
Course Notes 3: Epipolar Geometry∗

1 Introduction

Previously, we have seen how to compute the intrinsic and extrinsic parameters of a
camera from a single view using a typical camera calibration procedure. This process
culminated in deriving properties about the 3D world from one image. However, in
general, it is not possible to recover the entire structure of the 3D world from just one
image. This is due to the intrinsic ambiguity of the 3D to the 2D mapping: some
information is simply lost.

Figure 1: A single picture such as this picture of a man holding up the Leaning Tower of
Pisa can result in ambiguous scenarios. Multiple views of the same scene help us resolve
these potential ambiguities.

For example, in Figure 1, we may be initially fooled to believe that the man is holding
up the Leaning Tower of Pisa. Only by careful inspection can we tell that this is not the
case and merely an illusion based on the projection of different depths onto the image
plane. However, if we were able to view this scene from a completely different angle,
this illusion immediately disappears and we would instantly figure out the correct scene
layout.

The focus of this lecture note is to show how having knowledge of geometry when
multiple cameras are present can be extremely helpful. Specifically, we will first focus
on defining the geometry involved in two viewpoints and then present how this geometry
can aid in further understanding the world around us.

∗The contents are from
- D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach (2nd Edition).
- R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision (2nd Edition)
- K. Hata and S. Savarese. Course notes of Stanford CS231A
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2 Epipolar Geometry

Figure 2: The general setup of epipolar geometry. The gray region is the epipolar plane.
The orange line is the baseline, while the two blue lines are the epipolar lines.

Often in multiple view geometry, there are interesting relationships between the mul-
tiple cameras, a 3D point, and that point’s projections in each of the camera’s image
plane. The geometry that relates the cameras, points in 3D, and the the corresponding
observations is referred to as the epipolar geometry of a stereo pair.

Figure 3: An example of epipolar lines and their corresponding points drawn on an image
pair.

As illustrated in Figure 2, the standard epipolar geometry setup involves two cameras
observing the same 3D point P, whose projection in each of the image planes is located
at p and p′ respectively. The camera centers are located at O1 and O2, and the line
between them is referred to as the baseline. We call the plane defined by the two camera
centers and P the epipolar plane. The locations of where the baseline intersects the two
image planes are known as the the epipoles e and e′. Finally, the lines defined by the
intersection of the epipolar plane and the two image planes are known as the epipolar lines.
The epipolar lines have the property that they intersect the baseline at the respective
epipoles in the image plane.

An interesting case of epipolar geometry is shown in Figure 4, which occurs when
the image planes are parallel to each other. When the image planes are parallel to each
other, then the epipoles e and e′ will be located at infinity since the baseline joining the
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Figure 4: When the two image planes are parallel, then the epipoles e and e′ are located
at infinity. Notice that the epipolar lines are parallel to the u axis of each image plane.

centers O1 and O2 is parallel to the image planes. Another important byproduct of this
case is that the epipolar lines are parallel to an axis of each image plane. This case is
especially useful and will be covered in greater detail in the subsequent section on image
rectification.

In real-world situations, however, we are not given the exact position of the 3D point
P, but its projection p (i.e., its image point) in one of the image planes. We also should
be able to know the cameras locations, orientations, and camera matrices. What can
we do with this knowledge? With the knowledge of camera locations O1, O2 and the
image point p, we can define the epipolar plane. With this epipolar plane, we can then
determine the epipolar lines1. By definition, P’s projection into the second image p′

must be located on the epipolar line of the second image. Thus, a basic understanding
of epipolar geometry allows us to create a strong constraint between image pairs without
knowing the 3D structure of the scene.

Figure 5: The setup for determining the essential and fundamental matrices, which help
map points and epipolar lines across views.

