Lecture
 Epipolar Geometry

Liangliang Nan

Today's Agenda

- Review of Previous Lecture
- Camera calibration
- Epipolar geometry

Review of Camera Calibration

- Camera calibration
- Recovering K
- Recovering R and T

$$
\mathbf{P}^{\prime}=\mathcal{M} \mathbf{P}_{w}
$$

External (extrinsic) parameters

Review of Camera Calibration

- How many parameters to recover?
- 5 intrinsic parameters

$$
\begin{aligned}
& \mathbf{P}^{\prime}=\mathcal{M} \mathbf{P}_{w} \\
&=\mathcal{K}[\mathcal{R} \\
& \hline \mathbf{T}
\end{aligned} \mathbf{P}_{w}
$$

- 2 for offset
- 1 for skewness
- 6 extrinsic parameters
- 3 for rotation
- 3 for translation

$$
\mathbf{K}=\left[\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right] \quad \mathrm{R}=\left[\begin{array}{c}
\mathbf{r}_{1}^{\mathrm{T}} \\
\mathbf{r}_{2}^{\mathrm{T}} \\
\mathbf{r}_{3}^{\mathrm{T}}
\end{array}\right] \quad \mathrm{T}=\left[\begin{array}{c}
\mathrm{t}_{\mathrm{x}} \\
\mathrm{t}_{\mathrm{y}} \\
\mathrm{t}_{\mathrm{z}}
\end{array}\right]
$$

Review of Camera Calibration

- 11 parameters to recover
- Corresponding 3D-2D point pairs
- Each 3D-2D point pair -> 2 constraints
- 11 unknown -> 6 point correspondence
- Use more to handle noisy data

$$
\mathbf{p}_{i}=\left[\begin{array}{c}
u_{i} \\
v_{i}
\end{array}\right]=M \mathbf{P}_{i}=\left[\begin{array}{l}
\frac{\mathbf{P}_{i}^{T} \mathbf{m}_{1}}{\mathbf{P}_{i}^{T} \mathbf{m}_{3}} \\
\mathbf{P}_{i}^{T} \mathbf{m}_{2} \\
\mathbf{P}_{i}^{T} \mathbf{m}_{3}
\end{array}\right] \quad \square \quad \begin{aligned}
& \mathbf{P}_{i}^{T} \mathbf{m}_{1}-u_{i}\left(\mathbf{P}_{i}^{T} \mathbf{m}_{3}\right)=0 \\
& \mathbf{P}_{i}^{T} \mathbf{m}_{2}-v_{i}\left(\mathbf{P}_{i}^{T} \mathbf{m}_{3}\right)=0
\end{aligned}
$$

Review of Camera Calibration

- 11 parameters to recover
- Corresponding 3D-2D point pairs
- How to solve it?
$-m=0$ always a trivial solution
$-k^{*} m$ (k is non-zero) is also a solution

$$
\left[\begin{array}{ccc}
\mathbf{P}_{1}^{T} & 0^{T} & -u_{1} \mathbf{P}_{1}^{T} \\
0^{T} & \mathbf{P}_{1}^{T} & -v_{1} \mathbf{P}_{1}^{T} \\
& \vdots & \\
\mathbf{P}_{n}^{T} & 0^{T} & -u_{n} \mathbf{P}_{n}^{T} \\
0^{T} & \mathbf{P}_{n}^{T} & -v_{n} \mathbf{P}_{n}^{T}
\end{array}\right]\left[\begin{array}{l}
\mathbf{m}_{1}^{T} \\
\mathbf{m}_{2}^{T} \\
\mathbf{m}_{3}^{T}
\end{array}\right]=P \mathbf{m}=0
$$

