

Photogrammetry and 3D Computer Vision

Lecture Reconstruct 3D Geometry

Liangliang Nan

Today's Agenda

Review of Epipolar Geometry

- Reconstruct 3D Geometry
 - 3D from 2 views
 - Estimate fundamental matrix
 - Recover relative pose
 - Triangulation
 - 3D from more views
 - Structure from motion
- Image Matching (ideas only, optional)

Review of Epipolar Geometry

Epipolar Geometry

- Baseline
 - The line between the two camera centers
- Epipolar plane
 - The plane defined by X, O₁, and O₂
- Epipoles
 - ∩ of baseline and image plane
 - Projection of the other camera center
- Epipolar lines
 - ∩ of epipolar plane with the image plane

- Essential matrix
 - Canonical camera assumption

$$p'^T E p = 0$$
, $E = [T_X]R$

$$K = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Fundamental matrix (most important concept in 3DV)

$$p'^T F p = 0$$
, $F = K'^{-T} [T_{\times}] R K^{-1}$

- Relate matching image points of different views
 - No need 3D location
 - No need camera intrinsic and extrinsic parameters

- Fundamental matrix
 - -3 by 3
 - homogeneous matrix
 - 7 degrees of freedom
 - 9 elements
 - scale ambiguity (scale doesn't matter)
 - rank(F) = 2
 - The potential matching point is located on a line

$$p'^T F p = 0$$
, $F = K'^{-T}[T_{\times}]RK^{-1}$

- Recover F from corresponding image points
 - 8 unknown parameters
 - Each point pair gives a single linear constraint

- Recover F from corresponding image points
 - 8 unknown parameters
 - Each point pair gives a single linear constraint
 - 8-point algorithm (>= 8 pairs)
 - 7-point algorithm does exist but less popular

$$\begin{bmatrix} u_1u'_1 & v_1u'_1 & u'_1 & u_1v'_1 & v_1v'_1 & v'_1 & u_1 & v_1 & 1 \\ u_2u'_2 & v_2u'_2 & u'_2 & u_2v'_2 & v_2v'_2 & v'_2 & u_2 & v_2 & 1 \\ u_3u'_3 & v_3u'_3 & u'_3 & u_3v'_3 & v_3v'_3 & v'_3 & u_3 & v_3 & 1 \\ u_4u'_4 & v_4u'_4 & u'_4 & u_4v'_4 & v_4v'_4 & v'_4 & u_4 & v_4 & 1 \\ u_5u'_5 & v_5u'_5 & u'_5 & u_5v'_5 & v_5v'_5 & v'_5 & u_5 & v_5 & 1 \\ u_6u'_6 & v_6u'_6 & u'_6 & u_6v'_6 & v_6v'_6 & v'_6 & u_6 & v_6 & 1 \\ u_7u'_7 & v_7u'_7 & u'_7 & u_7v'_7 & v_7v'_7 & v'_7 & u_7 & v_7 & 1 \\ u_8u'_8 & v_8u'_8 & u'_8 & u_8v'_8 & v_8v'_8 & v'_8 & u_8 & v_8 & 1 \end{bmatrix} \begin{bmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{bmatrix}$$

Today's Agenda

- Review of Epipolar Geometry
- Reconstruct 3D Geometry

- 3D from 2 views
 - Estimate fundamental matrix
 - Recover relative pose
 - Triangulation
- 3D from more views
 - Structure from motion
- Image Matching (ideas only, optional)

3D from 2 Views

• The general idea

Recover 3D coordinates from corresponding image points

3D from 2 Views

- What information is needed?
 - Corresponding image points
 - Image matching techniques
 - Intrinsic camera parameters
 - Camera calibration
 - Extrinsic camera parameters
 - Recover from image points?

$$p'^T F p = 0,$$

$$F = K'^{-T}[T_{\times}]RK^{-1}$$

Today's Agenda

- Review of Epipolar Geometry
- Reconstruct 3D Geometry
 - 3D from 2 views
 - Estimate fundamental matrix

- Recover relative pose
- Triangulation
- 3D from more views
 - Structure from motion
- Image Matching (ideas only, optional)

TUDelft 3Dgeoinfo

- 8-point algorithm (>= 8 point pairs)
 - Sensitive to noise
 - Sensitive to origin of coordinates
 - Sensitive to scales

Same scale, different origins

Image taken using different focal lengths

- 8-point algorithm (>= 8 point pairs)
 - Poor numerical conditioning → fix by scaling the data

