

Lecture **Epipolar Geometry**

Liangliang Nan

Today's Agenda

- Review Camera calibration
- Epipolar geometry

Review of Camera Calibration

- Camera calibration
 - Recovering K
 - Recovering R and t

$$\begin{aligned} \mathbf{p} &= M\mathbf{P} \\ &= \boxed{K} \boxed{[R \quad t]} \mathbf{P} \end{aligned}$$

Internal (intrinsic) parameters

External (extrinsic) parameters

Review of Camera Calibration

- How many parameters to recover?
 - 5 intrinsic parameters
 - 2 for focal length
 - 2 for offset
 - 1 for skewness
 - 6 extrinsic parameters
 - 3 for rotation
 - 3 for translation

$$\begin{aligned} \mathbf{p} &= M\mathbf{P} \\ &= \boxed{K} \boxed{[R \quad \mathbf{t}]} \mathbf{P} \end{aligned}$$

$$K = \begin{bmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix}, \quad R = \begin{bmatrix} \mathbf{r}_1^T \\ \mathbf{r}_2^T \\ \mathbf{r}_3^T \end{bmatrix}, \quad \mathbf{t} = \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix}$$

Review of Camera Calibration

- Parameters to recover: 11
- Corresponding 3D-2D point pairs
 - Each 3D-2D point pair -> 2 constraints
 - 11 unknown -> 6 point correspondence
 - Use more to handle noisy data

$$\mathbf{p}_i = \begin{bmatrix} u_i \\ v_i \end{bmatrix} = M \mathbf{P}_i = \begin{bmatrix} \frac{\mathbf{P}_i^T \mathbf{m}_1}{\mathbf{P}_i^T \mathbf{m}_3} \\ \frac{\mathbf{P}_i^T \mathbf{m}_2}{\mathbf{P}_i^T \mathbf{m}_3} \end{bmatrix} \quad \xrightarrow{\hspace{1cm}} \quad \begin{aligned} \mathbf{P}_i^T \mathbf{m}_1 - u_i (\mathbf{P}_i^T \mathbf{m}_3) &= 0 \\ \mathbf{P}_i^T \mathbf{m}_2 - v_i (\mathbf{P}_i^T \mathbf{m}_3) &= 0 \end{aligned}$$

Review of Camera Calibration

- Parameters to recover: 11
- Corresponding 3D-2D point pairs: ≥ 6
- How to solve it?
 - $\mathbf{m} = 0$ is always a trivial solution
 - If $\mathbf{m} \neq 0$ is a solution, then any $k * \mathbf{m}$ is also a solution

$$\begin{bmatrix} \mathbf{P}_1^T & 0^T & -u_1 \mathbf{P}_1^T \\ 0^T & \mathbf{P}_1^T & -v_1 \mathbf{P}_1^T \\ \vdots & & \\ \mathbf{P}_n^T & 0^T & -u_n \mathbf{P}_n^T \\ 0^T & \mathbf{P}_n^T & -v_n \mathbf{P}_n^T \end{bmatrix} \begin{bmatrix} \mathbf{m}_1^T \\ \mathbf{m}_2^T \\ \mathbf{m}_3^T \end{bmatrix} = P\mathbf{m} = 0$$

Review of Camera Calibration

- Parameters to recover: 11
- Corresponding 3D-2D point pairs: ≥ 6
- How to solve it?
 - $\mathbf{m} = 0$ is always a trivial solution
 - If $\mathbf{m} \neq 0$ is a solution, then any $k * \mathbf{m}$ is also a solution
 - Constrained optimization

$$\begin{bmatrix} \mathbf{P}_1^T & 0^T & -u_1 \mathbf{P}_1^T \\ 0^T & \mathbf{P}_1^T & -v_1 \mathbf{P}_1^T \\ \vdots & & \\ \mathbf{P}_n^T & 0^T & -u_n \mathbf{P}_n^T \\ 0^T & \mathbf{P}_n^T & -v_n \mathbf{P}_n^T \end{bmatrix} \begin{bmatrix} \mathbf{m}_1^T \\ \mathbf{m}_2^T \\ \mathbf{m}_3^T \end{bmatrix} = P\mathbf{m} = 0$$

minimize \mathbf{m} $\|P\mathbf{m}\|^2$
 subject to $\|\mathbf{m}\|^2 = 1$

Review of Camera Calibration

- Solved using SVD

$$P\mathbf{m} = 0$$

↓
SVD decomposition of P

$$\mathbf{U}_{2n \times 12} \mathbf{D}_{12 \times 12} \mathbf{V}^T_{12 \times 12}$$

Last column of \mathbf{V} gives \mathbf{m}

(Why? See page 593 of Hartley & Zisserman. Multiple view geometry in computer vision)

Review of Camera Calibration

Intrinsic parameters:

$$\rho = \pm \frac{1}{\|\mathbf{a}_3\|}$$

$$c_x = \rho^2 (\mathbf{a}_1 \cdot \mathbf{a}_3)$$

$$c_y = \rho^2 (\mathbf{a}_2 \cdot \mathbf{a}_3)$$

$$\cos \theta = -\frac{(\mathbf{a}_1 \times \mathbf{a}_3) \cdot (\mathbf{a}_2 \times \mathbf{a}_3)}{\|\mathbf{a}_1 \times \mathbf{a}_3\| \cdot \|\mathbf{a}_2 \times \mathbf{a}_3\|}$$

$$\alpha = \rho^2 \|\mathbf{a}_1 \times \mathbf{a}_3\| \sin \theta$$

$$\beta = \rho^2 \|\mathbf{a}_2 \times \mathbf{a}_3\| \sin \theta$$

Extrinsic parameters:

$$\mathbf{r}_1 = \frac{\mathbf{a}_2 \times \mathbf{a}_3}{\|\mathbf{a}_2 \times \mathbf{a}_3\|}$$

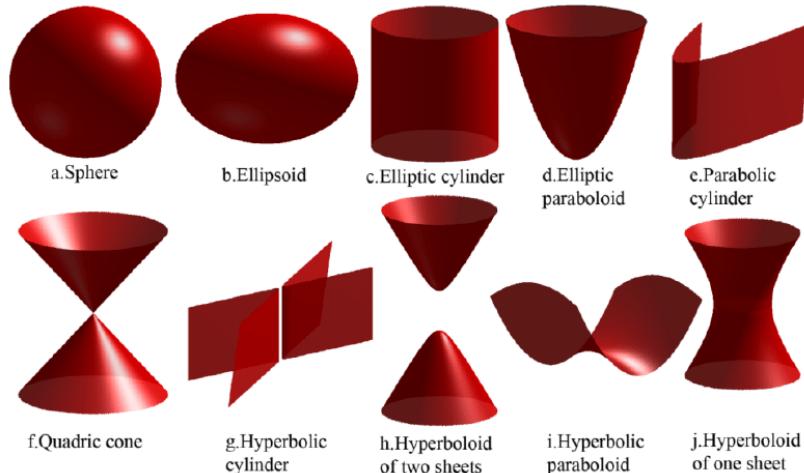
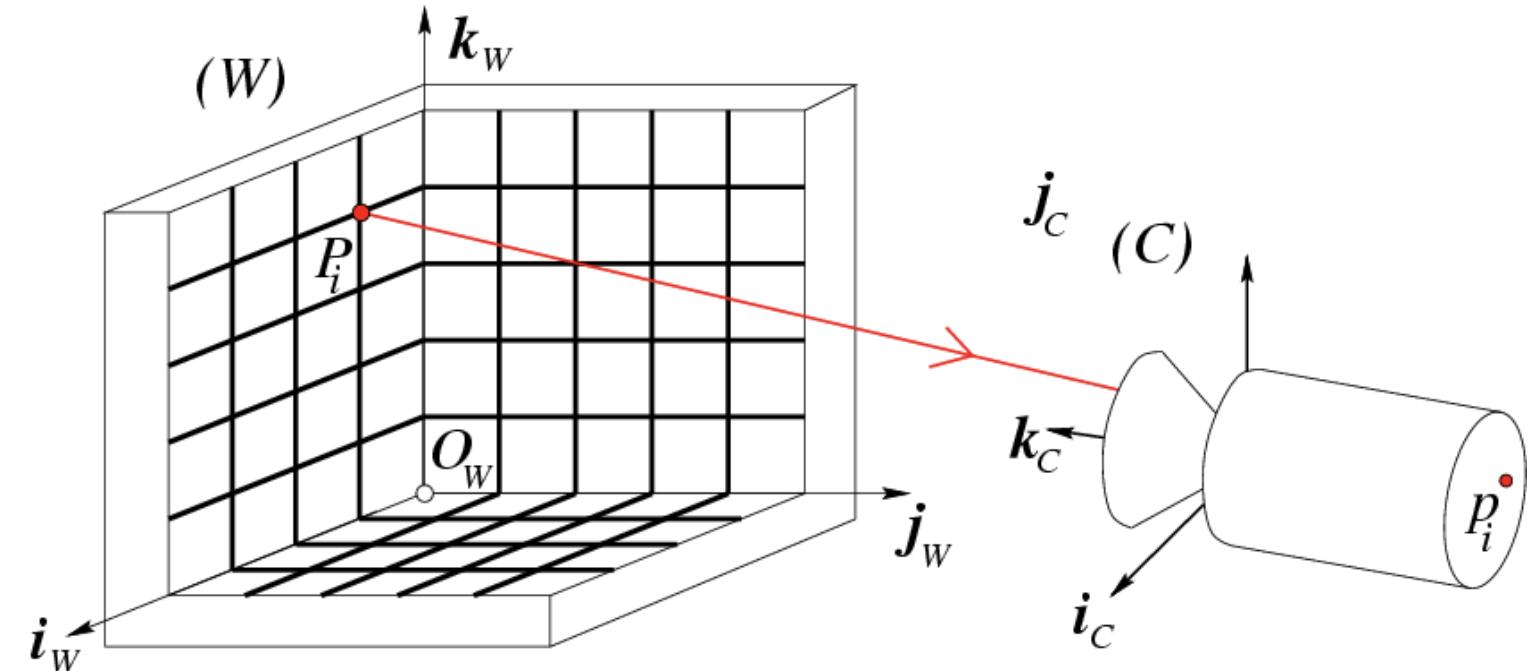
$$\mathbf{r}_3 = \rho \mathbf{a}_3$$

$$\mathbf{r}_2 = \mathbf{r}_3 \times \mathbf{r}_1$$

$$\mathbf{t} = \rho K^{-1} \mathbf{b}$$

Review of Camera Calibration

- Not always solvable
 - $\{P_i\}$ cannot lie on the same plane
 - $\{P_i\}$ cannot lie on the intersection curve of two quadric surfaces



Quiz

Which of the following will change the camera intrinsic matrix?

