

Lecture **Reconstruct 3D Geometry**

Liangliang Nan

Today's Agenda

- Review of Epipolar Geometry
- Reconstruct 3D Geometry
 - 3D from 2 views
 - Extracting corresponding image points (next lecture)
 - Recover camera motion
 - Triangulation
 - 3D from more views
 - Structure from motion

Review of Epipolar Geometry

- Essential matrix
 - Canonical camera assumption

$$p'^T E p = 0, \quad E = [\mathbf{t}_\times]R \quad K = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Fundamental matrix (most important concept in 3DV)

$$p'^T F p = 0, \quad F = K'^{-T} [\mathbf{t}_\times] R K^{-1}$$

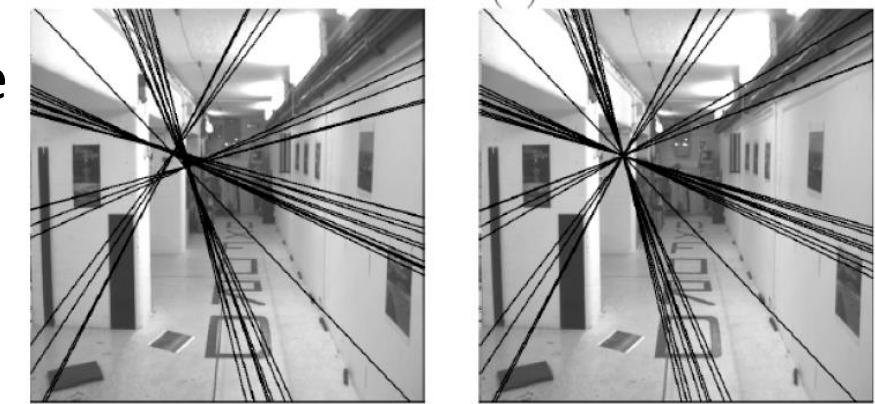
- Relates matching image points of different views
 - No known 3D location
 - No known camera intrinsic and extrinsic parameters

Review of Epipolar Geometry

- Fundamental matrix
 - 3 by 3
 - homogeneous (has scale ambiguity)
 - $\text{rank}(F) = 2$
 - The potential matching point is located on a line
 - 7 degrees of freedom

$$\mathbf{p}'^T F \mathbf{p} = 0 \quad F = K'^{-T} [\mathbf{t}_x] R K^{-1}$$

Fundamental matrix has rank 2 : $\det(F) = 0$.



Left: Uncorrected F – epipolar lines are not coincident.

Right: Epipolar lines from corrected F .

Review of Epipolar Geometry

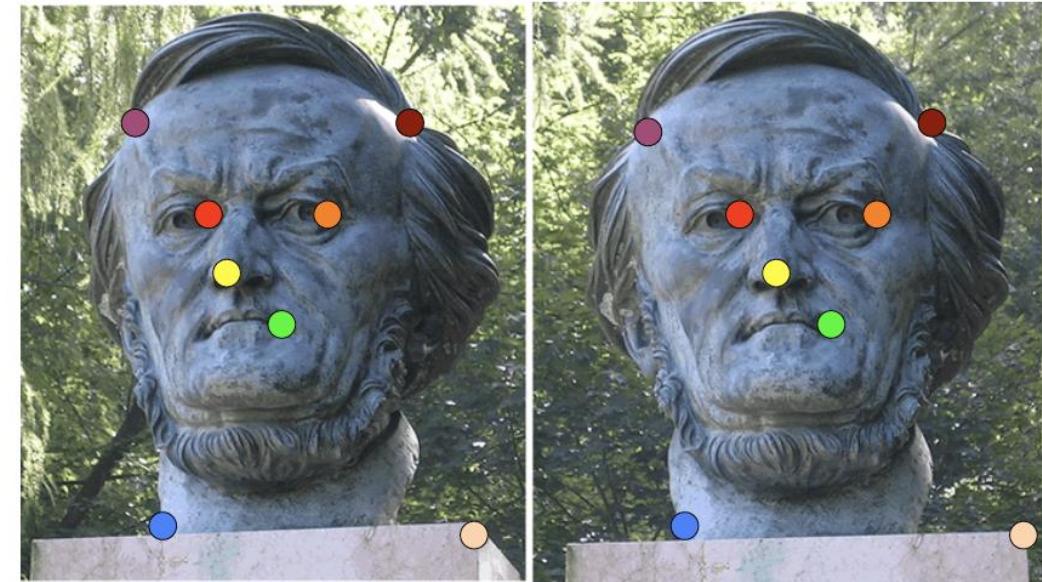
- Recover F from corresponding image points
 - 8 unknown parameters to recover (scale ambiguity)
 - Each point pair gives a single linear constraint

$$\begin{cases} \mathbf{p}_i = (u_i, v_i, 1) \\ \mathbf{p}'_i = (u'_i, v'_i, 1) \end{cases}$$

$$\mathbf{p}'^T F \mathbf{p} = 0$$

$$\begin{bmatrix} u_i u'_i & v_i u'_i & u'_i & u_i v'_i & v_i v'_i & v'_i & u_i & v_i & 1 \end{bmatrix}$$

$$\begin{bmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{bmatrix} = 0$$



Review of Epipolar Geometry

- Recover F from corresponding image points
 - 8 unknown parameters to recover (scale ambiguity)
 - Each point pair gives a single linear constraint
 - 7-point algorithm does exist but less popular
 - ~~8-point algorithm (≥ 8 pairs)~~ → Normalized 8-point algorithm

$$\begin{bmatrix}
 u_1u'_1 & v_1u'_1 & u'_1 & u_1v'_1 & v_1v'_1 & v'_1 & u_1 & v_1 & 1 \\
 u_2u'_2 & v_2u'_2 & u'_2 & u_2v'_2 & v_2v'_2 & v'_2 & u_2 & v_2 & 1 \\
 u_3u'_3 & v_3u'_3 & u'_3 & u_3v'_3 & v_3v'_3 & v'_3 & u_3 & v_3 & 1 \\
 u_4u'_4 & v_4u'_4 & u'_4 & u_4v'_4 & v_4v'_4 & v'_4 & u_4 & v_4 & 1 \\
 u_5u'_5 & v_5u'_5 & u'_5 & u_5v'_5 & v_5v'_5 & v'_5 & u_5 & v_5 & 1 \\
 u_6u'_6 & v_6u'_6 & u'_6 & u_6v'_6 & v_6v'_6 & v'_6 & u_6 & v_6 & 1 \\
 u_7u'_7 & v_7u'_7 & u'_7 & u_7v'_7 & v_7v'_7 & v'_7 & u_7 & v_7 & 1 \\
 u_8u'_8 & v_8u'_8 & u'_8 & u_8v'_8 & v_8v'_8 & v'_8 & u_8 & v_8 & 1
 \end{bmatrix}
 \begin{bmatrix}
 F_{11} \\
 F_{12} \\
 F_{13} \\
 F_{21} \\
 F_{22} \\
 F_{23} \\
 F_{31} \\
 F_{32} \\
 F_{33}
 \end{bmatrix} = 0$$