We will now try to develop seamless ways to map points and epipolar lines across
views. If we take the setup given in the original epipolar geometry framework (Figure 5),
we shall further define M and M ′ to be the camera projection matrices that map 3D

1This means that epipolar lines can be determined by just knowing the camera centers O1 and O2

and a point in one of the images p.
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points into their respective 2D image planes. Let us assume that the world reference
system is associated to the first camera, and the second camera has an offset first by a
rotation R and then by a translation t. This specifies the camera projection matrices to
be:

M = K
[
I 0

]
M ′ = K ′

[
R t

]
(1)

3 The Essential Matrix

In the simplest case, let us assume that we have canonical cameras, in which K = K ′ = I.
This reduces Equation 1 to

M =
[
I 0

]
M ′ =

[
R t

]
(2)

Furthermore, this means that the location of p′ in the first camera’s reference system
is RT (p′ − t). Since the vectors RT (p′ − t) and RT t lie in the epipolar plane, then if we
take the cross product of RT t× [RT (p′− t)] = RT (t×p′), we will get a vector normal to
the epipolar plane. This also means that p, which lies in the epipolar plane, is orthogonal
to RT (t× p′), giving us the constraint that their dot product is zero:

(RT (t× p′))Tp = 0

(t× p′)TRp = 0
(3)

From linear algebra, we can introduce a different and compact expression for the
cross product: we can represent the cross product between any two vectors a and b as a
matrix-vector multiplication:

a× b =

 0 −az ay
az 0 −ax
−ay ax 0

bxby
bz

 = [a×]b (4)

where [a×] is skew-symmetric. A skew-symmetric matrix is a square matrix whose trans-
pose equals its negative, i.e., [a×]T = −[a×].

Combining this expression with Equation 3, we can convert the cross product term
into matrix multiplication, giving

([t×]p′)TRp = 0

p′
T

[t×]TRp = 0

p′
T

[t×]Rp = 0

(5)

The matrix E = [t×]R is known as the essential matrix, creating a compact expression
for the epipolar constraint:

p′
T
Ep = 0 (6)

The essential matrix is a 3× 3 matrix that contains 5 degrees of freedom. It has rank 2
and is singular.

The essential matrix is useful for computing the epipolar lines associated with p
and p′. For instance, `′ = Ep gives the epipolar line in the image plane of camera
2. Similarly ` = ETp′ gives the epipolar line in the image plane of camera 1. Other
interesting properties of the essential matrix is that its dot product with the epipoles
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equate to zero: Ee = ETe′ = 0. Because for any point x (other than e) in the image of
camera 1, the corresponding epipolar line in the image of camera 2, `′ = Ex, contains the
epipole e′. Thus e′ satisfies e′T (Ex) = (e′TE)x = 0 for all the x, so e′TE = 0. Similarly
Ee = 0.

4 The Fundamental Matrix

Although we derived a relationship between p and p′ when we have canonical cameras,
we should be able to find a more general expression when the cameras are no longer
canonical. Recall that gives us the projection matrices:

M = K
[
I 0

]
M ′ = K ′

[
R t

]
(7)

First, we must define pc = K−1p and p′c = K ′−1p′ to be the projections of P to the
corresponding camera images if the cameras were canonical. Recall that in the canonical
case:

p′
T
c [t×]Rpc = 0 (8)

By substituting in the values of pc and p′c, we get

p′
T
K ′−T [t×]RK−1p = 0 (9)

The matrix F = K ′−T [t×]RK−1 is known as the fundamental matrix, which acts similar
to the essential matrix from the previous section but also encodes information about the
camera matrices K,K ′ and the relative translation t and rotation R between the cameras.
Therefore, it is also useful in computing the epipolar lines associated with p and p′, even
when the camera matrices K,K ′ and the transformation R, t are unknown. Similar to
the essential matrix, we can compute the epipolar lines `′ = Fp and ` = F Tp′ from just
the fundamental matrix and the corresponding points. One main difference between the
fundamental matrix and the essential matrix is that the fundamental matrix contains 7
degrees of freedom, compared to the essential matrix’s 5 degrees of freedom.

But how is the fundamental matrix useful? Like the essential matrix, if we know
the fundamental matrix, then simply knowing a point in an image gives us an easy
constraint (the epipolar line) of the corresponding point in the other image. Therefore,
without knowing the actual position of P in the 3D space or any of the extrinsic or
intrinsic parameters of the cameras, we can establish a relationship between any p and
its corresponding p′.

