Learning Stereo

Nail Ibrahimli

What are these characters having in common?

Cyclope (Greek) Hitotsume-kozō (Japanese)

Tepegoz (Turkic) Eye of Sauron (LOTR)

Imaging geometry of single eye (camera)

Albrecht Durer (Pinhole)

Limitations of single eye

Limitations of single eye

Limitations of single eye

Why do we have two eyes?

Pan's Labyrinth

Why do we have two eyes?

Why do we have two eyes?

Slide credit: Fei-fei Li, Andreas Geiger

Triangulation

Image credit: OpenMVG

Visual cues for 3D: Shading

Visual cues for 3D: Shading

Visual cues for 3D: Texture

The Visual Cliff by William Vandivert

Visual cues for 3D: Focus, Motion

From Art of the Photography

Slide credit: James Hays

Stereo matching

$$disparity = rac{b \cdot f}{z}$$

Slide credit: Andreas Geiger

Block matching

$$SSD = \sum \sum (I_{left} - I_{right})^2 \quad Sum of squares difference$$

 $AD = \sum \sum |(I_{left} - I_{right})|$ Absolute difference

 $CC = \sum \sum I_{left} I_{right}$

Cross correlation

Block matching (Failure cases)

Block matching (Failure cases)

Patch

Non-Lambertian Surfaces

Patch

Slide credit: Andreas Geiger

Convolutional features

Slide credit: Yann Lecun Image credit: Visualizing and Understanding Convolutional Networks (Zeiler & Fergus, 2013)

Convolutional features

Image convolution

Image credit: Andrej Karpathy

2D and 3D convolutions

Image credit: https://iamaaditya.github.io/2016/03/one-by-one-convolution/

2D and 3D convolutions

Image credit: https://biplabbarman097.medium.com/3d-convolutions-and-its-applications-6dd2d0e9e63f 24

Block matching

Learned Similarity:

- ► Learn features & sim. metric
- ► Potentially more expressive
- ► Slow (WxHxD MLP evaluations)

Cosine Similarity:

- Learn features & apply dot-product
- ► Features must do the heavy lifting
- ► Fast matching (no network eval.)

Block matching

Left Input Image

Siamese Network

Standard Block Matching

26

Huang, Lee and Mumford: Statistics of Range Images. CVPR, 2000.

Y. Boykov, O. Veksler, and R. Zabih, "Fast approximate energy minimization via graph cuts". PAMI(1999)

Zbontar and LeCun: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. JMLR, 2016.

Huang, Lee and Mumford: Statistics of Range Images. CVPR, 2000.

Semi-Global Matching Algorithm

Left Disparity Map

Right Disparity Map

Left-Right Consistency Test

Y. Boykov, O. Veksler, and R. Zabih, "Fast approximate energy minimization via graph cuts". PAMI(1999)

Zbontar and LeCun: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. JMLR, 2016.

DISPNET

- DispNet was one of the first end-to-end trained deep neural network for stereo disparity
- It used a U-Net like architecture with skip-Connections to retain details
- It introduces correlation layer
- Multi-scale loss (disparity error in pixels), curriculum learning (easy-tohard)

Mayer et al.: A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. 29 CVPR, 2016.

GC-net

- Key idea: calculate disparity cost volume and apply 3D convolutions on it
- Convert the learned matching cost c to disparity via the expectation(probability volume)
- Slightly better performance but large memory requirements (3D feature volume)

Kendall, Martirosyan, Dasgupta and Henry: End-to-End Learning of Geometry and Context for Deep Stereo Regression. ICCV, ³⁰ 2017.

Multi-view stereo

MVS Goal: To find a 3D shape that explains the images.

Image credit: Svetlana Lazebnik Yasutaka Furukawa Carlos Hernandez: Multi-View Stereo: A Tutorial

PMVS in one slide :)

- 1. Detect keypoints
- 2. Triangulate a sparse set of initial matches
- 3. Iteratively expand matches to nearby locations
- 4. Use visibility constraints to filter out false matches
- 5. Perform surface reconstruction

1. Divide grid to cells (32x32)

2. Use Harris Detector and DoG to find corners

3. Try to find 4 good corners in each cell (uniform overage)

Patch Geometry

Patch Model

c(p): center of the patch
n(p): normal of the patch
R(p): reference image with p

h(p, I, R(p)) = 1 - NCC(p, I, R(p))

$$g(p) = \frac{1}{|V(p) \setminus R(p)|} \sum_{I \in V(p) \setminus R(p)} h(p, I, R(p))$$

V(p): initial set of images where patch p is potentially visible

Photometric Discrepancy Function

$$\begin{array}{lll} V^*(p) &=& \{I | I \in V(p), h(p, I, R(p)) \leq \alpha\}, \\ g^*(p) &=& \frac{1}{|V^*(p) \setminus R(p)|} \sum_{I \in V^*(p) \setminus R(p)} h(p, I, R(p)). \end{array}$$

V(p): set of images where patch is truly visible

h(p, I, R(p)) = 1 - NCC(p, I, R(p))

Patch optimization

$$g^*(p) = rac{1}{|V^*(p) \setminus R(p)|} \sum_{I \in V^*(p) \setminus R(p)} h(p, I, R(p))$$

Optimize over c(p) and n(p) that minimizes $g^*(p)$

Expansion

Identify neighboring cells for possible expansion
 Test if there is already patch very close to that region
 Test for depth discontinuity

3. Occlusion check

VisualSFM+PMVS

Differential homography

a) crop b) manual labeling c)homography

Flaggelation Piero della Francesca

$$\mathbf{p}_{i,j} = \mathbf{K}_i \cdot (\mathbf{R}_{0,i} \cdot (\mathbf{K}_0^{-1} \cdot \mathbf{p} \cdot d_j) + \mathbf{t}_{0,i})$$

Criminisi et al. Bringing Pictorial Space to Life: Computer Techniques for the Analysis of Paintings. 2002.

Multi-view stereo - plane sweep stereo

Multi-view stereo - plane sweep stereo

Multi-view stereo - plane sweep stereo

MVSNET

Yao Yao et. al.: MVSNet: Depth Inference for Unstructured Multi-view Stereo. ECCV 2018

DDLMVS

This video demonstrates visual comparisons with <u>COLMAP</u> and <u>PatchmatchNet</u>

MVCAST

THANKS FOR LISTENING.