Review of Camera Calibration

- 11 parameters to recover
- Corresponding 3D-2D point pairs
- How to solve it?
$-m=0$ always a trivial solution
$-k^{*} m$ (k is non-zero) is also a solution
- Constrained optimization

$$
\left[\begin{array}{ccc}
\mathbf{P}_{1}^{T} & 0^{T} & -u_{1} \mathbf{P}_{1}^{T} \\
0^{T} & \mathbf{P}_{1}^{T} & -v_{1} \mathbf{P}_{1}^{T} \\
& \vdots & \\
\mathbf{P}_{n}^{T} & 0^{T} & -u_{n} \mathbf{P}_{n}^{T} \\
0^{T} & \mathbf{P}_{n}^{T} & -v_{n} \mathbf{P}_{n}^{T}
\end{array}\right]\left[\begin{array}{cl}
\mathbf{m}_{1}^{T} \\
\mathbf{m}_{2}^{T} \\
\mathbf{m}_{3}^{T}
\end{array}\right]=P \mathbf{m}=0 \quad \square \quad \begin{gathered}
\operatorname{minimize}
\end{gathered}\|P \mathbf{m}\|^{2}
$$

Review of Camera Calibration

- Solved using SVD

Last column of V gives \boldsymbol{m}

(Why? See page 593 of Hartley \& Zisserman. Multiple view geometry in computer vision)

Review of Camera Calibration

- Not always solvable
- Pis cannot lie on the same plane
- $\mathrm{P}_{\mathrm{i}} \mathrm{S}$ cannot lie on the intersection curve of two quadric surfaces

Which of the following will change the camera intrinsic matrix?
(a) When zooming in.
(b) When rotating the camera around its local origin.
(c) When changing the resolution of the image.
(d) When the camera is moved.

Which of the following will change the camera intrinsic matrix?
(a) When zooming in. $\left[f_{x}, f_{y}\right]$
(b) When rotating the camera around its local origin. R
(c) When changing the resolution of the image. [$\mathrm{c}_{\mathrm{x}}, \mathrm{c}_{\mathrm{y}}$]
(d) When the camera is moved. t

$$
\mathbf{K}=\left[\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Today's Agenda

- Review of Previous Lecture
- Camera calibration
- Epipolar Geometry气

Recovering 3D Geometry

- Camera calibration from a single view
- Camera intrinsic parameters
- Camera orientation

Sufficient to recover some 3D geometry from a single image?

- Camera translation

Recovering 3D Geometry

- Camera calibration from a single view
- Camera intrinsic parameters
- Camera orientation
- Camera translation
- Recover 3D geometry from a single view?
- No: due to ambiguity of 3D -> 2D mapping

Recovering 3D Geometry

- Camera calibration from a single view
- Recover 3D geometry from a single view?
- Ambiguity in 3D -> 2D mapping
- Two (or more) views help

Core Problems in Recovering 3D Geometry

- Image correspondences: find the corresponding points in two or more images.
- Calibration: given corresponding points in images, recover the relation of the cameras. Epipolar Geometry
- Recover scene geometry: find coordinates of 3D point from its projections onto 2 or multiple images.

Epipolar Geometry

- The geometry of stereo vision
- Geometric relations between the corresponding 3D points
- Define constraints between the 3D points
- Geometric relations between the corresponding image points
- Define constraints between the image points

Epipolar Geometry

- Baseline
- The line between the two camera centers

Epipolar Geometry

- Baseline
- The line between the two camera centers
- Epipolar plane
- Defined by $\mathrm{X}, \mathrm{O}_{1}$, and O_{2}; contains baseline and X

Epipolar Geometry

- Baseline
- The line between the two camera centers
- Epipolar plane
- Defined by $\mathrm{X}, \mathrm{O}_{1}$, and O_{2}; contains baseline and X
- Epipoles
$-\cap$ of baseline and image plane
- Projection of the other camera center

Epipolar Geometry

- Baseline
- The line between the two camera centers
- Epipolar plane
- Defined by $\mathrm{X}, \mathrm{O}_{1}$, and O_{2}; contains baseline and X
- Epipoles
$-\cap$ of baseline and image plane
- Projection of the other camera center
- Epipolar lines
- \cap of epipolar plane with the image plane

