

GEO1016 Photogrammetry and 3D Computer Vision

Lecture Epipolar Geometry

Liangliang Nan

Today's Agenda

- Review Camera calibration
- Epipolar geometry

- Camera calibration
 - Recovering K
 - Recovering R and t

- How many parameters to recover?
 - 5 intrinsic parameters
 - 2 for focal length
 - 2 for offset
 - 1 for skewness
 - 6 extrinsic parameters
 - 3 for rotation
 - 3 for translation

$$\mathbf{p} = M\mathbf{P}$$
$$= K \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \mathbf{P}$$

$$K = \begin{bmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix}, R = \begin{bmatrix} \mathbf{r}_1^T \\ \mathbf{r}_2^T \\ \mathbf{r}_3^T \end{bmatrix}, \mathbf{t} = \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix}$$

- Parameters to recover: 11
- Corresponding 3D-2D point pairs
 - Each 3D-2D point pair -> 2 constraints
 - 11 unknown -> 6 point correspondence
 - Use more to handle noisy data

$$\mathbf{p}_{i} = \begin{bmatrix} u_{i} \\ v_{i} \end{bmatrix} = M\mathbf{P}_{i} = \begin{bmatrix} \frac{\mathbf{P}_{i}^{T}\mathbf{m}_{1}}{\mathbf{P}_{i}^{T}\mathbf{m}_{3}} \\ \frac{\mathbf{P}_{i}^{T}\mathbf{m}_{2}}{\mathbf{P}_{i}^{T}\mathbf{m}_{3}} \end{bmatrix} \implies \mathbf{P}_{i}^{T}\mathbf{m}_{1} - u_{i}(\mathbf{P}_{i}^{T}\mathbf{m}_{3}) = 0$$

0

- Parameters to recover: 11
- Corresponding 3D-2D point pairs: >= 6
- How to solve it?
 - $-\mathbf{m} = 0$ is always a trivial solution
 - If $\mathbf{m} \neq 0$ is a solution, then any $k * \mathbf{m}$ is also a solution

$$\begin{bmatrix} \mathbf{P}_1^T & \mathbf{0}^T & -u_1 \mathbf{P}_1^T \\ \mathbf{0}^T & \mathbf{P}_1^T & -v_1 \mathbf{P}_1^T \\ \vdots & & \\ \mathbf{P}_n^T & \mathbf{0}^T & -u_n \mathbf{P}_n^T \\ \mathbf{0}^T & \mathbf{P}_n^T & -v_n \mathbf{P}_n^T \end{bmatrix} \begin{bmatrix} \mathbf{m}_1^T \\ \mathbf{m}_2^T \\ \mathbf{m}_3^T \end{bmatrix} = P\mathbf{m} = \mathbf{0}$$

- Parameters to recover: 11
- Corresponding 3D-2D point pairs: >= 6
- How to solve it?
 - $-\mathbf{m} = 0$ is always a trivial solution
 - If $\mathbf{m} \neq 0$ is a solution, then any $k * \mathbf{m}$ is also a solution
 - Constrained optimization

$$\begin{bmatrix} \mathbf{P}_1^T & \mathbf{0}^T & -u_1 \mathbf{P}_1^T \\ \mathbf{0}^T & \mathbf{P}_1^T & -v_1 \mathbf{P}_1^T \\ \vdots & & \\ \mathbf{P}_n^T & \mathbf{0}^T & -u_n \mathbf{P}_n^T \\ \mathbf{0}^T & \mathbf{P}_n^T & -v_n \mathbf{P}_n^T \end{bmatrix} \begin{bmatrix} \mathbf{m}_1^T \\ \mathbf{m}_2^T \\ \mathbf{m}_3^T \end{bmatrix} = P\mathbf{m} = 0 \quad \Longrightarrow$$

$$\begin{array}{ll} \underset{\mathbf{m}}{\text{minimize}} & \|P\mathbf{m}\|^2\\ \text{subject to} & \|\mathbf{m}\|^2 = 1 \end{array}$$

Solved using SVD

Last column of V gives m

(Why? See page 593 of <u>Hartley & Zisserman</u>. Multiple view geometry in computer vision)

