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Today’s Agenda

• Review Camera calibration

• Epipolar geometry
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Review of Camera Calibration

• Camera calibration

– Recovering K

– Recovering R and t

3

Internal (intrinsic) parameters

External (extrinsic) parameters
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• How many parameters to recover?

– 5 intrinsic parameters

• 2 for focal length

• 2 for offset

• 1 for skewness

– 6 extrinsic parameters

• 3 for rotation

• 3 for translation

Review of Camera Calibration

4

𝐾 =
𝑓𝑥 𝑠 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

,
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Review of Camera Calibration

• Parameters to recover: 11

• Corresponding 3D-2D point pairs

– Each 3D-2D point pair -> 2 constraints

– 11 unknown -> 6 point correspondence

– Use more to handle noisy data

5
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Review of Camera Calibration

• Parameters to recover: 11

• Corresponding 3D-2D point pairs: >= 6

• How to solve it?

– m = 0 is always a trivial solution

– If m ≠ 0 is a solution, then any k * m is also a solution

6



c

Review of Camera Calibration

• Parameters to recover: 11

• Corresponding 3D-2D point pairs: >= 6

• How to solve it?

– m = 0 is always a trivial solution

– If m ≠ 0 is a solution, then any k * m is also a solution

– Constrained optimization

7



c

Review of Camera Calibration

• Solved using SVD

8

Last column of V gives m

(Why? See page 593 of Hartley & Zisserman. Multiple view geometry in computer vision)

http://scholar.google.nl/scholar?q=Hartley+%26+Zisserman&hl=en&as_sdt=0&as_vis=1&oi=scholart
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Review of Camera Calibration

9

Intrinsic parameters: Extrinsic parameters:
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Review of Camera Calibration

• Not always solvable

– {Pi} cannot lie on the same plane

– {Pi} cannot lie on the intersection curve of two quadric surfaces

10
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Quiz

Which of the following will change the camera intrinsic matrix?

(a) When zooming in.

(b) When rotating the camera around its local origin.

(c) When changing the resolution of the image.

(d) When the camera is moved.

11
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Quiz

Which of the following will change the camera intrinsic matrix?

(a) When zooming in. [fx, fy]

(b) When rotating the camera around its local origin. R

(c) When changing the resolution of the image. [cx, cy]

(d) When the camera is moved. t

12

𝐾 =
𝑓𝑥 𝑠 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1
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Today’s Agenda

• Review Camera calibration

• Epipolar geometry

13
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Recovering 3D Geometry

14

• Camera calibration from a single view

– Camera intrinsic parameters

– Camera orientation

– Camera translation

Sufficient to recover some 3D geometry from a single image?
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Recovering 3D Geometry

15

• Camera calibration from a single view

• Recover 3D geometry from a single view?

– No: due to ambiguity of 3D -> 2D mapping
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Core Problems in Recovering 3D Geometry

16

• Image correspondences: find the corresponding points in two
or more images – code, lab exercise

• Calibration: given corresponding points in images, recover the 
relation of the cameras.

• Recover scene geometry: find coordinates of 3D point from its
projections onto 2 or multiple images – next lecture

Epipolar Geometry
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Epipolar Geometry

17

• The geometry of stereo vision

– Camera model relates 3D points and corresponding images points

• Geometric relations between the corresponding image points
– Define constraints between the image points
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Epipolar Geometry

18

• Baseline

– The line between the two camera centers O1 and O2

The general setup of epipolar geometry
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Epipolar Geometry

19

• Baseline

– The line between the two camera centers O1 and O2

• Epipolar plane

– Defined by P, O1, and O2; contains baseline and P

The general setup of epipolar geometry



c

Epipolar Geometry

20

• Baseline

– The line between the two camera centers O1 and O2

• Epipolar plane

– Defined by P, O1, and O2; contains baseline and P

• Epipoles

– ∩ of baseline and image plane

– Projection of the other camera center

The general setup of epipolar geometry
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Epipolar Geometry

21

• Baseline

– The line between the two camera centers O1 and O2

• Epipolar plane

– Defined by P, O1, and O2; contains baseline and P

• Epipoles

– ∩ of baseline and image plane

– Projection of the other camera center

• Epipolar lines

– ∩ of epipolar plane with the image plane The general setup of epipolar geometry
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Epipolar Geometry

22

• Examples

– Parallel image planes (a special case)

• Baseline is parallel to the image plane

• Baseline intersects the image plane at infinity → epipoles are at infinity

• Epipolar lines are parallel to U-axis of image plane
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Epipolar Geometry

23

• Examples

– Converging image planes (most common case)

• All epipolar lines intersect at the epipole - all epipolar lines lie on epipolar planes
- all epipolar planes intersect at baseline
- base line intersect the image plane at epipole



c

Epipolar Geometry

24

• The relations between different views?