Epipolar Geometry

- Example
- Parallel Image Planes (a special case)
- Baseline intersects the image plane at infinity!
- Epipoles are at infinity!
- Epipolar lines are parallel to U axis of image plane

Epipolar Geometry

- Example
- Converging image planes (most common case)
- All epipolar lines intersect at the epipole

Epipolar Geometry

- The relations between different views?
- How to use for recovering 3D geometry?
- Unknown: 3D points
- Known: image points; camera parameters

Epipolar Geometry

- Constraints between images (without knowing 3D geometry)
$\mathrm{O}_{1}, \mathrm{O}_{2}$, image point \rightarrow epipolar plane \rightarrow epipolar line (no known 3D)
- Epipolar lines determined by just camera centers and an image point
- The image point on the second image must be on its Epipolar line

Epipolar Constraint

- Given a point on left image, where to search the corresponding point on right image?
- Two views of the same object
- Known camera positions and camera matrices

Epipolar Constraint

- Potential matches for a point in one image have to lie on the corresponding epipolar line of the other image
- Can we find the the exact location of that line?

Epipolar Constraint

- The relationship between the two image points
- Assume the world reference system aligned with the left camera
- The right camera has orientation R and offset T

Camera projection matrices

$$
\begin{aligned}
& \mathrm{M}=\mathrm{K}\left[\begin{array}{ll}
\mathrm{I} & 0
\end{array}\right] \\
& \mathrm{M}^{\prime}=\mathrm{K}\left[\begin{array}{ll}
R & \mathrm{~T}
\end{array}\right] \\
& \mathrm{P} \rightarrow \mathrm{MP}-\left[\begin{array}{l}
{\left[\begin{array}{l}
0 \\
\vdots \\
1
\end{array}\right] \quad \mathrm{P} \rightarrow \mathrm{M}^{\prime} P-\left[\begin{array}{l}
u^{\prime} \\
v_{1} \\
1
\end{array}\right]}
\end{array}\right.
\end{aligned}
$$

Epipolar Constraint

- The relationship between the two image points
- Canonical cameras
- K is identity
p^{\prime} in camera 1's coordinate system

Epipolar Constraint

- The relationship between the two image points
- Canonical cameras
- K is identity
p^{\prime} in camera 1's coordinate system $\quad R^{T}\left(p^{\prime}-T\right)$
O^{\prime} in camera 1's coordinate system

Epipolar Constraint

- The relationship between the two image points
- Canonical cameras
- K is identity
p^{\prime} in camera 1's coordinate system $\quad R^{T}\left(p^{\prime}-T\right)$
O^{\prime} in camera 1 's coordinate system

$$
R^{T}\left(O^{\prime}-T\right)=-R^{T} T
$$

Normal of the Epipolar plane

Epipolar Constraint

- The relationship between the two image points
- Canonical cameras
- K is identity
p^{\prime} in camera 1's coordinate system $\quad R^{T}\left(p^{\prime}-T\right)$
O^{\prime} in camera 1 's coordinate system

$$
R^{T}\left(O^{\prime}-T\right)=-R^{T} T
$$

Normal of the Epipolar plane

$$
R^{T} T \times\left[R^{T}\left(p^{\prime}-T\right)\right]=R^{T}\left(T \times p^{\prime}\right)
$$

