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Abstract: This paper proposes a novel algorithm for calibrated
multi-view stereopsis that outputs a (quasi) dense set of rectan-
gular patches covering the surfaces visible in the input images.
This algorithm does not require any initialization in the form of a
bounding volume, and it detects and discards automatically out-
liers and obstacles. It does not perform any smoothing across
nearby features, yet is currently the top performer in terms of both
coverage and accuracy for four of the six benchmark datasets pre-
sented in [20]. The keys to its performance are effective tech-
niques for enforcing local photometric consistency and global
visibility constraints. Stereopsis is implemented as a match, ex-
pand, and filter procedure, starting from a sparse set of matched
keypoints, and repeatedly expanding these to nearby pixel corre-
spondences before using visibility constraints to filter away false
matches. A simple but effective method for turning the resulting
patch model into a mesh appropriate for image-based modeling is
also presented. The proposed approach is demonstrated on vari-
ous datasets including objects with fine surface details, deep con-
cavities, and thin structures, outdoor scenes observed from a re-
stricted set of viewpoints, and “crowded” scenes where moving
obstacles appear in different places in multiple images of a static
structure of interest.

1. Introduction

As in the binocular case, although most early work in
multi-view stereopsis (e.g., [12, 15, 19]) tended to match
and reconstruct all scene points independently, recent ap-
proaches typically cast this problem as a variational one,
where the objective is to find the surface minimizing a
global photometric discrepancy functional, regularized by
explicit smoothness constraints [1, 8, 17, 18, 22, 23] (a ge-
ometric consistency terms is sometimes added as well [3,
4, 7, 9]). Competing approaches mostly differ in the type
of optimization techniques that they use, ranging from
local methods such as gradient descent [3, 4, 7], level
sets [1, 9, 18], or expectation maximization [21], to global
ones such as graph cuts [3, 8, 17, 22, 23]. The variational
approach has led to impressive progress, and several of the
methods recently surveyed by Seitz et al. [20] achieve a rel-

ative accuracy better than 1/200 (1mm for a 20cm wide ob-
ject) from a set of low-resolution (640×480) images. How-
ever, it typically requires determining a bounding volume
(valid depth range, bounding box, or visual hull) prior to
initiating the optimization process, which may not be feasi-
ble for outdoor scenes and/or cluttered images. 1 We pro-
pose instead a simple and efficient algorithm for calibrated
multi-view stereopsis that does not require any initializa-
tion, is capable of detecting and discarding outliers and ob-
stacles, and outputs a (quasi) dense collection of small ori-
ented rectangular patches [6, 13], obtained from pixel-level
correspondences and tightly covering the observed surfaces
except in small textureless or occluded regions. It does not
perform any smoothing across nearby features, yet is cur-
rently the top performer in terms of both coverage and accu-
racy for four of the six benchmark datasets provided in [20].
The keys to its performance are effective techniques for en-
forcing local photometric consistency and global visibility
constraints. Stereopsis is implemented as a match, expand,
and filter procedure, starting from a sparse set of matched
keypoints, and repeatedly expanding these to nearby pixel
correspondences before using visibility constraints to fil-
ter away false matches. A simple but effective method for
turning the resulting patch model into a mesh suitable for
image-based modeling is also presented. The proposed ap-
proach is applied to three classes of datasets:
• objects, where a single, compact object is usually fully
visible in a set of uncluttered images taken from all around
it, and it is relatively straightforward to extract the apparent
contours of the object and compute its visual hull;
• scenes, where the target object(s) may be partially oc-
cluded and/or embedded in clutter, and the range of view-
points may be severely limited, preventing the computation
of effective bounding volumes (typical examples are out-
door scenes with buildings or walls); and

1In addition, variational approaches typically involve massive opti-
mization tasks with tens of thousands of coupled variables, potentially
limiting the resolution of the corresponding reconstructions (see, however,
[18] for a fast GPU implementation). We will revisit tradeoffs between
computational efficiency and reconstruction accuracy in Sect. 5.
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Figure 1. Overall approach. From left to right: a sample input image; detected features; reconstructed patches after the initial matching;
final patches after expansion and filtering; polygonal surface extracted from reconstructed patches.

• crowded scenes, where moving obstacles appear in differ-
ent places in multiple images of a static structure of interest
(e.g., people passing in front of a building).

Techniques such as space carving [12, 15, 19] and vari-
ational methods based on gradient descent [3, 4, 7], level
sets [1, 9, 18], or graph cuts [3, 8, 17, 22, 23] typically
require an initial bounding volume and/or a wide range of
viewpoints. Object datasets are the ideal input for these al-
gorithms, but methods using multiple depth maps [5, 21] or
small, independent surface elements [6, 13] are better suited
to the more challenging scene datasets. Crowded scenes
are even more difficult. The method proposed in [21] uses
expectation maximization and multiple depth maps to re-
construct a crowded scene despite the presence of occlud-
ers, but it is limited to a small number of images (typi-
cally three). As shown by qualitative and quantitative ex-
periments in the rest of this paper, our algorithm effec-
tively handles all three types of data, and, in particular,
outputs accurate object and scene models with fine surface
detail despite low-texture regions, large concavities, and/or
thin, high-curvature parts. As noted earlier, it implements
multi-view stereopsis as a simple match, expand, and fil-
ter procedure (Fig. 1): (1) Matching: features found by
Harris and Difference-of-Gaussians operators are matched
across multiple pictures, yielding a sparse set of patches
associated with salient image regions. Given these initial
matches, the following two steps are repeated n times (n= 3
in all our experiments): (2) Expansion: a technique similar
to [16, 2, 11, 13] is used to spread the initial matches to
nearby pixels and obtain a dense set of patches. (3) Fil-
tering: visibility constraints are used to eliminate incorrect
matches lying either in front or behind the observed surface.
This approach is similar to the method proposed by Lhuil-
lier and Quan [13], but their expansion procedure is greedy,
while our algorithm iterates between expansion and filter-
ing steps, which allows us to process complicated surfaces.
Furthermore, outliers cannot be handled in their method.
These differences are also true with the approach by Kushal
and Ponce [11] in comparison to ours. In addition, only a
pair of images can be handled at once in [11], while our
method can process arbitrary number of images uniformly.

2. Key Elements of the Proposed Approach

Before detailing our algorithm in Sect. 3, we define here
the patches that will make up our reconstructions, as well
as the data structures used throughout to represent the input
images. We also introduce two other fundamental building
blocks of our approach, namely, the methods used to ac-
curately reconstruct a patch once the corresponding image
fragments have been matched, and determine its visibility.

2.1. Patch Models

A patch p is a rectangle with center c(p) and unit nor-
mal vector n(p) oriented toward the cameras observing it
(Fig. 2). We associate with p a reference image R(p), cho-
sen so that its retinal plane is close to parallel to p with little
distortion. In turn, R(p) determines the orientation and ex-
tent of the rectangle p in the plane orthogonal to n(p), so
the projection of one of its edges into R(p) is parallel to the
image rows, and the smallest axis-aligned square contain-
ing its image covers a µ × µpixel2 area (we use values of
5 or 7 for µ in all of our experiments). Two sets of pic-
tures are also attached to each patch p: the images S(p)
where p should be visible (despite self-occlusion), but may
in practice not be recognizable (due to highlights, motion
blur, etc.), or hidden by moving obstacles, and the images
T (p) where it is truly found (R(p) is of course an element
of T (p)). We enforce the following two constraints on the
model: First, we enforce local photometric consistency by
requiring that the projected textures of every patch p be con-
sistent in at least γ images (in other words |T (p)| ≥ γ , with
γ = 3 in all but three of our experiments, where γ is set to
2). Second, we enforce global visibility consistency by re-
quiring that no patch p be occluded by any other patch in
any image in S(p). 2

2.2. Image Models

We associate with each image I a regular grid of β1×
β1pixel2 cells C(i, j), and attempt to reconstruct at least one

2A patch p may be occluded in one or several of the images in S(p)
by moving obstacles, but these are not reconstructed by our algorithm and
thus do not generate occluding patches.
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Figure 2. Definition of a patch (left) and of the images associated
with it (right). See text for the details.

patch in every cell (we use values of 1 or 2 for β1 in all
our experiments). The cell C(i, j) keeps track of two dif-
ferent sets Qt(i, j) and Qf (i, j) of reconstructed patches po-
tentially visible in C(i, j): A patch p is stored in Qt(i, j) if
I ∈ T (p), and in Qf (i, j) if I ∈ S(p) \ T (p). We also as-
sociate with C(i, j) the depth of the center of the patch in
Qt(i, j) closest to the optical center of the corresponding
camera. This amounts to attaching a depth map to I, which
will prove useful in the visibility calculations of Sect. 2.4.

