Lecture
 Reconstruct 3D Geometry

Liangliang Nan

Today's Agenda

- Review of Epipolar Geometry
- Reconstruct 3D Geometry
- 3D from 2 views
- Recover camera motion
- Triangulation
- 3D from more views
- Structure from motion
- Demo for Image Matching (Code available)

Review of Epipolar Geometry

- Baseline
- The line between the two camera centers O_{1} and O_{2}
- Epipolar plane
- Defined by $\mathrm{P}, \mathrm{O}_{1}$, and O_{2}; contains baseline and P
- Epipoles
$-\cap$ of baseline and image plane
- Projection of the other camera center
- Epipolar lines
$-\cap$ of epipolar plane with the image plane

Review of Epipolar Geometry

- Essential matrix
- Canonical camera assumption

$$
p^{\prime T} E p=0, \quad E=\left[\mathbf{t}_{\times}\right] R \quad K=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Fundamental matrix (most important concept in 3DV)

$$
p^{\prime T} F p=0, \quad F=K^{\prime-T}\left[\mathbf{t}_{\star}\right] R K^{-1}
$$

- Relate matching image points of different views
- No known 3D location and
- No known camera intrinsic and extrinsic parameters

Review of Epipolar Geometry

- Fundamental matrix
-3 by 3
- homogeneous (has scale ambiguity)
$-\operatorname{rank}(F)=2$
- The potential matching point is located on a line
- 7 degrees of freedom

$$
\mathbf{p}^{\prime T} F \mathbf{p}=0 \quad F=K^{\prime-T}\left[\mathbf{t}_{\times}\right] R K^{-1}
$$

Fundamental matrix has rank $2: \operatorname{det}(F)=0$.

Left : Uncorrected F - epipolar lines are not coincident.
Right: Epipolar lines from corrected F.

Review of Epipolar Geometry

- Recover F from corresponding image points
- 8 unknown parameters
- Each point pair gives a single linear constraint

Review of Epipolar Geometry

- Recover F from corresponding image points
- 8 unknown parameters
- Each point pair gives a single linear constraint
- 7-point algorithm does exist but less popular
-8-point algorithm ($\rightarrow=8$ pairs $) \rightarrow$ Normalized 8 -point algorithm
$\left[\begin{array}{lllllllll}u_{1} u_{1}^{\prime} & v_{1} u_{1}^{\prime} & u_{1}^{\prime} & u_{1} v_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1}^{\prime} & u_{1} & v_{1} & 1 \\ u_{2} u_{2}^{\prime} & v_{2} u_{2}^{\prime} & u_{2}^{\prime} & u_{2} v_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2}^{\prime} & u_{2} & v_{2} & 1 \\ u_{3} u_{3}^{\prime} & v_{3} u_{3}^{\prime} & u_{3}^{\prime} & u_{3} v_{3}^{\prime} & v_{3} v_{3}^{\prime} & v_{3}^{\prime} & u_{3} & v_{3} & 1 \\ u_{4} u_{4}^{\prime} & v_{4} u_{4}^{\prime} & u_{4}^{\prime} & u_{4} v_{4}^{\prime} & v_{4} v_{4}^{\prime} & v_{4}^{\prime} & u_{4} & v_{4} & 1 \\ u_{5} u_{5}^{\prime} & v_{5} u_{5}^{\prime} & u_{5}^{\prime} & u_{5} v_{5}^{\prime} & v_{5} v_{5}^{\prime} & v_{5}^{\prime} & u_{5} & v_{5} & 1 \\ u_{6} u_{6}^{\prime} & v_{6} u_{6}^{\prime} & u_{6}^{\prime} & u_{6} v_{6}^{\prime} & v_{6} v_{6}^{\prime} & v_{6}^{\prime} & u_{6} & v_{6} & 1 \\ u_{7} u_{7}^{\prime} & v_{7} u_{7}^{\prime} & u_{7}^{\prime} & u_{7} v_{7}^{\prime} & v_{7} v_{7}^{\prime} & v_{7}^{\prime} & u_{7} & v_{7} & 1 \\ u_{8} u_{8}^{\prime} & v_{8} u_{8}^{\prime} & u_{8}^{\prime} & u_{8} v_{8}^{\prime} & v_{8} v_{8}^{\prime} & v_{8}^{\prime} & u_{8} & v_{8} & 1\end{array}\right]\left[\begin{array}{c}F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33}\end{array}\right]=0$