Op lies in the Epipolar plane

Epipolar Constraint

- The relationship between the two image points
- Canonical cameras
- K is identity
p^{\prime} in camera 1's coordinate system $\quad R^{T}\left(p^{\prime}-T\right)$
O^{\prime} in camera 1's coordinate system

$$
R^{T}\left(O^{\prime}-T\right)=-R^{T} T
$$

Normal of the Epipolar plane
$R^{T} T \times\left[R^{T}\left(p^{\prime}-T\right)\right]=R^{T}\left(T \times p^{\prime}\right)$
Op lies in the Epipolar plane

$$
\left[R^{T}\left(T \times p^{\prime}\right)\right]^{T} p=0
$$

Epipolar Constraint

- The relationship between the two image points
- Canonical cameras
- K is identity
p^{\prime} in camera 1's coordinate system $\quad R^{T}\left(p^{\prime}-T\right)$
O^{\prime} in camera 1 's coordinate system

$$
R^{T}\left(O^{\prime}-T\right)=-R^{T} T
$$

Normal of the Epipolar plane

$$
R^{T} T \times\left[R^{T}\left(p^{\prime}-T\right)\right]=R^{T}\left(T \times p^{\prime}\right)
$$

Op lies in the Epipolar plane

$$
\left[R^{T}\left(T \times p^{\prime}\right)\right]^{T} p=0 \square\left(T \times p^{\prime}\right)^{T} R p=0
$$

Epipolar Constraint

- The relationship between the two image points
- Canonical cameras
- K is identity
p^{\prime} in camera 1's coordinate system

$$
R^{T}\left(p^{\prime}-T\right)
$$

Cross product as matrix-vector multiplication

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{ccc}
0 & -\mathbf{a}_{z} & \mathbf{a}_{y} \\
\mathbf{a}_{z} & 0 & -\mathbf{a}_{x} \\
-\mathbf{a}_{y} & \mathbf{a}_{x} & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{b}_{x} \\
\mathbf{b}_{y} \\
\mathbf{b}_{z}
\end{array}\right]=\left[\mathbf{a}_{\times}\right] \mathbf{b}
$$

O^{\prime} in camera 1's coordinate system

$$
R^{T}\left(O^{\prime}-T\right)=-R^{T} T
$$

$$
\left[a_{x}\right]^{\mathrm{T}}=-\left[\mathrm{a}_{x}\right]
$$

$$
R^{T} T \times\left[R^{T}\left(p^{\prime}-T\right)\right]=R^{T}\left(T \times p^{\prime}\right)
$$

$$
\left[R^{T}\left(T \times p^{\prime}\right)\right]^{T} p=0 \square\left(T \times p^{\prime}\right)^{T} R p=0
$$

Epipolar Constraint

- The relationship between the two image points
- Canonical cameras
- K is identity
p^{\prime} in camera 1's coordinate system $\quad R^{T}\left(p^{\prime}-T\right)$
O^{\prime} in camera 1's coordinate system $\quad R^{T}\left(O^{\prime}-T\right)=-R^{T} T$

Normal of the Epipolar plane

$$
R^{T} T \times\left[R^{T}\left(p^{\prime}-T\right)\right]=R^{T}\left(T \times p^{\prime}\right)
$$

Op lies in the Epipolar plane

$$
\left[R^{T}\left(T \times p^{\prime}\right)\right]^{T} p=0 \square\left(T \times p^{\prime}\right)^{T} R p=0
$$

$$
\xrightarrow{T \times p^{\prime}=\left[T_{x}\right] p^{\prime}}\left(\left[T_{\times}\right] p^{\prime}\right)^{T} R p=0
$$

Epipolar Constraint

- The relationship between the two image points
- Canonical cameras
- K is identity
p^{\prime} in camera 1's coordinate system $\quad R^{T}\left(p^{\prime}-T\right)$
O^{\prime} in camera 1's coordinate system $\quad R^{T}\left(O^{\prime}-T\right)=-R^{T} T$

Normal of the Epipolar plane

$$
R^{T} T \times\left[R^{T}\left(p^{\prime}-T\right)\right]=R^{T}\left(T \times p^{\prime}\right)
$$