– How to use for recovering 3D geometry?

• Unknown: 3D points

• Known: image points; camera parameters (from camera calibration)



c

Epipolar Geometry

25

• Constraints between images (without knowing 3D geometry)

O1, O2, image point→ epipolar plane→ epipolar line (no known 3D)

– Epipolar line determined by just camera centers and point in one image

– The image point on the second image must be on its epipolar line
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Epipolar Constraint

26

• Given a point on left image, what are the potential locations of 
the corresponding point on right image?

– have to lie on the corresponding epipolar line of the other image

• Model of the relation between corresponding image points
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• The relationship between corresponding image points

– The world reference system aligned with the left camera

– The right camera has orientation R and offset t

Epipolar Constraint

27

𝑀 = 𝐾[𝐼 0]

Camera projection matrices

𝑀′ = 𝐾′[𝑅 𝐭]

𝐩 = 𝑀𝐏 =
𝑢
𝑣
1

𝐩′ = 𝑀′𝐏 =
𝑢′

𝑣′

1

Left camera Right camera
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Epipolar Constraint

28

• The relationship between corresponding image points

– Canonical cameras (𝐾 = 𝐾′ = 𝐼)

p’ in camera 1’s coordinate system

𝑀 = 𝐾 𝐼 0 → 𝑀 = 𝐼 0 𝑀′ = 𝐾′ 𝑅 𝐭 → 𝑀′ = [𝑅 𝐭]
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Epipolar Constraint

29

• The relationship between corresponding image points

– Canonical cameras (𝐾 = 𝐾′ = 𝐼)

O2 in camera 1’s coordinate system

p’ in camera 1’s coordinate system 𝑅𝑇(𝐩′ − 𝐭)

𝑀 = 𝐼 0 𝑀′ = [𝑅 𝐭]
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• The relationship between corresponding image points

– Canonical cameras (𝐾 = 𝐾′ = 𝐼)

𝑅𝑇 𝐎𝟐− 𝐭 = −𝑅𝑇𝐭

Epipolar Constraint

30

Normal of the epipolar plane

p’ in camera 1’s coordinate system

O2 in camera 1’s coordinate system

𝑅𝑇(𝐩′ − 𝐭)

𝑀 = 𝐼 0 𝑀′ = [𝑅 𝐭]
Type equation here.
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𝑅𝑇𝐭 × 𝑅𝑇 𝐩′ − 𝐭 = 𝑅𝑇 (𝐭 × 𝐩′)

Epipolar Constraint

31

• The relationship between corresponding image points

– Canonical cameras (𝐾 = 𝐾′ = 𝐼)

p’ in camera 1’s coordinate system

O2 in camera 1’s coordinate system

Normal of the epipolar plane

O1p lies in the epipolar plane

𝑅𝑇(𝐩′ − 𝐭)

𝑀 = 𝐼 0 𝑀′ = [𝑅 𝐭]

𝑅𝑇 𝐎𝟐− 𝐭 = −𝑅𝑇𝐭
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• The relationship between corresponding image points

– Canonical cameras (𝐾 = 𝐾′ = 𝐼)

𝑅𝑇 𝐭 × 𝐩′ 𝑇p= 0

Epipolar Constraint

32

p’ in camera 1’s coordinate system

O2 in camera 1’s coordinate system

Normal of the epipolar plane

O1p lies in the epipolar plane

𝑅𝑇(𝐩′ − 𝐭)

𝑅𝑇𝐭 × 𝑅𝑇 𝐩′ − 𝐭 = 𝑅𝑇 (𝐭 × 𝐩′)

𝑀 = 𝐼 0 𝑀′ = [𝑅 𝐭]

𝑅𝑇 𝐎𝟐− 𝐭 = −𝑅𝑇𝐭



c

𝑅𝑇 𝐭 × 𝐩′ 𝑇p= 0 𝐭 × 𝐩′ 𝑇𝑅p = 0

• The relationship between corresponding image points

– Canonical cameras (𝐾 = 𝐾′ = 𝐼)

Epipolar Constraint

33

p’ in camera 1’s coordinate system

O2 in camera 1’s coordinate system

Normal of the epipolar plane

O1p lies in the epipolar plane

𝑅𝑇(𝐩′ − 𝐭)

𝑅𝑇𝐭 × 𝑅𝑇 𝐩′ − 𝐭 = 𝑅𝑇 (𝐭 × 𝐩′)

𝑀 = 𝐼 0 𝑀′ = [𝑅 𝐭]

𝑅𝑇 𝐎𝟐− 𝐭 = −𝑅𝑇𝐭
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Epipolar Constraint

34

• The relationship between corresponding image points

– Canonical cameras (𝐾 = 𝐾′ = 𝐼) Cross product as matrix-vector multiplication

p’ in camera 1’s coordinate system

O2 in camera 1’s coordinate system

Normal of the epipolar plane

O1p lies in the epipolar plane

[a
×
]T=-[a

×
]

