GEO1016

Lecture Camera Models

Liangliang Nan

What is an image?

What is an image?

What is an image?

What is an image?

- Projection of the scene on the image plane
- Digital (discrete) image
- A matrix of integer values

$\boldsymbol{j} \boldsymbol{j}$								
$\boldsymbol{i} \|$62 79 23 119 120 105 4 0 10 10 9 62 12 78 34 0 10 58 197 46 46 0 0 48 176 135 5 188 191 68 0 49 2 1 1 29 26 37 0 77 0 89 144 147 187 102 62 208 255 252 0 166 123 62 0 31 166 63 127 17 1 0 99 30								

What is an image?

A color image: R, G, B channels

$$
f(x, y)=\left[\begin{array}{l}
r(x, y) \\
g(x, y) \\
b(x, y)
\end{array}\right]
$$

"vector-valued" function

Today's agenda

- Images
- Camera Models

Through our eyes...

- We see the world

Through our eyes...

Through their eyes...

- Camera is structurally the same the eye
- Lens does similarly as our lens and cornea
- Sensor receives the light signals to form images

Through their eyes...

- Camera is structurally the same the eye
- Aperture controls the amount of light

Camera vs. eye

- Similarities
- Image focusing
- Light adjustment
- Differences (to name a few)

- Lens focus
- Camera: lens moves closer/further from the film
- Eye: lens changes shape to focus
- Sensitivity to light
- Camera: A film is designed to be uniformly sensitive to light
- Eye: retina is not; has greater sensitivity in dark

Imaging...

- Images are 2D projections of real-world scenes
- Images capture two kinds of information:
- Geometric: points, lines, curves, etc.
- Photometric: intensity, color.
- Complex 3D-2D relationships
- Camera models approximate relationships

Camera models

- Pinhole camera model
- Perspective projection model
- Most commonly used model

Pinhole camera model

- One-to-one mapping

Pinhole camera model

- Assumption: aperture is a single point.

Pinhole camera model

What is the transformation between images on the two image planes

Pinhole camera model

- 3D point $\mathbf{P}=(X, Y, Z)^{T}$ projected to 2 D image $\mathbf{p}=(x, y)^{T}$

Right-handed coordinate system

Pinhole camera model

- 3D point $\mathbf{P}=(X, Y, Z)^{T}$ projected to 2D image $\mathbf{p}=(x, y)^{T}$

Pinhole camera model

- 3D point $\mathbf{P}=(X, Y, Z)^{T}$ projected to 2 D image $\mathbf{p}=(x, y)^{T}$

$$
\begin{aligned}
& \frac{X}{Z}=\frac{x}{f}, \quad \frac{Y}{Z}=\frac{y}{f} \\
& x=f \frac{X}{Z}, \quad y=f \frac{Y}{Z}
\end{aligned}
$$

Simplest form of perspective projection

Pinhole camera model

- Sharpness vs. brightness?

Perspective projection model

- Sharpness vs. brightness?
- Lens
- Refract light and converge to a singe point

Perspective projection model

- Sharpness vs. brightness?
- Lens
- Focus parallel light rays to the focal point

Perspective projection model

- Pinhole camera model

$$
x=f \frac{X}{Z}, \quad \mathrm{y}=f \frac{Y}{Z}
$$

Image plane coordinates in physical measurements (mm)

- Change of unit: physical measurements -> pixels

$$
x=k f \frac{X}{Z}, \quad \mathrm{y}=l f \frac{Y}{Z}
$$

- x, y : image coordinates (pixels)
$-k, l$: scale parameters (pixels/mm)
$-f$: focal length (mm)

Perspective projection model

- Pinhole camera model

$$
x=f \frac{X}{Z}, \quad \mathrm{y}=f \frac{Y}{Z}
$$

Image plane coordinates in physical measurements (mm)

- Change of unit: physical measurements -> pixels

$$
\begin{aligned}
& x=k f \frac{X}{Z}, \quad \mathrm{y}=l f \frac{Y}{Z} \\
& \quad, \quad \text { Denote } \alpha=k f, \beta=l f \\
& x=\alpha \frac{X}{Z}, \quad \mathrm{y}=\beta \frac{Y}{Z}
\end{aligned}
$$

Perspective projection model

- Change of coordinate system
- Image plane coordinates have origin at image center
- Digital image coordinates have origin at top-left corner