- (a) When zooming in.
- (b) When rotating the camera around its local origin.
- (c) When changing the resolution of the image.
- (d) When the camera is moved.

Quiz

Which of the following will change the camera intrinsic matrix?

- (a) When zooming in. $[f_x, f_y]$
- (b) When rotating the camera around its local origin. R
- (c) When changing the resolution of the image. $[c_x, c_y]$
- (d) When the camera is moved. t

$$K = \begin{bmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix}$$

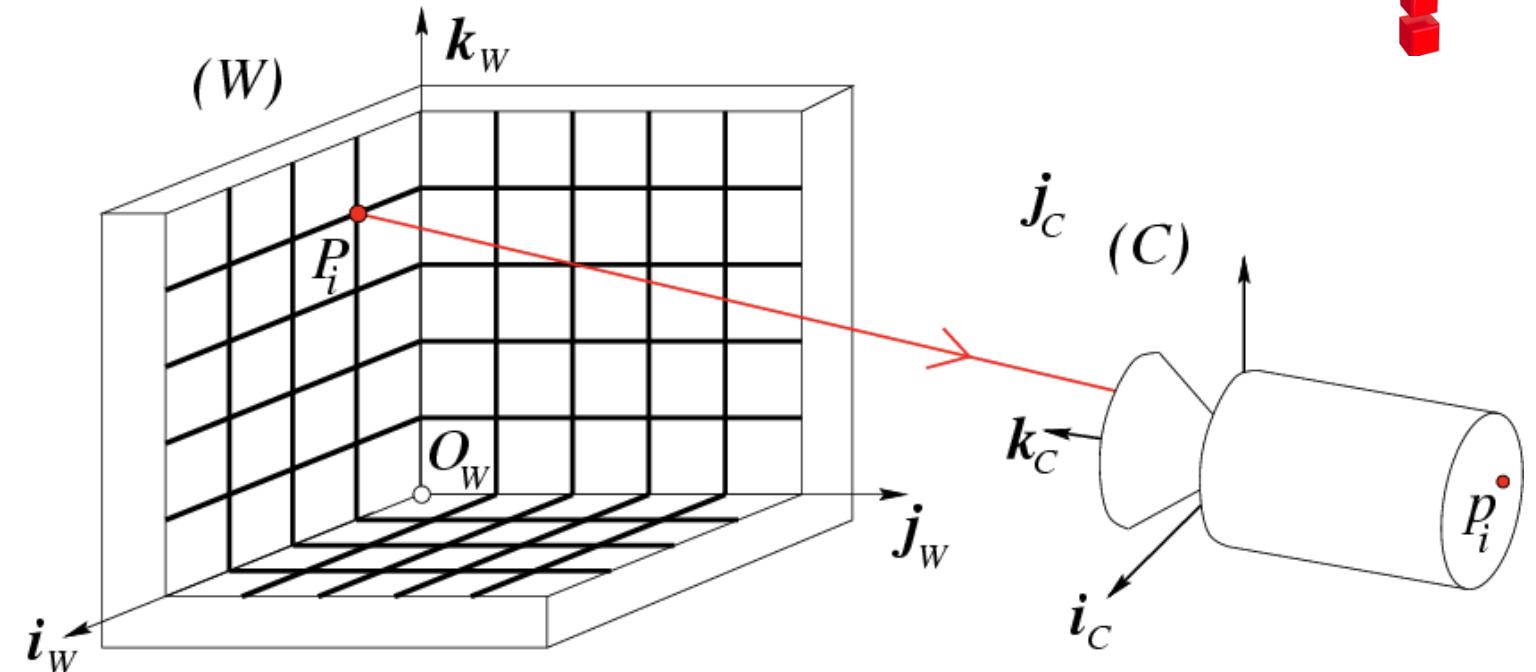
Today's Agenda

- Review Camera calibration
- Epipolar geometry

Recovering 3D Geometry

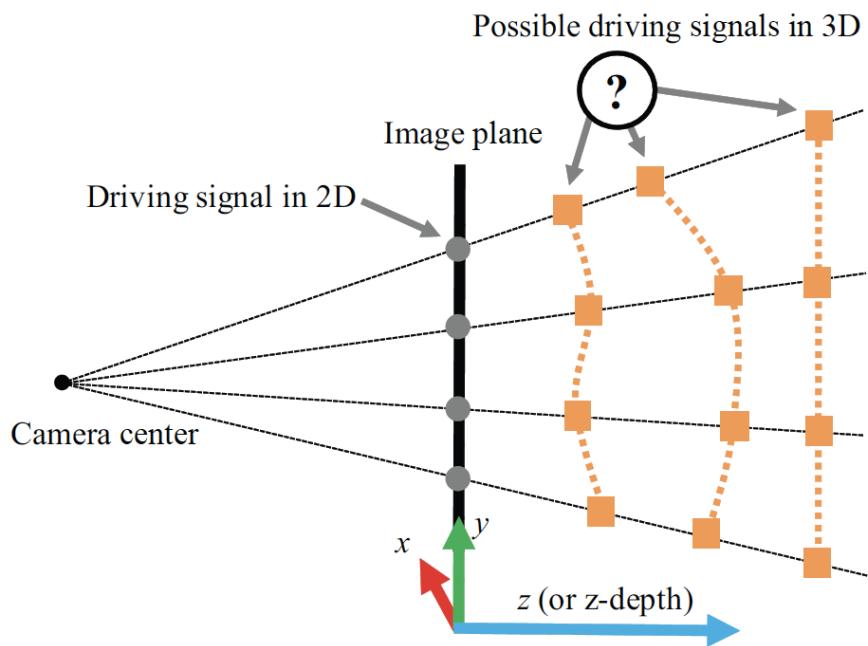
- Camera calibration from a single view
 - Camera intrinsic parameters
 - Camera orientation
 - Camera translation

Sufficient to recover some 3D geometry from a single image?



Recovering 3D Geometry

- Camera calibration from a single view
- Recover 3D geometry from a single view?
 - No: due to ambiguity of 3D \rightarrow 2D mapping

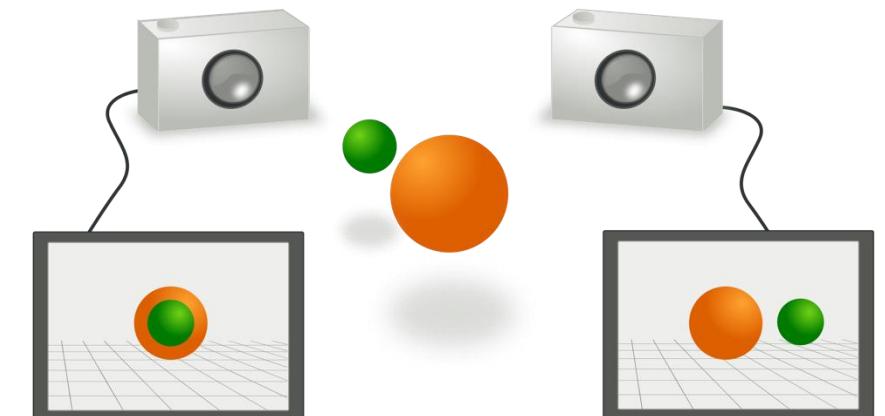


Core Problems in Recovering 3D Geometry

- **Image correspondences:** find the corresponding points in two or more images – **lecture, code, lab exercise**
- **Calibration:** given corresponding points in images, recover the relation of the cameras. **Epipolar geometry**
- **Recover scene geometry:** reconstruct coordinates of 3D points from corresponding image pixels – **next lecture**