Intrinsic parameters:

$$\rho = \pm \frac{1}{\|\mathbf{a}_3\|}$$

$$c_x = \rho^2 (\mathbf{a_1} \cdot \mathbf{a_3})$$

$$c_y = \rho^2 (\mathbf{a_2} \cdot \mathbf{a_3})$$

$$\cos \theta = -\frac{(\mathbf{a_1} \times \mathbf{a_3}) \cdot (\mathbf{a_2} \times \mathbf{a_3})}{\|\mathbf{a_1} \times \mathbf{a_3}\| \cdot \|\mathbf{a_2} \times \mathbf{a_3}\|}$$

$$\alpha = \rho^2 \|\mathbf{a_1} \times \mathbf{a_3}\| \sin \theta$$

$$\beta = \rho^2 \|\mathbf{a_2} \times \mathbf{a_3}\| \sin \theta$$

Extrinsic parameters:

$$\mathbf{r_1} = \frac{\mathbf{a_2} \times \mathbf{a_3}}{\|\mathbf{a_2} \times \mathbf{a_3}\|}$$
$$\mathbf{r_3} = \rho \mathbf{a_3}$$
$$\mathbf{r_2} = \mathbf{r_3} \times \mathbf{r_1}$$
$$\mathbf{t} = \rho K^{-1} \mathbf{b}$$

- Not always solvable
 - $\{P_i\}$ cannot lie on the same plane
 - $\{P_i\}$ cannot lie on the intersection curve of two quadric surfaces

Which of the following will change the camera intrinsic matrix?

- (a) When zooming in.
- (b) When rotating the camera around its local origin.
- (c) When changing the resolution of the image.
- (d) When the camera is moved.

Which of the following will change the camera intrinsic matrix?

- (a) When zooming in. $[f_x, f_y]$
- (b) When rotating the camera around its local origin. R
- (c) When changing the resolution of the image. $[c_x, c_y]$ (d) When the camera is moved. **t**

$$K = \begin{bmatrix} f_x & S & C_x \\ 0 & f_y & C_y \\ 0 & 0 & 1 \end{bmatrix}$$

Today's Agenda

- Review Camera calibration
- Epipolar geometry

Recovering 3D Geometry

TUDelft 3Dgeoinfo

- Camera calibration from a single view
 - Camera intrinsic parameters
 - Camera orientation s
 - Camera translation

Recovering 3D Geometry

- Camera calibration from a single view
- Recover 3D geometry from a single view?
 - No: due to ambiguity of 3D -> 2D mapping

Core Problems in Recovering 3D Geometry

- Image correspondences: find the corresponding points in two or more images – code, lab exercise
- Calibration: given corresponding points in images, recover the relation of the cameras.
 Epipolar Geometry
- Recover scene geometry: find coordinates of 3D point from its projections onto 2 or multiple images – next lecture

- The geometry of stereo vision
 - Camera model relates 3D points and corresponding images points
 - Geometric relations between the corresponding image points
 - Define constraints between the image points

• Baseline

– The line between the two camera centers O_1 and O_2

- Baseline
 - The line between the two camera centers O_1 and O_2
- Epipolar plane
 - Defined by P, O_1 , and O_2 ; contains baseline and P

- Baseline
 - The line between the two camera centers O_1 and O_2
- Epipolar plane
 - Defined by P, O_1 , and O_2 ; contains baseline and P
- Epipoles
 - \cap of baseline and image plane
 - Projection of the other camera center

- Baseline
 - The line between the two camera centers O_1 and O_2
- Epipolar plane
 - Defined by P, O_1 , and O_2 ; contains baseline and P
- Epipoles
 - \cap of baseline and image plane
 - Projection of the other camera center
- Epipolar lines
 - \cap of epipolar plane with the image plane

- Examples
 - Parallel image planes (a special case)
 - Baseline is parallel to the image plane
 - Baseline intersects the image plane at infinity \rightarrow epipoles are at infinity
 - Epipolar lines are parallel to U-axis of image plane

23

- Examples
 - Converging image planes (most common case)
 - All epipolar lines intersect at the epipole
- all epipolar lines lie on epipolar planes
- all epipolar planes intersect at baseline
- base line intersect the image plane at epipole

- The relations between different views?
 - How to use for recovering 3D geometry?
 - Unknown: 3D points
 - Known: image points; camera parameters (from camera calibration)

- Constraints between images (without knowing 3D geometry)
 - O_1, O_2 , image point \rightarrow epipolar plane \rightarrow epipolar line (no known 3D)
 - Epipolar line determined by just camera centers and point in one image
 - The image point on the second image must be on its epipolar line