2.3. Enforcing Photometric Consistency

Given a patch p, we use the normalized cross correlation
(NCC) N(p, I,J) of its projections into the images I and J to
measure their photometric consistency. Concretely, a µ×µ
grid is overlaid on p and projected into the two images, the
correlated values being obtained through bilinear interpo-
lation. Given a patch p, its reference image R(p), and the
set of images T (p) where it is truly visible, we can now
estimate its position c(p) and its surface normal n(p) by
maximizing the average NCC score

N̄(p) =
1

|T (p)|−1 ∑
I∈T (p),I �=R(p)

N(p,R(p), I) (1)

with respect to these unknowns. To simplify computations,
we constrain c(p) to lie on the ray joining the optical center
of the reference camera to the corresponding image point,
reducing the number of degrees of freedom of this opti-
mization problem to three—depth along the ray plus yaw
and pitch angles for n(p), and use a conjugate gradient
method [14] to find the optimal parameters. Simple meth-
ods for computing reasonable initial guesses for c(p) and
n(p) are given in Sects. 3.1 and 3.2.

2.4. Enforcing Visibility Consistency

The visibility of each patch p is determined by the im-
ages S(p) and T (p) where it is (potentially or truly) ob-
served. We use two slightly different methods for construct-
ing S(p) and T (p) depending on the stage of our reconstruc-
tion algorithm. In the matching phase (Sect. 3.1), patches
are reconstructed from sparse feature matches, and we have

to rely on photometric consistency constraints to deter-
mine (or rather obtain an initial guess for) visibility. Con-
cretely, we initialize both sets of images as those for which
the NCC score exceeds some threshold: S(p) = T (p) =
{I|N(p,R(p), I) > α0}. On the other hand, in the expan-
sion phase of our algorithm (Sect. 3.2), patches are by con-
struction dense enough to associate depth maps with all im-
ages, and S(p) is constructed for each patch by thresholding
these depth maps—that is, S(p) = {I|dI(p)≤ dI(i, j)+ρ1},
where dI(p) is the depth of the center of p along the corre-
sponding ray of image I, and dI(i, j) is the depth recorded
in the cell C(i, j) associated with image I and patch p. The
value of ρ1 is determined automatically as the distance at
the depth of c(p) corresponding to an image displacement
of β1 pixels in R(p). Once S(p) has been estimated, photo-
metric consistency is used to determine the images where p
is truly observed as T (p) = {I ∈ S(p)|N(p,R(p), I) > α1}.
This process may fail when the reference image R(p) is it-
self an outlier, but, as explained in the next section, our al-
gorithm is designed to handle this problem. Iterating its
matching and filtering steps also helps improve the reliabil-
ity and consistency of the visibility information.

3. Algorithm

3.1. Matching

As the first step of our algorithm, we detect corner and
blob features in each image using the Harris and Difference-
of-Gaussian (DoG) operators. 3 To ensure uniform cov-
erage, we lay over each image a coarse regular grid of
β2×β2pixel2 cells, and return as corners and blobs for each
cell the η local maxima of the two operators with strongest
responses (we use β2 = 32 and η = 4 in all our experi-
ments). After these features have been found in each image,
they are matched across multiple pictures to reconstruct a
sparse set of patches, which are then stored in the grid of
cells C(i, j) overlaid on each image (Fig. 3): Consider an
image I and denote by O the optical center of the corre-
sponding camera. For each feature f detected in I, we col-
lect in the other images the set F of features f ′ of the same
type (Harris or DoG) that lie within ι = 2pixels from the
corresponding epipolar lines, and triangulate the 3D points
associated with the pairs ( f , f ′). We then consider these
points in order of increasing distance from O as potential
patch centers, 4 and return the first patch “photoconsistent”
in at least γ images (Fig. 3, top). More concretely, for each

3Briefly, let us denote by Gσ a 2D Gaussian with standard deviation
σ . The response of the Harris filter at some image point is defined as
H = det(M)−λ trace2(M), where M =Gσ0 ∗(∇I∇IT ), and ∇I is computed
by convolving the image I with the partial derivatives of the Gaussian Gσ1 .
The response of the DoG filter is D = |(Gσ2 −G√2σ2

) ∗ I|. We use σ0 =
σ1 = σ2 = 1pixel and λ = 0.06 in all of our experiments.

4Empirically, this heuristic has proven to be effective in selecting
mostly correct matches at a modest computational expense.
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(Harris/DoG)
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Input: Features detected in each image.
Output: Initial sparse set of patches P.

Cover each image with a grid of β1×β1pixel2 cells;
P← φ ;
For each image I with optical center O

For each feature f detected in I and lying in an empty cell
F← {Features satisfying the epipolar consistency};
Sort F in an increasing order of distance from O;
For each feature f ′ ∈ F
R(p)← I; T (p)← {J|N(p,R(p),J)≥ α0};
c(p)← 3D point triangulated from f and f ′;
n(p)← Direction of optical ray from c(p) to O;
n(p),c(p)← argmax N̄(p);
S(p)← {J|N(p,R(p),J) ≥ α0};
T (p)←{J|N(p,R(p),J) ≥ α1};
If |T (p)| ≥ γ

register p to the corresponding cells in S(p);
exit innermost For loop, and add p to P.

Figure 3. Feature matching algorithm. Top: An example showing
the features f ′ ∈ F satisfying the epipolar constraint in images I2
and I3 as they are matched to feature f in image I1 (this is an
illustration only, not showing actual detected features). Bottom:
The matching algorithm. The values used for α0 and α1 in all our
experiments are 0.4 and 0.7 respectively.

feature f ′, we construct the potential surface patch p by tri-
angulating f and f ′ to obtain an estimate of c(p), assign to
n(p) the direction of the optical ray joining this point to O,
and set R(p) = I. After initializing T (p) by using photo-
metric consistency as in Sect. 2.4, we use the optimization
process described in Sect. 2.3 to refine the parameters of
c(p) and n(p), then initialize S(p) and recompute T (p). Fi-
nally, if p satisfies the constraint |T (p)| ≥ γ , we compute
its projections in all images in S(p), register it to the corre-
sponding cells, and add it to P (Fig. 3, bottom). Note that
since the purpose of this step is only to reconstruct an initial,
sparse set of patches, features lying in non-empty cells are
skipped for efficiency. Also note that the patch generation
process may fail if the reference image R(p) is an outlier,
for example when f correspond to a highlight. This does
not prevent, however, the reconstruction of the correspond-

ing surface patch from another image. The second part of
our algorithm iterates (three times in all our experiments)
between an expansion step to obtain dense patches and a
filtering step to remove erroneous matches and enforce vis-
ibility consistency, as detailed in the next two sections.

