Lecture
 Camera Calibration

Liangliang Nan

Today's Agenda

- Review: Camera models
- Camera calibration
- A1: Camera calibration

Images

A color image: R, G, B channels

$$
f(x, y)=\left[\begin{array}{l}
r(x, y) \\
g(x, y) \\
b(x, y)
\end{array}\right]
$$

"vector-valued" function

Pinhole camera model

Pinhole camera model

- 3D point $\mathbf{P}=(X, Y, Z)^{T}$ projected to 2D image $\mathbf{p}=(x, y)^{T}$

$$
x=f \frac{X}{Z}, \quad \mathrm{y}=f \frac{Y}{Z}
$$

Perspective projection model

- Pinhole camera

$$
x=f \frac{X}{Z}, \quad \mathrm{y}=f \frac{Y}{Z}
$$

- Change of unit: physical measurements -> pixels
- If $k=l$, camera sensor's pixels are exactly square

$$
\begin{aligned}
& x=k f \frac{X}{Z}, \mathrm{y}=l f \frac{Y}{Z} \\
& \quad \Downarrow \text { Denote } \alpha=k f, \beta=l f \\
& x=\alpha \frac{X}{Z}, \mathrm{y}=\beta \frac{Y}{Z} \quad-x,
\end{aligned}
$$

$$
-x, y \text { : image coordinates (pixels) }
$$

- k, l : scale parameters (pixels/mm)
- f : focal length (mm)

Perspective projection model

- Pinhole camera

$$
x=f \frac{X}{Z}, \quad \mathrm{y}=f \frac{Y}{Z}
$$

- Change of unit: physical measurements -> pixels $\quad x=\alpha \frac{X}{Z}, \quad \mathrm{y}=\beta \frac{Y}{Z}$
- Change of coordinate system
- Image plane coordinates have origin at image center
- Digital image coordinates have origin at top-left corner

$$
x=\alpha \frac{X}{Z}+c x, \quad \mathrm{y}=\beta \frac{Y}{Z}+c y
$$

Perspective projection model

- Pinhole camera

$$
x=f \frac{X}{Z}, \quad \mathrm{y}=f \frac{Y}{Z}
$$

- Change of unit: physical measurements -> pixels $\quad x=\alpha \frac{X}{Z}, \quad y=\beta \frac{Y}{Z}$
- Change of coordinate system $\quad x=\alpha \frac{X}{Z}+c x, \quad \mathrm{y}=\beta \frac{Y}{Z}+c y$
- Account for skewness
- Image frame may not be exactly rectangular due to sensor manufacturing errors

$x=\alpha \frac{X}{Z}-\alpha \cot \theta \frac{Y}{Z}+c x, \quad \mathrm{y}=\frac{\beta}{\sin \theta} \frac{Y}{Z}+c y$
θ : skew angle between x - and y-axis

Perspective projection model

$$
x=\alpha \frac{X}{Z}-\alpha \cot \theta \frac{Y}{Z}+c x, \quad \mathrm{y}=\frac{\beta}{\sin \theta} \frac{Y}{Z}+c y
$$

- Rewrite in matrix-vector product form

$$
\begin{gathered}
\mathbf{P}=[X, Y, Z]^{\mathrm{T}}, \quad \mathbf{p}=\underset{\text { (homogeneous coordinates) }}{[x, y, 1]^{\mathrm{T}}} \\
\mathbf{p}=K \mathbf{P}, \quad K=\left[\begin{array}{ccc}
\alpha & -\alpha \cot \theta & c_{x} \\
0 & \frac{\beta}{\sin \theta} & c_{y} \\
0 & 0 & 1
\end{array}\right]=\underset{\text { Intrinsic parameter matrix }}{\left[\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right]}
\end{gathered}
$$

Perspective projection model

- Camera motion
- World frame may not align with the camera frame
- Camera can move and rotate

1. Coordinates of 3D scene point in camera frame.
2. Coordinates of 3 D scene point in world frame.
3. Rotation matrix of world frame in camera frame.
4. Position of world frame's origin in camera frame.

