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What are thece charactere having in common?

Cyclope Hitotsume-kozo Tepegoz Eye of Sauron
(Greek) (Japanese) (Turkic) (LOTR)



Imaging geometry of r:’ue [camem}

Albrecht Durer (Pinhole) M.C. Escher (Omnidirectional)




(imitations of C/'ny/e eye

Escher

M.C.



(imitations of C/'ny/e eye

Escher

M.C.



ingle eye

(imitations of ¢

Internet

Escher

M.C.



[/{/Ay do we have two eyeg’?

Pan’s Labyrinth




Why do we have two eyes’?




Why do we have two eyec?
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Slide credit: Fei-fei Li, Andreas Geiger
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[riangulation

object point
feature point ' P; /ﬁ@

Pik+1

Pj .k

Image credit: OpenMVG
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Vieual cuec for 3D: Shading

M.C. Escher
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Vicual cuee for SD: ¢ Aaa/fug

Merle Norman
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Vieual cuec for 3D: Texture

The Visual CLliff by William Vandivert
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https://docs.google.com/file/d/1eQk2wGRNc5cZ3aq5amfXvb91z8NwIQnW/preview

Vicual cuee for 30: Focus, Motion

From Art of the Photography

Slide credit: James Hays
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Ctereo matchmg
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Slide credit: Andreas Geiger 16



Block matching

SSD = ZZ(I wp—1 n.g,,t)z Sum of squares difference

AD = Z Z| (Ilefr T )| Absolute difference

CC=) D> Lal. Cross correlation

_ 2> [l L)

NC = Normalized Correlation
\/z Z Ileft ‘Iright
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Block matching (Failure cases) il i

M.C. Escher .



Block matching [Fm’/ure cacer)

Repetitions

T Matching Score

Left
Image
Patch

Textureless

Occlusions
Surfaces

Left Right
Image Image
Patch Patch

Non-Lambertian Surfaces

19

Slide credit: Andreas Geiger



Convolvtional featuree

Low-Level| [Mid-Level High- Trainable
— —
Feature Feature Level Classifier

Slide credit: Yann Lecun
Image credit: Visualizing and Understanding Convolutional Networks (Zeiler & Fergus, 2013)



Convolvtional featuree
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Slide credit: Andrej Karpathy



Oustpest Volume (33
of:,:,8]

Filter W1 (3x3x3)
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Image credit: Andrej Karpathy


https://docs.google.com/file/d/1Ojt8Dlx9HSmCkXA-jeTece1TB-2Tejke/preview

20D and 3D convelvtione

Image credit: https://iamaaditya.github.i0/2016/03/one-by-one-convolution/
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2D and 30D convelvtione

Image credit: https://biplabbarman@97.medium.com/3d-convolutions-and-its-applications-6dd2d0e9e63f 24



Block matching

Learned Similarity: Cosine Similarity:

» Learn features & sim. metric » Learn features & apply dot-product
» Potentially more expressive

» Slow (WxHxD MLP evaluations)

» Features must do the heavy lifting

» Fast matching (no network eval.)

Similarity score

| Fully-connected, Sigmoid ] Similarity score
| Fully-connected, ReLU ] A
: [ Dot product
| Fully-connected, ReLU | Norialize | I Norialize
| Fully-connected, ReLU I

| Concatenate ]
I Convolution, ReLU I I Convolution, ReLU ‘
l

| Convolution, ReLU ] | Convolution, ReLU
| Convolution, ReLU | | Convolution, ReLU

|

Left input patch Righ input patch

Zbontar and LeCun: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. JMLR, 2016.

Convolution I | Convolution

Convolution, ReLU Convolution, ReLU

Convolution, ReLU | | Convolution, ReLLU

i

Left input patch Right input patch
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Block matching

Left Input Image

Standard Block Matching

Zbontar and LeCun: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. JMLR, 2016. 26



Block matching

log (probability)

-4 -3 =2 -1 0 1 2 3 4
derivative of log(range)

Huang, Lee and Mumford: Statistics of Range Images. CVPR, 2000.
p(D) X exp § — Z wdata (dz) - A Z '(//'smooth(di» dj)
9 inj

Y. Boykov, 0. Veksler, and R. Zabih, “Fast approximate energy minimization via
graph cuts”. PAMI(1999)

Zbontar and LeCun: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. JMLR, 2016.
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Block matching

log (probability)

derivative of log(range)

Huang, Lee and Mumford: Statistics of Range Images. CVPR, 2000.