3.2. Expansion

At this stage, we iteratively add new neighbors to ex-
isting patches until they cover the surfaces visible in the
scene. Intuitively, two patches p and p′ are considered to
be neighbors when they are stored in adjacent cells C(i, j)
and C(i′, j′) of the same image I in S(p), and their tangent
planes are close to each other. We only attempt to create
new neighbors when necessary—that is, when Qt(i′, j′) is
empty, 5 and none of the elements of Qf (i′, j′) is n-adjacent
to p, where two patches p and p′ are said to be n-adjacent
when |(c(p)−c(p′)) ·n(p)|+ |(c(p)−c(p′)) ·n(p′)|< 2ρ2.
Similar to ρ1, ρ2 is determined automatically as the distance
at the depth of the mid-point of c(p) and c(p′) correspond-
ing to an image displacement of β1 pixels in R(p). When
these two conditions are verified, we initialize the patch p′
by assigning to R(p′), T (p′), and n(p′) the corresponding
values for p, and assigning to c(p′) the point where the
viewing ray passing through the center ofC(i′, j′) intersects
the plane containing the patch p. Next, c(p′) and n(p′) are
refined by the optimization procedure discussed in Sect. 2.3,
and S(p′) is initialized from the depth maps as explained in
Sect. 2.4. Since some matches (and thus the correspond-
ing depth map information) may be incorrect at this point,
the elements of T (p′) are added to S(p′) to avoid missing
any image where p′ may be visible. Finally, after updating
T (p′) using photometric constraints as in Sect. 2.4, we ac-
cept the patch p′ if |T (p′)| ≥ γ still holds, then register it to
Qt(i′, j′) and Qf (i′, j′), and update the depth maps associ-
ated with images in S(p′). See Fig. 4 for the algorithm.

3.3. Filtering

Two filtering steps are applied to the reconstructed
patches to further enforce visibility consistency and remove
erroneous matches. The first filter focuses on removing
patches that lie outside the real surface (Fig. 5, left): Con-
sider a patch p0 and denote byU the set of patches that it oc-
cludes. We remove p0 as an outlier when |T (p0)| N̄(p0) <

∑p j∈U N̄(p j) (intuitively, when p0 is an outlier, both N̄(p0)
and |T (p0)| are expected to be small, and p0 is likely to be
removed). The second filter focuses on outliers lying in-
side the actual surface (Fig. 5, right): We simply recompute
S(p0) and T (p0) for each patch p0 using the depth maps
associated with the corresponding images (Sect. 2.4), and

5Intuitively, any patch p′ in Qt(i′, j′) would either already be a neigh-
bor of p, or be separated from it by a depth discontinuity, neither case
warranting the addition of a new neighbor.
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Input: Patches P from the feature matching step.
Output: Expanded set of reconstructed patches.

Use P to initialize, for each image, Qf , Qt , and its depth map.
While P is not empty

Pick and remove a patch p from P;
For each image I ∈ T (p) and cell C(i, j) that p projects onto

For each cell C(i′, j′) adjacent to C(i, j) such that Qt(i′, j′)
is empty and p is not n-adjacent to any patch in Qf (i′, j′)

Create a new p′, copying R(p′),T (p′) and n(p′) from p;
c(p′)← Intersection of optical ray through

center of C(i′, j′) with plane of p;
n(p′),c(p′)← argmaxN̄(p′);
S(p′)← {Visible images of p′ estimated by the

current depth maps } ∪ T (p′);
T (p′)←{J ∈ S(p′)|N(p′,R(p′),J)≥ α1};
If |T(p′) < γ |, go back to For-loop;
Add p′ to P;
Update Qt ,Qf and depth maps for S(p′);

Return all the reconstructed patches stored in Qf and Qt .

Figure 4. Patch expansion algorithm.
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I3I2I1
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U

Figure 5. Outliers lying outside (left) or inside (right) the correct
surface. Arrows are drawn between the patches pi and the images
I j in S(pi), while solid arrows correspond to the case where I j ∈
T (pi). U denotes a set of patches occluded by an outlier. See text
for details.

remove p0 when |T (p0)| < γ . Note that the recomputed
values of S(p0) and T (p0) may be different from those ob-
tained in the expansion step since more patches have been
computed after the reconstruction of p0. Finally, we enforce
a weak form of regularization as follows: For each patch p,
we collect the patches lying in its own and adjacent cells in
all images of S(p). If the proportion of patches that are n-
adjacent to p in this set is lower than ε = 0.25, p is removed
as an outlier. The threshold α1 is initialized with 0.7, and
lowered by 0.2 after each expansion/filtering iteration.

4. Polygonal Surface Reconstruction

The reconstructed patches form an oriented point, or sur-
fel model. Despite the growing popularity of this type of
models in the computer graphics community [10], it re-
mains desirable to turn our collection of patches into sur-
face meshes for image-based modeling applications. The

S*

S

v
d(v)n(v)

Π(v)

Figure 6. Polygonal surface reconstruction. Left: bounding vol-
umes for the dino (visual hull), steps (convex hull), and city-hall
(union of hemispheres) datasets featured in Figs. 7 ,9 and 10.
Right: geometric elements driving the deformation process.

approach that we have adopted is a variant of the iterative
deformation algorithm presented in [4], and consists of two
phases. Briefly, after initializing a polygonal surface from
a predetermined bounding volume, the convex hull of the
reconstructed points, or a set of small hemispheres cen-
tered at these points and pointing away from the cameras,
we repeatedly move each vertex v according to three forces
(Fig. 6): a smoothness term for regularization; a photomet-
ric consistency term, which is based on the reconstructed
patches in the first phase, but is computed solely from the
mesh in the second phase; and, when accurate silhouettes
are available, a rim consistency term pulling the rim of the
deforming surface toward the corresponding visual cones.

Concretely, the smoothness term is −ζ1∆v + ζ2∆2v,
where ∆ denotes the (discrete) Laplacian operator relative to
a local parameterization of the tangent plane in v (ζ1 = 0.6
and ζ2 = 0.4 are used in all our experiments). In the first
phase, the photometric consistency term for each vertex v
essentially drives the surface towards reconstructed patches
and is given by ν(v)n(v), where n(v) is the inward unit
normal to S in v, ν(v) = max(−τ,min(τ,d(v))), and d(v)
is the signed distance between v and the true surface S∗
along n(v) (the parameter τ is used to bound the magni-
tude of the force, ensure stable deformation and avoid self-
intersections; its value is fixed as 0.2 times the average edge
length in S). In turn, d(v) is estimated as follows: We col-
lect the set Π(v) of π = 10 patches p′ with (outward) nor-
mals compatible with that of v (that is, −n(p′) · n(v) > 0,
see Fig. 6) that lie closest to the line defined by v and n(v),
and compute d(v) as the weighted average distance from v
to the centers of the patches in Π(v) along n(v)—that is,
d(v) = ∑p′∈Π(v)w(p′)[n(v) · (c(p′)− v)], where the weights
w(p′) are Gaussian functions of the distance between c(p′)
and the line, with standard deviation ρ1 defined as before,
and normalized to sum to 1. In the second phase, the pho-
tometric consistency term is computed for each vertex by
using the patch optimization routine as follows. At each
vertex v, we create a patch p by initializing c(p) with v,
n(p) with a surface normal estimated at v on S, and a set of
visible images S(p) from a depth-map testing on the mesh
S at v, then apply the patch optimization routine described
in Sect. 2.3. Let c∗(p) denote the value of c(p) after the
optimization, then c∗(p)− c(p) is used as the photometric
consistency term. In the first phase, we iterate until conver-
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Table 1. Characteristics of the datasets used in our experiments.
roman and skull datasets have been acquired in our lab, while
other datasets have been kindly provided by S. Seitz, B. Curless,
J. Diebel, D. Scharstein, and R. Szeliski (temple and dino, see
also [20]); C. Hernández Esteban, F. Schmitt and the Museum
of Cherbourg (polynesian); S. Sullivan and Industrial Light and
Magic (face, face-2, body, steps, and wall); and C. Strecha (city-
hall and brussels).