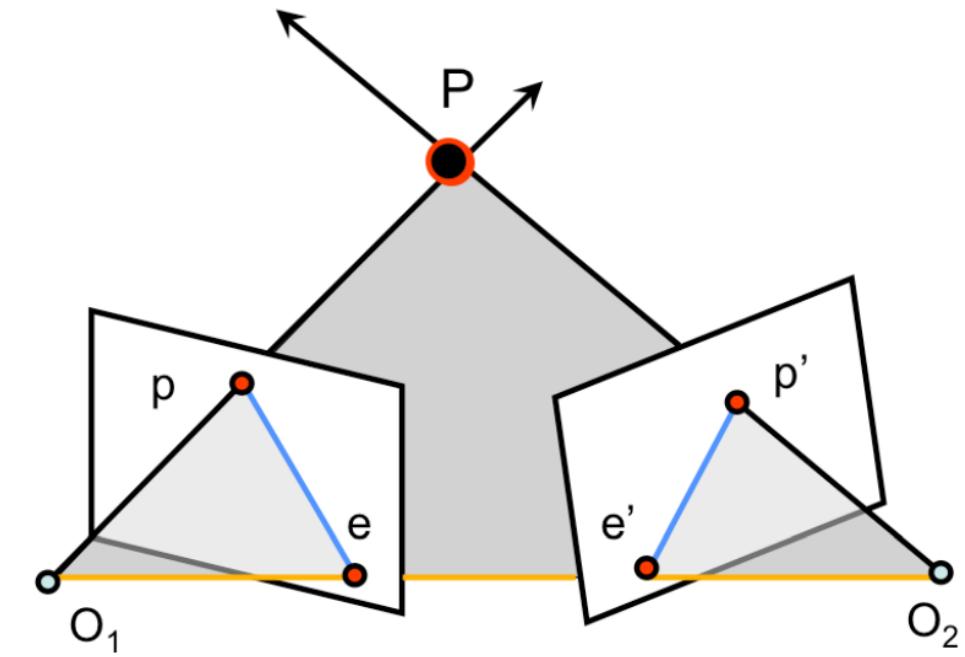
Epipolar Geometry

- Camera model
 - Relate 3D points and corresponding images points
- Epipolar geometry
 - Geometric relations between the corresponding image points
 - Used to recover the relation of the cameras



Epipolar Geometry

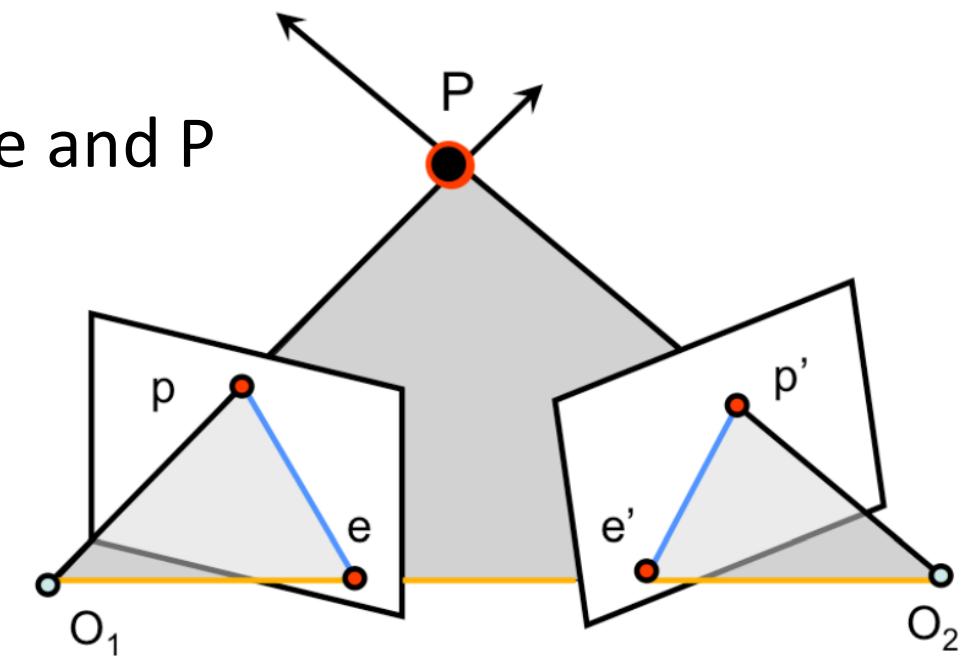
- Baseline
 - The line between the two camera centers O_1 and O_2



The general setup of epipolar geometry

Epipolar Geometry

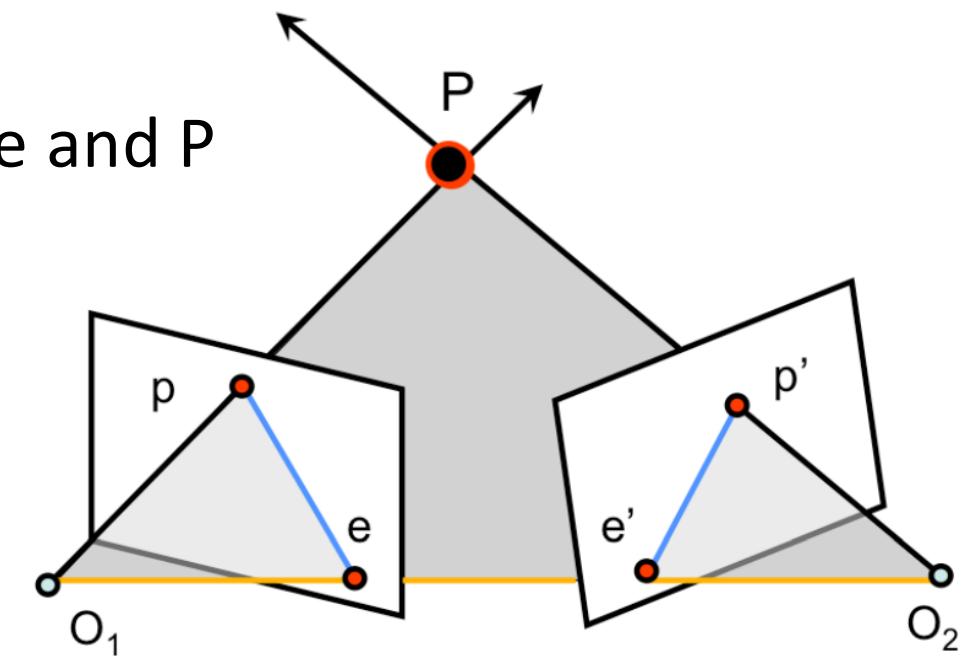
- Baseline
 - The line between the two camera centers O_1 and O_2
- Epipolar plane
 - Defined by P , O_1 , and O_2 ; contains baseline and P



The general setup of epipolar geometry

Epipolar Geometry

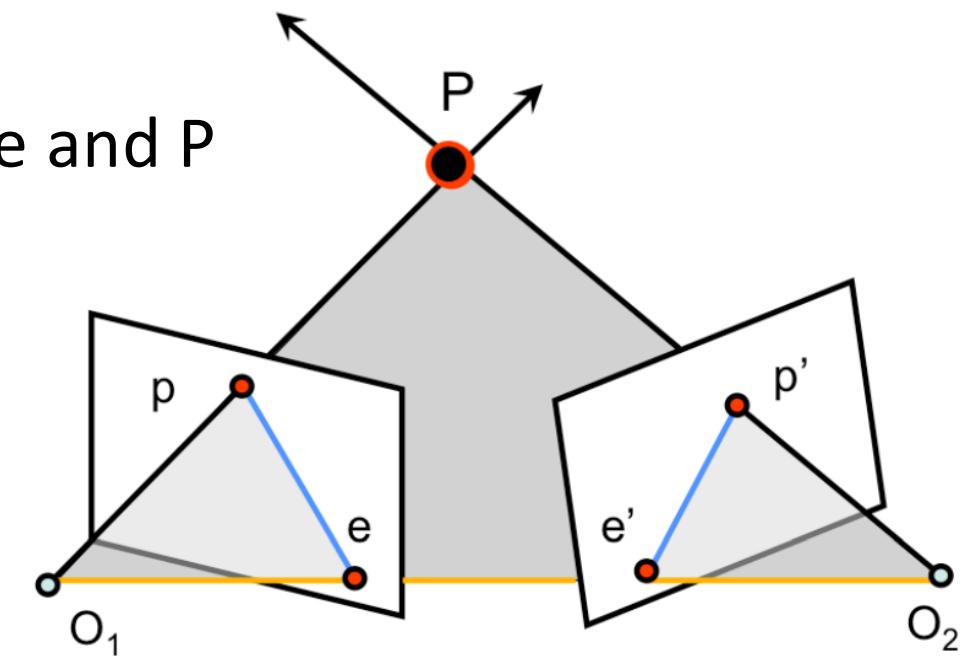
- Baseline
 - The line between the two camera centers O_1 and O_2
- Epipolar plane
 - Defined by P , O_1 , and O_2 ; contains baseline and P
- Epipoles
 - \cap of baseline and image plane: e and e'
 - Projection of the other camera center



The general setup of epipolar geometry

Epipolar Geometry

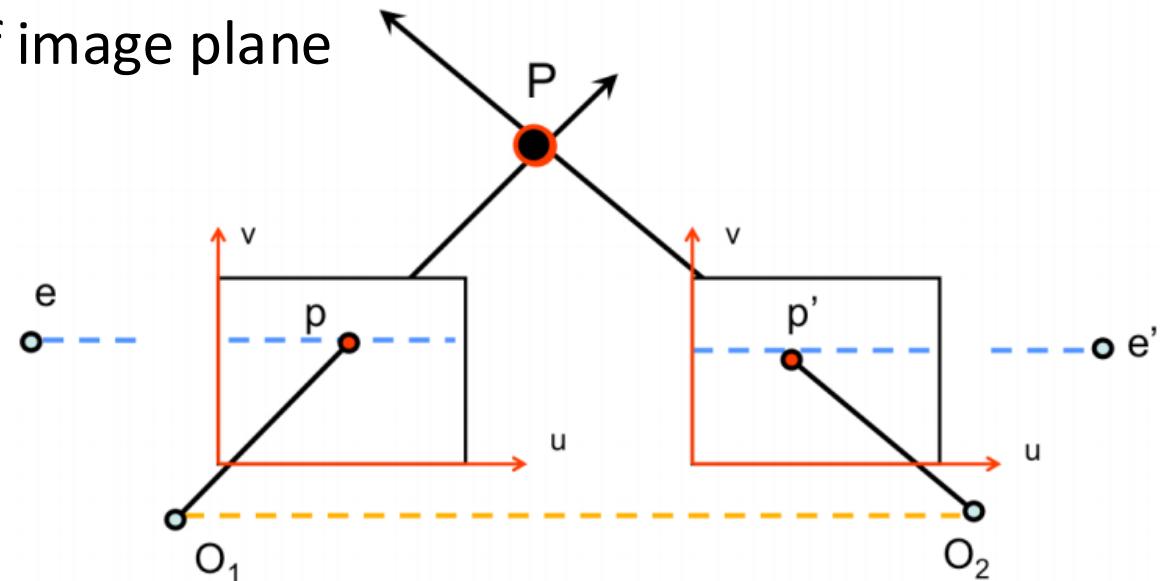
- Baseline
 - The line between the two camera centers O_1 and O_2
- Epipolar plane
 - Defined by P , O_1 , and O_2 ; contains baseline and P
- Epipoles
 - \cap of baseline and image plane
 - Projection of the other camera center
- Epipolar lines
 - \cap of epipolar plane with the image plane