4.1 The Eight-Point Algorithm

Still, the assumption that we can have the fundamental matrix, which is defined by a
matrix product of the camera parameters, seems rather large. However, it is possible to
estimate the fundamental matrix given two images of the same scene and without knowing
the extrinsic or intrinsic parameters of the camera. The method we discuss for doing so is
known as the Eight-Point Algorithm, which was proposed by Longuet-Higgins in 1981 and
extended by Hartley in 1995. As the title suggests, the Eight-Point Algorithm assumes
that a set of at least 8 pairs of corresponding points between two images is available.
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Figure 6: Corresponding points are drawn in the same color on each of the respective
images.

Each correspondence pi = (ui, vi, 1) and p′i = (u′i, v
′
i, 1) gives us the epipolar constraint

p′Ti Fpi = 0. We can reformulate the constraint as follows:

[
uiu
′
i viu

′
i u′i uiv

′
i viv

′
i v′i ui vi 1

]



F11

F12

F13

F21

F22

F23

F31

F32

F33


= 0 (10)

Since this constraint is a scalar equation, it only constrains one degree of freedom.
Since we can only know the fundamental matrix up to scale, we require eight of these
constraints to determine the fundamental matrix:



u1u
′
1 v1u

′
1 u′1 u1v

′
1 v1v

′
1 v′1 u1 v1 1

u2u
′
2 v2u

′
2 u′2 u2v

′
2 v2v

′
2 v′2 u2 v2 1

u3u
′
3 v3u

′
3 u′3 u3v

′
3 v3v

′
3 v′3 u3 v3 1

u4u
′
4 v4u

′
4 u′4 u4v

′
4 v4v

′
4 v′4 u4 v4 1

u5u
′
5 v5u

′
5 u′5 u5v

′
5 v5v

′
5 v′5 u5 v5 1

u6u
′
6 v6u

′
6 u′6 u6v

′
6 v6v

′
6 v′6 u6 v6 1

u7u
′
7 v7u

′
7 u′7 u7v

′
7 v7v

′
7 v′7 u7 v7 1

u8u
′
8 v8u

′
8 u′8 u8v

′
8 v8v

′
8 v′8 u8 v8 1





F11

F12

F13

F21

F22

F23

F31

F32

F33


= 0 (11)

This can be compactly written as
W f = 0 (12)

where W is an N × 9 matrix derived from N ≥ 8 correspondences and f is the values of
the fundamental matrix we desire.
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In practice, it is often better to use more than eight correspondences and create a
larger W matrix because it reduces the effects of noisy measurements. The solution to
this system of homogeneous equations can be found in the least-squares sense by Singular
Value Decomposition (SVD), as W is rank-deficient. SVD will give us an estimate of the
fundamental matrix F̂ , which may have full rank. However, we know that the true
fundamental matrix has rank 2. Therefore, we should look for a solution that is the best
rank-2 approximation of F̂ . To do so, we solve the following optimization problem:

minimize
F

‖F − F̂‖F

subject to det(F ) = 0
(13)

where ‖ · ‖F denotes the Frobenius norm2 of a matrix. This problem is solved again by
SVD, where F̂ = UDV T , then the best rank-2 approximation is found by

F = U

d1 0 0
0 d2 0
0 0 0

V T (14)

where D =

d1 0 0
0 d2 0
0 0 d3

, and d1 ≥ d2 ≥ d3 are the singular values of F̂ .

4.2 The Normalized Eight-Point Algorithm

In practice, the standard least-squares approach to the Eight-Point Algorithm is not
precise. Often, the distance between a point pi and its corresponding epipolar line `i =
F Tp′ will be very large, usually on the scale of 10+ pixels. To reduce this error, we can
consider a modified version of the Eight-Point Algorithm called the Normalized Eight-
Point Algorithm.