𝑅𝑇(𝐩′ − 𝐭)

𝑅𝑇𝐭 × 𝑅𝑇 𝐩′ − 𝐭 = 𝑅𝑇 (𝐭 × 𝐩′)

𝑅𝑇 𝐭 × 𝐩′ 𝑇p= 0 𝐭 × 𝐩′ 𝑇𝑅p = 0 [𝐭
×
] 𝐩′ 𝑇𝑅p = 0

𝑀 = 𝐼 0 𝑀′ = [𝑅 𝐭]

𝑅𝑇 𝐎𝟐− 𝐭 = −𝑅𝑇𝐭
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Epipolar Constraint
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• The relationship between corresponding image points

– Canonical cameras (𝐾 = 𝐾′ = 𝐼)

p’ in camera 1’s coordinate system

O2 in camera 1’s coordinate system

Normal of the epipolar plane

O1p lies in the epipolar plane

𝐩′𝑇[𝐭
×
]𝑅p = 0

𝑅𝑇(𝐩′ − 𝐭)

𝑅𝑇𝐭 × 𝑅𝑇 𝐩′ − 𝐭 = 𝑅𝑇 (𝐭 × 𝐩′)

𝑅𝑇 𝐭 × 𝐩′ 𝑇p= 0 𝐭 × 𝐩′ 𝑇𝑅p = 0 [𝐭
×
] 𝐩′ 𝑇𝑅p = 0

𝑀 = 𝐼 0 𝑀′ = [𝑅 𝐭]

𝑅𝑇 𝐎𝟐− 𝐭 = −𝑅𝑇𝐭
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Epipolar Constraint

36

• Essential matrix

– Establish constraints between matching image points

– Determine relative position and orientation of two cameras

– 5 degrees of freedom (R: 3, t: 3, but scale is not known)

Essential matrix

𝐩′𝑇[𝐭
×
]𝑅p = 0

𝐸 = [𝐭
×
]𝑅

𝐩′𝑇𝐸p = 0
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Epipolar Constraint

37

• How to generalize Essential matrix?

– Canonical cameras → general cameras

𝑀 = [𝐼 0]

𝑀′ = [𝑅 𝐭]
𝑀 = 𝐾[𝐼 0]

𝑀′ = 𝐾′[𝑅 𝐭]

𝐩′𝑇𝐸p = 0

𝐸 = [𝐭
×
]𝑅

p = 𝑀𝐏 = [𝐼 0]𝐏

𝐩′ = 𝑀′𝐏 = [𝑅 𝐭]𝐏

𝐾 = 𝐾′ = 𝐼

𝐾 ≠ 𝐼, 𝐾′ ≠ 𝐼
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Epipolar Constraint

38

• How to generalize Essential matrix?

– Canonical cameras → general cameras

𝑀 = [𝐼 0]

𝑀′ = [𝑅 𝐭]
𝑀 = 𝐾[𝐼 0]

𝑀′ = 𝐾′[𝑅 𝐭]

𝐩′𝑇𝐸p = 0

𝐸 = [𝐭
×
]𝑅

p = 𝑀𝐏 = [𝐼 0]𝐏

𝐩′ = 𝑀′𝐏 = [𝑅 𝐭]𝐏

p = 𝑀𝐏 = 𝐾[𝐼 0]𝐏

𝐩′ = 𝑀′𝐏 = 𝐾′[𝑅 𝐭]𝐏

p → 𝐾−1𝐩

𝐩′→ 𝐾′−1 𝐩′ 𝐩′𝑇𝐹p = 0

𝐹 = 𝐾′−𝑇[𝐭
×
]𝑅𝐾−1

𝐾 = 𝐾′ = 𝐼

𝐾 ≠ 𝐼, 𝐾′ ≠ 𝐼
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Epipolar Constraint

39

• Essential matrix vs. Fundamental matrix

– Similarity

• Both relate the matching image points
– Encode epipolar geometry of two views & camera parameters

– Differences

• E encodes only the camera extrinsic parameter

• F also encodes the intrinsic parameters

𝐩′𝑇𝐸p = 0

𝐸 = [𝐭
×
]𝑅

𝐩′𝑇𝐹p = 0

𝐹 = 𝐾′−𝑇[𝐭
×
]𝑅𝐾−1

Essential matrix Fundamental matrix 
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Epipolar Constraint

40

• Properties of the Fundamental matrix

– 3 x 3

– homogeneous (has scale ambiguity)

– rank(F) = 2

• The potential matching point is located on a line

– F has 7 degrees of freedom

𝐩′𝑇𝐹p = 0 𝐹 = 𝐾′−𝑇[𝐭
×
]𝑅𝐾−1
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Epipolar Constraint

41

• Properties of the Fundamental matrix

• How is the fundamental matrix useful?