Name Images Image Size β1 µ γ
roman 48 1800×1200 1 5 3
temple 16 640×480 1 5 3
dino 16 640×480 1 7 3
skull 24 2000×2000 2 5 3

polynesian 36 1700×2100 2 5 3
face 4 1400×2200 1 7 2
face-2 13 1500×1400 1 5 3
body 4 1400×2200 1 7 2
steps 7 1500×1400 1 7 3

city-hall 5 3000×2000 2 7 3
wall 9 1500×1400 1 7 3

brussels 3 2000×1300 1 5 2

gence, remesh, increase the resolution of the surface, and
repeat the process until the desired resolution is obtained
(in particular, until image projections of edges of the mesh
become approximately β1 pixels in length, see [4] for de-
tails). The second phase is applied to the mesh only in its
desired resolution as a final refinement.

5. Experiments and Discussion

We have implemented the proposed approach in C++,
using the WNLIB [14] implementation of conjugate gradi-
ent in the patch optimization routine. The datasets used in
our experiments are listed in Table 1, together with the num-
ber of input images, their approximate size and a choice of
parameters for each data set. Note that all the parameters
except for β1, µ and γ have been fixed in our experiments.

We have first tested our algorithm on object datasets
(Figs. 1 and 7) for which a segmentation mask is available
in each image. A visual hull model is thus used to initialize
the iterative deformation process for all these datasets, ex-
cept for face and body, where a limited set of viewpoints is
available, and the convex hull of the reconstructed patches
is used instead. The segmentation mask is also used by our
stereo algorithm, which simply ignores the background dur-
ing feature detection and matching. The rim consistency
term has only been used in the surface deformation pro-
cess for the roman and skull datasets, for which accurate
contours are available. The bounding volume information
has not been used to filter out erroneous matches in our
experiments. Our algorithm has successfully reconstructed
various surface structures such as the high-curvature and/or
shallow surface details of roman, the thin cheek bone and
deep eye sockets of skull, and the intricate facial features

of face and face-2. Quantitative comparisons kindly pro-
vided by D. Scharstein on the datasets presented in [20]
show that the proposed method outperforms all the other
evaluated techniques in terms of accuracy (distance d such
that a given percentage of the reconstruction is within d
from the ground truth model) and completeness (percent-
age of the ground truth model that is within a given distance
from the reconstruction) on four out of the six datasets. The
datasets consists of two objects (temple and dino), each of
which constitutes three datasets (sparse ring, ring, and full)
with different numbers of input images, ranging from 16 to
more than 300, and our method achieves the best accuracy
and completeness on all the dino datasets and the smallest
sparse ring temple. Note that the sparse ring temple and
dino datasets consisting of 16 views have been shown in
Fig. 7 and their quantitative comparison with the top per-
formers [4, 5, 7, 18, 21, 22, 23] are given in Fig. 8. 6 Fi-
nally, the bottom part of Fig. 8 compares our algorithm with
Hernández Esteban’s method [7], which is one of the best
multi-view stereo reconstruction algorithms today, for the
polynesian dataset, where a laser scanned model is used as
a ground truth. As shown by the close-ups in this figure,
our model is qualitatively better than the Herández’s model,
especially at sharp concave structures. This is also shown
quantitatively using the same accuracy and completeness
measures as before.

Reconstruction results for scene datasets are shown in
Fig. 9. Additional information (such as segmentation
masks, bounding boxes, or valid depth ranges) is not avail-
able in this case. The city-hall example is interesting be-
cause viewpoints change significantly across input cameras,
and part of the building is only visible in some of the frames.
Nonetheless, our algorithm has successfully reconstructed
the whole scene with fine structural details. The wall dataset
is challenging since a large portion of several of the input
pictures consists of running water, and the corresponding
image regions have successfully been detected as outliers,
while accurate surface details have been recovered for the
rigid wall structure. Finally, Fig. 10 illustrates our results
on crowded scene datasets. Our algorithm reconstructs the
background building from the brussels dataset, despite peo-
ple occluding various parts of the scene. The steps-2 dataset
is an artificially generated example, where we have manu-
ally painted a red cartoonish human in each image of steps
images. To further test the robustness of our algorithm
against outliers, the steps-3 dataset has been created from
steps-2 by copying its images but replacing the fifth one
with the third, without changing camera parameters. This
is a particularly challenging example, since the whole fifth
image must be detected as an outlier. We have successfully
reconstructed the details of both despite these outliers. Note

6Rendered views of the reconstructions and all the quantitative evalua-
tions can be found at http://vision.middlebury.edu/mview/.

6



Figure 7. Sample results on object datasets: From left to right and top to bottom: temple, dino, skull, polynesian, face, face-2, and body datasets. In each
case, one of the input image is shown, along with two views of texture-mapped reconstructed patches and shaded polygonal surfaces.

that the convex hull of the reconstructed patches’ centers is
used for the surface initialization except for the city-hall and
brussels, for which the union of hemispheres is used.

The bottleneck of our multi-view stereo matching al-
gorithm is the patch expansion step, whose running time
varies from about 20 minutes, for small datasets such as
temple and dino, to up to a few hours for datasets con-
sisting of high-resolution images, such as polynesian and
city-hall. The running times of polygonal surface extrac-
tion also range from 30 minutes to a few hours depending
on the size of datasets. This is comparable to many varia-
tional methods [20], despite the fact that our algorithm does
not involve any large optimization problem. This is due
to several factors: First, unlike algorithms using voxels or
discretized depth labels, our method solves a fully contin-
uous optimization problem, thus does not suffer from dis-
cretization errors and can handle high-resolution input im-
ages directly, but trades speed for accuracy. Second, we use
a region-based photometric consistency measure, which is
much slower than a point-based measure, but takes into ac-
count surface orientation during optimization. In turn, this
allows our algorithm to handle gracefully outdoor images
with varying illumination. Again, accuracy and speed are
conflicting requirements. To conclude, let us note that our
future work will be aimed at adding a temporal component

to our reconstruction algorithm, with the aim of achieving
markerless face and body motion capture.
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Abstract. We present an end-to-end deep learning architecture for depth
map inference from multi-view images. In the network, we first extract
deep visual image features, and then build the 3D cost volume upon
the reference camera frustum via the differentiable homography warp-
ing. Next, we apply 3D convolutions to regularize and regress the initial
depth map, which is then refined with the reference image to generate
the final output. Our framework flexibly adapts arbitrary N-view inputs
using a variance-based cost metric that maps multiple features into one
cost feature. The proposed MVSNet is demonstrated on the large-scale
indoor DTU dataset. With simple post-processing, our method not only
significantly outperforms previous state-of-the-arts, but also is several
times faster in runtime. We also evaluate MVSNet on the complex out-
door Tanks and Temples dataset, where our method ranks first before
April 18, 2018 without any fine-tuning, showing the strong generalization
ability of MVSNet.

Keywords: Multi-view Stereo, Depth Map, Deep Learning

1 Introduction

Multi-view stereo (MVS) estimates the dense representation from overlapping
images, which is a core problem of computer vision extensively studied for
decades. Traditional methods use hand-crafted similarity metrics and engineered
regularizations (e.g., normalized cross correlation and semi-global matching [12])
to compute dense correspondences and recover 3D points. While these methods
have shown great results under ideal Lambertian scenarios, they suffer from
some common limitations. For example, low-textured, specular and reflective re-
gions of the scene make dense matching intractable and thus lead to incomplete
reconstructions. It is reported in recent MVS benchmarks [1,18] that, although
current state-of-the-art algorithms [7,36,8,32] perform very well on the accuracy,
the reconstruction completeness still has large room for improvement.