Perspective projection model

- The complete transformation

- R : rotation matrix of the world coordinate system defined in the camera coordinate system
- \mathbf{t} : the position of world coordinate system's origin in camera coordinate system
(Note: \mathbf{t} is often mistakenly interpreted as the position of the camera position in the world coordinate system) ${ }_{11}$

Today's Agenda

- Review: Camera models
- Camera calibration
- A1: Camera calibration

General Idea

- Why is camera calibration necessary?
- Given 3D scene, knowing the precise 3D to 2D projection requires
- Intrinsic and extrinsic parameters
- Reconstructing 3D geometry from images also requires these parameters
$\begin{aligned} \mathbf{p} & =M \mathbf{P} \\ & =K \left\lvert\,\left[\begin{array}{ll}R & \mathbf{t}\end{array}\right] \mathbf{P}\right.\end{aligned}$

General Idea

- Why is camera calibration necessary?
- What information do we have?
- Images only

General Idea

- Why is camera calibration necessary?
- What information do we have?
- Camera calibration
- Recovering K
- Recovering R and \mathbf{t}
$\mathrm{p}=M \mathbf{P}$

Internal (intrinsic) parameters

General Idea

- How many parameters to recover?

General Idea

- How many parameters to recover?
- How many intrinsic parameters?

$$
\begin{aligned}
& \mathbf{p}=M \mathbf{P} \\
&=K]\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \mathbf{P} \\
& \text { mal (nntrinsii) parameters }
\end{aligned}
$$

General Idea

- How many parameters to recover?
- How many intrinsic parameters?
- How many extrinsic parameters?

$$
\begin{aligned}
\mathbf{p} & =M \mathbf{P} \\
& =K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \mathbf{P}
\end{aligned}
$$

General Idea

- How many parameters to recover: 11
- 5 intrinsic parameters
- 2 for focal lengths
- 2 for offset (image center, or principal point)
- 1 for skewness
- 6 extrinsic parameters
- 3 for rotation
- 3 for translation

$$
K=\left[\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right], \quad R=\left[\begin{array}{c}
\mathbf{r}_{1}^{T} \\
\mathbf{r}_{2}^{T} \\
\mathbf{r}_{3}^{T}
\end{array}\right], \mathbf{t}=\left[\begin{array}{c}
t_{x} \\
t_{y} \\
t_{z}
\end{array}\right]
$$

General Idea

- What information to use?

- Corresponding 3D-2D point pairs

$$
\begin{aligned}
\mathbf{p} & =M \mathbf{P} \\
& =K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \mathbf{P}
\end{aligned}
$$

General Idea

- What information to use?
- Corresponding 3D-2D point pairs
- How many pairs do we need?

$$
\begin{aligned}
\mathbf{p} & =M \mathbf{P} \\
& =K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \mathbf{P}
\end{aligned}
$$

General Idea

- What information to use?
- Corresponding 3D-2D point pairs
- How many pairs do we need?
- How much information does each pair of corresponding point provide?
$\mathbf{p}=M \mathbf{P} \Rightarrow \mathbf{p}_{i}=\left[\begin{array}{l}u_{i} \\ v_{i}\end{array}\right]=M \mathbf{P}_{i}=\left[\begin{array}{l}\frac{\mathbf{P}^{T} \mathbf{m}_{1}}{\mathbf{P}_{\mathbf{i}}^{T} \mathbf{m}_{3}} \\ \frac{\mathbf{P}_{3}^{T}}{\mathbf{P}_{2}^{T} \mathbf{m}_{2}} \\ \mathbf{P}_{i}^{T} \mathbf{m}_{3}\end{array}\right] \Rightarrow \begin{aligned} & \mathbf{P}_{i}^{T} \mathbf{m}_{1}-u_{i}\left(\mathbf{P}_{i}^{T} \mathbf{m}_{3}\right)=0 \\ & \mathbf{P}_{i}^{T} \mathbf{m}_{2}-v_{i}\left(\mathbf{P}_{i}^{T} \mathbf{m}_{3}\right)=0\end{aligned}$
$\mathbf{m}_{1}, \mathbf{m}_{2}, \mathbf{m}_{3}$: the three rows of the projection matrix M

