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Today’s Agenda

e Review: Camera models c—\j
e Camera calibration

e Al: Camera calibration
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lmages

A color image: R, G, B channels

(X, y) |
f(x,y)=]g(x,y)
| b(x, ) |

“vector-valued” function




Pinhole camera model
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Pinhole camera model

« 3D point P=(X, Y, Z)T projected to 2D image p = (x, y)T

projection line

camera coordinate
system ima f
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Perspective projection model

. X Y
* Pinhole camera x=f. y=f
* Change of unit: physical measurements -> pixels

— If k = |, camera sensor’s pixels are exactly square

X Y
x=kf-, y=lf7
@Denote a=kf,B=If

X Y
X = af’ Y= 'BE - X, y: image coordinates (pixels)
- k, I: scale parameters (pixels/mm)

- f : focal length (mm)



Perspective projection model

. X Y
* Pinhole camera x=f. y=f
* Change of unit: physical measurements -> pixels x =«

* Change of coordinate system

— Image plane coordinates have origin at image center
— Digital image coordinates have origin at top-left corner

—al+ LA
x—(xZ C,, y—ﬁZ Cy

X

Z
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Perspective projection model

. X Y
* Pinhole camera x=f-,  y=f3
. . . X Y
* Change of unit: physical measurements -> pixels x = a-, y=B7
. X Y
* Change of coordinate system =x = a—+c, y= ﬂE+ c,

* Account for skewness
— Image frame may not be exactly rectangular due to sensor manufacturing errors

¥y
] it te gt
.. X=a—=—a cotf =+c,, y = — E+Cy

Z Z sin 6
L0 — 0: skew angle between x- and y-axis




Perspective projection model

X

Y

XxX=a——a cotfd =+,

Z

Z

* Rewrite in matrix-vector product form

P — [X;Y;Z]T) p — [X;)’; 1]T

(homogeneous coordinates)

p=KP, K=

K¢

0

0

—a cotf
B

sin 6

0

C,|

Cy

1.

VE
0
0

S

Iy
0

Cx-

Cy

1.

Intrinsic parameter matrix
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Perspective projection model

* Camera motion
— World frame may not align with the camera frame

— Camera can move and rotate

__—Camera frame

C CllpW|,|4C
P Ry/|[P"|+| ty,
1 3 2 4

———World frame

1. Coordinates of 3D scene point in camera frame.
2. Coordinates of 3D scene point in world frame.

3. Rotation matrix of world frame in camera frame.
4. Position of world frame’s origin in camera frame.
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Perspective projection model
 The complete transformation

p=MP
:K[R t]P

Internal (intrinsic) parameters

External (extrinsic) parameters

- R: rotation matrix of the world coordinate system defined in the camera coordinate system
- 1: the position of world coordinate system’s origin in camera coordinate system

(Note: t is often mistakenly interpreted as the position of the camera position in the world coordinate system) _,
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Today’s Agenda

e Review: Camera models
e Camera calibration C‘O
e Al: Camera calibration



General Idea
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* Why is camera calibration necessary?

— Given 3D scene, knowing the precise 3D to 2D projection requires

* Intrinsic and extrinsic parameters

— Reconstructing 3D geometry from images also requires these
parameters

p=MP

= K

Internal (intrinsic) parameters

External (extrinsic) parameters

Rt

P

13
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General Idea

* Why is camera calibration necessary?
* What information do we have?

— Images
— Sparse 3D points

14
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General Idea

* Why is camera calibration necessary?
e What information do we have?
e Camera calibration

— Recovering K
— Recovering R and t

p=MP
=K||R t|P

Internal (intrinsic) parameters

External (extrinsic) parameters
15

* How many parameters




General Idea

* How many parameters to recover?

— How many intrinsic parameters?

K

= MP

R t|P

Internal (intrinsic) parameters
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General Idea

* How many parameters to recover?
— How many intrinsic parameters?

— How many extrinsic parameters?
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t| P

p=MP
= K[
R=|ra|, t = |t
T3 2

N

External (extrinsic) parameters
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General Idea

* How many parameters to recover: 11

— 5 intrinsic parameters
2 for focal lengths
2 for offset (image center, or principal point)
* 1 for skewness

— 6 extrinsic parameters

e 3 for rotation

* 3 for translation f, S ¢ _I'rip_ by
K=|0 f, ¢l R= rg,t:ty
0 0 1- T3 _ 22
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General Idea

e What information to use?

— Corresponding 3D-2D point pairs

p=MP
=K|R t|P
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General Idea

 What information to use?
— Corresponding 3D-2D point pairs

 How many pairs do we need?
— To recover the 11 parameters
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General Idea

e What information to use?

— Corresponding 3D-2D point pairs

 How many pairs do we need?
— How much information does each pair of corresponding point provide?