Op lies in the Epipolar plane

$$
\left[R^{T}\left(T \times p^{\prime}\right)\right]^{T} p=0 \square\left(T \times p^{\prime}\right)^{T} R p=0
$$

$$
T \times p^{\prime}=\left[T_{x}\right] p^{\prime}
$$

$$
\left(\left[T_{\times}\right] p^{\prime}\right)^{T} R p=0
$$

$$
p^{\prime T}\left[T_{\mathrm{X}}\right] R p=0
$$

Epipolar Constraint

- Essential matrix
- Establish constraints between matching image points
- Determine relative position and orientation of two cameras
-5 degrees of freedom ($R: 3, T: 3$, but scale is not known)

$$
\begin{gathered}
p^{\prime T}\left[T_{\mathrm{x}}\right] R p=0 \\
E=\left[T_{\mathrm{x}}\right] R \\
p^{\prime T} E p=0
\end{gathered}
$$

Essential matrix

Epipolar Constraint

- How to generalize Essential matrix?
- Canonical cameras
- K is identity

$$
\left.\left.\begin{array}{rlr}
E=\left[T_{\mathrm{X}}\right] R & p^{\prime T} E p=0 \\
M=\left[\begin{array}{ll}
I & 0
\end{array}\right] \\
\mathrm{M}=\mathrm{K}\left[\begin{array}{ll}
\mathrm{I} & 0
\end{array}\right] & \left.\begin{array}{cc}
10 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
\end{array}\right] \quad M^{\prime}=\left[\begin{array}{ll}
R & T
\end{array}\right]\right\}
$$

Epipolar Constraint

- How to generalize Essential matrix?

$$
\begin{array}{ll}
M=\left[\begin{array}{ll}
I & 0
\end{array}\right] \\
\mathrm{M}=\mathrm{K}\left[\begin{array}{ll}
\mathrm{I} & 0
\end{array}\right] & \left.M_{10}^{1} \begin{array}{lll}
0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{array} \quad \begin{array}{ll}
M^{\prime}=\left[\begin{array}{ll}
R & T
\end{array}\right] \Longrightarrow p^{\prime T} E p=0, E=\left[\begin{array}{ll}
T_{\mathrm{X}}
\end{array}\right] R \\
& \mathrm{M}^{\prime}=\mathrm{K}\left[\begin{array}{ll}
\mathrm{R} & \mathrm{~T}
\end{array}\right]
\end{array}
$$

Epipolar Constraint

- Fundamental matrix

$$
\begin{array}{ll}
M=\left[\begin{array}{ll}
I & 0
\end{array}\right] & \kappa\left[\begin{array}{cc}
{\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]}
\end{array}\right]
\end{array} M^{\prime}=\left[\begin{array}{ll}
R & T
\end{array}\right] \Longleftrightarrow p^{\prime T} E p=0, E=\left[\begin{array}{ll}
T_{\mathrm{X}}
\end{array}\right] R .
$$

Hint for derivation

Try to derive F after the lecture

Epipolar Constraint

- Fundamental matrix F is a matrix product of camera parameters
- Encode Epipolar geometry of 2 views \& camera parameters
$p^{\prime T} F p=0, \quad F=K^{\prime-T}\left[T_{\times}\right] R K^{-1}$

Epipolar Constraint

- Fundamental matrix F is a matrix product of camera parameters
- Encode Epipolar geometry of 2 views \& camera parameters
- F has 7 degrees of freedom
-3×3
- homogeneous (has scale ambiguity)
$-\operatorname{rank}(F)=2$
- The potential matching point is located on a line

$$
p^{\prime T} F p=0, \quad F=K^{\prime-T}\left[T_{\times}\right] R K^{-1} .
$$

Left: Uncorrected F - epipolar lines are not coincident.
Right: Epipolar lines from corrected F .