General Idea

- What information to use?
- Corresponding 3D-2D point pairs
- How many pairs do we need?
- Each 3D-2D point pair -> 2 equations
- 11 unknown -> 6 point correspondence
- Use more to handle noisy data

$$
\mathbf{p}=M \mathbf{P} \leadsto \mathbf{p}_{i}=\left[\begin{array}{c}
u_{i} \\
v_{i}
\end{array}\right]=M \mathbf{P}_{i}=\left[\begin{array}{c}
\frac{\mathbf{P}_{i}^{T} \mathbf{m}_{1}}{\mathbf{P}_{i}^{T} \mathbf{m}_{3}} \\
\\
\frac{\mathbf{P}_{i}^{T} \mathbf{m}_{2}}{\mathbf{P}_{i}^{T} \mathbf{m}_{3}}
\end{array}\right] \Rightarrow \begin{aligned}
& \mathbf{P}_{i}^{T} \mathbf{m}_{1}-u_{i}\left(\mathbf{P}_{i}^{T} \mathbf{m}_{3}\right)=0 \\
& \mathbf{P}_{i}^{T} \mathbf{m}_{2}-v_{i}\left(\mathbf{P}_{i}^{T} \mathbf{m}_{3}\right)=0
\end{aligned}
$$

General Idea

$$
\begin{aligned}
& \\
& \mathbf{P}_{i}^{T} \mathbf{m}_{1}-u_{i}\left(\mathbf{P}_{i}^{T} \mathbf{m}_{3}\right)=0 \\
& \mathbf{P}_{i}^{T} \mathbf{m}_{2}-v_{i}\left(\mathbf{P}_{i}^{T} \mathbf{m}_{3}\right)=0
\end{aligned} \quad \begin{gathered}
\mathbf{P}_{1}^{T} \mathbf{m}_{1}-u_{1}\left(\mathbf{P}_{1}^{T} \mathbf{m}_{3}\right)=0 \\
\mathbf{P}_{1}^{T} \mathbf{m}_{2}-v_{1}\left(\mathbf{P}_{1}^{T} \mathbf{m}_{3}\right)=0 \\
\vdots \\
\mathbf{P}_{n}^{T} \mathbf{m}_{1}-u_{n}\left(\mathbf{P}_{n}^{T} \mathbf{m}_{3}\right)=0 \\
\mathbf{P}_{n}^{T} \mathbf{m}_{2}-v_{n}\left(\mathbf{P}_{n}^{T} \mathbf{m}_{3}\right)=0
\end{gathered}
$$

Constraints from one pair

Equations from n pairs

$$
\left[\begin{array}{ccc}
\mathbf{P}_{1}^{T} & 0^{T} & -u_{1} \mathbf{P}_{1}^{T} \\
0^{T} & \mathbf{P}_{1}^{T} & -v_{1} \mathbf{P}_{1}^{T} \\
& \vdots & \\
\mathbf{P}_{n}^{T} & 0^{T} & -u_{n} \mathbf{P}_{n}^{T} \\
0^{T} & \mathbf{P}_{n}^{T} & -v_{n} \mathbf{P}_{n}^{T}
\end{array}\right]_{2 \mathrm{n} \times 12}\left[\begin{array}{l}
\mathbf{m}_{1} \\
\mathbf{m}_{2} \\
\mathbf{m}_{3}
\end{array}\right]_{12 \times 1}=P \mathbf{m}=0
$$

What is the dimension of the P matrix? What is the dimension of \boldsymbol{m} ?

Details: the derivation of the linear system

- The equations

$$
\mathbf{p}=M \mathbf{P}
$$

$$
[X, Y, Z]^{T} \rightarrow[u, v]^{T}
$$

$$
\left[\begin{array}{c}
s u \\
s v \\
s
\end{array}\right]=\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

$$
\begin{aligned}
s u & =m_{11} X+m_{12} Y+m_{13} Z+m_{14} \\
s v & =m_{21} X+m_{22} Y+m_{23} Z+m_{24} \\
s & =m_{31} X+m_{32} Y+m_{33} Z+m_{34}
\end{aligned} \quad \forall \quad u=\frac{m_{11} X+m_{12} Y+m_{13} Z+m_{14}}{m_{31} X+m_{32} Y+m_{33} Z+m_{34}}, \begin{aligned}
& \\
& v=\frac{m_{21} X+m_{22} Y+m_{23} Z+m_{24}}{m_{31} X+m_{32} Y+m_{33} Z+m_{34}}
\end{aligned}
$$

