and Stylization

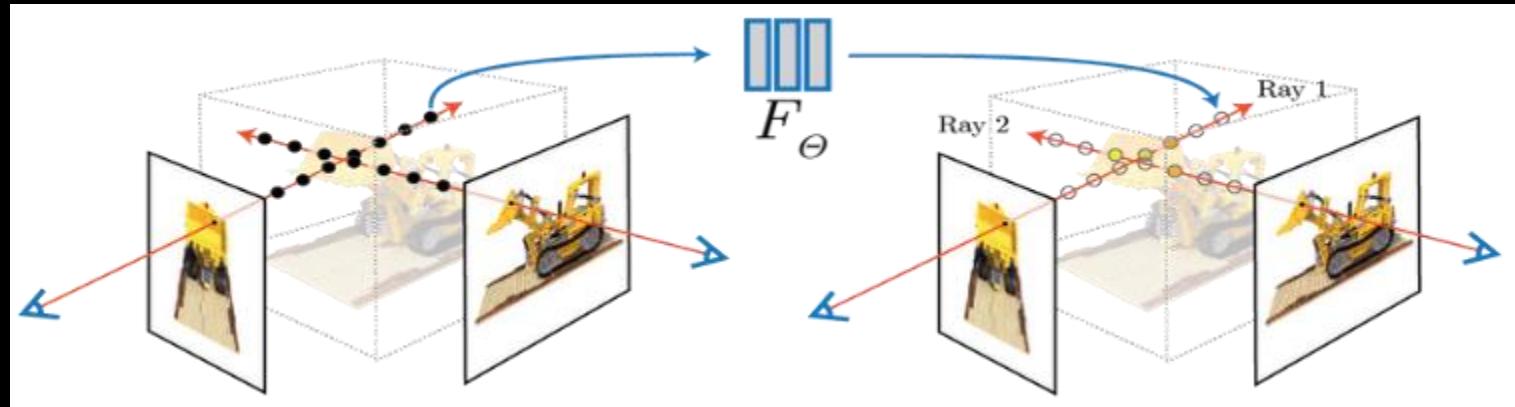
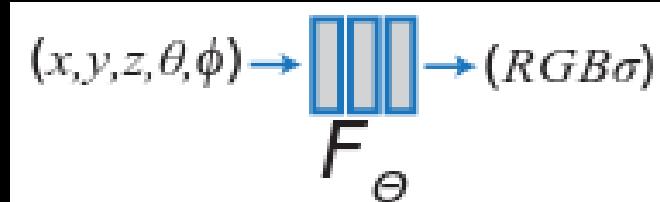
- I. Collect masked calibrated images
- II. Compute surface using rendering
- III. Apply stylization to the surface



NeRF revolution

What is NeRF

- The word **Neural** obviously means that there's a Neural Network involved
- **Radiance** refers to the radiance of the scene that the Neural Network outputs. It is basically describing how much light is being emitted by a point in space in each direction, and
- The word **Field** means that the Neural Network models a continuous and non-discretized representation of the scene that it learns.



Assumptions:

- Camera poses are known
- Scene is static, objects do not move
- The scene appearance is constant
- Dense input capture