Recent success on convolutional neural networks (CNNs) research has also
triggered the interest to improve the stereo reconstruction. Conceptually, the
learning-based method can introduce global semantic information such as spec-
ular and reflective priors for more robust matching. There are some attempts on
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the two-view stereo matching, by replacing either hand-crafted similarity met-
rics [39,10,23,11] or engineered regularizations [34,19,17] with the learned ones.
They have shown promising results and gradually surpassed traditional methods
in stereo benchmarks [9,25]. In fact, the stereo matching task is perfectly suitable
for applying CNN-based methods, as image pairs are rectified in advance and
thus the problem becomes the horizontal pixel-wise disparity estimation without
bothering with camera parameters.

However, directly extending the learned two-view stereo to multi-view sce-
narios is non-trivial. Although one can simply pre-rectify all selected image pairs
for stereo matching, and then merge all pairwise reconstructions to a global point
cloud, this approach fails to fully utilize the multi-view information and leads to
less accurate result. Unlike stereo matching, input images to MVS could be of
arbitrary camera geometries, which poses a tricky issue to the usage of learning
methods. Only few works acknowledge this problem and try to apply CNN to the
MVS reconstruction: SurfaceNet [14] constructs the Colored Voxel Cubes (CVC)
in advance, which combines all image pixel color and camera information to a
single volume as the input of the network. In contrast, the Learned Stereo Ma-
chine (LSM) [15] directly leverages the differentiable projection/unprojection to
enable the end-to-end training/inference. However, both the two methods exploit
the volumetric representation of regular grids. As restricted by the huge mem-
ory consumption of 3D volumes, their networks can hardly be scaled up: LSM
only handles synthetic objects in low volume resolution, and SurfaceNet applies
a heuristic divide-and-conquer strategy and takes a long time for large-scale re-
constructions. For the moment, the leading boards of modern MVS benchmarks
are still occupied by traditional methods [7,8,32].

To this end, we propose an end-to-end deep learning architecture for depth
map inference, which computes one depth map at each time, rather than the
whole 3D scene at once. Similar to other depth map based MVS methods
[35,3,8,32], the proposed network, MVSNet, takes one reference image and sev-
eral source images as input, and infers the depth map for the reference image.
The key insight here is the differentiable homography warping operation, which
implicitly encodes camera geometries in the network to build the 3D cost volumes
from 2D image features and enables the end-to-end training. To adapt arbitrary
number of source images in the input, we propose a variance-based metric that
maps multiple features into one cost feature in the volume. This cost volume
then undergoes multi-scale 3D convolutions and regress an initial depth map.
Finally, the depth map is refined with the reference image to improve the ac-
curacy of boundary areas. There are two major differences between our method
and previous learned approaches [15,14]. First, for the purpose of depth map
inference, our 3D cost volume is built upon the camera frustum instead of the
regular Euclidean space. Second, our method decouples the MVS reconstruction
to smaller problems of per-view depth map estimation, which makes large-scale
reconstruction possible.

We train and evaluate the proposed MVSNet on the large-scale DTU dataset
[1]. Extensive experiments show that with simple post-processing, MVSNet out-
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performs all competing methods in terms of completeness and overall quality.
Besides, we demonstrate the generalization power of the network on the outdoor
Tanks and Temples benchmark [18], where MVSNet ranks first (before April.
18, 2018) over all submissions including the open-source MVS methods (e.g.,
COLMAP [32] and OpenMVS [29]) and commercial software (Pix4D [30]) with-
out any fine-tuning. It is also noteworthy that the runtime of MVSNet is several
times or even several orders of magnitude faster than previous state-of-the-arts.

2 Related work

MVS Reconstruction. According to output representations, MVS methods
can be categorized into 1) direct point cloud reconstructions [22,7], 2) volumetric
reconstructions [20,33,14,15] and 3) depth map reconstructions [35,3,8,32,38].
Point cloud based methods operate directly on 3D points, usually relying on
the propagation strategy to gradually densify the reconstruction [22,7]. As the
propagation of point clouds is proceeded sequentially, these methods are difficult
to be fully parallelized and usually take a long time in processing. Volumetric
based methods divide the 3D space into regular grids and then estimate if each
voxel is adhere to the surface. The downsides for this representation are the
space discretization error and the high memory consumption. In contrast, depth
map is the most flexible representation among all. It decouples the complex MVS
problem into relatively small problems of per-view depth map estimation, which
focuses on only one reference and a few source images at a time. Also, depth maps
can be easily fused to the point cloud [26] or the volumetric reconstructions [28].
According to the recent MVS benchmarks [1,18], current best MVS algorithms
[8,32] are both depth map based approaches.
Learned Stereo. Rather than using traditional handcrafted image features
and matching metrics [13], recent studies on stereo apply the deep learning tech-
nique for better pair-wise patch matching. Han et al. [10] first propose a deep
network to match two image patches. Zbontar et al. [39] and Luo et al. [23]
use the learned features for stereo matching and semi-global matching (SGM)
[12] for post-processing. Beyond the pair-wise matching cost, the learning tech-
nique is also applied in cost regularization. SGMNet [34] learns to adjust the
parameters used in SGM, while CNN-CRF [19] integrates the conditional ran-
dom field optimization in the network for the end-to-end stereo learning. The
recent state-of-the-art method is GCNet [17], which applies 3D CNN to regu-
larize the cost volume and regress the disparity by the soft argmin operation. It
has been reported in KITTI banchmark [25] that, learning-based stereos, espe-
cially those end-to-end learning algorithms [24,19,17], significantly outperform
the traditional stereo approaches.
Learned MVS. There are fewer attempts on learned MVS approaches. Hart-
mann et al. propose the learned multi-patch similarity [11] to replace the tra-
ditional cost metric for MVS reconstruction. The first learning based pipeline
for MVS problem is SurfaceNet [14], which pre-computes the cost volume with
sophisticated voxel-wise view selection, and uses 3D CNN to regularize and infer
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Fig. 1: The network design of MVSNet. Input images will go through the 2D
feature extraction network and the differentiable homograph warping to generate
the cost volume. The final depth map output is regressed from the regularized
probability volume and refined with the reference image

the surface voxels. The most related approach to ours is the LSM [15], where
camera parameters are encoded in the network as the projection operation to
form the cost volume, and 3D CNN is used to classify if a voxel belongs to the
surface. However, due to the common drawback of the volumetric representation,
networks of SurfaceNet and LSM are restricted to only small-scale reconstruc-
tions. They either apply the divide-and-conquer strategy [14] or is only applicable
to synthetic data with low resolution inputs [15]. In contrast, our network focus
on producing the depth map for one reference image at each time, which allows
us to adaptively reconstruct a large scene directly.

3 MVSNet

This section describes the detailed architecture of the proposed network. The
design of MVSNet strongly follows the rules of camera geometry and borrows the
insights from previous MVS approaches. In following sections, we will compare
each step of our network to the traditional MVS methods, and demonstrate the
advantages of our learning-based MVS system. The full architecture of MVSNet
is visualized in Fig. 1.

3.1 Image Features

The first step of MVSNet is to extract the deep features {Fi}Ni=1 of the N input
images {Ii}Ni=1 for dense matching. An eight-layer 2D CNN is applied, where
the strides of layer 3 and 6 are set to two to divide the feature towers into
three scales. Within each scale, two convolutional layers are applied to extract
the higher-level image representation. Each convolutional layer is followed by
a batch-normalization (BN) layer and a rectified linear unit (ReLU) except for
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the last layer. Also, similar to common matching tasks, parameters are shared
among all feature towers for efficient learning.