Details: the derivation of the linear system

- The equations

$$
\begin{aligned}
u & =\frac{m_{11} X+m_{12} Y+m_{13} Z+m_{14}}{m_{31} X+m_{32} Y+m_{33} Z+m_{34}} \\
v & =\frac{m_{21} X+m_{22} Y+m_{23} Z+m_{24}}{m_{31} X+m_{32} Y+m_{33} Z+m_{34}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(m_{31} X+m_{32} Y+m_{33} Z+m_{34}\right) u=m_{11} X+m_{12} Y+m_{13} Z+m_{14} \\
& \left(m_{31} X+m_{32} Y+m_{33} Z+m_{34}\right) v=m_{21} X+m_{22} Y+m_{23} Z+m_{24}
\end{aligned}
$$

$$
\begin{array}{r}
m_{11} X+m_{12} Y+m_{13} Z+m_{14}-m_{31} u X-m_{32} u Y-m_{33} u Z-m_{34} u=0 \\
m_{21} X+m_{22} Y+m_{23} Z+m_{24}-m_{31} v X-m_{32} v Y-m_{33} v Z-m_{34} v=0
\end{array}
$$

Details: the derivation of the linear system

- The equations

For every pair of 3D-2D corresponding points

$$
\begin{array}{r}
m_{11} X+m_{12} Y+m_{13} Z+m_{14}-m_{31} u X-m_{32} u Y-m_{33} u Z-m_{34} u=0 \\
m_{21} X+m_{22} Y+m_{23} Z+m_{24}-m_{31} v X-m_{32} v Y-m_{33} v Z-m_{34} v=0
\end{array}
$$

Given n pairs of 3D-2D corresponding points

$$
\left[\right]
$$

$\left[\begin{array}{c}m_{11} \\ m_{12} \\ m_{13} \\ m_{14} \\ m_{21} \\ m_{22} \\ m_{23} \\ m_{24} \\ m_{31} \\ m_{32} \\ m_{33} \\ m_{34}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0 \\ 0\end{array}\right]$

Details: the derivation of the linear system

- The equations

$$
\left[\begin{array}{cccccccccccc}
X_{1} & Y_{1} & Z_{1} & 1 & 0 & 0 & 0 & 0 & -u_{1} X_{1} & -u_{1} Y_{1} & -u_{1} Z_{1} & -u_{1} \\
0 & 0 & 0 & 0 & X_{1} & Y_{1} & Z_{1} & 1 & -v_{1} X_{1} & -v_{1} Y_{1} & -v_{1} Z_{1} & -v_{1} \\
& & & & & & \vdots & & & & & \\
X_{n} & Y_{n} & Z_{n} & 1 & 0 & 0 & 0 & 0 & -u_{n} X_{n} & -u_{n} Y_{n} & -u_{n} Z_{n} & -u_{n} \\
0 & 0 & 0 & 0 & X_{n} & Y_{n} & Z_{n} & 1 & -v_{n} X_{n} & -v_{n} Y_{n} & -v_{n} Z_{n} & -v_{n}
\end{array}\right]
$$

$$
\left[\begin{array}{c}
m_{11} \\
m_{12} \\
m_{13} \\
m_{14} \\
m_{21} \\
m_{22} \\
m_{23} \\
m_{24} \\
m_{31} \\
m_{32} \\
m_{33} \\
m_{34}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
\mathbf{P}_{1}^{T} & 0^{T} & -u_{1} \mathbf{P}_{1}^{T} \\
0^{T} & \mathbf{P}_{1}^{T} & -v_{1} \mathbf{P}_{1}^{T} \\
& \vdots & \\
\mathbf{P}_{n}^{T} & 0^{T} & -u_{n} \mathbf{P}_{n}^{T} \\
0^{T} & \mathbf{P}_{n}^{T} & -v_{n} \mathbf{P}_{n}^{T}
\end{array}\right]\left[\begin{array}{l}
\mathbf{m}_{1} \\
\mathbf{m}_{2} \\
\mathbf{m}_{3}
\end{array}\right]=P \mathbf{m}=0
$$