							—— <u>1</u>	F_{11}
250906.36	183269.57	921.81	200931.10	146766.13	738.21	272.19	198.81	F_{12}
2692.28	131633.03	176.27	6196.73	302975.59	405.71	15.27	746.79	F_{13}
416374.23	871684.30	935.47	408110.89	854384.92	916.90	445.10	931.81	F_{21}
191183.60	171759.40	410.27	416435.62	374125.90	893.65	465.99	418.65	F_{22}
48988.86	30401.76	57.89	298604.57	185309.58	352.87	846.22	525.15	F_{23}
164786.04	546559.67	813.17	1998.37	6628.15	9.86	202.65	672.14	
116407.01	2727.75	138.89	169941.27	3982.21	202.77	838.12	19.64	F_{31}
135384.58	75411.13	198.72	411350.03	229127.78	603.79	681.28	379.48	F_{32} F_{33}

- 8-point algorithm (>= 8 point pairs)
- Normalized 8-point algorithm
 - Idea: normalize before constructing the equations
 - Translation: the centroid of the image points is at origin
 - Scaling: average distance of points from origin is $\sqrt{2}$

$$q_i = Tp_i \qquad q_i' = T'p_i'$$

- 8-point algorithm (>= 8 point pairs)
- Normalized 8-point algorithm
 - Idea: normalize before constructing the equations
 - Construct linear system using the normalized points
 - Same as in the original 8-point algorithm
 - Solve using SVD
 - Same as in the original 8-point algorithm

- 8-point algorithm (>= 8 point pairs)
- Normalized 8-point algorithm
 - Idea: normalize before constructing the equations
 - Construct linear system using the normalized points
 - Solve using SVD
 - Constraint enforcement
 - rank(F) = 2

Fundamental matrix has rank 2 : det(F) = 0.

Left: Uncorrected F – epipolar lines are not coincident.

Right: Epipolar lines from corrected F.

- 8-point algorithm (>= 8 point pairs)
- Normalized 8-point algorithm
 - Idea: normalize before constructing the equations
 - Construct linear system using the normalized points
 - Solve using SVD
 - Constraint enforcement
 - rank(F) = 2

$$\hat{F} = U \Sigma V^T \qquad F = U \begin{vmatrix} \Sigma_1 & 0 & 0 \\ 0 & \Sigma_2 & 0 \\ 0 & 0 & 0 \end{vmatrix} V^T$$

- 8-point algorithm (>= 8 point pairs)
- Normalized 8-point algorithm
 - Idea: normalize before constructing the equations
 - Construct linear system using the normalized points
 - Solve using SVD
 - Constraint enforcement
 - De-normalization
 - Apply the **inverse** of the transformation

$$q_i = Tp_i \qquad q_i' = T'p_i'$$

$$q_i' = T' p_i'$$

$$F = T'^T F_q T$$

Today's Agenda

- Review of Epipolar Geometry
- Reconstruct 3D Geometry
 - 3D from 2 views
 - Estimate fundamental matrix
 - Recover relative pose

- Triangulation
- 3D from more views
 - Structure from motion
- Image Matching (ideas only, optional)

- Essential matrix from fundamental matrix
 - Known intrinsic parameters
 - Calibration
 - Estimation + refinement

$$F = K'^{-T}[\mathsf{t}_{\times}]RK^{-1}$$

$$E = [t_{\times}]R = K'^T F K$$

- Essential matrix from fundamental matrix
- Relative pose from essential matrix

$$E = [t_{\times}]R$$

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
 - SVD of E

$$W = egin{bmatrix} 0 & -1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

$$E = U\Sigma V^T$$

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
 - SVD of E
 - determinant(R) > 0
 - Two potential values

$$W = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E = U\Sigma V^T$$

$$R = (\det UWV^T)UWV^T$$
 or $(\det UW^TV^T)UW^TV^T$

 $E = U \Sigma V^T$

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
 - SVD of E
 - determinant(R) > 0
 - Two potential values
 - T up to a sign
 - Two potential values
 - Last column of U
 - Corresponds to smallest singular value

$$W = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R = (\det UWV^T)UWV^T$$
 or $(\det UW^TV^T)UW^TV^T$

$$t = \pm U \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \pm u_3$$

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
 - R: two potential values
 - T: two potential values

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
 - R: two potential values
 - T: two potential values
 - 3D points must be in front of both cameras

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
 - R: two potential values
 - T: two potential values
 - 3D points must be in front of both cameras
 - Reconstruct 3D points
 - using all potential pairs of R and t
 - Count the number of points in front of cameras
 - The pair giving max front points is correct

TUDelft 3Dgeoinfo

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
 - R: two potential values
 - T: two potential values
 - 3D points must be in front of both cameras
 - First camera
 - P.z > 0?
 - Second camera
 - P in 2nd camera's coordinate system: Q = R * P + t
 - -Q.z > 0?