p(D) X exp § — Z wdata(di) - A Z wsmooth(di, dj)

invj

—4 -3 =2 -1 0 1 2 3 4

Semi-Global Matching Algorithm

| R Y

Left Disparity Map

,4;75%].*:35}7‘j E
Left-Right Consistency Test

Y. Boykov, 0. Veksler, and R. Zabih, “Fast approximate energy minimization via

graph cuts”. PAMI(1999)

Zbontar and LeCun: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. JMLR, 2016. 28



contracting part L expanding part

e DispNet was one of the first end-to-end trained deep neural network for

stereo disparity
e It used a U-Net like architecture with skip-Connections to retain details

It introduces correlation layer
e Multi-scale loss (disparity error in pixels), curriculum learning
(easy-to-hard)

Mayer et al.: A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation.
CVPR, 2016.
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Input Stereo Images 2D Convolution Cost Volume Multi-Scale 3D Convolution = 3D Deconvolution Soft ArgMax Disparities

Kendall, Martirosyan, Dasgupta and Henry:
2017.

Key idea: calculate disparity cost volume and apply 3D convolutions on it
Convert the learned matching cost ¢ to disparity via the

expectation(probability volume)
Slightly better performance but large memory requirements (3D feature

volume)

End-to-End Learning of Geometry and Context for Deep Stereo Regression. ICCV,

AT R

Shared Weights | Shared Weights
o oo [ 7> 2 P@*@* &
2
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Multi-view cteres

MVS Goal: To find a 3D shape that explains the
images.

Image credit: Svetlana Lazebnik Yasutaka
Furukawam Carlos Hernandez: Multi-View Stereo: A Tutorial
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one clide : )

. Detect keypoints

Triangulate a sparse set of initial matches
Iteratively expand matches to nearby locations
Use visibility constraints to filter out false
. Perform surface reconstruction

1
2
3.
4
5

Accurate, Dense, and Robust Multi-View Stereopsis CVPRO7, Yasutaka Furukawa, Jean Ponce

matches
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/* Detected features M / W Features satisfying epipolar
(Harris/DoG) consistency (Harris/DoG)

||||||||||||||||||

LT - - -

Feature Detection Ry R s

1
______

1. Divide grid to cells (32x32)

||||||||||
|||||||||||||||||

2. Use Harris Detector and DoG to find corners

3. Try to find 4 good corners in each cell (uniform overage)



Patch Geometry

p

qp,11)—

h(p,11,12)

discrepancy
function

“—q(p.h)
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Pate

c(p)

c(p):
n(p):
R(p):

h Model

“ ===
[
h(p.11,12)

q(p.I)— RNy g, 1)

center of the patch
normal of the patch
reference image with p

¢(p)

n(p)
R(p)

« {Triangulation from f and f'},

— <(p)O(h)/|e(p)Oh)
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Photometric Diccrepancy Function P

h(P,I, R(P)) =1- NCC(PrIr R(P))

1
g(p)=|v(p)\R(p)| Y. h(p,I,R(p))

1€V (p)\R(p)

discrepancy £
q(p.I— function 9p.L2)

V(p): initial set of images where

patch p 1s potentially
visible
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Photometric Dice repancy Function

P el SO <
7 ‘ et
s \ ~

Vi(p) = I €V(p).h(p,I,R(p)) <}, oM g
] /‘;l % ST

&) = gm S pILRp). =7 ’\2
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V(p): set of images where patch is truly visible



Patch optim 1zation %n@) s Z@@

p I‘: T
’l i B “
R yii Iz
h(p,11,12)

h(p,L,R(p)) = 1 — NCC(p, I, R(p)) o)~ S (o1

. _ 1
&) V*(p) \R(p)| ,e,»i(,,z)’\R(,,)h(p’I'R(p))

Optimize over c(p) and n(p) that minimizes gx(p)
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Expancion

1. Identify neighboring cells for possible expansion
2. Test if there 1is already patch very close to that region
3. Test for depth discontinuity

nei hbor%
A A LA i 4 patch

| ° Image projection
| A of a patch
/
; / / \)' Expanded

I / ,/ Not expanded by
: / \B) the first condition
/ /

% b . o Not expanded by the

\ Celg\ ‘,»\/4\ ¢ second condition
1mage screen

; a ¢ ;‘b /a //




Filter

1. Photometric consistency filter
2. Geometric consistency filter
3. Occlusion check



Vieual SFM+PMVS



http://www.youtube.com/watch?v=NdeD4cjLI0c

crop b) manual labeling c)homogréphy

Flaggelation

Piero della Francesca pz,] e " (RO,Z (K P dJ) + tO,z’)