Digital image coordinates

Perspective projection model

- Change of coordinate system
- Image plane coordinates have origin at image center
- Digital image coordinates have origin at top-left corner

$$
x=\alpha \frac{X}{Z}, \quad \mathrm{y}=\beta \frac{Y}{Z}
$$

Image center (principal point): $\left(c_{x}, c_{y}\right)$

Perspective projection model

- Change of coordinate system
- Image plane coordinates have origin at image center
- Digital image coordinates have origin at top-left corner

$$
\begin{aligned}
& x=\alpha \frac{X}{Z}, \quad y=\beta \frac{Y}{Z} \\
& \quad \text { Image center (principal point): }\left(c_{x}, c_{y}\right) \\
& x=\alpha \frac{X}{Z}+c x, \quad y=\beta \frac{Y}{Z}+c y
\end{aligned}
$$

Perspective projection model

- Image frame may not be exactly rectangular
- Due to sensor manufacturing errors

$$
x=\alpha \frac{X}{Z}-\alpha \cot \theta \frac{Y}{Z}+c x, \quad y=\frac{\beta}{\sin \theta} \frac{Y}{Z}+c y
$$

Perspective projection model

- Other types of distortions
- Common aberration: radial distortion
- Different portions of the lens have differing focal lengths
- Straight lines appear curved
- Errors by radial distortion << scanning resolution of image

Pincushion

Barrel

Perspective projection model

- Other types of distortions
- Common aberration: radial distortion
- Different portions of the lens have differing focal lengths
- Straight lines appear curved
- Errors by radial distortion << scanning resolution of image

Intrinsic parameters

$$
x=\alpha \frac{X}{Z}-\alpha \cot \theta \frac{Y}{Z}+c x, \quad \mathrm{y}=\frac{\beta}{\sin \theta} \frac{Y}{Z}+c y
$$

- Rewrite in matrix-vector product form

$$
\begin{aligned}
& \mathbf{P}=[X, Y, Z]^{\mathrm{T}}, \quad \mathbf{p}=\underset{\substack{\text { (homogeseneus coordinates) }}}{[x, y, 1]^{\mathrm{T}}} \\
& \mathbf{p}=K \mathbf{P}, \quad K=
\end{aligned}
$$

Intrinsic parameters

$$
x=\alpha \frac{X}{Z}-\alpha \cot \theta \frac{Y}{Z}+c x, \quad \mathrm{y}=\frac{\beta}{\sin \theta} \frac{Y}{Z}+c y
$$

- Rewrite in matrix-vector product form

$$
\begin{aligned}
& \mathbf{P}=[X, Y, Z]^{\mathrm{T}}, \quad \mathbf{p}=[x, y, 1]^{\mathrm{T}} \\
& \mathbf{p}=K \mathbf{P}, \quad K=\left[\begin{array}{ccc}
\alpha & -\alpha \cot \theta & c_{x} \\
0 & \frac{\beta}{\sin \theta} & c_{y} \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Intrinsic parameters

- For simplicity, people use a simpler form of K

$$
K=\left[\begin{array}{ccc}
\alpha & -\alpha \cot \theta & c_{x} \\
0 & \frac{\beta}{\sin \theta} & c_{y} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right]
$$

- Internal characteristics
- focal length, skew distortion, and image center.

Extrinsic parameters

- Camera motion
- World frame may not align with the camera frame
- Camera can move and rotate

Extrinsic parameters

- Camera motion
- World frame may not align with the camera frame
- Camera can move and rotate

1. Coordinates of 3D scene point in camera frame.
2. Coordinates of 3 D scene point in world frame.
3. Rotation matrix of world frame in camera frame.
4. Position of world frame's origin in camera frame.

Complete camera model

- Combine intrinsic and extrinsic parameters

$$
\begin{aligned}
& \mathbf{p}=K \mathbf{P}, \quad \mathbf{P}^{C}=R_{W}^{C} \cdot \mathbf{P}^{W}+\mathbf{t}_{W}^{C} \\
& \mathbf{p}=K\left(R_{W}^{C} \cdot \mathbf{P}^{W}+\mathbf{t}_{W}^{C}\right)
\end{aligned}
$$

- Use a simpler notation

$$
\begin{aligned}
\mathbf{p} & =K(R \mathbf{P}+\mathbf{t}) \\
& =K[R \mathbf{t}] \mathbf{P} \\
& =M \mathbf{P} \\
M & =K[R \mathbf{t}]: 3 \times 4 \text { projection matrix }
\end{aligned}
$$

Summary

- Simplest camera model: pinhole model.
- Most commonly used model: perspective model.
- Intrinsic parameters:
- Focal length, principal point (image center), skew factor
- Extrinsic parameters:
- Camera rotation and translation.

Further reading:
R. Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010.

- Camera models: Section 2.1.5
- Lens distortion: Section 2.1.6

Next lecture

- Camera calibration

