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Today’s Agenda

e Review Camera calibration
* Epipolar geometry



Review of Camera Calibration

e Camera calibration
— Recovering K
— Recovering Rand t

p=MP

=K

R t]

Internal (intrinsic) parameters
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P

External (extrinsic) parameters
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Review of Camera Calibration

 How many parameters to recover?

— 5 intrinsic parameters
e 2 for focal length

« 2 for offset — K |[R t] P

* 1 for skewness

— 6 extrinsic parameters
* 3 for rotation
e 3 for translation - - T ]
fx t

S C, I’y x
K=|0 f, ¢l B= rg,t:ty
0 0 1/ I3 b



Review of Camera Calibration

* Parameters to recover: 11

* Corresponding 3D-2D point pairs
— Each 3D-2D point pair -> 2 constraints

— 11 unknown -> 6 point correspondence

— Use more to handle noisy data

P?ml
P?mg

P;.Fmg

P;‘ng
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Review of Camera Calibration

* Parameters to recover: 11
* Corresponding 3D-2D point pairs: >=6
e How to solve it?

—m = 0 is always a trivial solution
— If m # 0 is a solution, then any K * mis also a solution

P 07—y PT]

of Pl —u, P! m?
: ml | =Pm=0

PL of —unPg
T T . pT
! ot P, —v,P; ]
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Review of Camera Calibration

* Parameters to recover: 11
* Corresponding 3D-2D point pairs: >=6
* How to solve it?
—m = 0 is always a trivial solution
— If m # 0 is a solution, then any K * mis also a solution

— Constrained optimization

-P%F 0f —ulP'{- o 5
07 PT —o,PT| [T minimize ||Pml]|

1 m
: |:mg} = Pm =0 |:>

subject to ||ml|* =1

Pl ol —u,P!
T pT , pT
! ot P, —v,P; ]
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Review of Camera Calibration

e Solved using SVD

___________

__________

\SVD decomposition of P

T
U211><:12 D 12><12V 12x12

Last column of V gives m

(Why? See page 593 of Hartley & Zisserman. Multiple view geometry in computer vision)



http://scholar.google.nl/scholar?q=Hartley+%26+Zisserman&hl=en&as_sdt=0&as_vis=1&oi=scholart

]
TUDelft
3Dgeoinfo

Review of Camera Calibration

Intrinsic parameters: Extrinsic parameters:
1
p—= = Ao X Ag
|as]| ry

)  |Jag x ag|
rs — pas
'o =TIg X TIq

cos 0 = -1
a1 X asg °Haz Xa3H t—p[i b
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Review of Camera Calibration

* Not always solvable
— {P;} cannot lie on the same plane
— {P.} cannot lie on the intersection curve of two quadric surfaces

th

b Ellipsoid Lllpl cylinder  d.Elliptic
paraboloid

(W)

a.Sphere

A\ b\

]
L~
L~
L~
L~

A\ N\ N\

h.Hyperboloid i.Hyperbolic
of two sheels paraboloid
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Which of the following will change the camera intrinsic matrix?
(a) When zooming in.
(b) When rotating the camera around its local origin.
(c) When changing the resolution of the image.
(d) When the camera is moved.
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Which of the following will change the camera intrinsic matrix?
(a) When zooming in. [f,, ]
(b) When rotating the camera around its local origin. R
(c) When changing the resolution of the image. [C,, C, ]
(d) When the camera is moved. t

-fx S Cx-
K=10 f, ¢
0 0 1.
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Today’s Agenda

e Review Camera calibration
* Epipolar geometry C_\j
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Recovering 3D Geometry

 Camera calibration from a single view

— Camera intrinsic parameters

— Camera orientation  syfficient to recover some 3D geometry from a single image? ?

— Camera translation

(W)

A\ N\ N\

]
L~
L~
L~
L~

A\ b\

th
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Recovering 3D Geometry

 Camera calibration from a single view

* Recover 3D geometry from a single view?
— No: due to ambiguity of 3D -> 2D mapping

Possible driving signals in 3D

-
Image plane P
— -
Driving signal in 2D 7
\ A
e
e [ S -
--‘//
//////
T —ener

o=

., ——— e,
"~ —— ———
. ———

Camera center

—
-
——e]

u—
—
)

-
a—

z (or z-depth)
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Core Problems in Recovering 3D Geometry'

* Image correspondences: find the corresponding points in two
or more images — lecture, code, lab exercise

* Calibration: given corresponding points in images, recover the
relation of the cameras. |Epipolar geometry_‘

* Recover scene geometry: reconstruct coordinates of 3D points
from corresponding image pixels — next lecture