Epipolar Constraint

- Fundamental matrix F is a matrix product of camera parameters
- Encode Epipolar geometry of 2 views \& camera parameters
- F has 7 degrees of freedom
- How is the fundamental matrix useful?

$$
p^{\prime T} F p=0, \quad F=K^{\prime-T}\left[T_{\times}\right] R K^{-1}
$$

Epipolar Constraint

- Fundamental matrix F is a matrix product of camera parameters
- Encode Epipolar geometry of 2 views \& camera parameters
- F has 7 degrees of freedom
- How is the fundamental matrix useful?
- A 3D point's image in one image -> the Epipolar line in the other image
- No need 3D location
- No need camera intrinsic and extrinsic parameters
$p^{\prime T} F p=0, \quad F=K^{\prime-T}\left[T_{\times}\right] R K^{-1}$.

Epipolar Constraint

- Fundamental matrix F is a matrix product of camera parameters
- Encode Epipolar geometry of 2 views \& camera parameters
- F has 7 degrees of freedom
- How is the fundamental matrix useful?
- A 3D point's image in one image -> the Epipolar line in the other image
- No need 3D location
- No need camera intrinsic and extrinsic parameters
- Powerful tool
-3D reconstruction
- Multi-view object/scene matching

Recovering Fundamental Matrix

- How to recover F?
- From image correspondences

$$
p^{\prime T} F p=0, \quad F=K^{\prime-T}\left[T_{\times}\right] R K^{-1}
$$

Recovering Fundamental Matrix

- How to recover F?
- From image correspondences
- How many point pairs needed?

$$
p^{\prime T} F p=0, \quad F=K^{\prime-T}\left[T_{\times}\right] R K^{-1}
$$

Recovering Fundamental Matrix

- How to recover F?
- From image correspondences
- At least 8-point pairs are needed
- Each point pair give one equation
- The linear system is homogeneous

$$
\left\{\begin{array}{l}
p_{i}=\left(u_{i}, v_{i}, 1\right) \\
p_{i}^{\prime}=\left(u_{i}^{\prime}, v_{i}^{\prime}, 1\right)
\end{array}+\quad p^{\prime T} F p=0\right.
$$

$$
\left[\begin{array}{llllllll}
u_{i} u_{i}^{\prime} & v_{i} u_{i}^{\prime} & u_{i}^{\prime} & u_{i} v_{i}^{\prime} & v_{i} v_{i}^{\prime} & v_{i}^{\prime} & u_{i} & v_{i} \\
1
\end{array}\right]\left[\begin{array}{c}
F_{11} \\
F_{12} \\
F_{13} \\
F_{21} \\
F_{22} \\
F_{23} \\
F_{31} \\
F_{32} \\
F_{33}
\end{array}\right]=0
$$

Recovering Fundamental Matrix

- How to recover F?
- From image correspondences
- At least 8-point pairs are needed
- Each point pair give one equation
- The linear system is homogeneous
F has 7 degrees of freedom
Are 7-point pairs sufficient?

$$
\left\{\begin{array}{l}
p_{i}=\left(u_{i}, v_{i}, 1\right) \\
p_{i}^{\prime}=\left(u_{i}^{\prime}, v_{i}^{\prime}, 1\right)
\end{array} \downarrow \quad p^{\prime T} F p=0\right.
$$

$$
\left[\begin{array}{lllllllll}
u_{i} u_{i}^{\prime} & v_{i} u_{i}^{\prime} & u_{i}^{\prime} & u_{i} v_{i}^{\prime} & v_{i} v_{i}^{\prime} & v_{i}^{\prime} & u_{i} & v_{i} & 1
\end{array}\right]\left[\begin{array}{c}
F_{11} \\
F_{12} \\
F_{13} \\
F_{21} \\
F_{22} \\
F_{23} \\
F_{31} \\
F_{32} \\
F_{33}
\end{array}\right]=0
$$