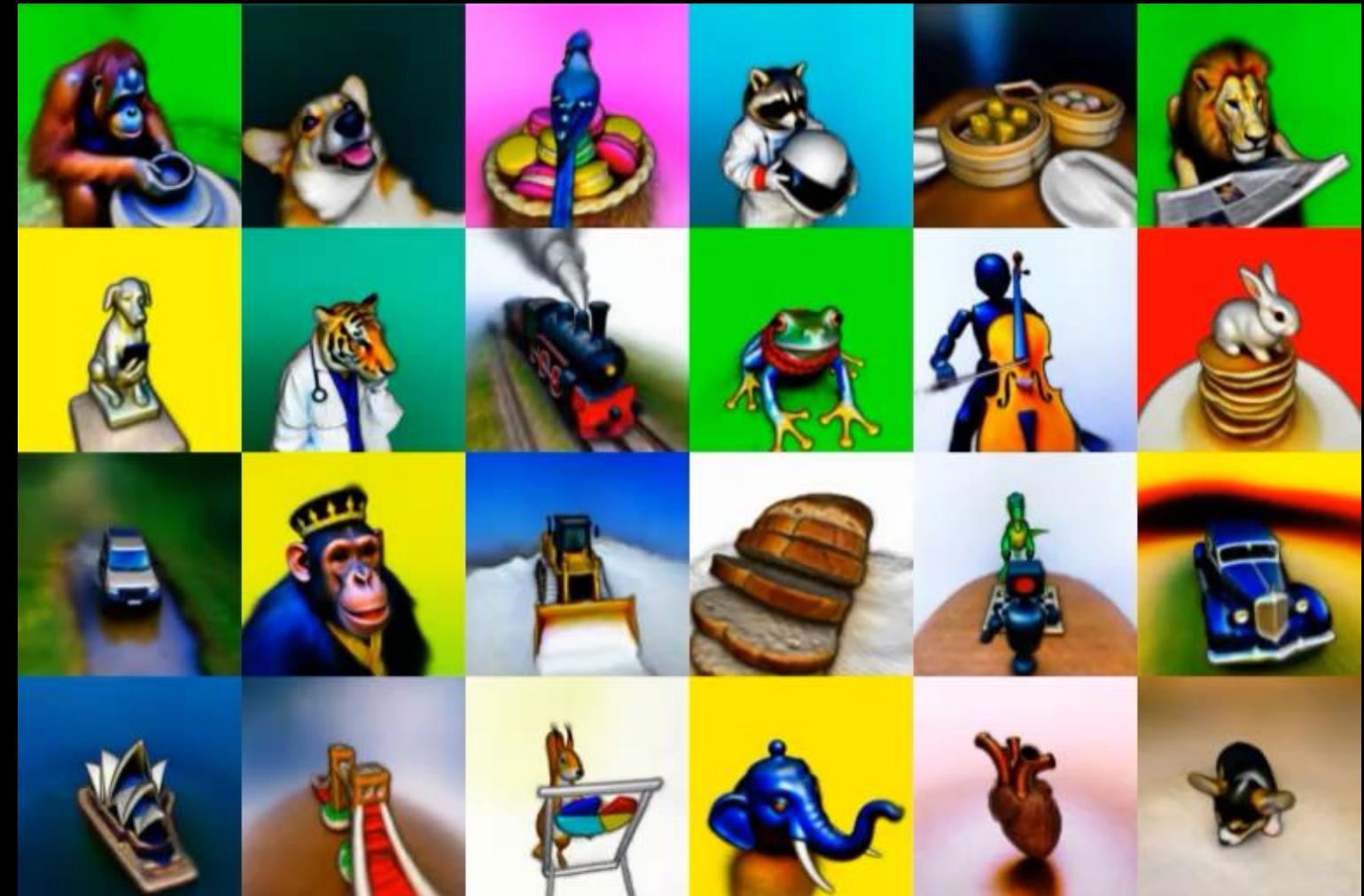
Architecture:

- 9 Layers MLP + ReLU
- 256 neurons in each layer
- 5D input (x, y, z) + view direction with PE
- 4D output representing $RGB + \sigma$

NeRF Improvements

- Geometry → NeuS, VolSDF
- Speed → Plenoctrees, DVGO
- Memory-Time trade-off → TensorRF, Instant-NGP
- Sparse images → ReconFusion, DietNeRF
- Stylization → ARF, [MuViCAST](#)
- Sparse pointcloud input → PointNeRF, [Gaussian Splatting](#)

GenAI for 3D: Text-to-3D Generation (DreamFusion)

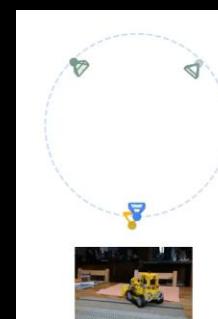


GenAI for 3D: Sparse Reconstruction (ReconFusion)

3 views

6 views

9 views



Ours

GenAI for 3D: Texturing the Geometry

A

An adorable cottage with a thatched roof

B

A two-storey brick townhouse with grey roof

C

A three-storey brick building with grey roof and arched doors and windows

D

An exterior brick apartment

E

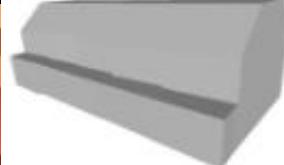
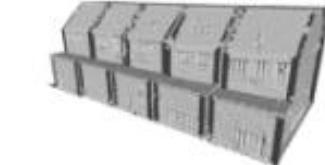
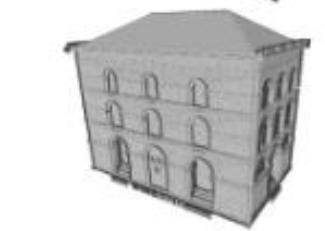
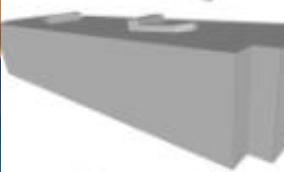
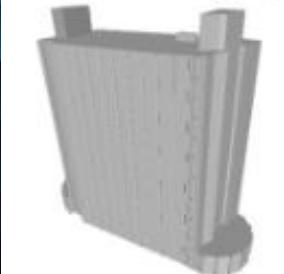
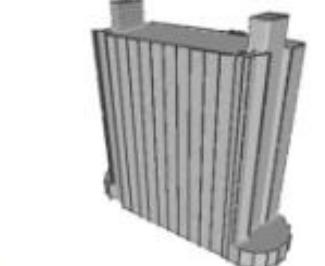
An exterior modern high glass window office