The general setup of epipolar geometry

Epipolar Geometry

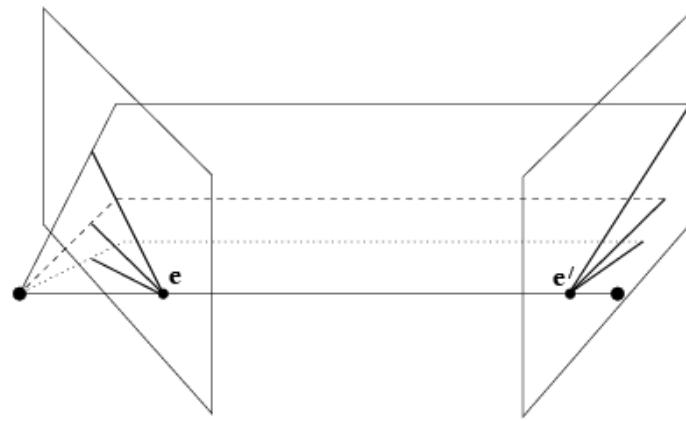
- Examples
 - Parallel image planes (**a special case**)
 - Baseline is parallel to the image plane
 - Baseline intersects the image plane at infinity \rightarrow epipoles are at infinity
 - Epipolar lines are parallel to U-axis of image plane



Epipolar Geometry

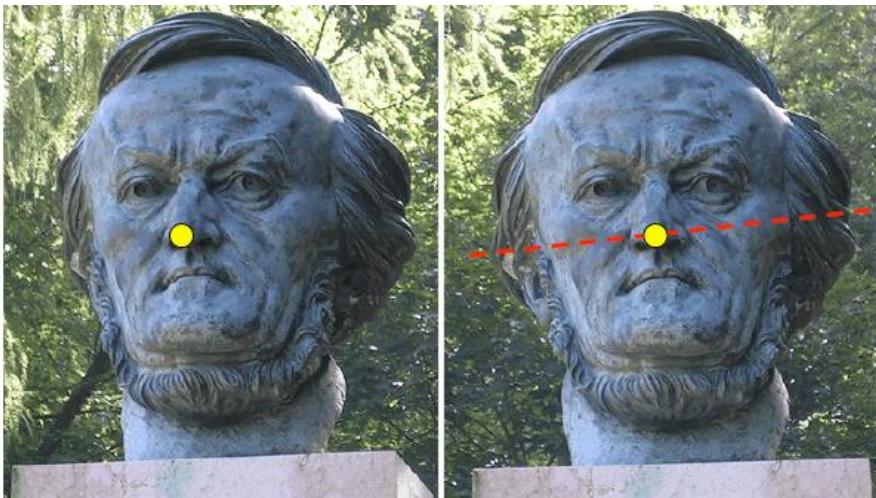
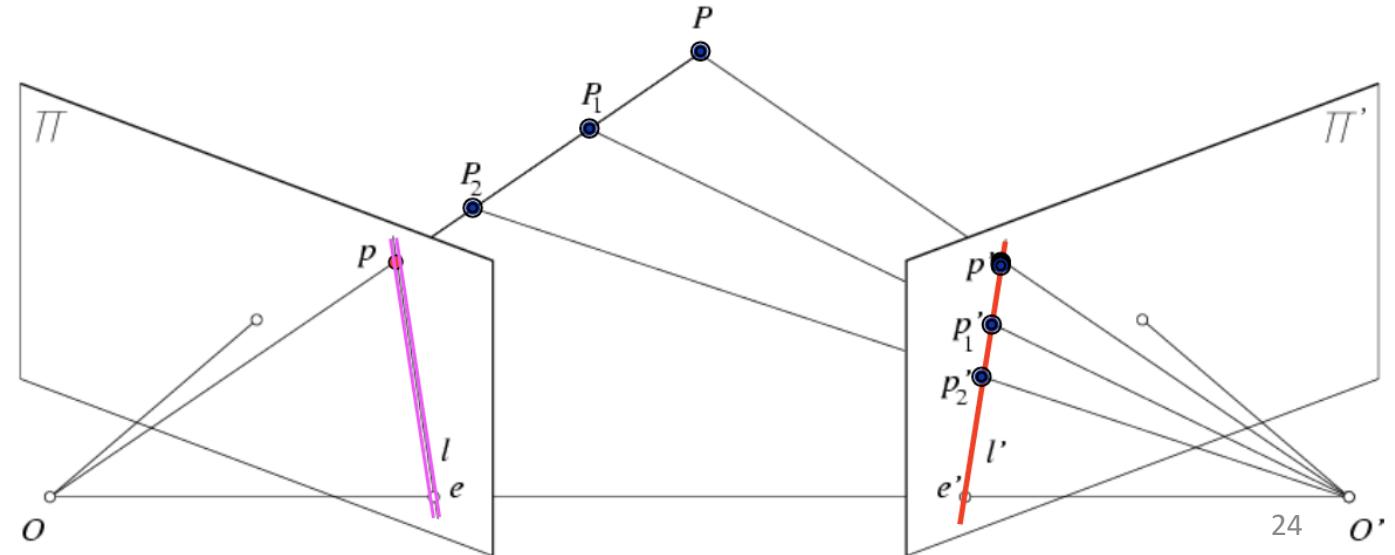
- Examples
 - Converging image planes (most common case)
 - All epipolar lines intersect at the epipole

- all epipolar lines lie on epipolar planes
- all epipolar planes intersect at baseline
- base line intersect the image plane at epipole



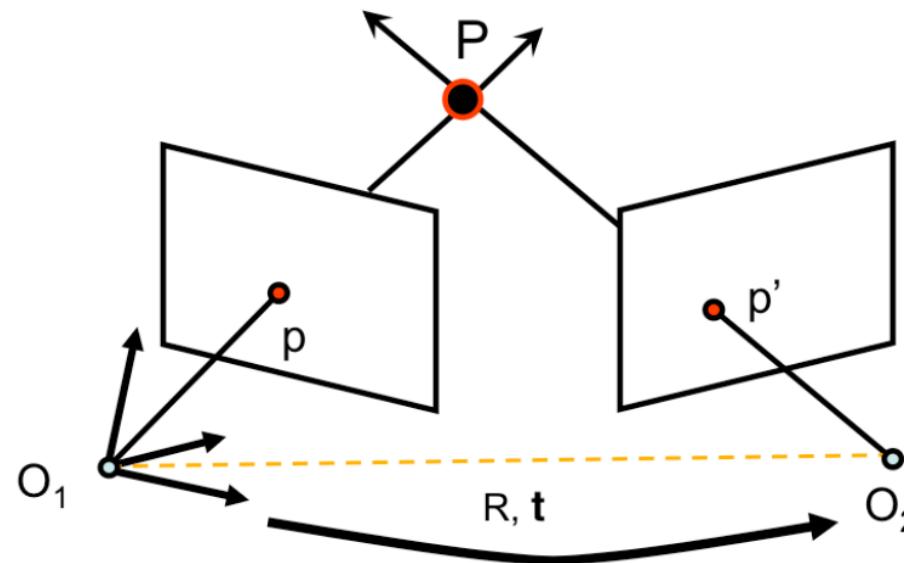
Epipolar Constraint

- Given a point on left image, what are the potential locations of the corresponding point on right image?
 - have to lie on the corresponding epipolar line of the other image
- Model of the relation between corresponding image points



Epipolar Constraint

- The relationship between corresponding image points
 - The world reference system aligned with the left camera
 - The right camera has orientation R and offset t



Camera projection matrices

Left camera

$$M = K[I \ 0]$$

$$\mathbf{p} = M\mathbf{P} = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$

Right camera

$$M' = K'[R \ t]$$

$$\mathbf{p}' = M'\mathbf{P} = \begin{bmatrix} u' \\ v' \\ 1 \end{bmatrix}$$

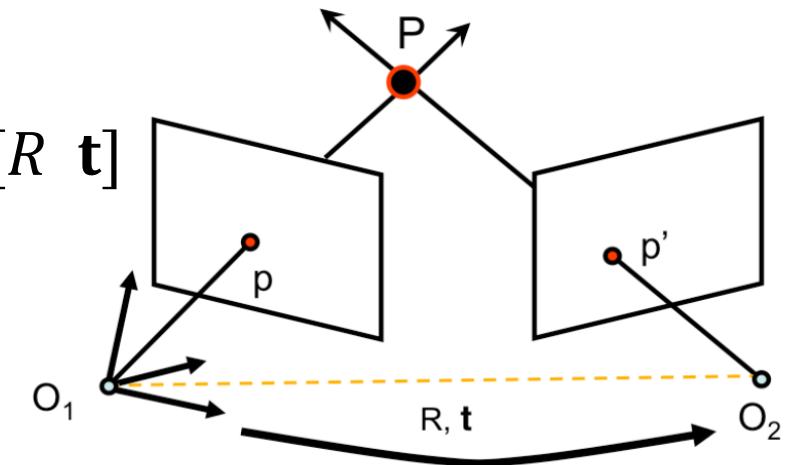
Epipolar Constraint

- The relationship between corresponding image points
 - Canonical cameras ($K = K' = I$)

$$M = K[I \ 0] \rightarrow M = [I \ 0] \quad M' = K'[R \ t] \rightarrow M' = [R \ t]$$

p' in world coordinate system

?