The main problem of the standard Eight-Point Algorithm stems from the fact that
W is ill-conditioned for SVD. For SVD to work properly, W should have one singular
value equal to (or near) zero, with the other singular values being nonzero. However,
the correspondences pi = (ui, vi, 1) will often have extremely large values in the first and
second coordinates due to the pixel range of a modern camera (i.e., pi = (1832, 1023, 1)).
If the image points used to construct W are in a relatively small region of the image,
then each of the vectors for pi and p′i will generally be very similar. Consequently, the
constructed W matrix will have one very large singular value, with the rest relatively
small.

To solve this problem, we will normalize the points in the image before constructing
W . This means we pre-condition W by applying both a translation and scaling on the
image coordinates such that two requirements are satisfied. First, the origin of the new
coordinate system should be located at the centroid of the image points (translation).
Second, the average distance of the transformed image points from the origin is equal
to
√

2 pixels (scaling). We can compactly represent this process by a transformation

matrices T, T ′ that translate by the centroid and scale by the scaling factor
√
2

mean distance

for each respective image.

2Frobenius norm. Wikipedia.
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Afterwards, we normalize the coordinates:

qi = Tpi q′i = T ′p′i (15)

Using the new, normalized coordinates, we can compute the new Fq using the regular
least-squares Eight Point Algorithm (including the rank-2 approximation). However, the
matrix Fq is the fundamental matrix for the normalized coordinates. For it to be usable
on regular coordinate space, we need to de-normalize it, giving

F = T ′TFqT (16)

Ultimately, this new fundamental matrix F gives good results in real-world applications.

5 [Optional] Image Rectification

Recall that an interesting case for epipolar geometry occurs when two images are parallel
to each other. Let us first compute the essential matrix E in the case of parallel image
planes. We can assume that the two cameras have the same K and that there is no
relative rotation between the cameras (R = I). In this case, let us assume that there is
only a translation along the x axis, giving t = (tx, 0, 0). This gives

E = [t×]R =

0 0 0
0 0 −tx
0 tx 0

 (17)

Once E is known, we can find the directions of the epipolar lines associated with
points in the image planes. Let us compute the direction of the epipolar line ` associated
with point p′:

` = ETp′ =

0 0 0
0 0 tx
0 −tx 0

u′v′
1

 =

 0
tx
−txv′

 (18)

We can see that the direction of ` is horizontal, as is the direction of `′, which is computed
in a similar manner.

If we use the epipolar constraint p′TEp = 0, then we arrive at the fact that v = v′,
demonstrating that p and p′ share the same v-coordinate. Consequently, there exists
a very straightforward relationship between the corresponding points. Therefore, recti-
fication, or the process of making any two given images parallel, becomes useful when
discerning the relationships between corresponding points in images.

Rectifying a pair of images does not require knowledge of the two camera matrices
K,K ′ or the relative transformation R, t between them. Instead, we can use the funda-
mental matrix estimated by the Normalized Eight-Point Algorithm. Upon getting the
fundamental matrix, we can compute the epipolar lines `i and `′i for each correspondence
pi and p′i.

From the set of epipolar lines, we can then estimate the epipoles e and e′ of each image.
This is because we know that the epipole lies in the intersection of all the epipolar lines.
In the real world, due to noisy measurements, all the epipolar lines will not intersect
in a single point. Therefore, computing the epipole can be found by minimizing the
least squared error of fitting a point to all the epipolar lines. Recall that each epipolar
line can be represented as a vector ` such that all points on the line (represented in
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Figure 7: The process of image rectification involves computing two homographies that
we can apply to a pair of images to make them parallel.

Figure 8: The rectification problem setup: we compute two homographies that we can
apply to the image planes to make the resulting planes parallel.

homogeneous coordinates) are in the set {x|`Tx = 0}. If we define each epipolar line as

`i =
[
`i,1 `i,2 `i,3

]T
, then we can we formulate a linear system of equations and solve

using SVD to find the epipole e: `
T
1
...
`Tn

 e = 0 (19)

After finding the epipoles e and e′, we will most likely notice that they are not points
at infinity along the horizontal axis. If they were, then, by definition, the images would
already be parallel. Thus, we gain some insight into how to make the images parallel:
can we find a homography to map an epipole e to infinity along the horizontal axis?
Specifically, this means that we want to find a pair of homographies H1, H2 that we can
apply to the images to map the epipoles to infinity. Let us start by finding a homography
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H2 that maps the second epipole e′ to a point on the horizontal axis at infinity (f, 0, 0).
Since there are many possible choices for this homography, we should try to choose
something reasonable. One condition that leads to good results in practice is to insist
that the homography acts like a transformation that applies a translation and rotation
on points near the center of the image.