General Idea

- How to solve it?
- It is a homogeneous linear system
- It is overdetermined

?

$$
\left[\begin{array}{ccc}
\mathbf{P}_{1}^{T} & 0^{T} & -u_{1} \mathbf{P}_{1}^{T} \\
0^{T} & \mathbf{P}_{1}^{T} & -v_{1} \mathbf{P}_{1}^{T} \\
& \vdots & \\
\mathbf{P}_{n}^{T} & 0^{T} & -u_{n} \mathbf{P}_{n}^{T} \\
0^{T} & \mathbf{P}_{n}^{T} & -v_{n} \mathbf{P}_{n}^{T}
\end{array}\right]\left[\begin{array}{l}
\mathbf{m}_{1} \\
\mathbf{m}_{2} \\
\mathbf{m}_{3}
\end{array}\right]=P \mathbf{m}=0
$$

General Idea

- How to solve it?
$-\mathbf{m}=0$ is always a trivial solution
- If $\mathbf{m} \neq 0$ is a solution, then any $k * \mathbf{m}$ is also a solution

$$
\left[\begin{array}{ccc}
\mathbf{P}_{1}^{T} & 0^{T} & -u_{1} \mathbf{P}_{1}^{T} \\
0^{T} & \mathbf{P}_{1}^{T} & -v_{1} \mathbf{P}_{1}^{T} \\
& \vdots & \\
\mathbf{P}_{n}^{T} & 0^{T} & -u_{n} \mathbf{P}_{n}^{T} \\
0^{T} & \mathbf{P}_{n}^{T} & -v_{n} \mathbf{P}_{n}^{T}
\end{array}\right]\left[\begin{array}{l}
\mathbf{m}_{1} \\
\mathbf{m}_{2} \\
\mathbf{m}_{3}
\end{array}\right]=P \mathbf{m}=0
$$

General Idea

- How to solve it?
$-\mathbf{m}=0$ is always a trivial solution
- If $\mathbf{m} \neq 0$ is a solution, then any $k * \mathbf{m}$ is also a solution
- Constrained optimization

$$
\left[\begin{array}{ccc}
\mathbf{P}_{1}^{T} & 0^{T} & -u_{1} \mathbf{P}_{1}^{T} \\
0^{T} & \mathbf{P}_{1}^{T} & -v_{1} \mathbf{P}_{1}^{T} \\
& \vdots & \\
\mathbf{P}_{n}^{T} & 0^{T} & -u_{n} \mathbf{P}_{n}^{T} \\
0^{T} & \mathbf{P}_{n}^{T} & -v_{n} \mathbf{P}_{n}^{T}
\end{array}\right]\left[\begin{array}{l}
\mathbf{m}_{1} \\
\mathbf{m}_{2} \\
\mathbf{m}_{3}
\end{array}\right]=P \mathbf{m}=0
$$

$$
\begin{array}{ll}
\underset{\mathbf{m}}{\operatorname{minimize}} & \|P \mathbf{m}\|^{2} \\
\text { subject to } & \|\mathbf{m}\|^{2}=1
\end{array}
$$

- Singular Value Decomposition

- Generalization of the eigen-decomposition of a square matrix to any m by n matrix

- Geometric meaning

$$
A=U D V^{\mathrm{T}}
$$

Example (square matrix)

$$
\begin{aligned}
& {\left[\begin{array}{cc}
3 & -2 \\
1 & 5
\end{array}\right]=\left[\begin{array}{cc}
-.40 & .916 \\
.916 & .40
\end{array}\right] \cdot\left[\begin{array}{cc}
5.39 & 0 \\
0 & 3.154
\end{array}\right] \cdot\left[\begin{array}{cc}
-.05 & .999 \\
.999 & .05
\end{array}\right]} \\
& \text { Transformation } \\
& \text { Rotation } \\
& \text { Scaling } \\
& \text { Rotation }
\end{aligned}
$$