$$W\mathbf{f} = 0$$

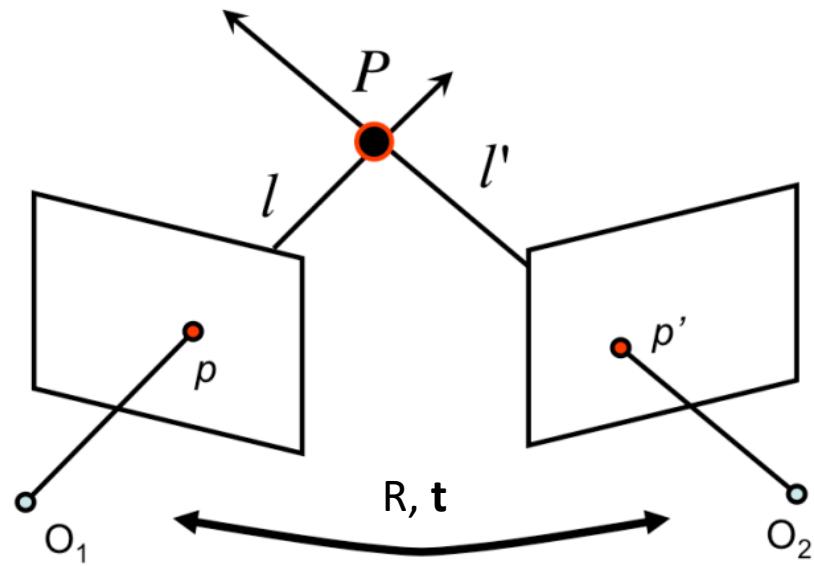
Today's Agenda

- Review of Epipolar Geometry
- Reconstruct 3D Geometry
 - 3D from 2 views
 - Extracting corresponding image points (next lecture)
 - Recover camera motion
 - Triangulation
 - 3D from more views
 - Structure from motion

3D from 2 Views

- The general idea

Recover 3D coordinates from corresponding image points
(assume camera parameters are known)

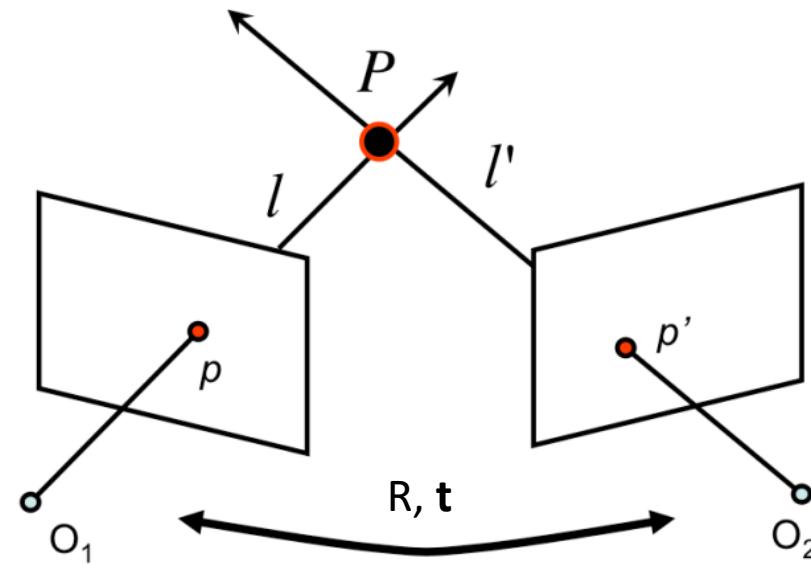


3D from 2 Views

- What information is needed?
 - Corresponding image points (next lecture) ✓
 - Image matching techniques
 - Intrinsic camera parameters ✓
 - Camera calibration
 - Extrinsic camera parameters?
 - Recover from image points

$$p'^T F p = 0,$$

$$F = K'^{-T} [\mathbf{t}_x] R K^{-1}$$



Today's Agenda

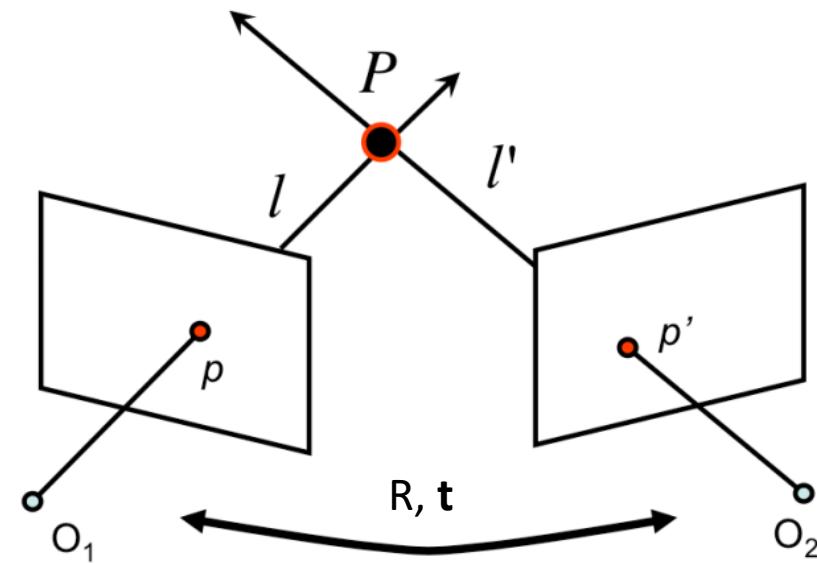
- Review of Epipolar Geometry
- Reconstruct 3D Geometry
 - 3D from 2 views
 - Extracting corresponding image points (next lecture)
 - Recover camera motion A stylized hand icon with a green outline, pointing to the right.
 - Triangulation
 - 3D from more views
 - Structure from motion

Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
 - Known intrinsic parameters
 - From calibration

$$F = K'^{-T} [\mathbf{t}_\times] R K^{-1}$$

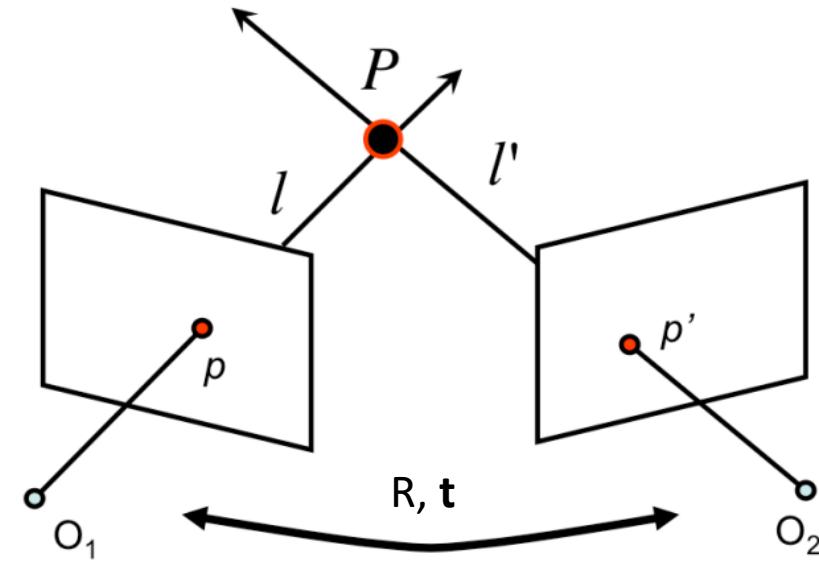
$$E = [\mathbf{t}_\times] R = K'^T F K$$



Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Relative pose from essential matrix

$$E = [\mathbf{t}_x]R$$



Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Relative pose from essential matrix

- SVD of E

$$E = UDV^T$$

- determinant(R) > 0

- Two potential values

$$W = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R = (\det UWV^T)UWV^T \text{ or } (\det UW^TV^T)UW^TV^T$$

Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Relative pose from essential matrix

- SVD of E

$$E = UDV^T$$

- determinant(R) > 0

- Two potential values

- \mathbf{t} up to a sign

- Two potential values

- \mathbf{u}_3 : last column of U

- Corresponds to the smallest singular value

$$W = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

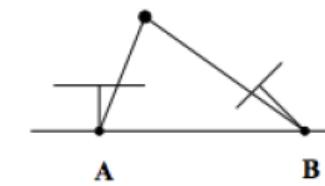
$$R = (\det UWV^T)UWV^T \text{ or } (\det UW^TV^T)UW^TV^T$$

$$\mathbf{t} = \pm U \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \pm \mathbf{u}_3$$

Relative Pose from Fundamental Matrix

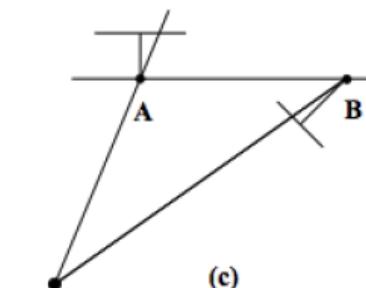
- Essential matrix from fundamental matrix
- Relative pose from essential matrix
 - R : two potential values
 - t : two potential values

Which is the correct configuration

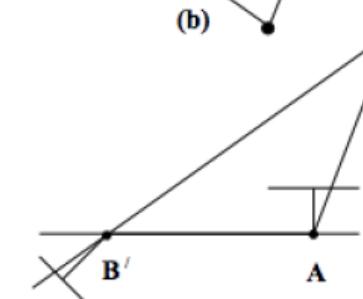


(a)

(b)



(c)



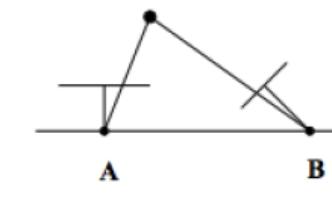
(d)

B and B' rotate cameras in opposite directions

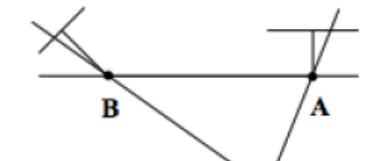
Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
 - R : two potential values
 - t : two potential values
 - 3D points must be in front of both cameras

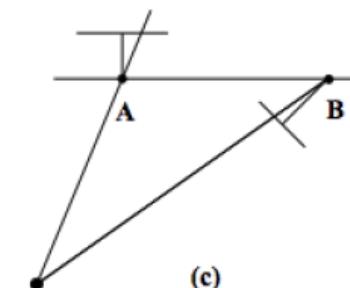
But 3D points are not known yet?



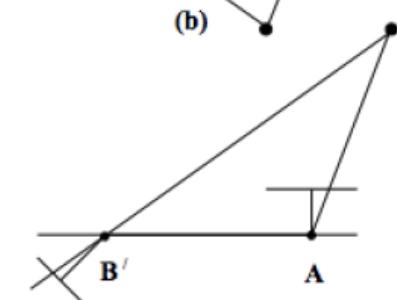
(a)



(b)



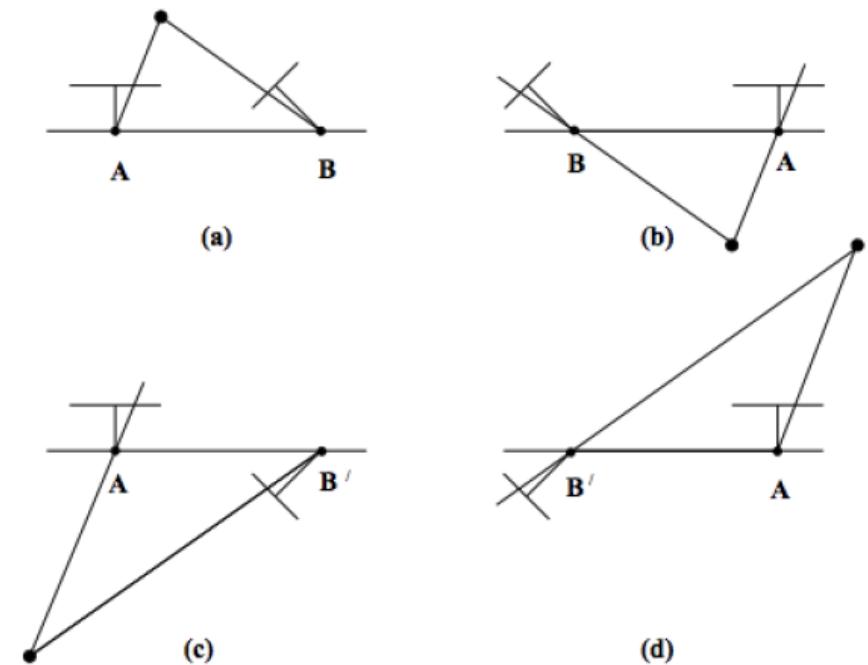
(c)



(d)

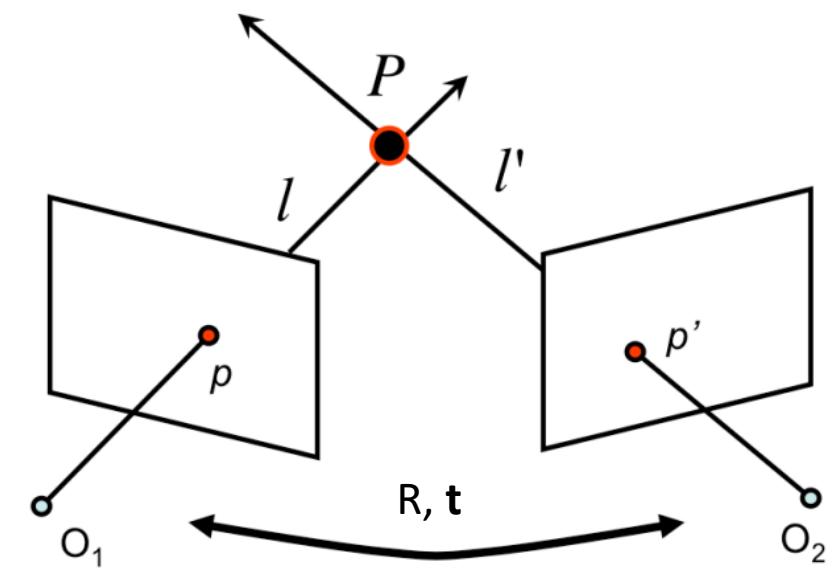
Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
 - R : two potential values
 - t : two potential values
 - 3D points must be in front of both cameras
 - Reconstruct 3D points
 - using all potential pairs of R and t
 - Count the number of points in front of cameras
 - The pair giving max number is correct



Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
 - R : two potential values
 - t : two potential values
 - 3D points must be in front of both cameras
 - First camera
 - $P.z > 0$?
 - Second camera
 - P in 2nd camera's coordinate system: $Q = R * P + t$
 - $Q.z > 0$?

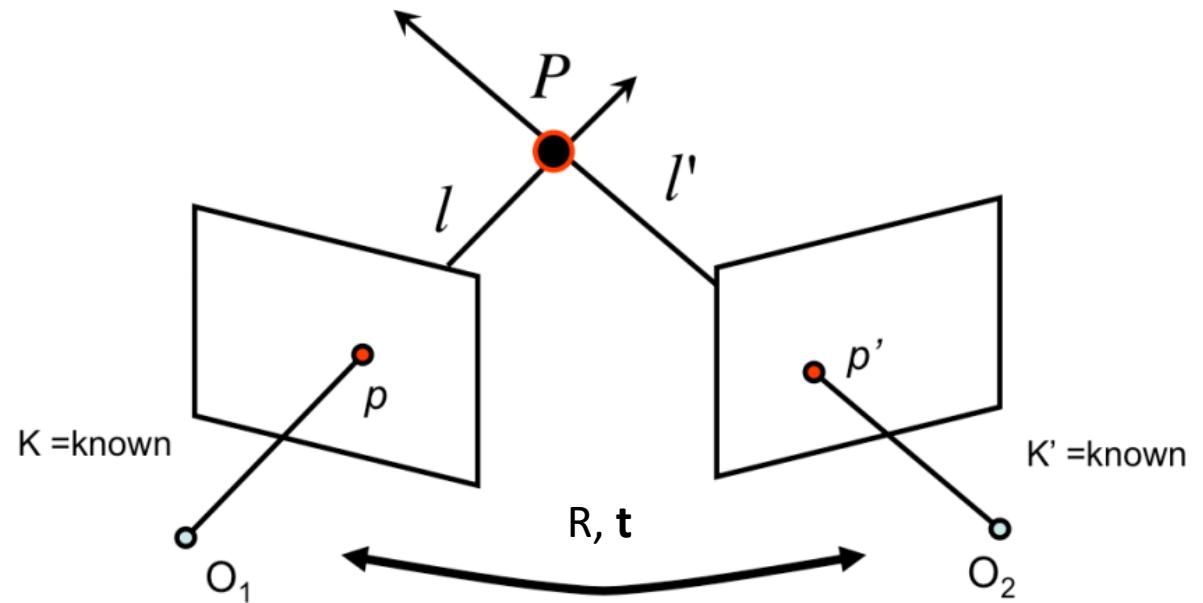


Today's Agenda

- Review of Epipolar Geometry
- Reconstruct 3D Geometry
 - 3D from 2 views
 - Extracting corresponding image points (next lecture)
 - Recover camera motion
 - Triangulation
 - 3D from more views
 - Structure from motion

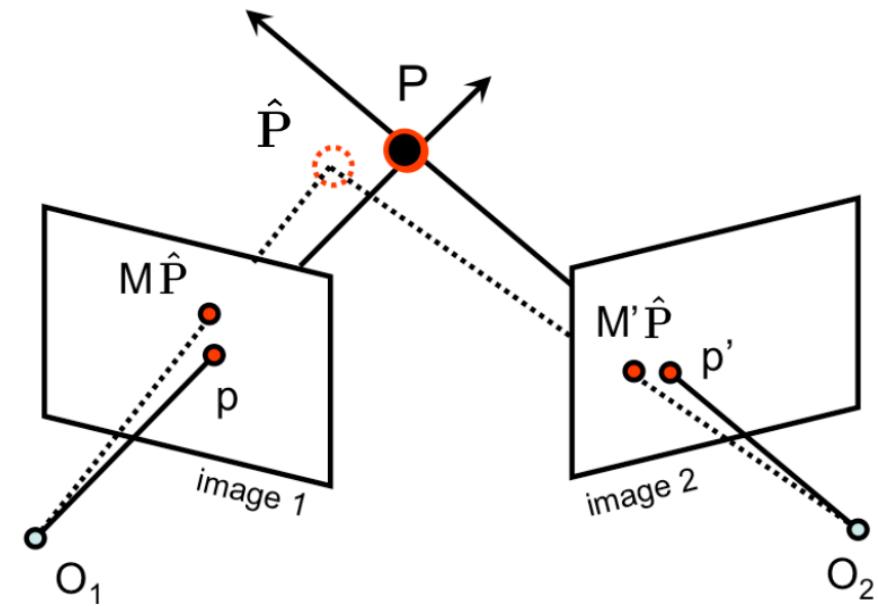
Triangulation

- 3D point from its projection into two views
 - Compute two lines of sight from K , R , and t
 - In theory, P is the \cap of the two lines of sight



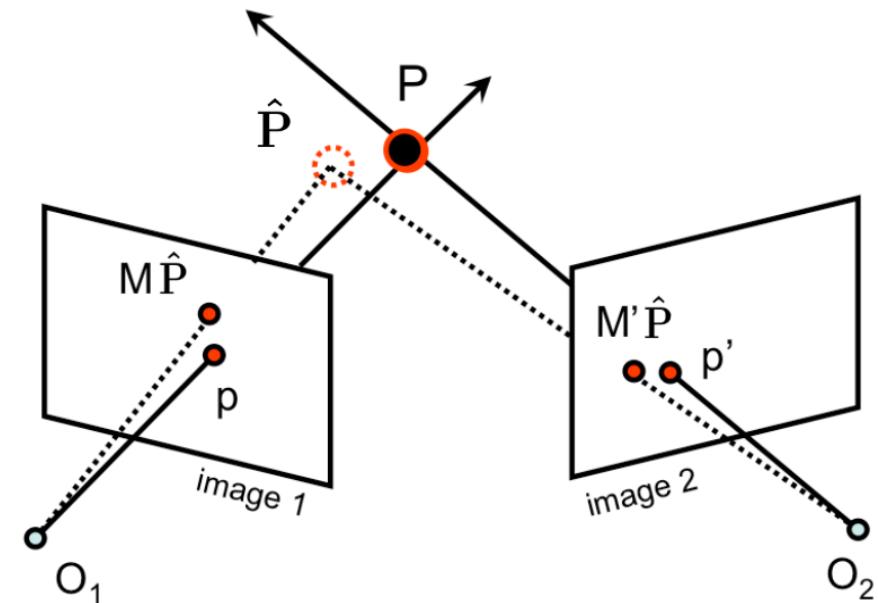
Triangulation

- 3D point from its projection into two views
 - Compute two lines of sight from K , R , and t
 - In theory, P is the \cap of the two lines of sight
 - Straightforward and mathematically sound
 - Does not work well
 - Noise in observation
 - Discrete pixel representation
 - Inaccuracy in K , R , t



