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Today’s Agenda

• Review: Camera models

• Camera calibration

• A1: Camera calibration
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A color image: R, G, B channels

“vector-valued” function

Images
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Pinhole camera model



c

Pinhole camera model

• 3D point P = (X, Y, Z)T projected to 2D image p = (x, y)T
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camera coordinate

system

𝑥 = 𝑓
𝑋

𝑍
, y = 𝑓

𝑌

𝑍
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Perspective projection model

• Pinhole camera

• Change of unit: physical measurements -> pixels
– If k = l, camera sensor’s pixels are exactly square
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- x, y: image coordinates (pixels)

- k, l: scale parameters (pixels/mm)

- f : focal length (mm)

𝑥 = 𝑓
𝑋

𝑍
, y = 𝑓

𝑌

𝑍

Denote 𝛼 = 𝑘𝑓, 𝛽 = 𝑙𝑓

𝑥 = 𝛼
𝑋

𝑍
, y = 𝛽

𝑌

𝑍

𝑥 = 𝑘𝑓
𝑋

𝑍
, y = 𝑙𝑓

𝑌

𝑍
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Perspective projection model

• Pinhole camera

• Change of unit: physical measurements -> pixels

• Change of coordinate system
– Image plane coordinates have origin at image center

– Digital image coordinates have origin at top-left corner
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𝑥 = 𝑓
𝑋

𝑍
, y = 𝑓

𝑌

𝑍
𝑥 = 𝛼

𝑋

𝑍
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𝑌

𝑍

𝑥 = 𝛼
𝑋

𝑍
+ 𝑐𝑥, y = 𝛽

𝑌

𝑍
+ 𝑐𝑦
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Perspective projection model

• Pinhole camera

• Change of unit: physical measurements -> pixels

• Change of coordinate system

• Account for skewness
– Image frame may not be exactly rectangular due to sensor manufacturing errors
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θ: skew angle between x- and y-axis

𝑥 = 𝑓
𝑋

𝑍
, y = 𝑓

𝑌

𝑍
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𝑋
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𝑌

𝑍
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𝑍
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𝑌

𝑍
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𝑥 = 𝛼
𝑋

𝑍
− 𝛼 cot 𝜃

𝑌

𝑍
+ 𝑐𝑥, y =

𝛽

sin 𝜃

𝑌

𝑍
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• Rewrite in matrix-vector product form

Perspective projection model

9Intrinsic  parameter  matrix

(homogeneous coordinates)

𝐏 = 𝑋, 𝑌, 𝑍 T , 𝐩 = 𝑥, 𝑦, 1 T

𝐩 = 𝐾𝐏, 𝐾 =

𝛼 −𝛼 cot 𝜃 𝑐𝑥
0

𝛽

sin 𝜃
𝑐𝑦

0 0 1

=
𝑓𝑥 𝑠 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

𝑥 = 𝛼
𝑋

𝑍
− 𝛼 cot 𝜃

𝑌

𝑍
+ 𝑐𝑥, y =

𝛽

sin 𝜃

𝑌

𝑍
+ 𝑐𝑦
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Perspective projection model

• Camera motion

– World frame may not align with the camera frame

– Camera can move and rotate
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1. Coordinates of 3D scene point in camera frame.

2. Coordinates of 3D scene point in world frame.

3. Rotation matrix of world frame in camera frame.

4. Position of world frame’s origin in camera frame.

𝐏𝐶 = 𝑅𝑊
𝐶 𝐏𝑊 + 𝐭𝑊

𝐶

Camera frame

World frame
1                  3           2              4               
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• The complete transformation

Perspective projection model
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Internal (intrinsic) parameters

External (extrinsic) parameters

- R: rotation matrix of the world coordinate system defined in the camera coordinate system

- t: the position of world coordinate system’s origin in camera coordinate system

(Note: t is often mistakenly interpreted as the position of the camera position in the world coordinate system)
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Today’s Agenda

• Review: Camera models

• Camera calibration

• A1: Camera calibration
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General Idea

• Why is camera calibration necessary?

– Given 3D scene, knowing the precise 3D to 2D projection requires

• Intrinsic and extrinsic parameters

– Reconstructing 3D geometry from images also requires these
parameters
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Internal (intrinsic) parameters

External (extrinsic) parameters
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General Idea

• Why is camera calibration necessary?

• What information do we have?

– Images only

14
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General Idea

• Why is camera calibration necessary?

• What information do we have?

• Camera calibration

– Recovering K

– Recovering R and t
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Internal (intrinsic) parameters

External (extrinsic) parameters
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General Idea
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• How many parameters to recover?