Today's Agenda

- Review of Epipolar Geometry
- Reconstruct 3D Geometry
 - 3D from 2 views
 - Estimate fundamental matrix
 - Recover relative pose
 - Triangulation

- 3D from more views
 - Structure from motion
- Image Matching (ideas only, optional)

- Find coordinates of 3D point from its projection into two views
 - Known camera intrinsic parameters (K)
 - Known relative orientation (R) and offset (t)

- Find coordinates of 3D point from its projection into two views
 - Known camera intrinsic parameters (K)
 - Known relative orientation (R) and offset (t)
 - In theory, P is \cap of the two lines of sight

- Find coordinates of 3D point from its projection into two views
 - Known camera intrinsic parameters (K)
 - Known relative orientation (R) and offset (t)
 - In theory, P is \cap of the two lines of sight
 - Straightforward and mathematically sound
 - Do not work well
 - Noisy in observation
 - K, R, t are not precise

- Find coordinates of 3D point from its projection into two views
 - Known camera intrinsic parameters (K)
 - Known relative orientation (R) and offset (t)
 - In theory, P is \cap of the two lines of sight
 - Straightforward and mathematically sound
 - Do not work well
 - Noisy in observation
 - K, R, t are not precise
 - Two approaches for triangulation
 - A linear method and
 - A non-linear method

Two image points

$$p = MP = (x, y, 1)$$

$$p' = M'P = (x', y', 1)$$

By the definition of the cross product

$$p \times (MP) = 0$$

Two image points

$$p = MP = (x, y, 1)$$

 $p' = M'P = (x', y', 1)$

By the definition of the cross product

$$p \times (MP) = 0$$

$$x(M_3P) - (M_1P) = 0$$

$$y(M_3P) - (M_2P) = 0$$

$$x(M_2P) - y(M_1P) = 0$$

Two image points

$$p = MP = (x, y, 1)$$

 $p' = M'P = (x', y', 1)$

By the definition of the cross product

$$p \times (MP) = 0$$

$$x(M_3P) - (M_1P) = 0$$
$$y(M_3P) - (M_2P) = 0$$
$$x(M_2P) - y(M_1P) = 0$$

$$p\times (MP)=0$$
 Similar constraints can also be formulated for p' and M'.
$$A=\begin{bmatrix}xM_3-M_1\\yM_3-M_2\\x'M_3'-M_1'\\y'M_3'-M_2'\end{bmatrix}$$

$$AP = 0$$

Advantages

- Easy to solve and very efficient
- Any number of corresponding image points
- Can handle multiple views
- Used as initialization to advanced methods

$$AP = 0$$

$$A = \begin{bmatrix} xM_3 - M_1 \\ yM_3 - M_2 \\ x'M_3' - M_1' \\ y'M_3' - M_2' \end{bmatrix}$$

Minimize the reprojection error

$$\min_{\hat{P}} \sum_{i} ||M\hat{P}_{i} - p_{i}||^{2} + ||M'\hat{P}_{i} - p_{i}'||^{2}$$

Reprojection error

- Gauss-Newton's method
- Levenberg-Marquardt

Today's Agenda

- Review of Epipolar Geometry
- Reconstruct 3D Geometry
 - 3D from 2 views
 - Estimate fundamental matrix
 - Recover relative pose
 - Triangulation
 - 3D from more views

- Structure from motion
- Image Matching (ideas only, optional)

- Structure?
 - 3D geometry of the scene/object
- Motion?
 - Camera locations and orientations

- Structure
 - 3D geometry of the scene/object
- Motion
 - Camera locations and orientations
- Structure from Motion
 - Compute the geometry from moving cameras?
 - Simultaneously recovering structure and motion

Minimize sum of squared re-projection errors:

Minimize sum of squared re-projection errors:

$$g(\mathbf{X}, \mathbf{R}, \mathbf{T}) = \sum_{i=1}^{m} \sum_{j=1}^{n} w_{ij} \cdot \left\| \mathbf{P}(\mathbf{x}_i, \mathbf{R}_j, \mathbf{t}_j) - \begin{bmatrix} u_{i,j} \\ v_{i,j} \end{bmatrix} \right\|^2$$

- Minimizing this function is called bundle adjustment
 - Optimized using non-linear least squares,
 e.g., Levenberg-Marquardt

Minimize sum of squared re-projection errors:

$$g(\mathbf{X}, \mathbf{R}, \mathbf{T}) = \sum_{i=1}^{m} \sum_{j=1}^{n} w_{ij} \cdot \left\| \mathbf{P}(\mathbf{x}_i, \mathbf{R}_j, \mathbf{t}_j) - \begin{bmatrix} u_{i,j} \\ v_{i,j} \end{bmatrix} \right\|^2$$

- Minimizing this function is called bundle adjustment
- Initialization
 - From chained 2-view reconstruction
 - Relative motion can be estimated from the corresponding images points
 - 3D points can be estimated from the relative motion using triangulation
 - Global optimization techniques allow poses and 3D structure are initialized arbitrarily.

Bundle Adjustment

- What are the variables?
 - Camera intrinsic parameters, extrinsic parameters
 - Coordinates of the 3D points
- How many variables per camera?
- How many variables per point?

500 input photos

100,000 3D points

= Very large optimization problem

Incremental SfM

Failure Cases

• Repetitive structures

Today's Agenda

- Review of Epipolar Geometry
- Reconstruct 3D Geometry
 - 3D from 2 views
 - Estimate fundamental matrix
 - Recover relative pose
 - Triangulation
 - 3D from more views
 - Structure from motion
- Image Matching (ideas only, optional)

Find Corresponding Image Points

- Key points
- Image descriptors
- Matching

- Distinctive locations
- Interesting or stand out
- Remain unchanged
 - Rotate, translate, shrink/expand, distortion ...

- The way we describe the key points
 - High-dimensional vectors
- Feature (key point + descriptor)
 - e.g., SIFT, SURF

Matching

- Exhaustive search
- RANSAC

Image Matching

• SIFT

David Lowe

Professor Emeritus, Computer Science Dept., <u>University of British Columbia</u> Verified email at cs.ubc.ca - <u>Homepage</u>

Computer Vision Object Recognition

TITLE	CITED BY	YEAR
Distinctive image features from scale-invariant keypoints DG Lowe	66861	2004
Object recognition from local scale-invariant features	22406	1999
DG Lowe International Conference on Computer Vision, 1999, 1150-1157		55

Motivation

- Scale invariant
 - Decompose the image into multiple scales and describe the key points at each scale

- Rotation invariant
 - Dominant orientation of the gradient directions

SIFT

- Assign one or more orientations to each key point based on local image gradient directions
 - Create histogram of local gradient directions at the selected scale
 - Assign orientation at the peak of smoothed histogram
 - Each key specifies (x, y, scale, orientation)

SIFT

- Key point description
 - 16 x 16 neighborhood of the key point
 - Divided into 16 sub-blocks of 4x4 size
 - 8 bin orientation histogram
 - Sum the gradient magnitude in each bin

SIFT

- Key point description
 - 16 x 16 neighborhood of the key point
 - Divided into 16 sub-blocks of 4x4 size
 - 8 bin orientation histogram
 - Concatenate histograms of 16 sub-blocks

- Matching key points
 - Ideal case: find the nearest neighbor
 - Practice
 - Real-world images are very noisy
 - Second closest-match can be very near to the first

Feature Matching

- Matching key points
 - Ideal case: find the nearest neighbor
 - Practice
 - Real-world images are very noisy
 - Second closest-match can be very near to the first

Reject if
$$\frac{\text{closest-distance}}{\text{second-closest distance}} > 0.8$$

 Can eliminate about 90% of false matches while discards only 5% correct matches

Feature Matching

- Matching key points
 - Ideal case: find the nearest neighbor
 - Practice
 - Real-world images are very noisy
 - Second closest-match can be very near to the first

Reject if
$$\frac{\text{closest-distance}}{\text{second-closest distance}} > 0.8$$

- Can eliminate about 90% of false matches while discards only 5% correct matches
- Sophisticate strategies
 - RANSAC

Lab: Image matching

Next Lecture

- Multi-view Stereo
 - Obtaining dense point clouds

Images + camera information

Dense 3d point cloud