P?ml
U P?md
1
p:MP E>pi: V. :MPi:
t P;:Fmg
P?mq

m], mj, m3: the three rows of the projection matrix M 21
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General Idea
 What information to use?
— Corresponding 3D-2D point pairs
 How many pairs do we need?
— Each 3D-2D point pair -> 2 equations
— 11 unknown -> 6 point correspondence
— Use more to handle noisy data
—P?mlq
. P} my Pim;—u;(PIm3) =0
U; Plm, P; 1’1’12—’U1(P¢ m3) =0
P;J.rmg_

m], mj, m3: the three rows of the projection matrix M 22
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General Idea
Pl mq—Uu (P?mg) =0 o - -
Pl mso—Uq (P!{mg) =0 P% UT _ulpiln L
].:),*,::FIIII—’i';.']z (P;Fmg) =0 :> :> 0 Pl _U1P1 1m,
P/m;y—v;(P; m3) =0 : my | = Pm=
P, m;—u,(P,m;) = P, 0" —u,Py | [Ms]
T T T
Pgmg—fvn(szg) = ( _U P” UH’P”-
2nx 12
Constraints from one pair Equations from n pairs

What is the dimension of the P matrix?

What is the dimension of m?
23
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Details: the derivation of the linear system

* The equations p = MP XY, Z|* — [u,v]!
_ - _ - [ x
Su mip Mi2 M3 Mg 1
:> SV = Mmao1 Mg T3z Mgy 7
LS  M31 M3z 33 T34 1

su =m X +mpY +mi3Z + my - muX +mY +mi3Z + myy
mz1 X + m3Y + mg33Z + msy

W sv=mnX +mpY +multma WY+ masZ + ma
s = mz X + mzY + ma3Z + may V= mz1 X + mzY + ms3Z + may

24
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Details: the derivation of the linear system

- mp X +mpY +mzZ + myy

N mng + mng + mggz + M3y
M1 X + MaoY + Moz Z + may

V=
ms1 X + ma2Y + mssZ + msy

* The equations U

= (ma1 X + mgaY + m33Z + mgs) u = m X + mi2Y + misZ + may
(mg1 X +mg2Y +mg3Z + msg) v = mo1 X + maaY + masZ + moy

mllX + mng + mng + Mg — mgluX — mgguY — mgg’lLZ — M3zqaU = 0

=

mng + mggy + mggz + Moy — mgl’UX — mgg‘UY — m33UZ — M34V = 0

25
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Details: the derivation of the linear system
* The equations
For every pair of 3D-2D corresponding points
m11X + leY + mng + M4 — mgl’MX — mgguY — mgguZ — M34U = 0
mng + mggy + ngz + Moy — m31'uX — mgg’UY — m33'vZ — Mi3z4V = 0
. . . . [ My |
Given n pairs of 3D-2D corresponding points _—
mas3
(X, Y1 Z,01 0 0 0 0 —wXy —wYs —wZy —u | | "4 [0
0 0 0 0 Xl }/1 Zl 1 _UIXI —T)1Y1 —’U1Z1 —1 ma1 0
. Mmoo _ :
mo3 i
X, Y. Z, 1 0 O 0 0 —u,X, —uw.)Y, —u,Z, —u, Mot 0
I o 0o O o0 X,Y, 2,1 —v,X, -v,Y, —-v,4, —v, 1| ma I 0 |
ma32
m33
| M3y | 26
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Details: the derivation of the linear system
T
. mi2
* The equations s
[ X] le Zl 1 0 0 0 0 —’U,le —’U,l}fl —U1Z1 —U ] mi4 I 0 |
0 0 0 O Xl le Zl 1 —’01X1 —'UlYI —lel —U1 ma1 0
. Mmoo _ :
Xo Yo Zo 1 0 0 0 0 —wXe Yy —wiZo —tn | | oo 0
o 0o o0 o0 X,Y, 7,1 —v,X, —-v,Y, —v,4, —U, m 0
| 4 31 | -
ma32
@ Simplified notation m33
-m34-

07 PT —u,PT| [,
1mo- =Pm=20
PT 0T —u,PT| [m3

. n n | 27



]
TUDelft
3Dgeoinfo

General Idea

* How to solve it?
— It is a homogeneous linear system

— It is overdetermined ?

m;| = Pm=20

28
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General Idea

* How to solve it?
—m = 0 is always a trivial solution
— If m # 0 is a solution, then any kK * mis also a solution

-Pf{ OT —ulPT-
0" P7 —uiP{| [m,]
: m;| = Pm=10
Pl 0of —u,Pl| |M3
o PL —y,PT

29
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General Idea

* How to solve it?
—m = 0 is always a trivial solution
— If m # 0 is a solution, then any kK * mis also a solution

— Constrained optimization

l){-irT OT —HIPT-

T pT _, pT :
0 P1 'U1P1 |:I'n1 minimize ”Pl’n”2
) m

subject to  ||ml|* = 1

Pl 0" —u,P?
0" PT —y,PT

30
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* Singular Value Decomposition

— Generalization of the eigen-decomposition of a square matrix to any
m by n matrix

O’]
o -
2
A=UDV"' D-= A= U D VT
mXn mXm mXn nXn
[ 0Kl
_ O'N _ (i
- Uu ul=1
U: an m by m orthogonal matrix — Im
D: an m by n diagonal matrix; entries on diagonal called singular values Sk