– A 3D point’s image in one image -> the epipolar line in the other image

• Without knowing 3D location, camera intrinsic and extrinsic parameters

– Powerful tool

• Establishing reliable correspondences

• Multi-view object/scene matching

• Multi-view camera calibration

𝐩′𝑇𝐹p = 0 𝐹 = 𝐾′−𝑇[𝐭
×
]𝑅𝐾−1
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𝐩′𝑇𝐹p = 0 𝐹 = 𝐾′−𝑇[𝐭
×
]𝑅𝐾−1

Recovering Fundamental Matrix

42

• How to recover F?

– From image correspondences
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Recovering Fundamental Matrix

43

• How to recover F?

– From image correspondences

– How many point pairs needed?

𝐩′𝑇𝐹p = 0 𝐹 = 𝐾′−𝑇[𝐭
×
]𝑅𝐾−1
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Recovering Fundamental Matrix

44

• How to recover F?

– From image correspondences

– 8-point pairs required

• Each point pair gives one equation

• F is known up to scale
– The linear system is homogeneous

𝐩′𝑇𝐹 𝐩 = 0ቊ
𝐩𝑖 = (𝑢𝑖 , 𝑣𝑖 , 1)

𝒑𝒊
′ = (𝑢𝑖

′, 𝑣𝑖
′, 1)
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Recovering Fundamental Matrix

45

• How to recover F?

– From image correspondences

– 8-point pairs required

• Each point pair gives one equation

• F is known up to scale
– The linear system is homogeneous

F has 7 degrees of freedom

Are 7-point pairs sufficient?

𝐩′𝑇𝐹 𝐩 = 0ቊ
𝐩𝑖 = (𝑢𝑖 , 𝑣𝑖 , 1)

𝒑𝒊
′ = (𝑢𝑖

′, 𝑣𝑖
′, 1)
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Recovering Fundamental Matrix

46

• 8-point algorithm
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Recovering Fundamental Matrix

47

• 8-point algorithm

– Construct linear system using corresponding image points

How to solve it?
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Recovering Fundamental Matrix

48

• 8-point algorithm

– Construct linear system using corresponding image points

– Solve for f using SVD

Last column of V gives f

𝑊 = 𝑈𝑆𝑉𝑇
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Recovering Fundamental Matrix

49

• 8-point algorithm

– Construct linear system using corresponding image points

– Solve for f using SVD

– Constraint enforcement (essential step)

• rank(F) = 2
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Recovering Fundamental Matrix

50

• 8-point algorithm

– Construct linear system using corresponding image points

– Solve for f using SVD

– Constraint enforcement (essential step)

• rank(F) = 2
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Recovering Fundamental Matrix

51

• Problems of 8-point algorithm

– Sensitive to the origin of coordinates

– Sensitive to scales

Same scale, different origins (i.e., camera translation) Image taken using different focal lengths

(568, 723) (284, 366)
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Recovering Fundamental Matrix

52

• Problems of 8-point algorithm

– Sensitive to the origin of coordinates

– Sensitive to scales

Poor numerical conditioning→ fix by scaling the data
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• 8-point algorithm

• Normalized 8-point algorithm

– Idea: normalize before constructing the equations

• Translation: make centroid of image points at origin reduce translation effect

• Scaling: make average distance of points from origin 2 reduce scaling effect

Recovering Fundamental Matrix

53

𝐪𝑖 = 𝑇𝐩𝑖
𝐪𝑖
′ = 𝑇′𝐪𝑖

′
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Recovering Fundamental Matrix

54

• 8-point algorithm

• Normalized 8-point algorithm

– Normalization of image points (essential step)

– Solve for 𝐹𝑞 using the original 8-point algorithm

• 𝐹𝑞 is the fundamental matrix computed form the normalized image points

• Same procedure as in original 8-point algorithm
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Recovering Fundamental Matrix

55

• 8-point algorithm

• Normalized 8-point algorithm

– Normalization of image points (essential step)

– Solve for 𝐹𝑞 using the original 8-point algorithm

– De-normalization (essential step)

𝑇′𝐩′ 𝑇𝐹𝑞(𝑇𝐩) = 0 𝐩′𝑇(𝑇′𝑇𝐹𝑞𝑇)𝐩 = 0

𝐹

Normalized image points

𝐪′𝑇𝐹𝑞 𝐪 = 0

𝐪 = 𝑇𝐩 𝐪′ = 𝑇′𝐩′

Original image points 𝐹𝑞: fundamental matrix computed form normalized image points
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Next lecture

56

• 2-view 3D reconstruction

– Camera calibration

– Triangulation

• Structure from Motion

– Go beyond two views

– Simultaneously

• recover 3D structure 

• Refine camera parameters
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