- Given a point on left image, what are the potential locations of the corresponding point on right image?
 - have to lie on the corresponding epipolar line of the other image
- Model of the relation between corresponding image points

- The relationship between corresponding image points
 - The world reference system aligned with the left camera
 - The right camera has orientation R and offset t

• The relationship between corresponding image points

- Canonical cameras
$$(K = K' = I)$$

 $M = K[I \ 0] \rightarrow M = [I \ 0]$ $M' = K'[R \ t] \rightarrow M' = [R \ t]$
p' in camera 1's coordinate system ?

• The relationship between corresponding image points

- Canonical cameras (
$$K = K' = I$$
)
 $M = \begin{bmatrix} I & 0 \end{bmatrix}$ $M' = \begin{bmatrix} R & \mathbf{t} \end{bmatrix}$

p' in camera 1's coordinate system

 $R^{T}(\mathbf{p}'-\mathbf{t})$

O₂ in camera 1's coordinate system

- The relationship between corresponding image points
 - Canonical cameras (K = K' = I) $M = \begin{bmatrix} I & 0 \end{bmatrix}$ $M' = \begin{bmatrix} R & \mathbf{t} \end{bmatrix}$ Type equation here.

p' in camera 1's coordinate system

O₂ in camera 1's coordinate system

Normal of the epipolar plane

 $R^{T}(\mathbf{p}'-\mathbf{t})$

- The relationship between corresponding image points
 - Canonical cameras (K = K' = I) $M = \begin{bmatrix} I & 0 \end{bmatrix}$ $M' = \begin{bmatrix} R & \mathbf{t} \end{bmatrix}$
- p' in camera 1's coordinate system

 $R^T(\mathbf{p}'-\mathbf{t})$

 $\mathbf{O_2}$ in camera 1's coordinate system

Normal of the epipolar plane

$$O_1 p$$
 lies in the epipolar plane

$$R^T(\mathbf{O_2} - \mathbf{t}) = -R^T \mathbf{t}$$

$$R^{T}\mathbf{t} \times [R^{T}(\mathbf{p}'-\mathbf{t})] = R^{T}(\mathbf{t} \times \mathbf{p}')$$

- The relationship between corresponding image points
 - Canonical cameras (K = K' = I) $M = \begin{bmatrix} I & 0 \end{bmatrix}$ $M' = \begin{bmatrix} R & \mathbf{t} \end{bmatrix}$
- p' in camera 1's coordinate system
- **O**₂ in camera 1's coordinate system
- Normal of the epipolar plane
- $\boldsymbol{O_1p}$ lies in the epipolar plane

$$R^T(\mathbf{0}_2 - \mathbf{t}) = -R^T \mathbf{t}$$

 $R^{T}(\mathbf{p}'-\mathbf{t})$

$$R^{T}\mathbf{t} \times [R^{T}(\mathbf{p}' - \mathbf{t})] = R^{T} (\mathbf{t} \times \mathbf{p}')$$
$$[R^{T} (\mathbf{t} \times \mathbf{p}')]^{T}\mathbf{p} = 0$$

- Canonical cameras (K = K' = I)

 $R^{T}\mathbf{t} \times [R^{T}(\mathbf{p}' - \mathbf{t})] = R^{T}(\mathbf{t} \times \mathbf{p}')$

• The relationship between corresponding image points

 $M = \begin{bmatrix} I & 0 \end{bmatrix} \quad M' = \begin{bmatrix} R & \mathbf{t} \end{bmatrix}$

Epipolar Constraint

p' in camera 1's coordinate system

O₂ in camera 1's coordinate system

Normal of the epipolar plane

O₁**p** lies in the epipolar plane

 $R^{T}(\mathbf{0}_{2}-\mathbf{t})=-R^{T}\mathbf{t}$

 $R^{T}(\mathbf{p}'-\mathbf{t})$

$$[R^T (\mathbf{t} \times \mathbf{p}')]^T \mathbf{p} = 0 \implies (\mathbf{t} \times \mathbf{p}')^T R \mathbf{p} = 0$$