Triangulation

- 3D point from its projection into two views
 - Compute two lines of sight from K , R , and t
 - In theory, P is the \cap of the two lines of sight
 - Straightforward and mathematically sound
 - Does not work well
 - Noise in observation
 - Discrete pixel representation
 - Inaccuracy in K , R , t
 - Two approaches for triangulation
 - A linear method
 - A non-linear method



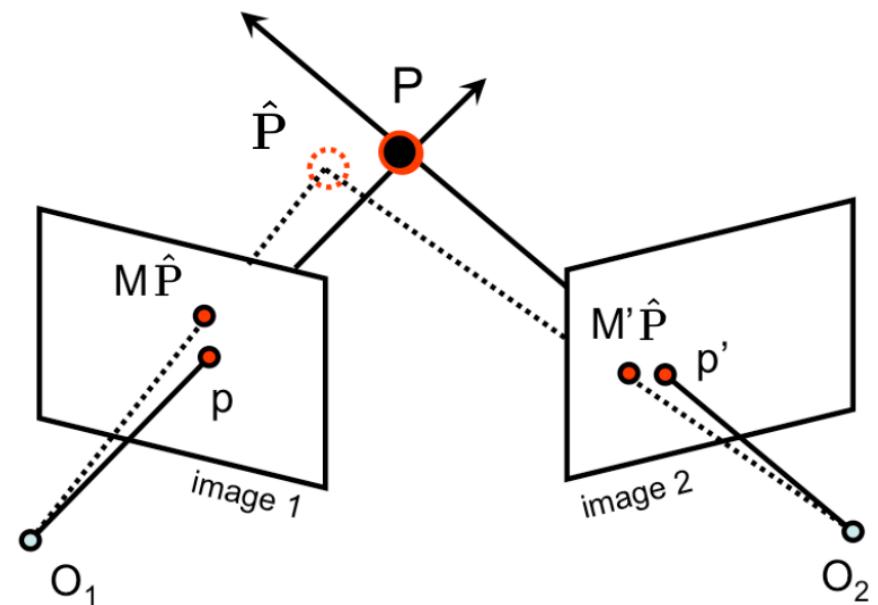
A Linear Method for Triangulation

Two image points

$$\mathbf{p} = M\mathbf{P} = (x, y, 1) \text{ and } \mathbf{p}' = M'\mathbf{P} = (x', y', 1)$$

By the definition of the cross product

$$\mathbf{p} \times (M\mathbf{P}) = 0$$



A Linear Method for Triangulation

Two image points

$$\mathbf{p} = M\mathbf{P} = (x, y, 1) \text{ and } \mathbf{p}' = M'\mathbf{P} = (x', y', 1)$$

By the definition of the cross product

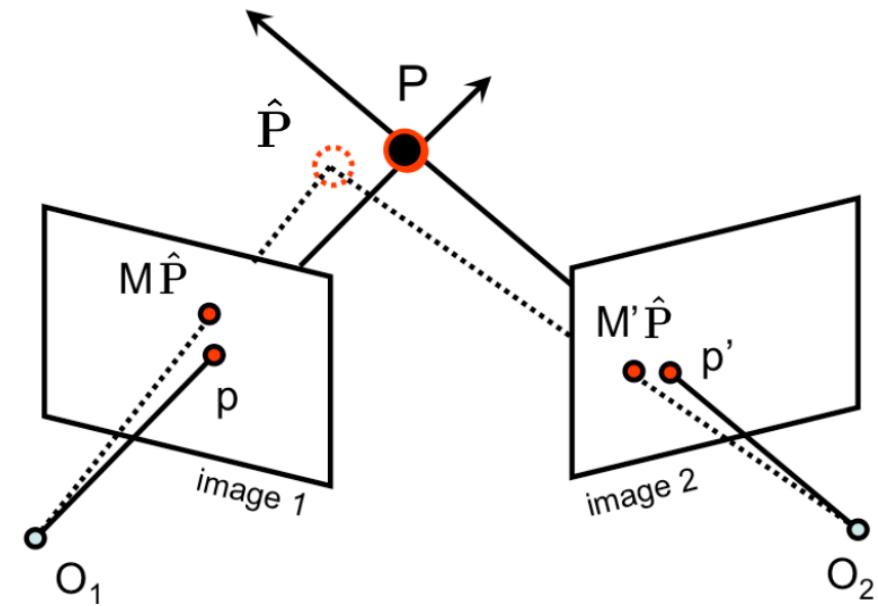
$$\mathbf{p} \times (M\mathbf{P}) = 0$$

$$x(\mathbf{m}_3^T \mathbf{P}) - (\mathbf{m}_1^T \mathbf{P}) = 0$$

$$y(\mathbf{m}_3^T \mathbf{P}) - (\mathbf{m}_2^T \mathbf{P}) = 0$$

$$x(\mathbf{m}_2^T \mathbf{P}) - y(\mathbf{m}_1^T \mathbf{P}) = 0$$

Solve for \mathbf{P} ?



A Linear Method for Triangulation

Two image points

$$\mathbf{p} = M\mathbf{P} = (x, y, 1) \text{ and } \mathbf{p}' = M'\mathbf{P} = (x', y', 1)$$

By the definition of the cross product

$$\mathbf{p} \times (M\mathbf{P}) = 0$$

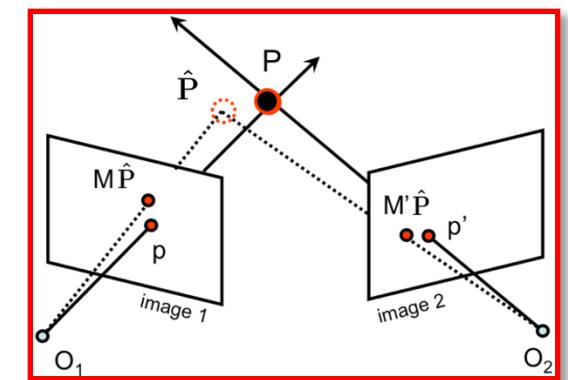
Similar constraints from \mathbf{p}' and M'