Epipolar Constraint

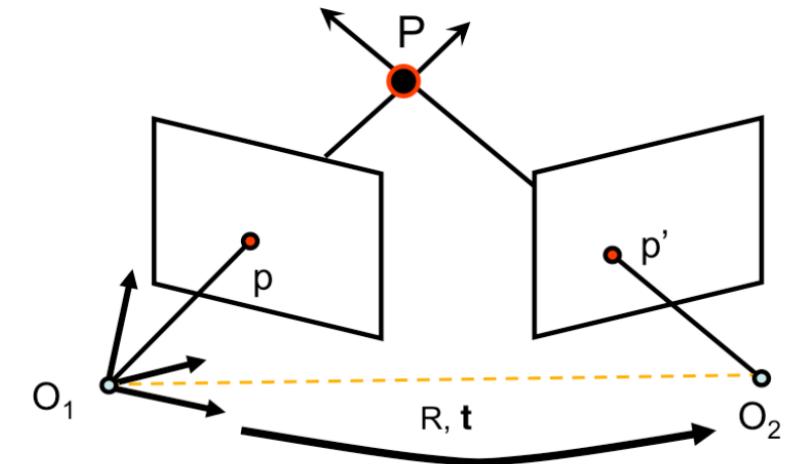
- The relationship between corresponding image points
 - Canonical cameras ($K = K' = I$)

$$M = [I \ 0] \quad M' = [R \ t]$$

\mathbf{p}' in world coordinate system

$$R^T(\mathbf{p}' - \mathbf{t})$$

\mathbf{O}_2 in world coordinate system



Epipolar Constraint

- The relationship between corresponding image points
 - Canonical cameras ($K = K' = I$)

$$M = [I \ 0] \quad M' = [R \ t]$$

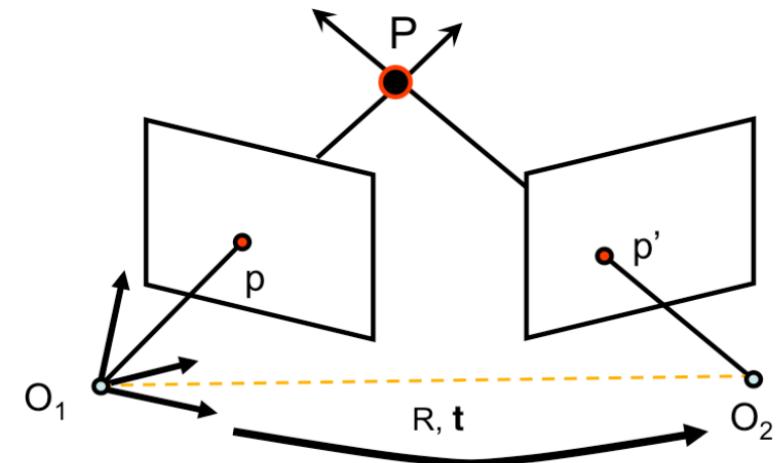
\mathbf{p}' in world coordinate system

$$R^T(\mathbf{p}' - \mathbf{t})$$

\mathbf{O}_2 in world coordinate system

$$R^T(\mathbf{O}_2 - \mathbf{t}) = -R^T\mathbf{t}$$

Normal of the epipolar plane



Epipolar Constraint

- The relationship between corresponding image points
 - Canonical cameras ($K = K' = I$)

$$M = [I \ 0] \quad M' = [R \ t]$$

\mathbf{p}' in world coordinate system

$$R^T(\mathbf{p}' - \mathbf{t})$$

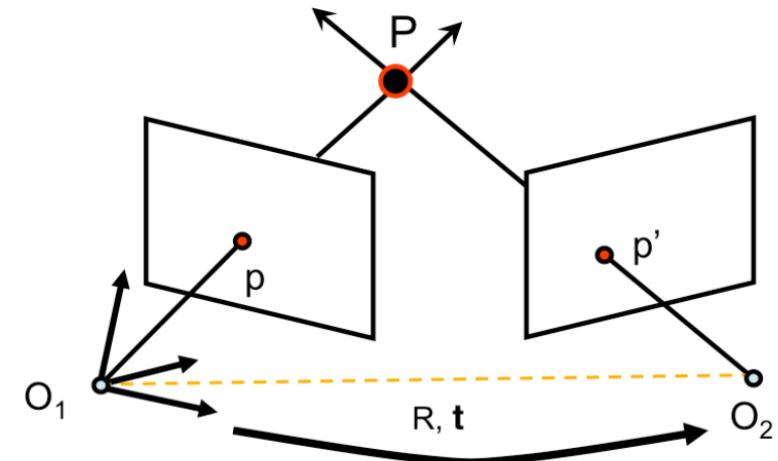
\mathbf{O}_2 in world coordinate system

$$R^T(\mathbf{O}_2 - \mathbf{t}) = -R^T\mathbf{t}$$

Normal of the epipolar plane

$$R^T\mathbf{t} \times [R^T(\mathbf{p}' - \mathbf{t})] = R^T(\mathbf{t} \times \mathbf{p}')$$

$\mathbf{O}_1\mathbf{p}$ lies in the epipolar plane: so the dot product of the normal of the Epipolar plane and $\mathbf{O}_1\mathbf{p}$ is 0



Epipolar Constraint

- The relationship between corresponding image points
 - Canonical cameras ($K = K' = I$)

$$M = [I \ 0] \quad M' = [R \ t]$$

\mathbf{p}' in world coordinate system

$$R^T(\mathbf{p}' - \mathbf{t})$$

\mathbf{O}_2 in world coordinate system

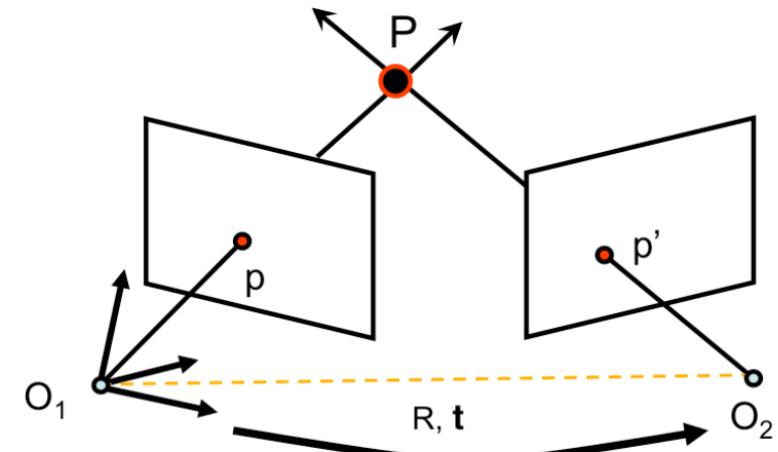
$$R^T(\mathbf{O}_2 - \mathbf{t}) = -R^T\mathbf{t}$$

Normal of the epipolar plane

$$R^T\mathbf{t} \times [R^T(\mathbf{p}' - \mathbf{t})] = R^T(\mathbf{t} \times \mathbf{p}')$$

$\mathbf{O}_1\mathbf{p}$ lies in the epipolar plane

$$[R^T(\mathbf{t} \times \mathbf{p}')]^T\mathbf{p} = 0$$



Epipolar Constraint

- The relationship between corresponding image points
 - Canonical cameras ($K = K' = I$)

$$M = [I \ 0] \quad M' = [R \ t]$$

\mathbf{p}' in world coordinate system

$$R^T(\mathbf{p}' - \mathbf{t})$$

\mathbf{O}_2 in world coordinate system

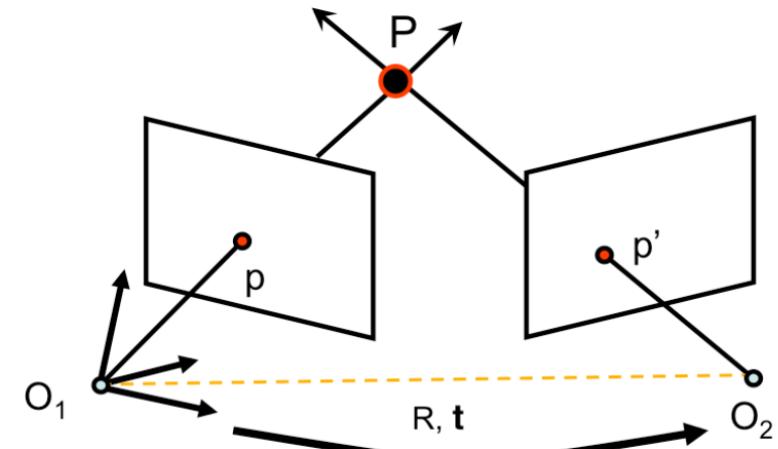
$$R^T(\mathbf{O}_2 - \mathbf{t}) = -R^T\mathbf{t}$$