- Canonical cameras (K = K' = I) $M = \begin{bmatrix} I & 0 \end{bmatrix}$ $M' = \begin{bmatrix} R & \mathbf{t} \end{bmatrix}$

p' in camera 1's coordinate system

 $R^T(\mathbf{p}'-\mathbf{t})$

O₂ in camera 1's coordinate system

Normal of the epipolar plane

 $O_1 p$ lies in the epipolar plane

 $R^T(\mathbf{0}_2 - \mathbf{t}) = -R^T \mathbf{t}$

 $R^{T}\mathbf{t} \times [R^{T}(\mathbf{p}' - \mathbf{t})] = R^{T} (\mathbf{t} \times \mathbf{p}')$ $[R^{T} (\mathbf{t} \times \mathbf{p}')]^{T}\mathbf{p} = 0 \implies (\mathbf{t} \times \mathbf{p}')^{T}R\mathbf{p} = 0 \implies ([\mathbf{t}_{\times}] \mathbf{p}')^{T}R\mathbf{p} = 0$

Cross product as matrix-vector multiplication

$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 0 & -\mathbf{a}_z & \mathbf{a}_y \\ \mathbf{a}_z & 0 & -\mathbf{a}_x \\ -\mathbf{a}_y & \mathbf{a}_x & 0 \end{bmatrix} \begin{bmatrix} \mathbf{b}_x \\ \mathbf{b}_y \\ \mathbf{b}_z \end{bmatrix} = [\mathbf{a}_{\times}]\mathbf{b}$$

 $[\mathbf{a}_{\times}]^{T} = -[\mathbf{a}_{\times}]$

• The relationship between corresponding image points

 $R^{T}(\mathbf{p}'-\mathbf{t})$

 $\mathbf{p}'^{T}[\mathbf{t}]R\mathbf{p}=0$

- Canonical cameras (K = K' = I) $M = \begin{bmatrix} I & 0 \end{bmatrix}$ $M' = \begin{bmatrix} R & \mathbf{t} \end{bmatrix}$
- **p'** in camera 1's coordinate system
- $\mathbf{O_2}$ in camera 1's coordinate system
- Normal of the epipolar plane
- $\mathbf{O}_{1}\mathbf{p}$ lies in the epipolar plane

ystem $R^{T}(\mathbf{0}_{2} - \mathbf{t}) = -R^{T}\mathbf{t}$ $R^{T}\mathbf{t} \times [R^{T}(\mathbf{p}' - \mathbf{t})] = R^{T}(\mathbf{t} \times \mathbf{p}')$ $[R^{T}(\mathbf{t} \times \mathbf{p}')]^{T}\mathbf{p} = 0 \implies (\mathbf{t} \times \mathbf{p}')^{T}R\mathbf{p} = 0 \implies ([\mathbf{t}]\mathbf{p}')^{T}R\mathbf{p} = 0$

- Essential matrix
 - Establish constraints between matching image points
 - Determine relative position and orientation of two cameras
 - 5 degrees of freedom (R: 3, t: 3, but scale is not known)

$$\mathbf{p}^{T}[\mathbf{t}_{\times}]R\mathbf{p} = 0$$

$$\mathbf{E} = [\mathbf{t}_{\times}]R$$

$$\mathbf{p}^{T}E\mathbf{p} = 0$$
Essential matrix

- How to generalize Essential matrix?
 - Canonical cameras \rightarrow general cameras

$$K = K' = I \qquad M = \begin{bmatrix} I & 0 \end{bmatrix} \qquad \mathbf{p} = M\mathbf{P} = \begin{bmatrix} I & 0 \end{bmatrix} \mathbf{P} \qquad \mathbf{p}'^T E\mathbf{p} = 0$$
$$M' = \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \qquad \mathbf{p}' = M'\mathbf{P} = \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \mathbf{P} \qquad \mathbf{E} = \begin{bmatrix} \mathbf{t} \\ \mathbf{x} \end{bmatrix} R$$
$$M' = K' \begin{bmatrix} R & \mathbf{t} \end{bmatrix}$$
$$K \neq I, K' \neq I$$