$$x(\mathbf{m}_3^T \mathbf{P}) - (\mathbf{m}_1^T \mathbf{P}) = 0$$

$$y(\mathbf{m}_3^T \mathbf{P}) - (\mathbf{m}_2^T \mathbf{P}) = 0$$

$$x(\mathbf{m}_2^T \mathbf{P}) - y(\mathbf{m}_1^T \mathbf{P}) = 0$$

$$A = \begin{bmatrix} x\mathbf{m}_3^T - \mathbf{m}_1^T \\ y\mathbf{m}_3^T - \mathbf{m}_2^T \\ x'\mathbf{m}_3'^T - \mathbf{m}_1'^T \\ y'\mathbf{m}_3'^T - \mathbf{m}_2'^T \end{bmatrix}$$



$$AP = 0$$

A Linear Method for Triangulation

- Advantages
 - Easy to solve and very efficient
 - Can handle multiple views
 - Used as initialization to advanced methods (e.g., non-linear methods and SfM)

$$AP = 0$$

$$A = \begin{bmatrix} x\mathbf{m}_3^T - \mathbf{m}_1^T \\ y\mathbf{m}_3^T - \mathbf{m}_2^T \\ x'\mathbf{m}_3'^T - \mathbf{m}_1'^T \\ y'\mathbf{m}_3'^T - \mathbf{m}_2'^T \end{bmatrix}$$

The Non-linear Method for Triangulation

- Formulation

$$\min_{\hat{\mathbf{P}}} \|M\hat{\mathbf{P}} - \mathbf{p}\|^2 + \|M'\hat{\mathbf{P}} - \mathbf{p}'\|^2$$

Reprojection error

- Solving it

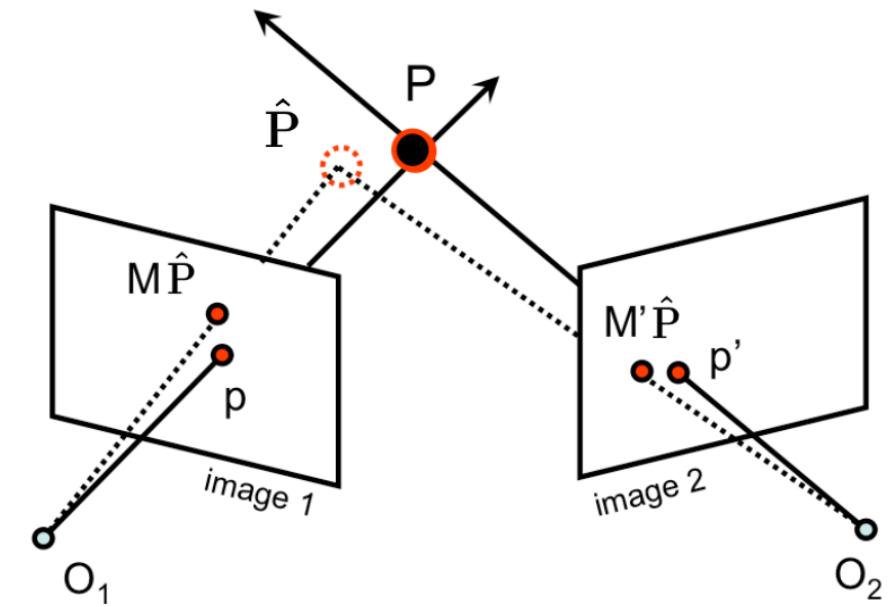
- Methods

- Levenberg-Marquardt

- Gauss-Newton's method

- Requires good initialization

- 3D coordinates from the linear method

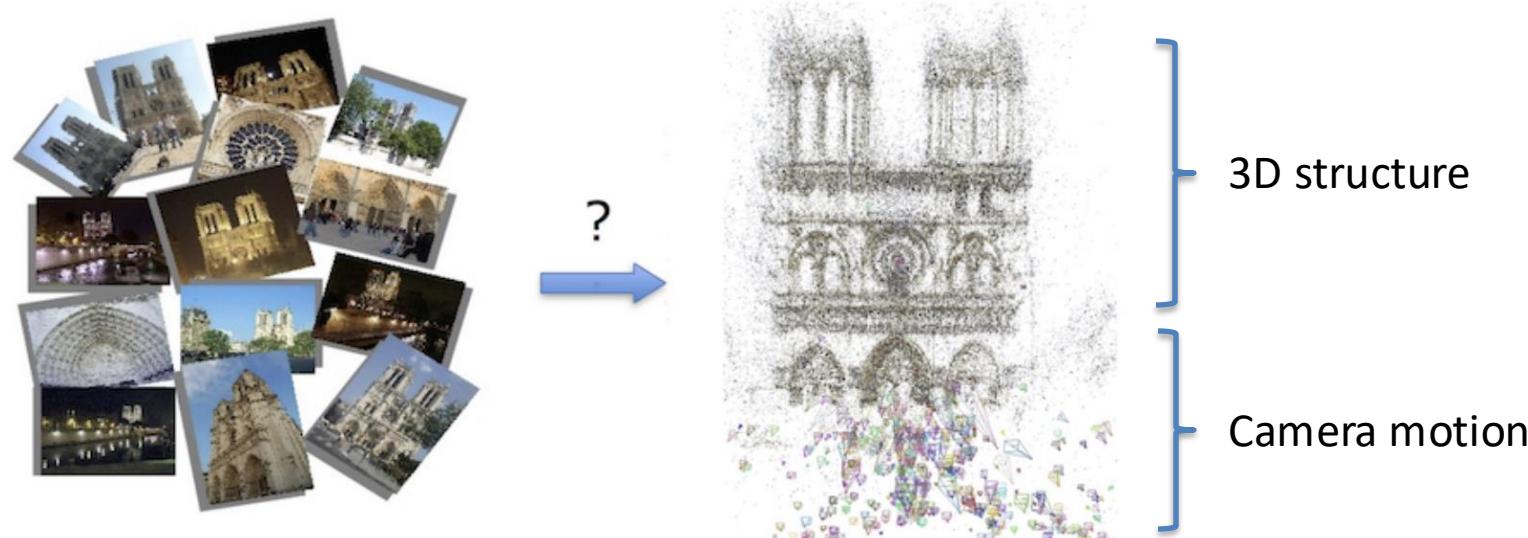


Today's Agenda

- Review of Epipolar Geometry
- Reconstruct 3D Geometry
 - 3D from 2 views
 - Extracting corresponding image points (next lecture)
 - Recover camera motion
 - Triangulation
 - 3D from more views
 - Structure from motion