Recovering Fundamental Matrix

- 8-point algorithm
$\left[\begin{array}{lllllllll}u_{i} u_{i}^{\prime} & v_{i} u_{i}^{\prime} & u_{i}^{\prime} & u_{i} v_{i}^{\prime} & v_{i} v_{i}^{\prime} & v_{i}^{\prime} & u_{i} & v_{i} & 1\end{array}\right]\left[\begin{array}{l}F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33}\end{array}\right]=$

$$
\left[\begin{array}{ccccccccc}
u_{1} u_{1}^{\prime} & v_{1} u_{1}^{\prime} & u_{1}^{\prime} & u_{1} v_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1}^{\prime} & u_{1} & v_{1} & 1 \\
u_{2} u_{2}^{\prime} & v_{2} u_{2}^{\prime} & u_{2}^{\prime} & u_{2} v_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2}^{\prime} & u_{2} & v_{2} & 1 \\
u_{3} u_{3}^{\prime} & v_{3} u_{3}^{\prime} & u_{3}^{\prime} & u_{3} v_{3}^{\prime} & v_{3} v_{3}^{\prime} & v_{3}^{\prime} & u_{3} & v_{3} & 1 \\
u_{4} u_{4}^{\prime} & v_{4} u_{4}^{\prime} & u_{4}^{\prime} & u_{4} v_{4}^{\prime} & v_{4} v_{4}^{\prime} & v_{4}^{\prime} & u_{4} & v_{4} & 1 \\
u_{5} u_{5}^{\prime} & v_{5} u_{5}^{\prime} & u_{5}^{\prime} & u_{5} v_{5}^{\prime} & v_{5} v_{5}^{\prime} & v_{5}^{\prime} & u_{5} & v_{5} & 1 \\
u_{6} u_{6}^{\prime} & v_{6} u_{6}^{\prime} & u_{6}^{\prime} & u_{6} v_{6}^{\prime} & v_{6} v_{6}^{\prime} & v_{6}^{\prime} & u_{6} & v_{6} & 1 \\
u_{7} u_{7}^{\prime} & v_{7} u_{7}^{\prime} & u_{7}^{\prime} & u_{7} v_{7}^{\prime} & v_{7} v_{7}^{\prime} & v_{7}^{\prime} & u_{7} & v_{7} & 1 \\
u_{8} u_{8}^{\prime} & v_{8} u_{8}^{\prime} & u_{8}^{\prime} & u_{8} v_{8}^{\prime} & v_{8} v_{8}^{\prime} & v_{8}^{\prime} & u_{8} & v_{8} & 1
\end{array}\right]\left[\begin{array}{l}
F_{11} \\
F_{12} \\
F_{13} \\
F_{21} \\
F_{22} \\
F_{23} \\
F_{31} \\
F_{32} \\
F_{33}
\end{array}\right]=0
$$

Recovering Fundamental Matrix

- 8-point algorithm
- How to solve it?