The outputs of the 2D network are N 32-channel feature maps downsized
by four in each dimension compared with input images. It is noteworthy that
though the image frame is downsized after feature extraction, the original neigh-
boring information of each remaining pixel has already been encoded into the
32-channel pixel descriptor, which prevents dense matching from losing useful
context information. Compared with simply performing dense matching on orig-
inal images, the extracted feature maps significantly boost the reconstruction
quality (see Sec. 5.3).

3.2 Cost Volume

The next step is to build a 3D cost volume from the extracted feature maps
and input cameras. While previous works [14,15] divide the space using regular
grids, for our task of depth map inference, we construct the cost volume upon
the reference camera frustum. For simplicity, in the following we denote I1 as
the reference image, {Ii}Ni=2 the source images, and {Ki,Ri, ti}Ni=1 the camera
intrinsics, rotations and translations that correspond to the feature maps.

Differentiable Homography All feature maps are warped into different fronto-
parallel planes of the reference camera to form N feature volumes {Vi}Ni=1. The
coordinate mapping from the warped feature map Vi(d) to Fi at depth d is
determined by the planar transformation x′ ∼ Hi(d) · x, where ‘∼’ denotes the
projective equality and Hi(d) the homography between the ith feature map and
the reference feature map at depth d. Let n1 be the principle axis of the reference
camera, the homography is expressed by a 3× 3 matrix:

Hi(d) = Ki ·Ri ·
(
I− (t1 − ti) · nT1

d

)
·RT

1 ·KT
1 . (1)

Without loss of generality, the homography for reference feature map F1 itself is
an 3× 3 identity matrix. The warping process is similar to that of the classical
plane sweeping stereo [5], except that the differentiable bilinear interpolation is
used to sample pixels from feature maps {Fi}Ni=1 rather than images {Ii}Ni=1.
As the core step to bridge the 2D feature extraction and the 3D regularization
networks, the warping operation is implemented in differentiable manner, which
enables end-to-end training of depth map inference.

Cost Metric Next, we aggregate multiple feature volumes {Vi}Ni=1 to one cost
volume C. To adapt arbitrary number of input views, we propose a variance-
based cost metric M for N-view similarity measurement. Let W,H,D,F be the
input image width, height, depth sample number and the channel number of the
feature map, and V = W

4 ·
H
4 · D · F the feature volume size, our cost metric
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defines the mapping M : RV × · · · × RV︸ ︷︷ ︸
N

→ RV that:

C =M(V1, · · · ,VN ) =

N∑
i=1

(Vi −Vi)
2

N
(2)

Where Vi is the average volume among all feature volumes, and all operations
above are element-wise.

Most traditional MVS methods aggregate pairwise costs between the refer-
ence image and all source images in a heuristic way. Instead, our metric design
follows the philosophy that all views should contribute equally to the matching
cost and gives no preference to the reference image [11]. We notice that recent
work [11] applies the mean operation with multiple CNN layers to infer the
multi-patch similarity. Here we choose the ‘variance’ operation instead because
the ‘mean’ operation itself provides no information about the feature differences,
and their network requires pre- and post- CNN layers to help infer the similarity.
In contrast, our variance-based cost metric explicitly measures the multi-view
feature difference. In later experiments, we will show that such explicit difference
measurement improves the validation accuracy.

Cost Volume Regularization The raw cost volume computed from image fea-
tures could be noise-contaminated (e.g., due to the existence of non-Lambertian
surfaces or object occlusions) and should be incorporated with smoothness con-
straints to infer the depth map. Our regularization step is designed for refining
the above cost volume C to generate a probability volume P for depth infer-
ence. Inspired by recent learning-based stereo [17] and MVS [14,15] methods, we
apply the multi-scale 3D CNN for cost volume regularization. The four-scale net-
work here is similar to a 3D version UNet [31], which uses the encoder-decoder
structure to aggregate neighboring information from a large receptive field with
relatively low memory and computation cost. To further lessen the computa-
tional requirement, we reduce the 32-channel cost volume to 8-channel after the
first 3D convolutional layer, and change the convolutions within each scale from
3 layers to 2 layers. The last convolutional layer outputs a 1-channel volume.
We finally apply the softmax operation along the depth direction for probability
normalization.

The resulting probability volume is highly desirable in depth map inference
that it can not only be used for per-pixel depth estimation, but also for measuring
the estimation confidence. We will show in Sec. 3.3 that one can easily determine
the depth reconstruction quality by analyzing its probability distribution, which
leads to a very concise yet effective outlier filtering strategy in Sec. 4.2.

3.3 Depth Map

Initial Estimation The simplest way to retrieve depth map D from the prob-
ability volume P is the pixel-wise winner-take-all [5] (i.e., argmax ). However,
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Fig. 2: Illustrations on inferred depth map, probability distributions and prob-
ability map. (a) One reference image of scan 114, DTU dataset [1]; (b) the
inferred depth map; (c) the probability distributions of an inlier pixel (top) and
an outlier pixel (bottom), where the x-axis is the index of depth hypothesis,
y-axis the probability and red lines the soft argmin results; (d) the probability
map. As shown in (c), the outlier’s distribution is scattered and results in a low
probability estimation in (d)

the argmax operation is unable to produce sub-pixel estimation, and cannot be
trained with back-propagation due to its indifferentiability. Instead, we compute
the expectation value along the depth direction, i.e., the probability weighted
sum over all hypotheses:

D =

dmax∑
d=dmin

d×P(d) (3)

Where P(d) is the probability estimation for all pixels at depth d. Note that
this operation is also referred to as the soft argmin operation in [17]. It is fully
differentiable and able to approximate the argmax result. While the depth hy-
potheses are uniformly sampled within range [dmin, dmax] during cost volume
construction, the expectation value here is able to produce a continuous depth
estimation. The output depth map (Fig. 2 (b)) is of the same size to 2D image
feature maps, which is downsized by four in each dimension compared to input
images.

Probability Map The probability distribution along the depth direction also
reflects the depth estimation quality. Although the multi-scale 3D CNN has very
strong ability to regularize the probability to the single modal distribution, we
notice that for those falsely matched pixels, their probability distributions are
scattered and cannot be concentrated to one peak (see Fig. 2 (c)). Based on

this observation, we define the quality of a depth estimation d̂ as the probability
that the ground truth depth is within a small range near the estimation. As
depth hypotheses are discretely sampled along the camera frustum, we simply
take the probability sum over the four nearest depth hypotheses to measure the
estimation quality. Notice that other statistical measurements, such as standard
deviation or entropy can also be used here, but in our experiments we observe no
significant improvement from these measurements for depth map filtering. More-
over, our probability sum formulation leads to a better control of thresholding
parameter for outliers filtering.
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Depth Map Refinement While the depth map retrieved from the probability
volume is a qualified output, the reconstruction boundaries may suffer from
oversmoothing due to the large receptive field involved in the regularization,
which is similar to the problems in semantic segmentation [4] and image matting
[37]. Notice that the reference image in natural contains boundary information,
we thus use the reference image as a guidance to refine the depth map. Inspired
by the recent image matting algorithm [37], we apply a depth residual learning
network at the end of MVSNet. The initial depth map and the resized reference
image are concatenated as a 4-channel input, which is then passed through three
32-channel 2D convolutional layers followed by one 1-channel convolutional layer
to learn the depth residual. The initial depth map is then added back to generate
the refined depth map. The last layer does not contain the BN layer and the
ReLU unit as to learn the negative residual. Also, to prevent being biased at a
certain depth scale, we pre-scale the initial depth magnitude to range [0, 1], and
convert it back after the refinement.