Calibration: solve for projection matrix

Last column of V gives \mathbf{m}

Least-squares solution of homogeneous equations

This problem is solvable as follows. Let $A=U D V^{\top}$. The problem then requires us to minimize $\left\|U V^{\top} \mathbf{x}\right\|$. However, $\left\|U D V^{\top} \mathbf{x}\right\|=\left\|D V^{\top} \mathbf{x}\right\|$ and $\|\mathbf{x}\|=\left\|V^{\top} \mathbf{x}\right\|$. Thus, we need to minimize $\left\|D V^{\top} \mathbf{x}\right\|$ subject to the condition $\left\|V^{\top} \mathbf{x}\right\|=1$. We write $\mathbf{y}=\mathrm{V}^{\top} \mathbf{x}$, and the problem is: minimize $\|\mathrm{D} \boldsymbol{y}\|$ subject to $\|\mathbf{y}\|=1$. Now, D is a diagonal matrix with its diagonal entries in descending order. It follows that the solution to this problem is $\mathbf{y}=(0,0, \ldots, 0,1)^{\top}$ having one non-zero entry, 1 in the last position. Finally $\mathbf{x}=V \mathbf{y}$ is simply the last column of V . The method is summarized in algorithm A5.4.

Objective
Given a matrix A with at least as many rows as columns, find \mathbf{x} that minimizes $\|\mathrm{A} \mathbf{x}\|$ subject to $\|\mathbf{x}\|=1$.
Solution
\mathbf{x} is the last column of V, where $A=U D V^{\top}$ is the SVD of A.

Algorithm A5.4. Least-squares solution of a homogeneous system of linear equations.

Heono tomion

Camera parameters from project matrix

$$
\begin{aligned}
& M= K\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \\
&=\left[\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\alpha & -\alpha \cot \theta & c_{x} \\
0 & \frac{\beta}{\sin \theta} & c_{y} \\
0 & 0 & 1
\end{array}\right], R=\left[\begin{array}{c}
\mathbf{r}_{1}^{T} \\
\mathbf{r}_{2}^{T} \\
\mathbf{r}_{3}^{T}
\end{array}\right], \mathbf{t}=\left[\begin{array}{c}
t_{x} \\
t_{y} \\
t_{z}
\end{array}\right] \\
& M=\left[\begin{array}{cc}
\alpha \mathbf{r}_{1}^{T}-\alpha \cot \theta \mathbf{r}_{2}^{T}+c_{x} \mathbf{r}_{3}^{T} & \alpha t_{x}-\alpha \cot \theta t_{y}+c_{x} t_{z} \\
\frac{\beta}{\sin \theta} \mathbf{r}_{2}^{T}+c_{y} \mathbf{r}_{3}^{T} & \frac{\beta}{\sin \theta} t_{y}+c_{y} t_{z} \\
\mathbf{r}_{3}^{T} & t_{z}
\end{array}\right]
\end{aligned}
$$

$$
\text { SVD-solved projection matrix is known up to scale, i.e., } \rho \mathcal{M}=M \leftarrow \text { The true values of project matrix }
$$

$$
\mathcal{M}=\frac{1}{\rho} M=\frac{1}{\rho}\left[\begin{array}{cc}
\alpha \mathbf{r}_{1}^{T}-\alpha \cot \theta \mathbf{r}_{2}^{T}+c_{x} \mathbf{r}_{3}^{T} & \alpha t_{x}-\alpha \cot \theta t_{y}+c_{x} t_{z} \\
\frac{\beta}{\sin \theta} \mathbf{r}_{2}^{T}+c_{y} \mathbf{r}_{3}^{T} & \frac{\beta}{\sin \theta} t_{y}+c_{y} t_{z} \\
\mathbf{r}_{3}^{T} & t_{z}
\end{array}\right]
$$