$$
W \mathbf{f}=0
$$

Today's Agenda

- Review of Epipolar Geometry
- Reconstruct 3D Geometry

- 3D from 2 views
- Recover camera motion
- Triangulation
- 3D from more views
- Structure from motion
- Demo for Image Matching (Code available)

3D from 2 Views

- The general idea

Recover 3D coordinates from corresponding image points (assume camera parameters are known)

3D from 2 Views

- What information is needed?
- Corresponding image points \checkmark
- Image matching techniques
- Intrinsic camera parameters \checkmark
- Camera calibration
- Extrinsic camera parameters ?
- Recover from image points

$$
\begin{aligned}
& p^{\prime T} F p=0 \\
& F=K^{\prime-T}\left[\mathbf{t}_{\times}\right] R K^{-1}
\end{aligned}
$$

Today's Agenda

- Review of Epipolar Geometry
- Reconstruct 3D Geometry
- 3D from 2 views
- Recover camera motion
- Triangulation
- 3D from more views
- Structure from motion
- Demo for Image Matching (Code available)

Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Known intrinsic parameters
- Calibration
- Estimation + refinement

$$
\begin{aligned}
& F=K^{\prime-T}\left[\mathbf{t}_{\times}\right] R K^{-1} \\
& E=\left[\mathbf{t}_{\times}\right] R={K^{\prime}}^{\prime T} F K
\end{aligned}
$$

Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Relative pose from essential matrix

$$
E=\left[\mathbf{t}_{\times}\right] R
$$

Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
- SVD of E

$$
W=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
E=U D V^{\mathrm{T}}
$$

Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
- SVD of E
- determinant $(R)>0$
- Two potential values

$$
W=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
E=U D V^{\mathrm{T}}
$$

$$
R=\left(\operatorname{det} U W V^{T}\right) U W V^{T} \text { or }\left(\operatorname{det} U W^{T} V^{T}\right) U W^{T} V^{T}
$$

Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
- SVD of E
- determinant $(R)>0$
- Two potential values
- \mathbf{t} up to a sign

$$
W=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad E=U D V^{\mathrm{T}}
$$

- Two potential values
- Last column of U
- Corresponds to the smallest singular value

$$
R=\left(\operatorname{det} U W V^{T}\right) U W V^{T} \text { or }\left(\operatorname{det} U W^{T} V^{T}\right) U W^{T} V^{T}
$$

$$
t= \pm U\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]= \pm u_{3}
$$

Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
- R : two potential values
$-\mathbf{t}$: two potential values

(a)

(d)

Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
- R : two potential values
- t: two potential values
- 3D points must be in front of both cameras

(a)

(d)

Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
- R : two potential values
- t: two potential values
- 3D points must be in front of both cameras
- Reconstruct 3D points
- using all potential pairs of R and \mathbf{t}
- Count the number of points in front of cameras
- The pair giving max front points is correct

(a)

(d)

Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
- R : two potential values
- t: two potential values
- 3D points must be in front of both cameras
- First camera
$-P . z>0$?
- Second camera
$-P$ in $2^{\text {nd }}$ camera's coordinate system: $Q=R * P+\mathbf{t}$
$-Q . z>0$?