3.4 Loss

Losses for both the initial depth map and the refined depth map are considered.
We use the mean absolute difference between the ground truth depth map and
the estimated depth map as our training loss. As ground truth depth maps are
not always complete in the whole image (see Sec. 4.1), we only consider those
pixels with valid ground truth labels:

Loss =
∑

p∈pvalid

‖d(p)− d̂i(p)‖1︸ ︷︷ ︸
Loss0

+λ · ‖d(p)− d̂r(p)‖1︸ ︷︷ ︸
Loss1

(4)

Where pvalid denotes the set of valid ground truth pixels, d(p) the ground truth

depth value of pixel p, d̂i(p) the initial depth estimation and d̂r(p) the refined
depth estimation. The parameter λ is set to 1.0 in experiments.

4 Implementations

4.1 Training

Data Preparation Current MVS datasets provide ground truth data in either
point cloud or mesh formats, so we need to generate the ground truth depth
maps ourselves. The DTU dataset [1] is a large-scale MVS dataset containing
more than 100 scenes with different lighting conditions. As it provides the ground
truth point cloud with normal information, we use the screened Poisson surface
reconstruction (SPSR) [16] to generate the mesh surface, and then render the
mesh to each viewpoint to generate the depth maps for our training. The param-
eter, depth-of-tree is set to 11 in SPSR to acquire the high quality mesh result.
Also, we set the mesh trimming-factor to 9.5 to alleviate mesh artifacts in surface
edge areas. To fairly compare MVSNet with other learning based methods, we
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choose the same training, validation and evaluation sets as in SurfaceNet [14]1.
Considering each scan contains 49 images with 7 different lighting conditions,
by setting each image as the reference, DTU dataset provides 27097 training
samples in total.

View Selection A reference image and two source images (N = 3) are used
in our training. We calculate a score s(i, j) =

∑
p G(θij(p)) for each image pair

according to the sparse points, where p is a common track in both view i and
j, θij(p) = (180/π) arccos((ci − p) · (cj − p)) is p’s baseline angle and c is
the camera center. G is a piecewise Gaussian function [40] that favors a certain
baseline angle θ0:

G(θ) =

 exp(− (θ−θ0)2
2σ2

1
), θ ≤ θ0

exp(− (θ−θ0)2
2σ2

2
), θ > θ0

In the experiments, θ0, σ1 and σ2 are set to 5, 1 and 10 respectively.
Notice that images will be downsized in feature extraction, plus the four-

scale encoder-decoder structure in 3D regularization part, the input image size
must be divisible by a factor of 32. Considering this requirement also the limited
GPU memories, we downsize the image resolution from 1600×1200 to 800×600,
and then crop the image patch with W = 640 and H = 512 from the center as
the training input. The input camera parameters are changed accordingly. The
depth hypotheses are uniformly sampled from 425mm to 935mm with a 2mm
resolution (D = 256). We use TensorFlow [2] to implement MVSNet, and the
network is trained on one Tesla P100 graphics card for around 100, 000 iterations.

4.2 Post-processing

Depth Map Filter The above network estimates a depth value for every pixel.
Before converting the result to dense point clouds, it is necessary to filter out
outliers at those background and occluded areas. We propose two criteria, namely
photometric and geometric consistencies for the robust depth map filtering.

The photometric consistency measures the matching quality. As discussed in
Sec. 3.3, we compute the probability map to measure the depth estimation qual-
ity. In our experiments, we regard pixels with probability lower than 0.8 as out-
liers. The geometric constraint measures the depth consistency among multiple
views. Similar to the left-right disparity check for stereo, we project a reference
pixel p1 through its depth d1 to pixel pi in another view, and then reproject pi
back to the reference image by pi’s depth estimation di. If the reprojected co-
ordinate preproj and and the reprojected depth dreproj satisfy |preproj − p1| < 1
and |dreproj − d1|/d1 < 0.01, we say the depth estimation d1 of p1 is two-view
consistent. In our experiments, all depths should be at least three view consis-
tent. This simple two-step filtering strategy shows strong robustness for filtering
different kinds of outliers.
1 Validation set: scans {3, 5, 17, 21, 28, 35, 37, 38, 40, 43, 56, 59, 66, 67, 82, 86, 106,

117}. Evaluation set: scans {1, 4, 9, 10, 11, 12, 13, 15, 23, 24, 29, 32, 33, 34, 48, 49,
62, 75, 77, 110, 114, 118}. Training set: the other 79 scans.
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(d) Reference image

(c) GT depth map

(f) GT point cloud

(a) Inferred depth map (b) Filtered depth map

(e) Fused point cloud

Fig. 3: Reconstructions of scan 9, DTU dataset [1]. From top left to bottom
right: (a) the inferred depth map from MVSNet; (b) the filtered depth map
after photometric and geometric filtering; (c) the depth map rendered from the
ground truth mesh; (d) the reference image; (e) the final fused point cloud; (f)
the ground truth point cloud

Depth Map Fusion Similar to other multi-view stereo methods [8,32], we
apply a depth map fusion step to integrate depth maps from different views
to a unified point cloud representation. The visibility-based fusion algorithm
[26] is used in our reconstruction, where depth occlusions and violations across
different viewpoints are minimized. To further suppress reconstruction noises, we
determine the visible views for each pixel as in the filtering step, and take the
average over all reprojected depths dreproj as the pixel’s final depth estimation.
The fused depth maps are then directly reprojected to space to generate the 3D
point cloud. The illustration of our MVS reconstruction is shown in Fig. 3.

5 Experiments

5.1 Benchmarking on DTU dataset

We first evaluate our method on the 22 evaluation scans of the DTU dataset
[1]. The input view number, image width, height and depth sample number are
set to N = 5, W = 1600, H = 1184 and D = 256 respectively. For quantitative
evaluation, we calculate the accuracy and the completeness of both the distance
metric [1] and the percentage metric [18]. While the matlab code for the distance
metric is given by DTU dataset, we implement the percentage evaluation our-
selves. Notice that the percentage metric also measures the overall performance
of accuracy and completeness as the f-score. To give a similar measurement for
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Table 1: Quantitative results on the DTU ’s evaluation set [1]. We evaluate all
methods using both the distance metric [1] (lower is better), and the percentage
metric [18] (higher is better) with respectively 1mm and 2mm thresholds

Mean Distance (mm) Percentage (<1mm) Percentage (<2mm)
Acc. Comp. overall Acc. Comp. f-score Acc. Comp. f-score

Camp [3] 0.835 0.554 0.695 71.75 64.94 66.31 84.83 67.82 73.02
Furu [7] 0.613 0.941 0.777 69.55 61.52 63.26 78.99 67.88 70.93
Tola [35] 0.342 1.190 0.766 90.49 57.83 68.07 93.94 63.88 73.61

Gipuma [8] 0.283 0.873 0.578 94.65 59.93 70.64 96.42 63.81 74.16
SurfaceNet[14] 0.450 1.04 0.745 83.8 63.38 69.95 87.15 67.99 74.4

MVSNet (Ours) 0.396 0.527 0.462 86.46 71.13 75.69 91.06 75.31 80.25

Sc
an

 11
 

Sc
an

 9
 

Sc
an

 7
5 

Gipuma PMVS SurfaceNet MVSNet (Ours) Gound Truth

Fig. 4: Qualitative results of scans 9, 11 and 75 of DTU dataset [1]. Our MVSNet
generates the most complete point clouds especially in those textureless and
reflective areas. Best viewed on screen

the distance metric, we define the overall score, and take the average of mean
accuracy and mean completeness as the reconstruction quality.