16
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Epipolar Geometry

e Camera model

— Relate 3D points and corresponding images points
* Epipolar geometry

— Geometric relations between the corresponding image points

O
‘@

— Used to recover the relation of the cameras
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Epipolar Geometry

e Baseline

— The line between the two camera centers O, and O,

The general setup of epipolar geometry

18
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Epipolar Geometry

* Baseline
— The line between the two camera centers O, and O,
* Epipolar plane

— Defined by P, O, and O,; contains baseline and P

The general setup of epipolar geometry
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Epipolar Geometry

* Baseline
— The line between the two camera centers O, and O,

* Epipolar plane
— Defined by P, O, and O,; contains baseline and P
* Epipoles
— N of baseline and image plane: e and e’
— Projection of the other camera center

The general setup of epipolar geometry
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Epipolar Geometry

* Baseline
— The line between the two camera centers O, and O,
* Epipolar plane
— Defined by P, O, and O,; contains baseline and P

* Epipoles
— N of baseline and image plane D
— Projection of the other camera center K
e Epipolar lines 0, o,

The general setup of epipolar geometry

— N of epipolar plane with the image plane
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Epipolar Geometry

 Examples

— Parallel image planes (a special case)
* Baseline is parallel to the image plane
* Baseline intersects the image plane at infinity = epipoles are at infinity

* Epipolar lines are parallel to U-axis of image plane 5

22
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Epipolar Geometry

 Examples

— Converging image planes (most common case)

* All epipolar lines intersect at the epipole  -allepipolar lines lie on epipolar planes
- all epipolar planes intersect at baseline

- base line intersect the image plane at epipole
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Epipolar Constraint

* Given a point on left image, what are the potential locations of
the corresponding point on right image?

— have to lie on the corresponding epipolar line of the other image

 Model of the relation between corresponding image points
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Epipolar Constraint

* The relationship between corresponding image points
— The world reference system aligned with the left camera
— The right camera has orientation R and offset t

P Camera projection matrices
/ Left camera Right camera

M =K[I 0 M’ =K'[R t]

P ; U u’
p=MP= p'=MP=|y
O R, t '

O
_ g
p—
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Epipolar Constraint

* The relationship between corresponding image points

— Canonical cameras (K =K' =1)
M=K[I0]->-M=[10] M =K'|[Rt]>M =

p’ in world coordinate system ?
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Epipolar Constraint

* The relationship between corresponding image points

— Canonical cameras (K =K' =1)
M=[0] M =][Rt

p’ in world coordinate system RT(p’ — t)

O, in world coordinate system
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Epipolar Constraint

* The relationship between corresponding image points

— Canonical cameras (K =K' =1)
M=[0] M =][Rt

p’ in world coordinate system RT(p’ — t)

O, in world coordinate system RT(O2 — t) — —RTt

Normal of the epipolar plane
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Epipolar Constraint

* The relationship between corresponding image points

— Canonical cameras (K =K' =1)
M=[0] M =][Rt

p’ in world coordinate system RT(p’ — t)
0, in world coordinate system RT(0,—t) = —RTt
Normal of the epipolar plane RTt % [RT(p’ —t)] =RT (t xp")

O,p lies in the epipolar plane: so the dot product of the normal of the Epipolar plane and O;p is 0
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Epipolar Constraint

* The relationship between corresponding image points

— Canonical cameras (K =K' =1)
M=[0] M =][Rt

p’ in world coordinate system RT(p’ — t)
0, in world coordinate system RT(0,—t) = —RTt
Normal of the epipolar plane RTt % [RT(p’ —t)] =RT (t xp")

O,p lies in the epipolar plane IRT (t X p')]Tp =0
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Epipolar Constraint

* The relationship between corresponding image points

— Canonical cameras (K =K' =1)
M=[0] M =][Rt

p’ in world coordinate system RT(p’ — t)
0, in world coordinate system RT(0,—t) = —RTt
Normal of the epipolar plane RTt % [RT(p’ —t)] =RT (t xp")

O,p lies in the epipolar plane IRT (t X p')]Tp =0 :} (t X p’)TRp =0
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Epipolar Constraint
* The relationship between corresponding image points
— Canonical cameras (K =K' = 1) Cross product as matrix-vector multiplication
M=[0 M=[Rt 0 -a. a1 b,
axb=|a, 0 -a,| |b,| =[axb
p’ in world coordinate system RT(p’ —t) |~ A 0 J _bz_
T—
0, in world coordinate system RT(()Z —t) = —RTt l2,1="1a,]
Normal of the epipolar plane RTt % [RT(p’ —t)] =RT (t xp")

O,p lies in the epipolar plane IRT (t X p')]Tp =0 :} (t % p’)TRp =0 :} ([t x] p')TRp =0



]
TUDelft
3Dgeoinfo

Epipolar Constraint

* The relationship between corresponding image points

— Canonical cameras (K =K' =1)
M=[0] M =][Rt

p’ in world coordinate system RT(p' — t)
0, in world coordinate system RT(0,—t) = —R't

Normal of the epipolar plane R™ x [RT(p' —t)] = RT (t X p")

0,p lies in the epipolar plane [RT (t xp)]"Tp=0m (t x p)"Rp = 0 ([t Jp)'Rp =0

= p'[t JRp=0
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Epipolar Constraint

* Essential matrix
— Establish constraints between matching image points
— Determine relative position and orientation of two cameras

— 5 degrees of freedom (R: 3, t: 3, but scale is not known)

p'’|[t_]Rp =0

plEp=0

Essential matrix




Epipolar Constraint

* How to generalize Essential matrix?