- How to generalize Essential matrix?
 - Canonical cameras \rightarrow general cameras

$$K = K' = I \qquad M = \begin{bmatrix} I & 0 \end{bmatrix} \qquad \mathbf{p} = M\mathbf{P} = \begin{bmatrix} I & 0 \end{bmatrix} \mathbf{P} \qquad \mathbf{p}'^T E\mathbf{p} = 0$$

$$M' = \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \qquad \mathbf{p}' = M'\mathbf{P} = \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \mathbf{P} \qquad \mathbf{E} = \begin{bmatrix} \mathbf{t} \\ \mathbf{x} \end{bmatrix} R$$

$$M' = K' \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \qquad \mathbf{p} = M\mathbf{P} = K \begin{bmatrix} I & 0 \end{bmatrix} \mathbf{P} \qquad \mathbf{p}' \to K^{-1} \mathbf{p}$$

$$\mathbf{p} = M\mathbf{P} = K \begin{bmatrix} I & 0 \end{bmatrix} \mathbf{P} \qquad \mathbf{p}' \to K^{-1} \mathbf{p}'$$

$$\mathbf{p}' = M'\mathbf{P} = K' \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \mathbf{P} \qquad \mathbf{p}' = K'^{-1} \mathbf{p}'$$

$$\mathbf{p}'^T F \mathbf{p} = 0$$

$$F = K'^{-T} [\mathbf{t}] R K^{-1}$$

- Essential matrix vs. Fundamental matrix
 - Similarity
 - Both relate the matching image points
 - Encode epipolar geometry of two views & camera parameters
 - Differences
 - *E* encodes only the camera extrinsic parameter
 - *F* also encodes the intrinsic parameters

 $\mathbf{p}^{T} E \mathbf{p} = 0 \qquad \mathbf{p}^{T} F \mathbf{p} = 0$ $E = [\mathbf{t}_{\times}] R \qquad F = K^{T-T} [\mathbf{t}_{\times}] R K^{-1}$

Essential matrix

Fundamental matrix

- Properties of the Fundamental matrix
 - 3 x 3
 - homogeneous (has scale ambiguity)
 - $-\operatorname{rank}(F) = 2$
 - The potential matching point is located on a line
 - -F has 7 degrees of freedom

$$\mathbf{p}^{\prime T} F \mathbf{p} = 0 \qquad F = K^{\prime - T} [\mathbf{t}_{\times}] R K^{-1}$$

Fundamental matrix has rank 2 : det(F) = 0.

Left: Uncorrected F - epipolar lines are not coincident.

Right: Epipolar lines from corrected F.

3Daeoinfa

- Properties of the Fundamental matrix
- How is the fundamental matrix useful?
 - A 3D point's image in one image -> the epipolar line in the other image
 - Without knowing 3D location, camera intrinsic and extrinsic parameters
 - Powerful tool
 - Establishing reliable correspondences
 - Multi-view object/scene matching
 - Multi-view camera calibration

$$\mathbf{p}^{\prime T} F \mathbf{p} = 0 \qquad F = K^{\prime - T} [\mathbf{t}_{\times}] R K^{-1}$$

• How to recover *F*?

– From image correspondences

$$\mathbf{p}^{\prime T} F \mathbf{p} = 0 \qquad F = K^{\prime - T} [\mathbf{t}_{\times}] R K^{-1}$$

- How to recover *F*?
 - From image correspondences
 - How many point pairs needed?

$$\mathbf{p}^{\prime T} F \mathbf{p} = 0 \qquad F = K^{\prime - T} [\mathbf{t}_{\times}] R K^{-1}$$

- How to recover *F*?
 - From image correspondences
 - 8-point pairs required
 - Each point pair gives one equation
 - F is known up to scale
 - The linear system is homogeneous

$$\begin{cases} \mathbf{p}_i = (u_i, v_i, 1) \\ \mathbf{p}'_i = (u'_i, v'_i, 1) \end{cases} \quad \mathbf{p}'^T F \mathbf{p} = 0$$

- How to recover *F*?
 - From image correspondences
 - 8-point pairs required
 - Each point pair gives one equation
 - F is known up to scale
 - The linear system is homogeneous

F has 7 degrees of freedom Are 7-point pairs sufficient?

$$\begin{cases} \mathbf{p}_i = (u_i, v_i, 1) \\ \mathbf{p}'_i = (u'_i, v'_i, 1) \end{cases} \quad \mathbf{p}'^T F \mathbf{p} = 0$$

• 8-point algorithm

$$\begin{bmatrix} u_i u_i' & v_i u_i' & u_i' & u_i v_i' & v_i v_i' & u_i & v_i & 1 \end{bmatrix}$$