Today's Agenda

- Review of Epipolar Geometry
- Reconstruct 3D Geometry
- 3D from 2 views
- Recover camera motion
- Triangulation
- 3D from more views
- Structure from motion
- Demo for Image Matching (Code available)

Triangulation

- 3D point from its projection into two views
- Compute two lines of sight from K, R, and \mathbf{t}
- In theory, P is the \cap of the two lines of sight

Triangulation

- 3D point from its projection into two views
- Compute two lines of sight from K, R, and \mathbf{t}
- In theory, P is the \cap of the two lines of sight
- Straightforward and mathematically sound
- Does not work well
- Noise in observation
$-K, R, \mathbf{t}$ are not precise

Triangulation

- 3D point from its projection into two views
- Compute two lines of sight from K, R, and \mathbf{t}
- In theory, P is the \cap of the two lines of sight
- Straightforward and mathematically sound
- Does not work well
- Noise in observation
$-K, R, \mathrm{t}$ are not precise
- Two approaches for triangulation
- A linear method
- A non-linear method

A Linear Method for Triangulation

Two image points

$$
\mathbf{p}=M \mathbf{P}=(x, y, 1) \text { and } \mathbf{p}^{\prime}=M^{\prime} \mathbf{P}=\left(x^{\prime}, y^{\prime}, 1\right)
$$

By the definition of the cross product

$$
\mathbf{p} \times(M \mathbf{P})=0
$$

A Linear Method for Triangulation

Two image points

$$
\mathbf{p}=M \mathbf{P}=(x, y, 1) \text { and } \mathbf{p}^{\prime}=M^{\prime} \mathbf{P}=\left(x^{\prime}, y^{\prime}, 1\right)
$$

By the definition of the cross product

$$
\begin{gathered}
\mathbf{p} \times(M \mathbf{P})=0 \\
x\left(\mathbf{m}_{3}^{T} \mathbf{P}\right)-\left(\mathbf{m}_{1}^{T} \mathbf{P}\right)=0 \\
y\left(\mathbf{m}_{3}^{T} \mathbf{P}\right)-\left(\mathbf{m}_{2}^{T} \mathbf{P}\right)=0 \\
x\left(\mathbf{m}_{2}^{T} \mathbf{P}\right)-y\left(\mathbf{m}_{1}^{T} \mathbf{P}\right)=0
\end{gathered}
$$

Solve for P?

A Linear Method for Triangulation

Two image points

$$
\mathbf{p}=M \mathbf{P}=(x, y, 1) \text { and } \mathbf{p}^{\prime}=M^{\prime} \mathbf{P}=\left(x^{\prime}, y^{\prime}, 1\right)
$$

By the definition of the cross product

$$
\mathbf{p} \times(M \mathbf{P})=0
$$

Similar constraints from p^{\prime} and M^{\prime}

$$
\begin{aligned}
x\left(\mathbf{m}_{3}^{T} \mathbf{P}\right)-\left(\mathbf{m}_{1}^{T} \mathbf{P}\right) & =0 \\
y\left(\mathbf{m}_{3}^{T} \mathbf{P}\right)-\left(\mathbf{m}_{2}^{T} \mathbf{P}\right) & =0 \\
x\left(\mathbf{m}_{2}^{T} \mathbf{P}\right)-y\left(\mathbf{m}_{1}^{T} \mathbf{P}\right) & =0
\end{aligned}
$$

$$
A P=0
$$

A Linear Method for Triangulation

- Advantages
- Easy to solve and very efficient

$$
A P=0
$$

- Any number of corresponding image points
- Can handle multiple views
- Used as initialization to advanced methods

$$
A=\left[\begin{array}{c}
x \mathbf{m}_{3}^{T}-\mathbf{m}_{1}^{T} \\
y \mathbf{m}_{3}^{T}-\mathbf{m}_{2}^{T} \\
x^{\prime} \mathbf{m}_{3}^{\prime T}-\mathbf{m}_{1}^{\prime T} \\
y^{\prime} \mathbf{m}_{3}^{\prime T}-\mathbf{m}_{2}^{\prime T}
\end{array}\right]
$$