Structure from Motion

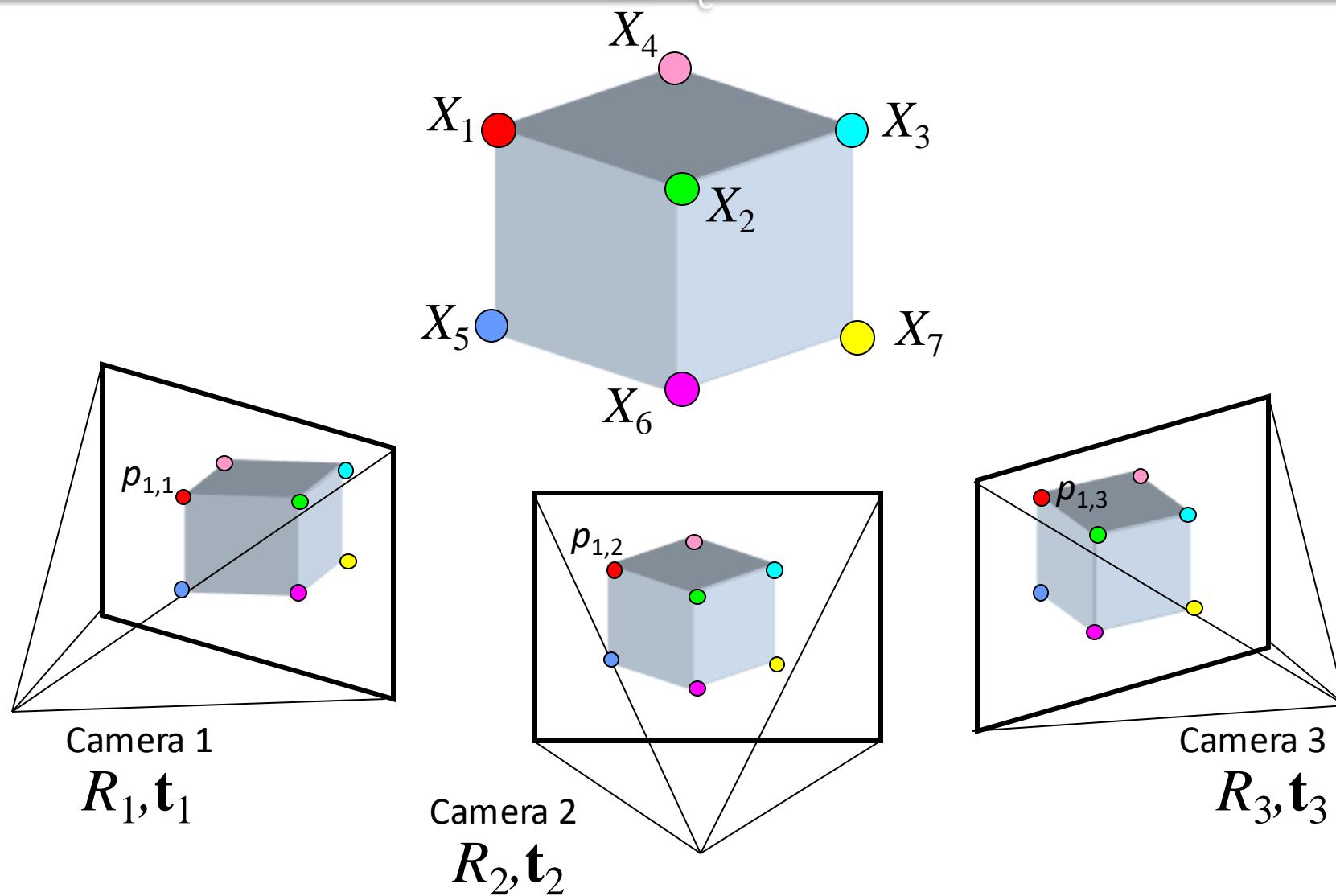
- Structure?
 - 3D geometry of the scene/object
- Motion?
 - Camera locations and orientations



Structure from Motion

- Structure
 - 3D geometry of the scene/object
- Motion
 - Camera locations and orientations
- Structure from Motion
 - Compute the geometry from moving cameras
 - Simultaneously recovering structure and motion
 - Extension of 2-view reconstruction to multiple views

Structure from Motion



Bundle Adjustment

- Minimize total re-projection error:

$$g(\mathbf{X}, \mathbf{R}, \mathbf{T}) = \sum_{i=1}^m \sum_{j=1}^n w_{ij} \cdot \left\| \underbrace{\mathbf{P}(\mathbf{x}_i, \mathbf{R}_j, \mathbf{t}_j)}_{\substack{\text{predicted} \\ \text{image points}}} - \underbrace{\begin{bmatrix} u_{i,j} \\ v_{i,j} \end{bmatrix}}_{\substack{\text{observed} \\ \text{image points}}} \right\|^2$$

\downarrow
indicator variable:
 is point i visible in image j ?

How is it different from the non-linear method for triangulation?

Bundle Adjustment

- Minimize total re-projection error:

$$g(\mathbf{X}, \mathbf{R}, \mathbf{T}) = \sum_{i=1}^m \sum_{j=1}^n w_{ij} \cdot \left\| \mathbf{P}(\mathbf{x}_i, \mathbf{R}_j, \mathbf{t}_j) - \begin{bmatrix} u_{i,j} \\ v_{i,j} \end{bmatrix} \right\|^2$$

- Optimized using non-linear least squares
 - e.g., Levenberg-Marquardt

Bundle Adjustment

- Minimize total re-projection error:

$$g(\mathbf{X}, \mathbf{R}, \mathbf{T}) = \sum_{i=1}^m \sum_{j=1}^n w_{ij} \cdot \left\| \mathbf{P}(\mathbf{x}_i, \mathbf{R}_j, \mathbf{t}_j) - \begin{bmatrix} u_{i,j} \\ v_{i,j} \end{bmatrix} \right\|^2$$

- Optimized using non-linear least squares
- Initialization
 - From chained 2-view reconstruction
 - Relative motion can be estimated from the corresponding image points
 - 3D points can be estimated from the relative motion using triangulation
 - Global optimization techniques allow poses and 3D structures to be initialized arbitrarily.

Bundle Adjustment

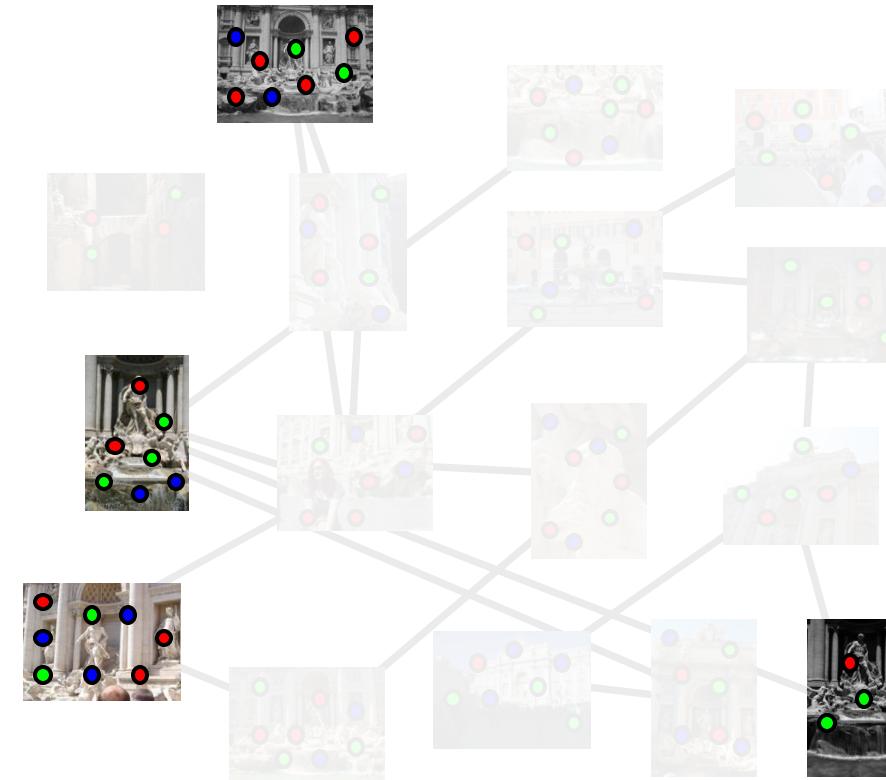
- What are the variables?
 - Camera extrinsic parameters (and intrinsic parameters)
 - Coordinates of the 3D points
- How many variables per camera?
- How many variables per point?