1
I/ an n by n orthogonal matrix

v vi=1,
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SVD o fyoan

* Geometric meaning a A
—

— T
A=UDV JVT

0
Example (square matrix)

3 -2 [-.40 .916] [5.39 —.05 .999
1 5 1.916 .40 0 3.154 999 .05
A U D VT

Transformation Rotation Scaling Rotation
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Calibration: solve for projection matrix

minimize || Pm)|*
Pm=0 = o
subject to ||ml|]* =1

SVD of P

T
U2nx2n D2nx12 V 12x12

Last column of V gives m

(Why? See page 593 of Hartley & Zisserman. Multiple View Geometry in Computer Vision)

33


http://scholar.google.nl/scholar?q=Hartley+%26+Zisserman&hl=en&as_sdt=0&as_vis=1&oi=scholart

Least-squares solution of homogeneous equations

This problem is solvable as follows. Let A = UDV'. The problem then requires us to
minimize ||[UDV'x|. However, |[UDV'x|| = ||[DV'x|| and ||x|| = ||[VTx/||. Thus, we need
to minimize ||[DV'x|| subject to the condition ||[V'x|| = 1. We write y = V'x, and
the problem is: minimize ||Dy|| subject to ||y|| = 1. Now, D is a diagonal matrix with
its diagonal entries in descending order. It follows that the solution to this problem is
y = (0,0,...,0,1)T having one non-zero entry, 1 in the last position. Finally x = Vy
is simply the last column of V. The method is summarized in algorithm AS5.4.

Objective

Given a matrix A with at least as many rows as columns, find x that minimizes ||Ax|| subject to
[l = 1.

Solution

x is the last column of V, where A = UDV' is the SVD of A.

Algorithm A5.4. Least-squares solution of a homogeneous system of linear equations.

Page 593 of Hartley & Zisserman. Multiple View Geometry in Computer Vision

HLCOND LOITION

Multiple View
Geometry

in computer vision

Richard Hartley and Andrew Zisserman
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Camera parameters from project matrix

M t

O

f}

fy Cz
1

a —acotl c,
— 0 sirﬁlQ Cy

0 0 1

T T
ary —Ba cot Ord + c,rl
- T T
M = SmQ ;': Cyr?) sm@
I's

0

1
,0

T ik /g
ar? —Bcv cot Or; + e,
r7 g
sin @1 T Gy’

T
r3

Lt + cyt.

tz

Ot —

a cot 0t + Cyt, |
t + ¢yt

sin 0

tz

ol az cot Ot + c,t. |

]
TUDelft
3Dgeoinfo

SVD-solved projection matrix

‘ SVD-solved projection matrix is known up to scale, i.e., pM = M The true values of project matrix
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Camera parameters from project matrix

| ar{ — acotfry +c,r3  at, —acotOt, + c,t, |
M = ; Sii@rz £ Cyrg Slnﬁt i Cyt
i ry t, |
_a? bl-
denote M = [A b] = (al b,
g by
1 [ar] — acotfry +c,r3 at, —acotft, + c,t, | al by ]
_ .t
; Siﬁerg — cyrg sm@t 46 = a% by
= I‘g tz | _33 b3_

Solving for the intrinsic and extrinsic parameters

h 4 36




Camera parameters from project matrix

Intrinsic parameters:
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Extrinsic parameters:

Ao X Ag
I'm =—

|ag X ag|
s = pasg
'o =TIg X TIq
t =pK 'b

37



Find 3D-2D corresponding points O o

e Atleast 6 3D-2D point pairs
— 3D points with known 3D coordinates
— Corresponding image points with known 2D coordinates

.
| [ ML

38
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Find 3D-2D corresponding points

e Calibration rig - a special apparatus

— P4, ... P, with known positions in [Oy, iy, ju,» Ku]

A\ o)

A\

EW



Find 3D-2D corresponding points o o

e Calibration rig - a special apparatus
— P4, ... P, with known positions in [O, Iy, Jw» K]
— Py, ... P, known positions in the image
— At least 6 pairs

A k ]
W W Image
e Solve for %
]
— Intrinsic parameters TP
. . // —
— Extrinsic parameters 1 L+
//
T 0, .
— jw
‘,/
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Calibration

* Always solvable?

A

A\ N\
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Calibration

* Always solvable?
— {P;} cannot lie on the same plane
— {P;} cannot lie on the intersection curve of two quadric surfaces

COMPUTER VISION
. ' A MODERN APPROACH
g

a.Sphere b.Ellipsoid ¢.Elliptic cylinder ~ d.Elliptic ¢.Parabolic

w” N

cylinder

) |

f Quadric cone ¢ Hyperbolic h.Hyperboloid 1.Hyperbolic J.Hyperboloid
cylinder of two sheels paraboloid of one sheet

FORSYTH | PONCE

42

See Section 1.3 of Forsyth & Ponce. Computer Vision: A Modern Approach
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Al: Camera calibration

43
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Next lecture

* Epipolar geometry

Left view Right view

44
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