The Non-linear Method for Triangulation

- Minimize the reprojection error

$$
\min _{\hat{\mathbf{P}}}\|M \hat{\text { Reprojection error }} \boldsymbol{\|}-\mathbf{p}\|^{2}+\left\|M^{\prime} \hat{\mathbf{P}}-\mathbf{p}^{\prime}\right\|^{2}
$$

- Gauss-Newton's method
- Levenberg-Marquardt

Today's Agenda

- Review of Epipolar Geometry
- Reconstruct 3D Geometry
-3D from 2 views
- Recover camera motion
- Triangulation
- 3D from more views
- Structure from motion
- Demo for Image Matching (Code available)

Structure from Motion

- Structure?
- 3D geometry of the scene/object
- Motion?
- Camera locations and orientations

Structure from Motion

- Structure
- 3D geometry of the scene/object
- Motion
- Camera locations and orientations
- Structure from Motion
- Compute the geometry from moving cameras
- Simultaneously recovering structure and motion

Structure from Motion

Bundle Adjustment

- Minimize sum of squared re-projection errors:

> indicator variable:
> is point i visible in image j ?

Bundle Adjustment

- Minimize sum of squared re-projection errors:

$$
g(\mathbf{X}, \mathbf{R}, \mathbf{T})=\sum_{i=1}^{m} \sum_{j=1}^{n} w_{i j} \cdot\left\|\mathbf{P}\left(\mathbf{x}_{i}, \mathbf{R}_{j}, \mathbf{t}_{j}\right)-\left[\begin{array}{l}
u_{i, j} \\
v_{i, j}
\end{array}\right]\right\|^{2}
$$

- Minimizing this function is called bundle adjustment
- Optimized using non-linear least squares,
e.g., Levenberg-Marquardt

Bundle Adjustment

- Minimize sum of squared re-projection errors:

$$
g(\mathbf{X}, \mathbf{R}, \mathbf{T})=\sum_{i=1}^{m} \sum_{j=1}^{n} w_{i j} \cdot\left\|\mathbf{P}\left(\mathbf{x}_{i}, \mathbf{R}_{j}, \mathbf{t}_{j}\right)-\left[\begin{array}{l}
u_{i, j} \\
v_{i, j}
\end{array}\right]\right\|^{2}
$$

- Minimizing this function is called bundle adjustment
- Initialization
- From chained 2-view reconstruction
- Relative motion can be estimated from the corresponding images points
- 3D points can be estimated from the relative motion using triangulation
- Global optimization techniques allow poses and 3D structure are initialized arbitrarily.

Bundle Adjustment

- What are the variables?
- Camera intrinsic parameters, extrinsic parameters
- Coordinates of the 3D points
- How many variables per camera?
- How many variables per point?

500 input photos
100,000 3D points
= Very large optimization problem

Incremental SfM

Structure from Motion

Failure Cases

- Repetitive structures

Today's Agenda

- Review of Epipolar Geometry
- Reconstruct 3D Geometry
-3D from 2 views
- Recover camera motion
- Triangulation
- 3D from more views
- Structure from motion
- Demo for Image Matching (Code available)

Image Matching

- Find Corresponding Image Points
- Key points
- Image descriptors
- Matching

Image Matching

- SIFT

David Lowe

\checkmark FOLLOW
Professor Emeritus, Computer Science Dept., University of British Columbia Verified email at cs.ubc.ca - Homepage
Computer Vision Object Recognition

```
TITLE
```

CITED BY YEAR

| Distinctive image features from scale-invariant keypoints
 DG Lowe
 International journal of computer vision $60(2), 91-110$ | 2004 |
| :--- | ---: | :--- |
| Object recognition from local scale-invariant features
 DG Lowe
 International Conference on Computer Vision, 1999, 1150-1157 | 24092 |

Lab: Image matching

A2: Triangulation

Next Lecture

- Multi-view Stereo
- Obtaining dense point clouds

Images + camera information

Dense 3d point cloud