$$g(\mathbf{X}, \mathbf{R}, \mathbf{T}) = \sum_{i=1}^m \sum_{j=1}^n w_{ij} \cdot \left\| \mathbf{P}(\mathbf{x}_i, \mathbf{R}_j, \mathbf{t}_j) - \begin{bmatrix} u_{i,j} \\ v_{i,j} \end{bmatrix} \right\|^2$$

Example: 100 input photos, 100,000 3D points

Very large optimization problem

Incremental SfM



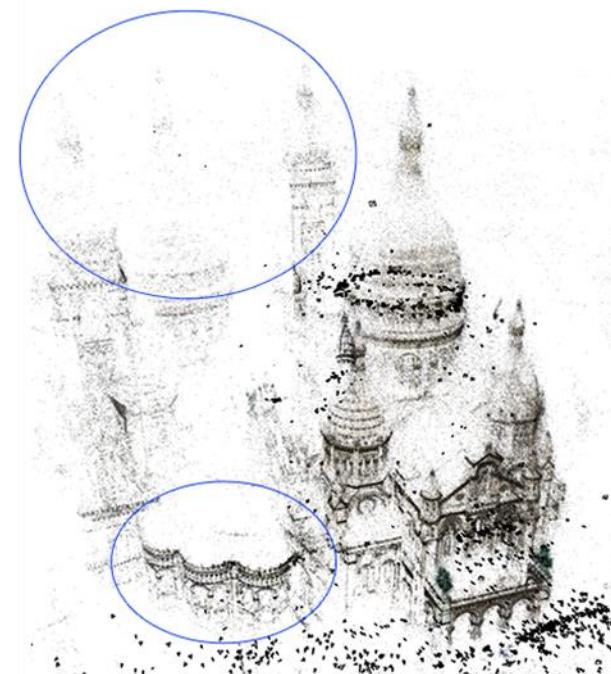
Structure from Motion

Failure Cases

- Repetitive structures

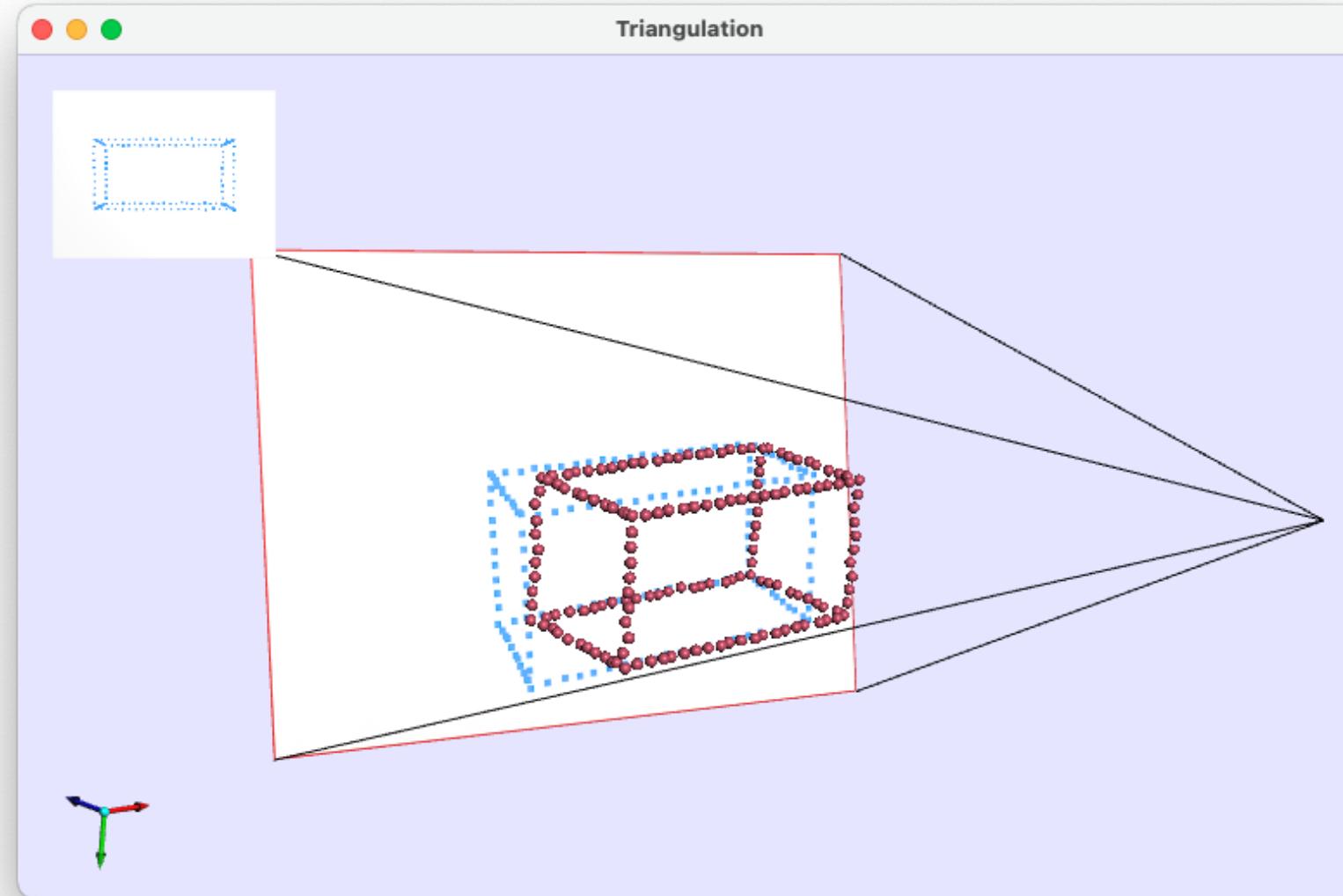
Ground truth

Google Earth
reference



Broken model

A2: Triangulation



Next Lecture

- Image matching
 - Obtaining corresponding image points