$$
W \mathbf{f}=0
$$

$$
\left[\begin{array}{lllllllll}
u_{1} u_{1}^{\prime} & v_{1} u_{1}^{\prime} & u_{1}^{\prime} & u_{1} v_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1}^{\prime} & u_{1} & v_{1} & 1 \\
u_{2} u_{2}^{\prime} & v_{2} u_{2}^{\prime} & u_{2}^{\prime} & u_{2} v_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2}^{\prime} & u_{2} & v_{2} & 1 \\
u_{3} u_{3}^{\prime} & v_{3} u_{3}^{\prime} & u_{3}^{\prime} & u_{3} v_{3}^{\prime} & v_{3} v_{3}^{\prime} & v_{3}^{\prime} & u_{3} & v_{3} & 1 \\
u_{4} u_{4}^{\prime} & v_{4} u_{4}^{\prime} & u_{4}^{\prime} & u_{4} v_{4}^{\prime} & v_{4} v_{4}^{\prime} & v_{4}^{\prime} & u_{4} & v_{4} & 1 \\
u_{5} u_{5}^{\prime} & v_{5} u_{5}^{\prime} & u_{5}^{\prime} & u_{5} v_{5}^{\prime} & v_{5} v_{5}^{\prime} & v_{5}^{\prime} & u_{5} & v_{5} & 1 \\
u_{6} u_{6}^{\prime} & v_{6} u_{6}^{\prime} & u_{6}^{\prime} & u_{6} v_{6}^{\prime} & v_{6} v_{6}^{\prime} & v_{6}^{\prime} & u_{6} & v_{6} & 1 \\
u_{7} u_{7}^{\prime} & v_{7} u_{7}^{\prime} & u_{7}^{\prime} & u_{7} v_{7}^{\prime} & v_{7} v_{7}^{\prime} & v_{7}^{\prime} & u_{7} & v_{7} & 1 \\
u_{8} u_{8}^{\prime} & v_{8} u_{8}^{\prime} & u_{8}^{\prime} & u_{8} v_{8}^{\prime} & v_{8} v_{8}^{\prime} & v_{8}^{\prime} & u_{8} & v_{8} & 1
\end{array}\right]\left[\begin{array}{l}
F_{11} \\
F_{12} \\
F_{13} \\
F_{21} \\
F_{22} \\
F_{23} \\
F_{31} \\
F_{32} \\
F_{33}
\end{array}\right]=0
$$

Recovering Fundamental Matrix

- 8-point algorithm
- Solved using SVD

$$
W \mathbf{f}=0
$$

Just the idea on how to recover F . Details in the lecture note.

$$
\left[\begin{array}{lllllllll}
u_{1} u_{1}^{\prime} & v_{1} u_{1}^{\prime} & u_{1}^{\prime} & u_{1} v_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1}^{\prime} & u_{1} & v_{1} & 1 \\
u_{2} u_{2}^{\prime} & v_{2} u_{2}^{\prime} & u_{2}^{\prime} & u_{2} v_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2}^{\prime} & u_{2} & v_{2} & 1 \\
u_{3} u_{3}^{\prime} & v_{3} u_{3}^{\prime} & u_{3}^{\prime} & u_{v_{3}^{\prime}} & v_{3}^{\prime} & v_{3}^{\prime} & u_{3} & v_{3} & 1 \\
u_{4} u_{4}^{\prime} & 4_{4} u_{4}^{\prime} & u_{4} & u_{v_{4}^{\prime}} & v_{4}^{\prime} & v_{4}^{\prime} & u_{4} & v_{4} & 1 \\
u_{5} u_{5}^{\prime} & v_{5} u_{5}^{\prime} & u_{5}^{\prime} & u_{5} v_{5} & v_{5} v_{5}^{\prime} & v_{5}^{\prime} & u_{5} & v_{5} & 1 \\
u_{6} u_{6}^{\prime} & v_{6} u_{6}^{\prime} & u_{6}^{\prime} & u_{6} v_{6}^{\prime} & v_{6} v_{6}^{\prime} & v_{6}^{\prime} & u_{6} & v_{6} & 1 \\
u_{7} u_{7}^{\prime} & v_{7} u_{7}^{\prime} & u_{7}^{\prime} & u_{7} v_{7}^{\prime} & v_{7} v_{7}^{\prime} & v_{7}^{\prime} & u_{7} & v_{7} & 1 \\
u_{8} u_{8}^{\prime} & u_{8}^{\prime} & u_{8} v_{8}^{\prime} & v_{8} v_{8}^{\prime} & v_{8}^{\prime} & u_{8} & v_{8} & 1
\end{array}\right]\left[\begin{array}{c}
F_{11} \\
F_{12} \\
F_{13} \\
F_{21} \\
F_{22} \\
F_{23} \\
F_{31} \\
F_{32} \\
F_{33}
\end{array}\right]=0
$$

Next Lecture

- Image Matching
- Find corresponding image points
- Triangulation
- Structure from Motion
- Go beyond two views
- Simultaneously determine 3D structure \& camera parameters