Normal of the epipolar plane

$$R^T\mathbf{t} \times [R^T(\mathbf{p}' - \mathbf{t})] = R^T(\mathbf{t} \times \mathbf{p}')$$

$\mathbf{O}_1\mathbf{p}$ lies in the epipolar plane

$$[R^T(\mathbf{t} \times \mathbf{p}')]^T\mathbf{p} = 0 \quad \rightarrow \quad (\mathbf{t} \times \mathbf{p}')^T R \mathbf{p} = 0$$



Epipolar Constraint

- The relationship between corresponding image points

- Canonical cameras ($K = K' = I$)

$$M = [I \ 0] \quad M' = [R \ \mathbf{t}]$$

\mathbf{p}' in world coordinate system

$$R^T(\mathbf{p}' - \mathbf{t})$$

\mathbf{O}_2 in world coordinate system

$$R^T(\mathbf{O}_2 - \mathbf{t}) = -R^T\mathbf{t}$$

Normal of the epipolar plane

$$R^T\mathbf{t} \times [R^T(\mathbf{p}' - \mathbf{t})] = R^T(\mathbf{t} \times \mathbf{p}')$$

$\mathbf{O}_1\mathbf{p}$ lies in the epipolar plane

$$[R^T(\mathbf{t} \times \mathbf{p}')]^T\mathbf{p} = 0 \rightarrow (\mathbf{t} \times \mathbf{p}')^T R \mathbf{p} = 0 \rightarrow ([\mathbf{t}_x] \mathbf{p}')^T R \mathbf{p} = 0$$

Cross product as matrix-vector multiplication

$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 0 & -\mathbf{a}_z & \mathbf{a}_y \\ \mathbf{a}_z & 0 & -\mathbf{a}_x \\ -\mathbf{a}_y & \mathbf{a}_x & 0 \end{bmatrix} \begin{bmatrix} \mathbf{b}_x \\ \mathbf{b}_y \\ \mathbf{b}_z \end{bmatrix} = [\mathbf{a}_x] \mathbf{b}$$

$$[\mathbf{a}_x]^T = -[\mathbf{a}_x]$$

Epipolar Constraint

- The relationship between corresponding image points
 - Canonical cameras ($K = K' = I$)

$$M = [I \ 0] \quad M' = [R \ \mathbf{t}]$$

p' in world coordinate system

$$R^T(\mathbf{p}' - \mathbf{t})$$

O₂ in world coordinate system

$$R^T(\mathbf{0}_2 - \mathbf{t}) = -R^T\mathbf{t}$$

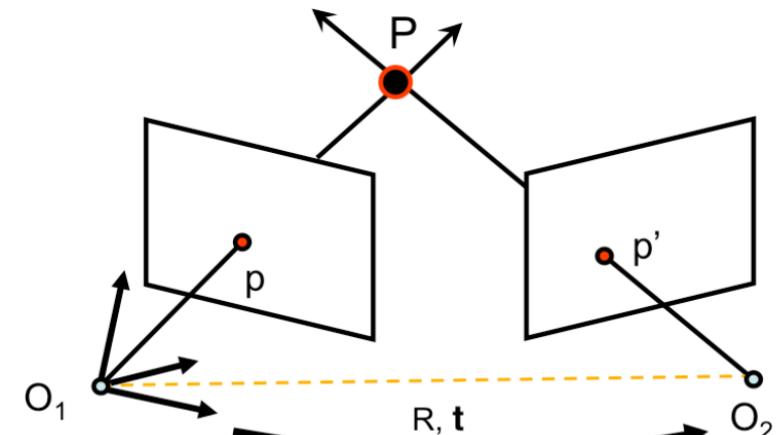
Normal of the epipolar plane

$$R^T \mathbf{t} \times [R^T(\mathbf{p}' - \mathbf{t})] = R^T (\mathbf{t} \times \mathbf{p}')$$

O_1p lies in the epipolar plane

$$[R^T (\mathbf{t} \times \mathbf{p}')]^T \mathbf{p} = 0 \rightarrow (\mathbf{t} \times \mathbf{p}')^T R \mathbf{p} = 0 \rightarrow ([\mathbf{t}]_\times \mathbf{p}')^T R \mathbf{p} = 0$$

$$\mathbf{p}'^T[\mathbf{t}_x]R\mathbf{p} = 0$$

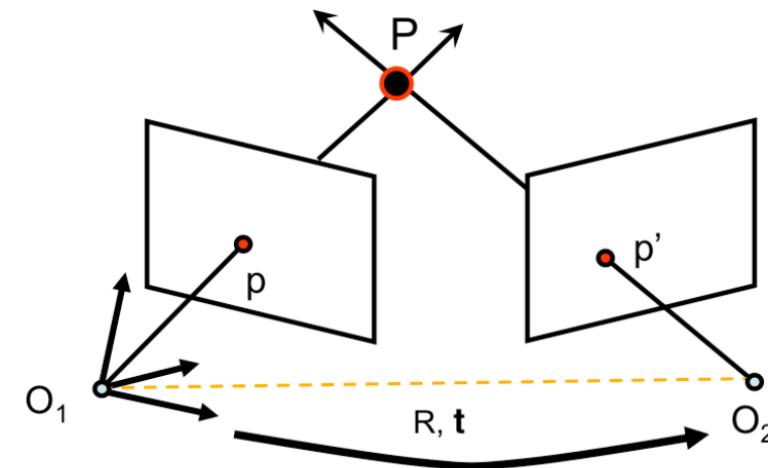


Epipolar Constraint

- Essential matrix
 - Establish constraints between matching image points
 - Determine relative position and orientation of two cameras
 - 5 degrees of freedom (R : 3, t : 3, but scale is not known)

$$\begin{array}{l}
 \mathbf{p}'^T \begin{bmatrix} \mathbf{t} \\ \times \end{bmatrix} R \mathbf{p} = 0 \\
 \downarrow \\
 E = \begin{bmatrix} \mathbf{t} \\ \times \end{bmatrix} R \\
 \mathbf{p}'^T E \mathbf{p} = 0
 \end{array}$$

Essential matrix



Epipolar Constraint

- How to generalize Essential matrix?
 - Canonical cameras → general cameras

$$\begin{array}{c}
 \begin{array}{c}
 M = K[I \ 0] \quad \xrightarrow{\quad K = K' = I \quad} \quad M = [I \ 0] \quad \xrightarrow{\quad} \quad \mathbf{p} = M\mathbf{P} = [I \ 0]\mathbf{P} \quad \xrightarrow{\quad} \quad \mathbf{p}'^T E \mathbf{p} = 0 \\
 M' = K'[R \ \mathbf{t}] \quad \xrightarrow{\quad K \neq I, K' \neq I \quad} \quad M' = [R \ \mathbf{t}] \quad \xrightarrow{\quad} \quad \mathbf{p}' = M'\mathbf{P} = [R \ \mathbf{t}]\mathbf{P} \quad \xrightarrow{\quad} \quad E = [\mathbf{t}^T \ R] \\
 \end{array}
 \end{array}$$

?

Epipolar Constraint

- How to generalize Essential matrix?
 - Canonical cameras → general cameras

Canonical cameras: the image points in homogeneous coordinates are actually the 3D point expressed in the camera coordinate system

$$\begin{array}{ccccccc}
 M = K[I \ 0] & \xrightarrow{K = K' = I} & M = [I \ 0] & \xrightarrow{\quad} & p = MP = [I \ 0]P & \xrightarrow{\quad} & p'^T E p = 0 \\
 & & M' = [R \ t] & \xrightarrow{\quad} & p' = M'P = [R \ t]P & \xrightarrow{\quad} & E = [t \times]R \\
 & & & & & & \\
 & & & & p \rightarrow K^{-1}p & & \\
 & & & & p' \rightarrow K'^{-1}p' & & \\
 M' = K'[R \ t] & \xrightarrow{K \neq I, K' \neq I} & p = MP = K[I \ 0]P & \xrightarrow{\quad} & & & p'^T K'^{-T} E K^{-1} p = 0 \\
 & & p' = M'P = K'[R \ t]P & & & & \downarrow \\
 & & & & & & p'^T F p = 0 \\
 & & & & & & \\
 & & & & & & F = K'^{-T} [t \times] R K^{-1} \quad ^{36}
 \end{array}$$

Epipolar Constraint

- Essential matrix vs. Fundamental matrix
 - Similarity
 - Both relate the matching image points
 - Encode epipolar geometry of two views & camera parameters
 - Differences
 - E encodes only the camera extrinsic parameter
 - F also encodes the intrinsic parameters

$$\mathbf{p}'^T E \mathbf{p} = 0$$

$$E = [\mathbf{t}_x]R$$

Essential matrix

$$\mathbf{p}'^T F \mathbf{p} = 0$$

$$F = K'^{-T} [\mathbf{t}_x] R K^{-1}$$

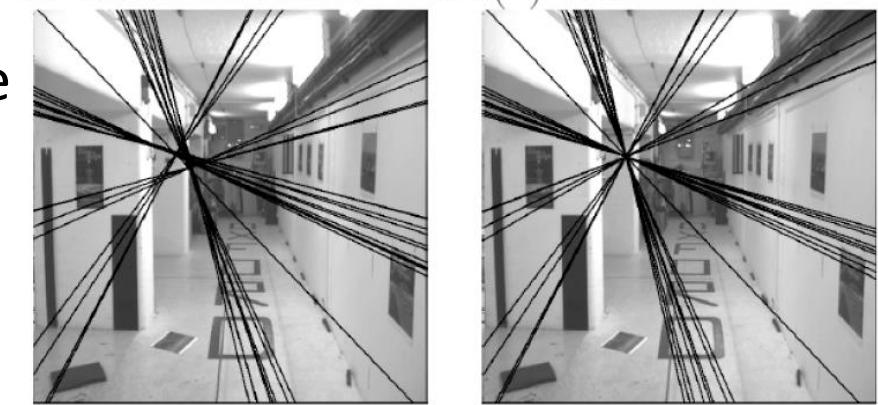
Fundamental matrix

Epipolar Constraint

- Properties of the Fundamental matrix
 - 3 by 3
 - homogeneous (has scale ambiguity)
 - $\text{rank}(F) = 2$
 - The potential matching point is located on a line
 - F has 7 degrees of freedom

$$\mathbf{p}'^T F \mathbf{p} = 0 \quad F = K'^{-T} [\mathbf{t}_x] R K^{-1}$$

Fundamental matrix has rank 2 : $\det(F) = 0$.