Criminisi et al. Bringing Pictorial Space to Life: Computer Techniques for the Analysis of Paintings. 2002. 42



Multi-view steres - plane cweep ctereo
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& N/ | K. T =(R,t)
T - Pose Known

Slide credit: W. Nicholas Greene
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Multi-view ctereo - /b/Ahe Cweep Stereo

Matching Costs

, I (=] =
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K.T = (R,t)

Slide credit: W. Nicholas Greene
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Multi-view steres - plane cweep ctereo

Cost Volume Filter
i 9
I Ll il
— 12 4 2
16 1 2 1

argmin

|

'Illm r

K,T = (R.,t)

Depthmap

Slide credit: W. Nicholas Greene 45



Source [mages

Reference [mage

MVSNET

>z

a—

[t

Za|lllin

< |l -
==1] [T

I Shared Weights

I Shared Weights

, mssssss Conv + BN + RelLU, Stride=1 |
| mmmmm= Conv + BN + Rel U, Stride =2 !
: mmmmmm Conv, stride = 1 '
' © Concatenation H
: [<>] Addition :

Variance
Metric

Yao Yao et.

Feature Differentiable Cost Volume
Extraction Homography Regularization

al.: MVSNet: Depth Inference for Unstructured Multi-view Stereo. ECCV 2018

Refined Depth Map

Depth Map
Refinement
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Scan 11 Scan 9

Scan 75

Gipuma

Yao Yao et.

al.

MVSNet (Ours)

Gound Truth

MVSNet: Depth Inference for Unstructured Multi-view Stereo. ECCV 2018
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Potential thegis fopice
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Becomtrated omery

Mesh reconstruction of indoor environments from images

Nail Ibrahimli
Delft University of Technology.

Neural Radiance Fields is a method that achieves state-of-the-art results for
synthesizing novel views of complex scenes by optimizing an underlying
continuous volumetric scene function using a set of input views. ‘:
Multi-View Stereo infers the dense 3D geometry from a set of calibrated

image views. It is one of the main components of 3D reconstruction

pipelines. Since 2015, deep learning has been increasingly used to solve

several 3D vision problems due to its predominating performance, and since

2017 learning-based multi-view stereo problems become a hot topic due to

the robustness of CNN to scene variations.

Goal: This project will address the challenge of reconstructing 3D indoor

scenes from a set of images. Current photogrammetry approaches have

shown accurate and complete reconstruction results on textured objects

while struggling with man-made textureless planar environments like man-

made spaces. The goal of this project is to incorporate planar constraints

into the learning-based 3D reconstruction pipeline where the final output

will be complete and accurate mesh.

https://mirmix.github.io/

Multi-view Styled Stereo

Nail Ibrahimli
Delft University of Technology.

Multi-view stereo infers the dense 3D geometry from a set of calibrated
image views. It is one of the main components of 3D reconstruction
pipelines. Since 2015, deep learning has been increasingly used to solve
several 3D vision problems due to its predominating performance, and since
2017 learning-based multi-view stereo problems become a hot topic due to
the robustness of CNN to scene variations.

Neural Style Transfer In fine art, especially painting, humans have mastered
the skill to create unique visual experiences through composing a complex
interplay between the content and style of animage. There are Deep
Learning methods that are using neural representations to composite
content and style of arbitrary images, providing a neural algorithm for the
creation of artistic images.

Goal: The goal of this project is styled dense 3D reconstruction from a visual
set of content images and a style image.

Multi-view Semantic Stereo

Nail Ibrahimli
Delft University of Technology.

Multi-view stereo infers the dense 3D geometry from a set of calibrated
image views. It is one of the main components of 3D reconstruction
pipelines. Since 2015, deep learning has been increasingly used to solve
several 3D vision problems due to its predominating performance, and since
2017 learning-based multi-view stereo problems become a hot topic due to
the robustness of CNN to scene variations.

Semantic segmentation is the task of clustering parts of an
image/pointcloud together which belong to the same object class. It is a form
of pixel-level/point-level prediction because each pixel/pointin an
image/pointcloud is classified according to a category.

Goal: The goal of this project is semantically aware 3D reconstruction from a
visual set of content images.
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THANKS FOR LISTENING.
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