Quantitative results are shown in Table 1. While Gipuma [35] performs best
in the accuracy, our MVSNet outperforms all methods in both the completeness
and the overall quality with a significant margin. As shown in Fig. 4, MVSNet
produces the most complete point clouds especially in those textureless and
reflected areas, which are commonly considered as the most difficult parts to
recover in MVS reconstruction.



12 Y. Yao, Z. Luo, S. Li, T. Fang, L. Quan

Table 2: Quantitative results on Tanks and Temples benchmark [18]. MVSNet
achieves best f-score result among all submissions without any fine-tuning
Method Rank Mean Family Francis Horse Lighthouse M60 Panther Playground Train

MVSNet (Ours) 3.00 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69
Pix4D [30] 3.12 43.24 64.45 31.91 26.43 54.41 50.58 35.37 47.78 34.96
COLMAP [32] 3.50 42.14 50.41 22.25 25.63 56.43 44.83 46.97 48.53 42.04
OpenMVG [27] + OpenMVS [29] 3.62 41.71 58.86 32.59 26.25 43.12 44.73 46.85 45.97 35.27
OpenMVG [27] + MVE [6] 6.00 38.00 49.91 28.19 20.75 43.35 44.51 44.76 36.58 35.95
OpenMVG [27] + SMVS [21] 10.38 30.67 31.93 19.92 15.02 39.38 36.51 41.61 35.89 25.12
OpenMVG-G [27] + OpenMVS [29] 10.88 22.86 56.50 29.63 21.69 6.55 39.54 28.48 0.00 0.53
MVE [6] 11.25 25.37 48.59 23.84 12.70 5.07 39.62 38.16 5.81 29.19
OpenMVG [27] + PMVS [7] 11.88 29.66 41.03 17.70 12.83 36.68 35.93 33.20 31.78 28.10

(a) Family (c) Horse

(g) Lighthouse(e) Francis (h) M60

(b) Panther

(f) Train

(d) Playground

Fig. 5: Point cloud results of the intermediate set of Tanks and Temples [18]
dataset, which demonstrates the generalization power of MVSNet on complex
outdoor scenes

5.2 Generalization on Tanks and Temples dataset

The DTU scans are taken under well-controlled indoor environment with fixed
camera trajectory. To further demonstrate the generalization ability of MVSNet,
we test the proposed method on the more complex outdoor Tanks and Temples
dataset [18], using the model trained on DTU without any fine-tuning. While
we choose N = 5, W = 1920, H = 1056 and D = 256 for all reconstructions,
the depth range and the source image set for the reference image are determined
according to sparse point cloud and camera positions, which are recovered by
the open source SfM software OpenMVG [27].

Our method ranks first before April 18, 2018 among all submissions of the
intermediate set [18] according to the online benchmark (Table 2). Although
the model is trained on the very different DTU indoor dataset, MVSNet is still
able to produce the best reconstructions on these outdoor scenes, demonstrating
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Fig. 6: Ablation studies. (a) Validation losses of different input view numbers.
(b) Ablations on 2D image feature, cost metric and depth map refinement

the strong generalization ability of the proposed network. The qualitative point
cloud results of the intermediate set are visualized in Fig. 5.

5.3 Ablations

This section analyzes several components in MVSNet. For all following studies,
we use the validation loss to measure the reconstruction quality. The 18 valida-
tion scans (see Sec. 4.1) are pre-processed as the training set that we set N = 3,
W = 640, H = 512 and D = 256 for the validation loss computation.

View Number We first study the influence of the input view number N and
demonstrate that our model can be applied to arbitrary views of input. While
the model in Sec. 4.1 is trained using N = 3 views, we test the model using
N = 2, 3, 5 respectively. As expected, it is shown in Fig. 6 (a) that adding input
views can lower the validation loss, which is consistent with our knowledge about
MVS reconstructions. It is noteworthy that testing with N = 5 performs better
than with N = 3, even though the model is trained with the 3 views setting.
This highly desirable property makes MVSNet flexible enough to be applied the
different input settings.

Image Features We demonstrate in this study that the learning based image
feature could significantly boost the MVS reconstruction quality. To model the
traditional patch-based image feature in MVSNet, we replace the original 2D
feature extraction network with a single 32-channel convolutional layer. The
filter kernel is set to a large number of 7× 7 and the stride is set to 4. As shown
in Fig. 6 (b), network with the 2D feature extraction significantly outperforms
the single layer one on validation loss.

Cost Metric We also compare our variance operation based cost metric with
the mean operation based metric [11]. The element-wise variance operation in
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Eq. 2 is replaced with the mean operation to train the new model. It can be
found in Fig. 6 (b) that our cost metric results in a faster convergence with
lower validation loss, which demonstrates that it is more reasonable to use the
explicit difference measurement to compute the multi-view feature similarity.

Depth Refinement Lastly, we train MVSNet with and without the depth
map refinement network. The models are also tested on DTU evaluation set as
in Sec. 5.1, and we use the percentage metric [18] to quantitatively compare
the two models. While Fig. 6 (b) shows that the refinement does not affect the
validation loss too much, the refinement network improves the evaluation results
from 75.58 to 75.69 (< 1mm f-score) and from 79.98 to 80.25 (< 2mm f-score).

5.4 Discussions

Running Time We compare the running speed of MVSNet to Gipuma [8],
COLMAP [32] and SurfaceNet [14] using the DTU evaluation set. The other
methods are compiled from their source codes and all methods are tested in the
same machine. MVSNet is much more efficient that it takes around 230 seconds
to reconstruct one scan (4.7 seconds per view). The running speed is ∼ 5×
faster than Gipuma, ∼ 100× than COLMAP and ∼ 160× than SurfaceNet.

GPU Memory The GPU memory required by MVSNet is related to the input
image size and the depth sample number. In order to test on the Tanks and
Temples with the original image resolution and sufficient depth hypotheses, we
choose the Tesla P100 graphics card (16 GB) to implement our method. It is
noteworthy that the training and validation on DTU dataset could be done using
one consumer level GTX 1080ti graphics card (11 GB).

Training Data As mentioned in Sec. 4.1, DTU provides ground truth point
clouds with normal information so that we can convert them into mesh surfaces
for depth maps rendering. However, currently Tanks and Temples dataset does
not provide the normal information or mesh surfaces, so we are unable to fine-
tune MVSNet on Tanks and Temples for better performance.

Although using such rendered depth maps have already achieved satisfactory
results, some limitations still exist: 1) the provided ground truth meshes are not
100% complete, so some triangles behind the foreground will be falsely rendered
to the depth map as the valid pixels, which may deteriorate the training process.
2) If a pixel is occluded in all other views, it should not be used for training.
However, without the complete mesh surfaces we cannot correctly identify the
occluded pixels. We hope future MVS datasets could provide ground truth depth
maps with complete occlusion and background information.

6 Conclusion

We have presented a deep learning architecture for MVS reconstruction. The
proposed MVSNet takes unstructured images as input, and infers the depth
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map for the reference image in an end-to-end fashion. The core contribution of
MVSNet is to encode the camera parameters as the differentiable homography
to build the cost volume upon the camera frustum, which bridges the 2D feature
extraction and 3D cost regularization networks. It has been demonstrated on
DTU dataset that MVSNet not only significantly outperforms previous methods,
but also is more efficient in speed by several times. Also, MVSNet have produced
the state-of-the-art results on Tanks and Temples dataset without any fine-
tuning, which demonstrates its strong generalization ability.

References

1. Aanæs, H., Jensen, R.R., Vogiatzis, G., Tola, E., Dahl, A.B.: Large-scale data for
multiple-view stereopsis. International Journal of Computer Vision (IJCV) (2016)

2. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
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