Camera parameters from project matrix

$$
\begin{gathered}
\mathcal{M}=\frac{1}{\rho}\left[\begin{array}{cc}
\alpha \mathbf{r}_{1}^{T}-\alpha \cot \theta \mathbf{r}_{2}^{T}+c_{x} \mathbf{r}_{3}^{T} & \alpha t_{x}-\alpha \cot \theta t_{y}+c_{x} t_{z} \\
\frac{\beta}{\sin \theta} \mathbf{r}_{2}^{T}+c_{y} \mathbf{r}_{3}^{T} & \frac{\beta}{\sin \theta} t_{y}+c_{y} t_{z} \\
\mathbf{r}_{3}^{T} & t_{z}
\end{array}\right] \\
\operatorname{denote} \mathcal{M}=\left[\begin{array}{ll}
A & \mathbf{b}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{a}_{1}^{T} & b_{1} \\
\mathbf{a}_{2}^{T} & b_{2} \\
\mathbf{a}_{3}^{T} & b_{3}
\end{array}\right] \\
\frac{1}{\rho}\left[\begin{array}{cc}
\alpha \mathbf{r}_{1}^{T}-\alpha \cot \theta \mathbf{r}_{2}^{T}+c_{x} \mathbf{r}_{3}^{T} & \alpha t_{x}-\alpha \cot \theta t_{y}+c_{x} t_{z} \\
\frac{\beta}{\sin \theta} \mathbf{r}_{2}^{T}+c_{y} \mathbf{r}_{3}^{T} & \frac{\beta}{\sin \theta} t_{y}+c_{y} t_{z} \\
\mathbf{r}_{3}^{T} & t_{z}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{a}_{1}^{T} & b_{1} \\
\mathbf{a}_{2}^{T} & b_{2} \\
\mathbf{a}_{3}^{T} & b_{3}
\end{array}\right]
\end{gathered}
$$

Solving for the intrinsic and extrinsic parameters

Camera parameters from project matrix

Intrinsic parameters:

$$
\begin{aligned}
\rho & = \pm \frac{1}{\left\|\mathbf{a}_{3}\right\|} \\
c_{x} & =\rho^{2}\left(\mathbf{a}_{\mathbf{1}} \cdot \mathbf{a}_{\mathbf{3}}\right) \\
c_{y} & =\rho^{2}\left(\mathbf{a}_{\mathbf{2}} \cdot \mathbf{a}_{\mathbf{3}}\right) \\
\cos \theta & =-\frac{\left(\mathbf{a}_{\mathbf{1}} \times \mathbf{a}_{\mathbf{3}}\right) \cdot\left(\mathbf{a}_{\mathbf{2}} \times \mathbf{a}_{\mathbf{3}}\right)}{\left\|\mathbf{a}_{\mathbf{1}} \times \mathbf{a}_{\mathbf{3}}\right\| \cdot\left\|\mathbf{a}_{\mathbf{2}} \times \mathbf{a}_{\mathbf{3}}\right\|} \\
\alpha & =\rho^{2}\left\|\mathbf{a}_{\mathbf{1}} \times \mathbf{a}_{\mathbf{3}}\right\| \sin \theta \\
\beta & =\rho^{2}\left\|\mathbf{a}_{\mathbf{2}} \times \mathbf{a}_{\mathbf{3}}\right\| \sin \theta
\end{aligned}
$$

Extrinsic parameters:

$$
\begin{aligned}
\mathbf{r}_{1} & =\frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\left\|\mathbf{a}_{2} \times \mathbf{a}_{3}\right\|} \\
\mathbf{r}_{3} & =\rho \mathbf{a}_{3} \\
\mathbf{r}_{2} & =\mathbf{r}_{3} \times \mathbf{r}_{1} \\
\mathbf{t} & =\rho K^{-1} \mathbf{b}
\end{aligned}
$$

Find 3D-2D corresponding points

- At least 6 3D-2D point pairs
- 3D points with known 3D coordinates
- Corresponding image points with known 2D coordinates

tape measure

Find 3D-2D corresponding points

- Calibration rig - a special apparatus
$-P_{l}, \ldots P_{n}$ with known positions in $\left[O_{w}, i_{w}, j_{w}, k_{w}\right]$

Find 3D-2D corresponding points

- Calibration rig - a special apparatus
$-P_{l}, \ldots P_{n}$ with known positions in $\left[O_{w}, i_{w}, j_{w}, k_{w}\right]$
$-p_{1}, \ldots p_{n}$ known positions in the image
- At least 6 pairs
- Goal
- Intrinsic parameters
- Extrinsic parameters

Calibration

- Always solvable?

Calibration

- Always solvable?
$-\left\{P_{i}\right\}$ cannot lie on the same plane
$-\left\{P_{\mathrm{i}}\right\}$ cannot lie on the intersection curve of two quadric surfaces

COMPUTER VIIION
A MODERN APPROACH

A1: Camera calibration

Next lecture

- Epipolar geometry