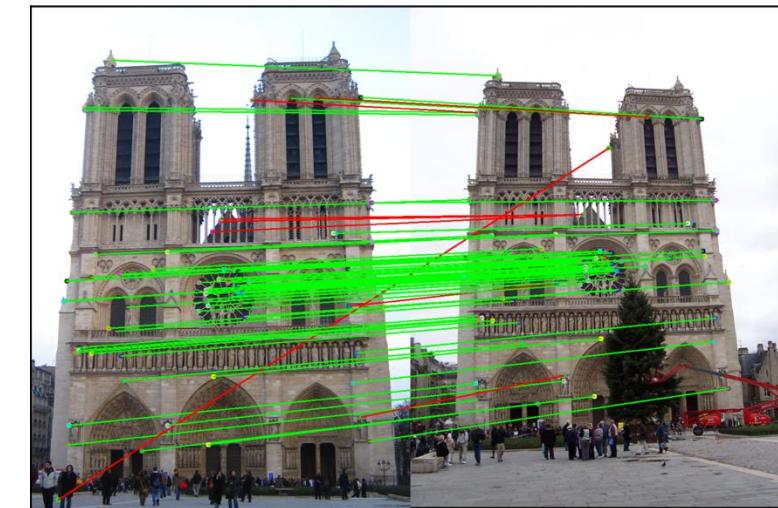
Left: Uncorrected F – epipolar lines are not coincident.

Right: Epipolar lines from corrected F .

Epipolar Constraint

- Properties of the Fundamental matrix
- How is the fundamental matrix useful?
 - A 3D point's image in one image -> the epipolar line in the other image
 - Without knowing 3D location, camera intrinsic and extrinsic parameters
 - Powerful tool
 - Establishing reliable correspondences
 - Multi-view object/scene matching
 - Multi-view camera calibration

$$\mathbf{p}'^T F \mathbf{p} = 0 \quad F = K'^{-T} [\mathbf{t}_x] R K^{-1}$$

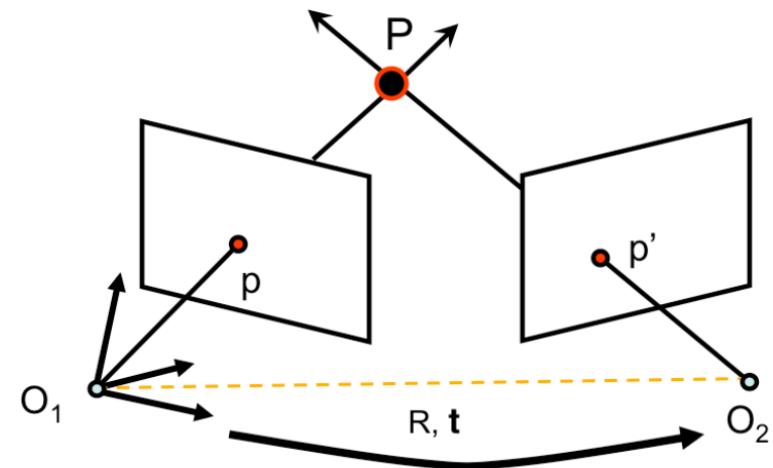


Recovering Fundamental Matrix

- How to recover F ?
 - From image correspondences

$$\mathbf{p}'^T F \mathbf{p} = 0$$

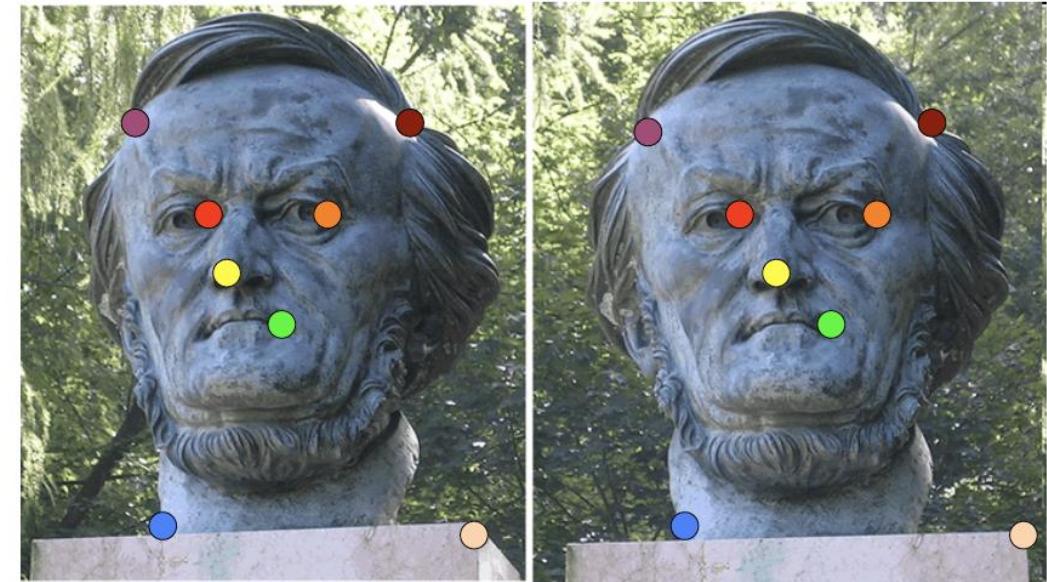
$$F = K'^{-T} [\mathbf{t}_x] R K^{-1}$$



Recovering Fundamental Matrix

- How to recover F ?
 - From image correspondences
 - How many point pairs needed?

$$\mathbf{p}'^T F \mathbf{p} = 0 \quad F = K'^{-T} [\mathbf{t}_x] R K^{-1}$$



Recovering Fundamental Matrix

- How to recover F ?
 - From image correspondences
 - 8-point pairs required
 - Each point pair gives one equation
 - F is known up to scale
 - The linear system is homogeneous

$$\begin{cases} \mathbf{p}_i = (u_i, v_i, 1) \\ \mathbf{p}'_i = (u'_i, v'_i, 1) \end{cases} \quad \mathbf{p}'^T F \mathbf{p} = 0$$

$$\begin{bmatrix} u_i u'_i & v_i u'_i & u'_i & u_i v'_i & v_i v'_i & v'_i & u_i & v_i & 1 \end{bmatrix} \begin{bmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{bmatrix} = 0$$

Recovering Fundamental Matrix

- How to recover F ?
 - From image correspondences
 - 8-point pairs required
 - Each point pair gives one equation
 - F is known up to scale
 - The linear system is homogeneous

F has 7 degrees of freedom
Are 7-point pairs sufficient?

$$\begin{cases} \mathbf{p}_i = (u_i, v_i, 1) \\ \mathbf{p}'_i = (u'_i, v'_i, 1) \end{cases} \quad \mathbf{p}'^T F \mathbf{p} = 0$$

$$\begin{bmatrix} u_i u'_i & v_i u'_i & u'_i & u_i v'_i & v_i v'_i & v'_i & u_i & v_i & 1 \end{bmatrix} \begin{bmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{bmatrix} = 0$$

Recovering Fundamental Matrix

- 8-point algorithm

$$[u_i u'_i \ v_i u'_i \ u'_i \ u_i v'_i \ v_i v'_i \ v'_i \ u_i \ v_i \ 1]$$

$$\begin{bmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{bmatrix} = 0$$

$$\boxed{\begin{bmatrix} u_1 u'_1 & v_1 u'_1 & u'_1 & u_1 v'_1 & v_1 v'_1 & v'_1 & u_1 & v_1 & 1 \\ u_2 u'_2 & v_2 u'_2 & u'_2 & u_2 v'_2 & v_2 v'_2 & v'_2 & u_2 & v_2 & 1 \\ u_3 u'_3 & v_3 u'_3 & u'_3 & u_3 v'_3 & v_3 v'_3 & v'_3 & u_3 & v_3 & 1 \\ u_4 u'_4 & v_4 u'_4 & u'_4 & u_4 v'_4 & v_4 v'_4 & v'_4 & u_4 & v_4 & 1 \\ u_5 u'_5 & v_5 u'_5 & u'_5 & u_5 v'_5 & v_5 v'_5 & v'_5 & u_5 & v_5 & 1 \\ u_6 u'_6 & v_6 u'_6 & u'_6 & u_6 v'_6 & v_6 v'_6 & v'_6 & u_6 & v_6 & 1 \\ u_7 u'_7 & v_7 u'_7 & u'_7 & u_7 v'_7 & v_7 v'_7 & v'_7 & u_7 & v_7 & 1 \\ u_8 u'_8 & v_8 u'_8 & u'_8 & u_8 v'_8 & v_8 v'_8 & v'_8 & u_8 & v_8 & 1 \end{bmatrix} \begin{bmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{bmatrix} = 0}$$