$ F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} $	= 0										
$F_{31} \\ F_{32} \\ F_{33}$	$\begin{bmatrix} u_1 u_1' \\ u_2 u_2' \\ u_3 u_3' \\ u_4 u_4' \\ u_5 u_5' \\ u_6 u_6' \\ u_7 u_7' \\ u_8 u_8' \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$u_1' u_2' u_3' u_4' u_5' u_6' u_8'$	$u_{1}v'_{1} \\ u_{2}v'_{2} \\ u_{3}v'_{3} \\ u_{4}v'_{4} \\ u_{5}v'_{5} \\ u_{6}v'_{6} \\ u_{7}v'_{7} \\ u_{8}v'_{8} $	$\begin{array}{c} v_1v_1'\\ v_2v_2'\\ v_3v_3'\\ v_4v_4'\\ v_5v_5'\\ v_6v_6'\\ v_7v_7'\\ v_8v_8'\end{array}$	$v'_1 v'_2 v'_3 v'_4 v'_5 v'_6 v'_7 v'_8$	$egin{array}{c} u_1 \ u_2 \ u_3 \ u_4 \ u_5 \ u_6 \ u_7 \ u_8 \end{array}$	$v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \\ v_7 \\ v_8$	1 1 1 1 1 1 1	$\begin{bmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{bmatrix}$	= 0

- 8-point algorithm
 - Construct linear system using corresponding image points

 $W\mathbf{f} = 0$

$\begin{bmatrix} u_{1}u_{1}' & v_{1}u_{1}' & u_{1}' & u_{1}v_{1}' & v_{1}v_{1}' & v_{1}' & u_{1} & v_{1} & 1 \\ u_{2}u_{2}' & v_{2}u_{2}' & u_{2}' & u_{2}v_{2}' & v_{2}v_{2}' & u_{2} & v_{2} & 1 \\ u_{3}u_{3}' & v_{3}u_{3}' & u_{3}' & u_{3}v_{3}' & v_{3}v_{3}' & v_{3}' & u_{3} & v_{3} & 1 \\ u_{4}u_{4}' & v_{4}u_{4}' & u_{4}' & u_{4}v_{4}' & v_{4}v_{4}' & v_{4}' & u_{4}' & v_{4} & 1 \\ u_{5}u_{5}' & v_{5}u_{5}' & u_{5}' & u_{5}v_{5}' & v_{5}v_{5}' & v_{5}' & v_{5} & 1 \\ u_{6}u_{6}' & v_{6}u_{6}' & u_{6}' & u_{6}v_{6}' & v_{6}v_{6}' & v_{6}' & u_{6}' & v_{6} & 1 \\ u_{7}u_{7}' & v_{7}u_{7}' & u_{7}' & u_{7}v_{7}' & v_{7}v_{7}' & v_{7}' & u_{7}' & v_{7} & 1 \\ u_{8}u_{8}' & v_{8}u_{8}' & u_{8}' & u_{8}v_{8}' & v_{8}v_{8}' & v_{8}' & u_{8}' & v_{8}' & 1 \end{bmatrix} \begin{bmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{bmatrix}$	0
---	---

- 8-point algorithm
 - Construct linear system using corresponding image points
 - Solve for ${\bf f}$ using SVD

 $W = USV^T$

Last column of V gives f

 $W\mathbf{f} = 0$

$\begin{bmatrix} u_1 u_1' \\ u_2 u_2' \\ u_3 u_3' \\ u_4 u_4' \\ u_5 u_5' \\ u_6 u_6' \\ u_7 u_7' \\ u_8 u_8' \end{bmatrix}$	$v_1u'_1 \\ v_2u'_2 \\ v_3u'_3 \\ v_4u'_4 \\ v_5u'_5 \\ v_6u'_6 \\ v_7u'_7 \\ v_8u'_8$	$u_1' u_2' u_3' u_4' u_5' u_6' u_7' u_8'$	$u_1v'_1 \\ u_2v'_2 \\ u_3v'_3 \\ u_4v'_4 \\ u_5v'_5 \\ u_6v'_6 \\ u_7v'_7 \\ u_8v'_8$	$v_1v'_1 \\ v_2v'_2 \\ v_3v'_3 \\ v_4v'_4 \\ v_5v'_5 \\ v_6v'_6 \\ v_7v'_7 \\ v_8v'_8$	$v'_1 v'_2 v'_3 v'_4 v'_5 v'_6 v'_7 v'_8$	$egin{array}{c} u_1 \ u_2 \ u_3 \ u_4 \ u_5 \ u_6 \ u_7 \ u_8 \end{array}$	$v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \\ v_7 \\ v_8$	1 1 1 1 1 1 1 1	$\begin{bmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{bmatrix}$	= 0
--	--	---	--	--	---	--	--	--------------------------------------	--	-----