Internal (intrinsic) parameters

External (extrinsic) parameters
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General Idea
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• How many parameters to recover?

– How many intrinsic parameters?

Internal (intrinsic) parameters
𝐾 =

𝑓𝑥 𝑠 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1
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General Idea
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• How many parameters to recover?

– How many intrinsic parameters?

– How many extrinsic parameters?

External (extrinsic) parameters
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General Idea
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• How many parameters to recover: 11

– 5 intrinsic parameters

• 2 for focal lengths

• 2 for offset (image center, or principal point)

• 1 for skewness

– 6 extrinsic parameters

• 3 for rotation

• 3 for translation

𝐾 =
𝑓𝑥 𝑠 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

,
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General Idea
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• What information to use?

– Corresponding 3D-2D point pairs
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General Idea
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• What information to use?

– Corresponding 3D-2D point pairs

• How many pairs do we need?
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General Idea
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• What information to use?

– Corresponding 3D-2D point pairs

• How many pairs do we need?
– How much information does each pair of corresponding point provide?

m1, m2, m3: the three rows of the projection matrix M
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General Idea
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• What information to use?

– Corresponding 3D-2D point pairs

• How many pairs do we need?
– Each 3D-2D point pair -> 2 equations

– 11 unknown -> 6 point correspondence

– Use more to handle noisy data

m1, m2, m3: the three rows of the projection matrix M
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General Idea
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What is the dimension of the P matrix?
What is the dimension of m?

2n x 12

12 x 1

Constraints from one pair Equations from n pairs
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Details: the derivation of the linear system
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• The equations
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Details: the derivation of the linear system
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• The equations
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Details: the derivation of the linear system
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• The equations

Given n pairs of 3D-2D corresponding points

For every pair of 3D-2D corresponding points
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Details: the derivation of the linear system
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• The equations

Simplified notation
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General Idea
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• How to solve it?

– It is a homogeneous linear system

– It is overdetermined



c

General Idea
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• How to solve it?

– m = 0 is always a trivial solution

– If m ≠ 0 is a solution, then any k * m is also a solution
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General Idea
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• How to solve it?

– m = 0 is always a trivial solution

– If m ≠ 0 is a solution, then any k * m is also a solution

– Constrained optimization
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• Singular Value Decomposition

– Generalization of the eigen-decomposition of a square matrix to any 
m by n matrix 

SVD

𝑈: an m by m orthogonal matrix
𝐷: an m by n diagonal matrix; entries on diagonal called singular values
𝑉: an n by n orthogonal matrix
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SVD

Example (square matrix)

• Geometric meaning

A U D VT

Transformation Rotation Scaling Rotation
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Calibration: solve for projection matrix
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Last column of V gives m

(Why? See page 593 of Hartley & Zisserman. Multiple View Geometry in Computer Vision)

U2nx2n D2nx12 V
T

12x12

SVD of P

http://scholar.google.nl/scholar?q=Hartley+%26+Zisserman&hl=en&as_sdt=0&as_vis=1&oi=scholart
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Least-squares solution of homogeneous equations

35Page 593 of Hartley & Zisserman. Multiple View Geometry in Computer Vision

http://scholar.google.nl/scholar?q=Hartley+%26+Zisserman&hl=en&as_sdt=0&as_vis=1&oi=scholart
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Camera parameters from project matrix
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SVD-solved projection matrix is known up to scale, i.e.,

SVD-solved projection matrix

The true values of project matrix
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Camera parameters from project matrix
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Solving for the intrinsic and extrinsic parameters
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Camera parameters from project matrix
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Intrinsic parameters: Extrinsic parameters:
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Find 3D-2D corresponding points

• At least 6 3D-2D point pairs

– 3D points with known 3D coordinates

– Corresponding image points with known 2D coordinates

39

tape measure
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Find 3D-2D corresponding points

• Calibration rig - a special apparatus

– P1, … Pn with known positions in [Ow, iw, jw, kw]

40
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Find 3D-2D corresponding points

• Calibration rig - a special apparatus

– P1, … Pn with known positions in [Ow, iw, jw, kw]

– p1, … pn known positions in the image

– At least 6 pairs

• Goal

– Intrinsic parameters

– Extrinsic parameters

41

image
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Calibration

• Always solvable?

42
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Calibration

• Always solvable?

– {Pi} cannot lie on the same plane

– {Pi} cannot lie on the intersection curve of two quadric surfaces

43
See Section 1.3 of Forsyth & Ponce. Computer Vision: A Modern Approach
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A1: Camera calibration

44
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Next lecture

• Epipolar geometry

45
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