Recovering Fundamental Matrix

- 8-point algorithm
 - Construct linear system using corresponding image points

$$W\mathbf{f} = 0$$

How to solve it?

$$\begin{bmatrix} u_1u'_1 & v_1u'_1 & u'_1 & u_1v'_1 & v_1v'_1 & v'_1 & u_1 & v_1 & 1 \\ u_2u'_2 & v_2u'_2 & u'_2 & u_2v'_2 & v_2v'_2 & v'_2 & u_2 & v_2 & 1 \\ u_3u'_3 & v_3u'_3 & u'_3 & u_3v'_3 & v_3v'_3 & v'_3 & u_3 & v_3 & 1 \\ u_4u'_4 & v_4u'_4 & u'_4 & u_4v'_4 & v_4v'_4 & v'_4 & u_4 & v_4 & 1 \\ u_5u'_5 & v_5u'_5 & u'_5 & u_5v'_5 & v_5v'_5 & v'_5 & u_5 & v_5 & 1 \\ u_6u'_6 & v_6u'_6 & u'_6 & u_6v'_6 & v_6v'_6 & v'_6 & u_6 & v_6 & 1 \\ u_7u'_7 & v_7u'_7 & u'_7 & u_7v'_7 & v_7v'_7 & v'_7 & u_7 & v_7 & 1 \\ u_8u'_8 & v_8u'_8 & u'_8 & u_8v'_8 & v_8v'_8 & v'_8 & u_8 & v_8 & 1 \end{bmatrix} \begin{bmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{bmatrix} = 0$$

Recovering Fundamental Matrix

- 8-point algorithm
 - Construct linear system using corresponding image points
 - Solve for \mathbf{f} using SVD

$$W\mathbf{f} = 0$$

$$W = USV^T$$

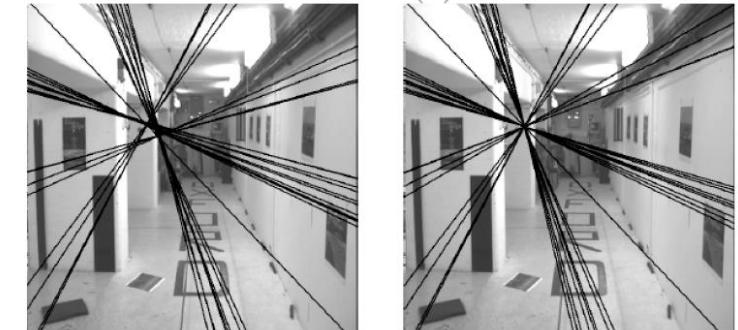
Last column of V gives \mathbf{f}

$$\begin{bmatrix} u_1u'_1 & v_1u'_1 & u'_1 & u_1v'_1 & v_1v'_1 & v'_1 & u_1 & v_1 & 1 \\ u_2u'_2 & v_2u'_2 & u'_2 & u_2v'_2 & v_2v'_2 & v'_2 & u_2 & v_2 & 1 \\ u_3u'_3 & v_3u'_3 & u'_3 & u_3v'_3 & v_3v'_3 & v'_3 & u_3 & v_3 & 1 \\ u_4u'_4 & v_4u'_4 & u'_4 & u_4v'_4 & v_4v'_4 & v'_4 & u_4 & v_4 & 1 \\ u_5u'_5 & v_5u'_5 & u'_5 & u_5v'_5 & v_5v'_5 & v'_5 & u_5 & v_5 & 1 \\ u_6u'_6 & v_6u'_6 & u'_6 & u_6v'_6 & v_6v'_6 & v'_6 & u_6 & v_6 & 1 \\ u_7u'_7 & v_7u'_7 & u'_7 & u_7v'_7 & v_7v'_7 & v'_7 & u_7 & v_7 & 1 \\ u_8u'_8 & v_8u'_8 & u'_8 & u_8v'_8 & v_8v'_8 & v'_8 & u_8 & v_8 & 1 \end{bmatrix} \begin{bmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{bmatrix} = 0$$

Recovering Fundamental Matrix

- 8-point algorithm
 - Construct linear system using corresponding image points
 - Solve for \mathbf{f} using SVD
 - Constraint enforcement (**essential step**)
 - $\text{rank}(F) = 2$

Fundamental matrix has rank 2 : $\det(F) = 0$.



Left : Uncorrected F – epipolar lines are not coincident.

Right : Epipolar lines from corrected F .

Recovering Fundamental Matrix

- 8-point algorithm
 - Construct linear system using corresponding image points
 - Solve for \mathbf{f} using SVD
 - Constraint enforcement (**essential step**)
 - $\text{rank}(F) = 2$

$$\hat{F} = UDV^T \quad D = \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix} \quad \xrightarrow{\text{blue arrow}} \quad F = U \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & 0 \end{bmatrix} V^T$$

Recovering Fundamental Matrix

- Problems of 8-point algorithm
 - Sensitive to the origin of coordinates
 - Sensitive to scales

Same scale, different origins (i.e., camera translation)

Image taken using different focal lengths

Recovering Fundamental Matrix

- Problems of 8-point algorithm
 - Sensitive to the origin of coordinates
 - Sensitive to scales

$$\begin{bmatrix} u_1u'_1 & v_1u'_1 & u'_1 & u_1v'_1 & v_1v'_1 & v'_1 & u_1 & v_1 & 1 \\ u_2u'_2 & v_2u'_2 & u'_2 & u_2v'_2 & v_2v'_2 & v'_2 & u_2 & v_2 & 1 \\ u_3u'_3 & v_3u'_3 & u'_3 & u_3v'_3 & v_3v'_3 & v'_3 & u_3 & v_3 & 1 \\ u_4u'_4 & v_4u'_4 & u'_4 & u_4v'_4 & v_4v'_4 & v'_4 & u_4 & v_4 & 1 \\ u_5u'_5 & v_5u'_5 & u'_5 & u_5v'_5 & v_5v'_5 & v'_5 & u_5 & v_5 & 1 \\ u_6u'_6 & v_6u'_6 & u'_6 & u_6v'_6 & v_6v'_6 & v'_6 & u_6 & v_6 & 1 \\ u_7u'_7 & v_7u'_7 & u'_7 & u_7v'_7 & v_7v'_7 & v'_7 & u_7 & v_7 & 1 \\ u_8u'_8 & v_8u'_8 & u'_8 & u_8v'_8 & v_8v'_8 & v'_8 & u_8 & v_8 & 1 \end{bmatrix} \begin{bmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{bmatrix} = 0$$

$$\begin{bmatrix} 250906.36 & 183269.57 & 921.81 & 200931.10 & 146766.13 & 738.21 & 272.19 & 198.81 & 1 \\ 2692.28 & 131633.03 & 176.27 & 6196.73 & 302975.59 & 405.71 & 15.27 & 746.79 & 1 \\ 416374.23 & 871684.30 & 935.47 & 408110.89 & 854384.92 & 916.90 & 445.10 & 931.81 & 1 \\ 191183.60 & 171759.40 & 410.27 & 416435.62 & 374125.90 & 893.65 & 465.99 & 418.65 & 1 \\ 48988.86 & 30401.76 & 57.89 & 298604.57 & 185309.58 & 352.87 & 846.22 & 525.15 & 1 \\ 164786.04 & 546559.67 & 813.17 & 1998.37 & 6628.15 & 9.86 & 202.65 & 672.14 & 1 \\ 116407.01 & 2727.75 & 138.89 & 169941.27 & 3982.21 & 202.77 & 838.12 & 19.64 & 1 \\ 135384.58 & 75411.13 & 198.72 & 411350.03 & 229127.78 & 603.79 & 681.28 & 379.48 & 1 \end{bmatrix} \begin{bmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{bmatrix} = 0$$

Poor numerical conditioning → fix by scaling the data

Recovering Fundamental Matrix

- ~~8 point algorithm~~
- Normalized 8-point algorithm
 - Idea: normalize image points before constructing the equations
 - Translation: make centroid of image points at origin \leftarrow reduce translation effect
 - Scaling: make average distance of points from origin $\sqrt{2}$ \leftarrow reduce scaling effect

$$\mathbf{q}_i = T \mathbf{p}_i$$

$$\mathbf{q}'_i = T' \mathbf{q}'_i$$

Recovering Fundamental Matrix

- ~~8 point algorithm~~
- Normalized 8-point algorithm
 - Normalization of image points (**essential step**)
 - Solve for F_q using the original 8-point algorithm
 - F_q is the fundamental matrix computed from the normalized image points
 - Same procedure as in original 8-point algorithm

Recovering Fundamental Matrix

- ~~8 point algorithm~~
- Normalized 8-point algorithm
 - Normalization of image points (**essential step**)
 - Solve for F_q using the original 8-point algorithm
 - De-normalization (**essential step**)

$$\boxed{\mathbf{q}'}^T F_q \boxed{\mathbf{q}} = 0$$

Normalized image points

$$\mathbf{q} = T \boxed{\mathbf{p}} \quad \mathbf{q}' = T' \boxed{\mathbf{p}'}$$

Original image points

$$(T' \mathbf{p}')^T F_q (T \mathbf{p}) = 0$$

$$\mathbf{p}'^T \boxed{(T'^T F_q T)} \mathbf{p} = 0$$

F

F_q : fundamental matrix computed from normalized image points
 F : the expected fundamental matrix

Next lecture

- 2-view 3D reconstruction
 - Camera calibration
 - Triangulation
- Structure from Motion
 - Go beyond two views
 - Simultaneously
 - recover 3D structure
 - Refine camera parameters