— Canonical cameras =2 general cameras

k=k'=1 M=][I0] p=MP=|[I O]P

) )
/ M' = [R t] p'=MP=|[R t|P
M = K[I 0]

K+I1,K #1 i
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p''"Ep=20
E=][t |R

35



]
TUDelft
3Dgeoinfo

Epipolar Constraint

* How to generalize Essential matrix?

— Canonical cameras =2 general cameras

Canonical cameras: the image points in homogeneous coordinates are actually the 3D point expressed in the camera coordinate system

e, M= 0] p=MP=[I O]P p'TEp = 0
K=K =1
=) ’ =
/ M =[Rt] & p =MP=[R t]P E =t R
— K[I 0]
— I[R t] p_)K—lp
\ p = MP = K[I O]P p’—) K’—l pITKI—TEK—lp =0
K#LK'#1 p'=MP=K'[R t|P <

p'Fp=0
F=K"T[t |JRK~**
X
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Epipolar Constraint

e Essential matrix vs. Fundamental matrix
— Similarity

* Both relate the matching image points
— Encode epipolar geometry of two views & camera parameters

— Differences
* E encodes only the camera extrinsic parameter
* F also encodes the intrinsic parameters

p'Ep=0 p'Fp=0
E=[t ]R F=K"T[t X]RK_1

Essential matrix Fundamental matrix
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Epipolar Constraint

* Properties of the Fundamental matrix
—3by3
— homogeneous (has scale ambiguity)

— rank(F) =2 Fundamental matrix has rank 2 : det(F) = 0.

* The potential matching point is located on a line & %\

— F has 7 degrees of freedom

I'T — — !—-T -1
pFp=0 F=K"[t ]RK

Left : Uncorrected F — epipolar lines are not coincident.

Right: Epipolar lines from corrected F.
38
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Epipolar Constraint

* Properties of the Fundamental matrix
* How is the fundamental matrix useful?

— A 3D point’s image in one image -> the epipolar line in the other image

* Without knowing 3D location, camera intrinsic and extrinsic parameters

— Powerful tool

* Establishing reliable correspondences
* Multi-view object/scene matching
e Multi-view camera calibration

IT _ _ !'-T -1
p'Fp=0  F=K'"T[t _]RK
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Recovering Fundamental Matrix

e How to recover F?

— From image correspondences

I'T — — 1!—-T -1
p ' Fp=0 F=K"T[t ]RK
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Recovering Fundamental Matrix

e How to recover F?
— From image correspondences
— How many point pairs needed?

IT — _ 1-T -1
p'Fp=0 F=K"[t ]RK

41



Recovering Fundamental Matrix

e How to recover F?
— From image correspondences
— 8-point pairs required
* Each point pair gives one equation

* Fis known up to scale
— The linear system is homogeneous
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|

p; = (u;,v;, 1)
p; = (u;, v, 1)

pITFp

=0




Recovering Fundamental Matrix
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e How to recover F?

— From image correspondences {p: N (uf’vf’ D
P = (u;,v;, 1)

p'Fp=0

— 8-point pairs required

e Each point pair gives one equation

* Fis known up to scale @

— The linear system is homogeneous

F has 7 degrees of freedom
Are 7-point pairs sufficient?




]
TUDelft

Recovering Fundamental Matrix
. . B F ]
e 8-point algorithm 1
Fio
Fi3
Foy
[u..z- (T R A TV TR A VR VA VA TP 0% 1] Fos| =0
Fos —
F _ 1 |11
31 wpuy  wviuy uy wvy wvivy vy uyg vy 1 2
Fo uguh vouh wh wavh wvouh VL uy vy 1 12
2 Uy Ul Ug UVy Ugly Uy Uy U Fis
|33 uzus vsuwy Uy ugvy vsvy vy uz vy 1 I
21
Uglly  VqUy Uy ugVy Vg vy ug vy 1 Fy| =0
UsUy UsUr Us UsVy UsUs Vg Uz U5 1 I5
23
UGlly UVglly Ug UgUg UVglg Vg Ug Vg 1 I3
T Y N 7 31
! ! / / / / 32
Uglly Uglly Uy Ugly Uglg Ug Ug Ug 1
- - | £33
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Recovering Fundamental Matrix