F

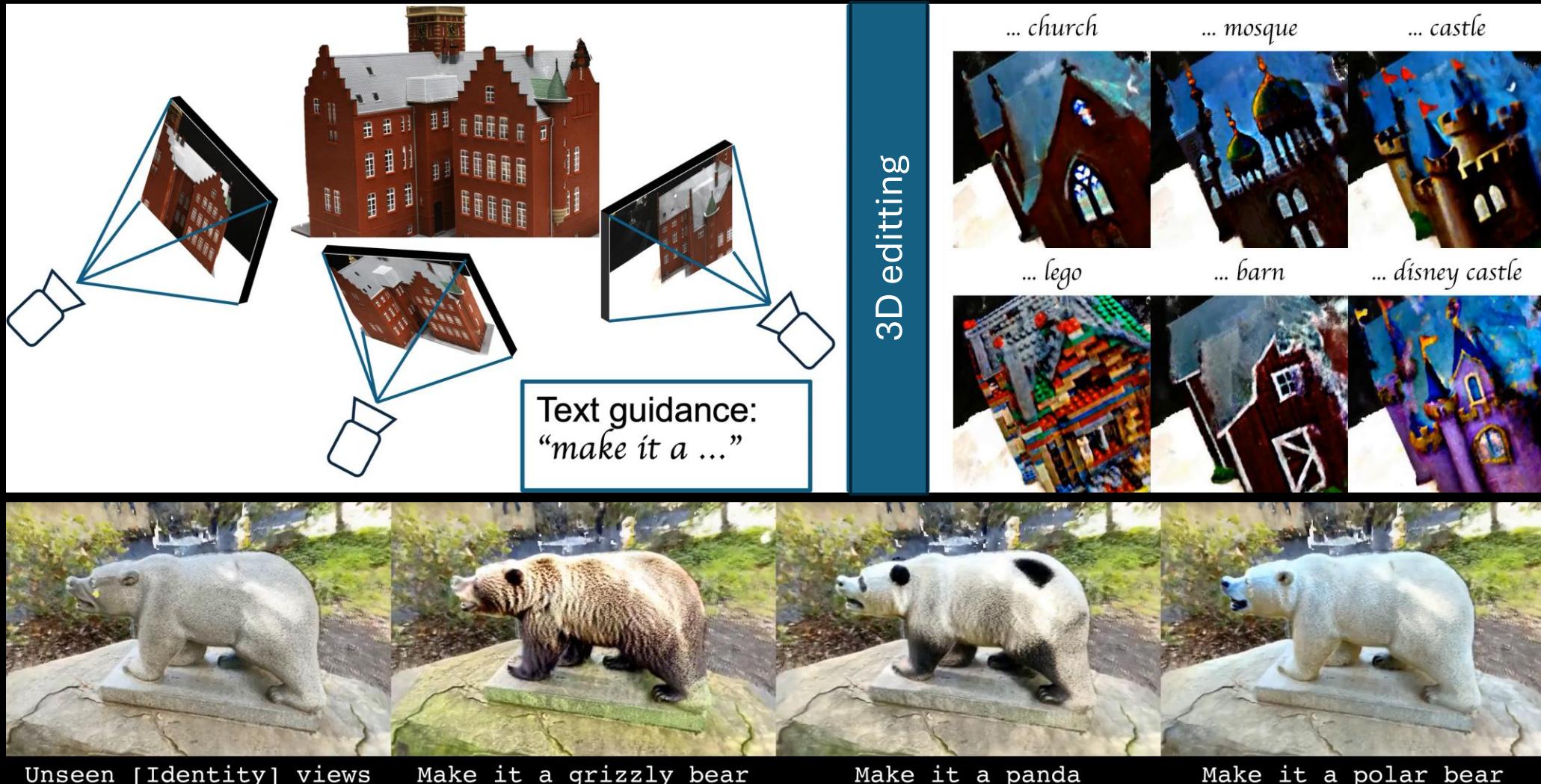
An Oude Kerk Delft

G

A brick castle



3D editting using Text Guidance



Thanks for
listening.