- 8-point algorithm
 - Construct linear system using corresponding image points
 - Solve for ${\bf f}$ using SVD
 - Constraint enforcement (essential step)
 - rank(*F*) = 2

Fundamental matrix has rank 2 : det(F) = 0.

Left: Uncorrected F - epipolar lines are not coincident.

Right: Epipolar lines from corrected F.

- 8-point algorithm
 - Construct linear system using corresponding image points
 - Solve for ${\bf f}$ using SVD
 - Constraint enforcement (essential step)
 - rank(*F*) = 2

$$\hat{F} = UDV^T \quad D = \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix} \implies F = U \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & 0 \end{bmatrix} V^T$$

- Problems of 8-point algorithm
 - Sensitive to the origin of coordinates
 - Sensitive to scales

(568, 723)

Image taken using different focal lengths

- Problems of 8-point algorithm
 - Sensitive to the origin of coordinates
 - Sensitive to scales

 F_{12} F_{13} $F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33}$ = 0 $u_5 v_5$

250906.36	183269.57	921.81	200931.10	146766.13	738.21	272.19	198.81	1]	$\begin{bmatrix} F_{11} \\ F \end{bmatrix}$	
2692.28	131633.03	176.27	6196.73	302975.59	405.71	15.27	746.79	1	$\left \begin{array}{c} F_{12} \\ F \end{array} \right $	
416374.23	871684.30	935.47	408110.89	854384.92	916.90	445.10	931.81	1	$\begin{bmatrix} F_{13} \\ F \end{bmatrix}$	
191183.60	171759.40	410.27	416435.62	374125.90	893.65	465.99	418.65	1	$egin{array}{c c} m{r}_{21} \ m{F}_{22} \end{array}$	— (
48988.86	30401.76	57.89	298604.57	185309.58	352.87	846.22	525.15	1	$egin{array}{c c} F_{22} \\ F_{22} \end{array}$	— (
164786.04	546559.67	813.17	1998.37	6628.15	9.86	202.65	672.14	1	$F_{23} = F_{21}$	
116407.01	2727.75	138.89	169941.27	3982.21	202.77	838.12	19.64	1	F_{22}	
135384.58	75411.13	198.72	411350.03	229127.78	603.79	681.28	379.48	1	$ F_{33} $	

Poor numerical conditioning \rightarrow fix by scaling the data

- Normalized 8-point algorithm
 - Idea: normalize before constructing the equations
 - Translation: make centroid of image points at origin reduce translation effect
 - Scaling: make average distance of points from origin $\sqrt{2}$ \leftarrow reduce scaling effect

$$\mathbf{q}_i = T\mathbf{p}_i$$
$$\mathbf{q}'_i = T'\mathbf{q}'_i$$

8-point algorithm

- Normalized 8-point algorithm
 - Normalization of image points (essential step)
 - Solve for F_q using the original 8-point algorithm
 - F_q is the fundamental matrix computed form the normalized image points
 - Same procedure as in original 8-point algorithm

8-point algorithm

- Normalized 8-point algorithm
 - Normalization of image points (essential step)
 - Solve for F_q using the original 8-point algorithm
 - De-normalization (essential step)

 $\mathbf{q}'^T F_q \mathbf{q} = \mathbf{0}$

Normalized image points

$$\mathbf{q} = T\mathbf{p} \quad \mathbf{q}' = T'\mathbf{p}'$$

Original image points

$$(T'\mathbf{p}')^T F_q(T\mathbf{p}) = 0 \implies \mathbf{p}'^T (T'^T F_q T) \mathbf{p} = 0$$

 F_q : fundamental matrix computed form normalized image points

F

Next lecture

- 2-view 3D reconstruction
 - Camera calibration
 - Triangulation
- Structure from Motion
 - Go beyond two views
 - Simultaneously
 - recover 3D structure
 - Refine camera parameters