The first step in achieving such a transformation is to translate the second image such
that the center is at (0, 0, 1) in homogeneous coordinates. We can do so by applying the
translation matrix

T =

1 0 −width
2

0 1 −height
2

0 0 1

 (20)

After applying the translation, we apply a rotation to place the epipole on the horizontal
axis at some point (f, 0, 1). If the translated epipole Te′ is located at homogeneous
coordinates (e′1, e

′
2, 1), then the rotation applied is

R =


α

e′1√
e′21 +e′22

α
e′2√

e′21 +e′22
0

−α e′2√
e′21 +e′22

α
e′1√

e′21 +e′22
0

0 0 1

 (21)

where α = 1 if e′1 ≥ 0 and α = −1 otherwise. After applying this rotation, notice that
given any point at (f, 0, 1), bringing it to a point at infinity on the horizontal axis (f, 0, 0)
only requires applying a transformation

G =

 1 0 0
0 1 0
− 1

f
0 1

 (22)

After applying this transformation, we finally have an epipole at infinity, so we can
translate back to the regular image space. Thus, the homography H2 that we apply on
the second image to rectify it is

H2 = T−1GRT (23)

Now that a valid H2 is found, we need to find a matching homography H1 for the
first image. We do so by finding a transformation H1 that minimizes the sum of square
distances between the corresponding points of the images

arg min
H1

∑
i

‖H1pi −H2p
′
i‖2 (24)

Although the derivation3 is outside the scope of this class, we can actually prove that the
matching H1 is of the form:

H1 = HAH2M (25)

where F = [e×]M and

HA =

a1 a2 a3
0 1 0
0 0 1

 (26)

3If you are interested in the details, please see Chapter 11 of Hartley & Zisserman’s textbook Multiple
View Geometry
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with (a1, a2, a3) composing the elements of a certain vector a that will be computed later.
First, we need to know whatM is. An interesting property of any 3×3 skew-symmetric

matrix A is A = A3 up to scale. Because any cross product matrix [e×] is skew-symmetric
and that we can only know the fundamental matrix F up to scale, then

F = [e×]M = [e×][e×][e×]M = [e×][e×]F (27)

By grouping the right terms, we can find that

M = [e×]F (28)

Notice that if the columns of M were added by any scalar multiple of e, then the F =
[e×]M still holds up to scale. Therefore, the more general case of defining M is

M = [e×]F + evT (29)

for some vector v. In practice, defining M by setting vT =
[
1 1 1

]
works very well.

To finally solve for H1, we need to compute the a values of HA. Recall that we want
to find a H1, H2 to minimize the problem posed in Equation 24. Since we already know
the value of H2 and M , then we can substitute p̂i = H2Mpi and p̂′i = H2p

′
i and the

minimization problem becomes

arg min
HA

∑
i

‖HAp̂i − p̂′i‖2 (30)

In particular, if we let p̂i = (x̂i, ŷi, 1) and p̂′i = (x̂′i, ŷ
′
i, 1), then the minimization problem

can be replaced by:

arg min
a

∑
i

(a1x̂i + a2ŷi + a3 − x̂′i)2 + (ŷi − ŷ′i)2 (31)

Since ŷi − ŷ′i is a constant value, the minimization problem further reduces to

arg min
a

∑
i

(a1x̂i + a2ŷi + a3 − x̂′i)2 (32)

Ultimately, this breaks down into solving a least-squares problem Wa = b for a where

W =

x̂1 ŷ1 1
...

x̂n ŷn 1

 b =

x̂
′
1
...
x̂′n

 (33)

After computing a, we can compute HA and finally H1. Thus, we generated the homo-
graphies H1, H2 to rectify any image pair given a few correspondences.
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