e 8-point algorithm
— Construct linear system using corresponding image points

WE =0

- 1 [Fit
wpuy  wviuy uy wvy wvivy vy uyg vy 1 2
, / ' / P 12
Uglly Vglly Uy UgVy UgUy Vs Uy Vg 1 2
, / ' ! 2 13
Ugty Usly Uy UV Usvy Uy uz vy 1 F
I A Y N Y , 21
Ugly  VgUy Uy UAUy VgUy Uy uy vg 1 Jou
, / ' / P2 22| —
usly Usly Ur UsVs UsUs Us Uz Uz 1
) ! 7 / . / F. 23
Ugllg Vgllg Ug Uglg Uglg Ug Ug Vg 1 I3
How to solve it? Upls  Upln UL UgUL  UUn UL up v 1 F31
32
uglly Uglly Ug Ugly Ugly Ug Ug Ug 1 2
- - 33
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Recovering Fundamental Matrix

e 8-point algorithm

— Construct linear system using corresponding image points

— Solve for f using SVD

W =uUsv?

Last column of V gives f
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WE =0

uyuy
UoUs
U3y
Ugtly
UsUs
Uglg
e
ugtg

vy
Uos
U3y
VU
UsUs
Vglg
VU

Ugllg

U1 V]
Ug Vs
U3y
UAVY
U5V
UGV
Ur Vs
U8 Vg

U1
U9
us
Uy
Ux
Ug
Ur

Usg

"
Vo
Vs
»
Vs
Ve
Vs
Vs

T S Y Y S T A —ry

46




]
TUDelft
3Dgeoinfo

Recovering Fundamental Matrix

e 8-point algorithm
— Construct linear system using corresponding image points
— Solve for f using SVD

— Constraint enforcement (essential step)
* rank(F) =2

Left : Uncorrected F — epipolar lines are not coincident.

Right: Epipolar lines from corrected F.

47
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Recovering Fundamental Matrix

e 8-point algorithm
— Construct linear system using corresponding image points
— Solve for f using SVD

— Constraint enforcement (essential step)
* rank(F) =2

¥
(Y
-
-
QL
p—

F=UDVT D=0 d 0| mp F=U

o 5o
o OO
<
~

-
-
.
W
o O
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Recovering Fundamental Matrix

* Problems of 8-point algorithm
— Sensitive to the origin of coordinates
— Sensitive to scales

(568, 723) (284, 366)

Same scale, different origins (i.e., camera translation) Image taken using different focal lengths
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Poor numerical conditioning = fix by scaling the data

° ° 3Dgeoinfo
Recovering Fundamental Matrix
* Problems of 8-point algorithm S R R
— Sensitive to the origin of coordinates o o e
— Sensitive to scales —
'950006.36  183260.57 921.81 200031.10 146766.13 738.21 272.19 198.81 1] [f11]
2692.28 131633.03 176.27  6196.73 30297550 405.71 1527 746.79 1| |112
416374.23 871684.30 935.47 408110.89 854384.92 916.90 445.10 931.81 1 ?3
191183.60 171759.40 410.27 416435.62 374125.90 893.65 465.99 418.65 1 le 4
48988.86  30401.76 57.89 298604.57 185309.58 352.87 846.22 525.15 1 F” B
164786.04 546559.67 813.17  1998.37  6628.15  9.86 202.65 672.14 1 F23
116407.01  2727.75 138.89 169941.27  3982.21 202.77 838.12 19.64 1 FZ:
13538458  75411.13 198.72 411350.03 229127.78 603.79 681.28 379.48 1] |p
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Recovering Fundamental Matrix

9 bointaleori
* Normalized 8-point algorithm

— Idea: normalize image points before constructing the equations

* Translation: make centroid of image points at origin < reduce translation effect

* Scaling: make average distance of points from origin V2 € reduce scaling effect

q; = Tp;
q; = T'q;

51
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Recovering Fundamental Matrix

9 bointaleori
* Normalized 8-point algorithm

— Normalization of image points (essential step)

— Solve for F; using the original 8-point algorithm
* F, is the fundamental matrix computed form the normalized image points

* Same procedure as in original 8-point algorithm
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Recovering Fundamental Matrix

9 bointaleori
* Normalized 8-point algorithm

— Normalization of image points (essential step)
— Solve for F; using the original 8-point algorithm

— De-normalization (essential step)

ﬂTFq ql=0

Normalized im int ! !
Syt ) =0 ey BT -
q=1p| q' =Tfp’ F

. . F,: fundamental matrix computed form normalized image points
Original image points F : the expected fundamental matrix 23
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Next lecture

* 2-view 3D reconstruction
— Camera calibration
— Triangulation

e Structure from Motion
— Go beyond two views

— Simultaneously

* recover 3D structure

* Refine camera parameters
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