

GEO1016 Photogrammetry and 3D Computer Vision

Lecture Camera Calibration

Liangliang Nan

Today's Agenda

- Review: Camera models
- Camera calibration
- A1: Camera calibration

Images

A color image: R, G, B channels

$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

"vector-valued" function

Pinhole camera model

Pinhole camera model

• 3D point $P = (X, Y, Z)^T$ projected to 2D image $p = (x, y)^T$

• Camera sensor's pixels not exactly square $x = kf\frac{X}{Z}$, $y = lf\frac{Y}{Z}$

- Camera sensor's pixels not exactly square $x = kf\frac{X}{Z}$, $y = lf\frac{Y}{Z}$
- Image center or principal point *c* may not be at origin

$$x = f_x \frac{X}{Z} + c_x, \quad y = f_y \frac{Y}{Z} + c_y$$

- Camera sensor's pixels not exactly square $x = kf\frac{X}{Z}$, $y = lf\frac{Y}{Z}$
- Image center or principal point c may not be at origin

$$x = f_x \frac{X}{Z} + c_x, \quad y = f_y \frac{Y}{Z} + c_y$$

• Skew: image frame may not be exactly rectangular

$$x = f_x \frac{X}{Z} - f_x \cot \theta \frac{Y}{Z} + c_x, \quad y = \frac{f_y}{\sin \theta} \frac{Y}{Z} + c_y$$

 θ : the skew angle between x and y axes of the image frame

$$x = f_x \frac{X}{Z} - f_x \cot \theta \frac{Y}{Z} + c_x, \quad y = \frac{f_y}{\sin \theta} \frac{Y}{Z} + c_y$$

- Intrinsic parameters
- Intrinsic parameter matrix

 $\tilde{\mathbf{x}} = \frac{1}{Z} \mathbf{K} \mathbf{X}, \quad \mathbf{K} = \begin{bmatrix} f_x & -f_x \cot \theta & c_x \\ 0 & \frac{f_y}{\sin \theta} & c_y \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\text{Attention:}} \mathbf{K} = \begin{bmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix}$ Intrinsic parameter matrix

- Camera motion
 - World frame may not align with the frame
 - Camera can move and rotate
 - Extrinsic parameters

$${}^{C}\mathbf{X} = {}^{C}_{W}\mathbf{R}^{W}\mathbf{X} + {}^{C}_{W}\mathbf{T}$$

- R: rotation matrix of the world coordinate system defined in the camera coordinate system
- T: the position of world coordinate system's origin in camera coordinate system
 (Note: T is often mistakenly considered the position of the camera in the world coordinate system)

• The complete transformation

Today's Agenda

- Review: Camera models
- Camera calibration
- A1: Camera calibration

- Why is camera calibration necessary?
 - Given 3D scene, knowing the precise 3D to 2D projection requires
 - Intrinsic and extrinsic parameters
 - Reconstructing 3D geometry from images also requires these parameters

- Why is camera calibration necessary?
- What information do we have?
 - Images only

- Why is camera calibration necessary?
- What information do we have?
- Camera calibration
 - Recovering K
 - Recovering *R* and **t**

 $\mathbf{p} = M\mathbf{P}$ $= K \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \mathbf{P}$ Internal (intrinsic) parameters External (extrinsic) parameters

• How many parameters to recover?

• How many parameters to recover?

– How many intrinsic parameters?

$$K = \begin{bmatrix} f_x & s & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{p} = M\mathbf{P}$$

 $= K \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \mathbf{P}$
Internal (intrinsic) parameters

- How many parameters to recover?
 - How many intrinsic parameters?
 - How many extrinsic parameters?

- How many parameters to recover: 11
 - 5 intrinsic parameters
 - 2 for focal lengths
 - 2 for offset (image center, or principle point)
 - 1 for skewness
 - 6 extrinsic parameters
 - 3 for rotation
 - 3 for translation

$$K = \begin{bmatrix} f_x & s & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{bmatrix} R = \begin{bmatrix} \mathbf{r}_1^T \\ \mathbf{r}_2^T \\ \mathbf{r}_3^T \end{bmatrix}, \mathbf{t} = \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix}$$

• What information to use?

Corresponding 3D-2D point pairs

$$\mathbf{p} = M\mathbf{P}$$
$$= K\begin{bmatrix} R & \mathbf{t} \end{bmatrix} \mathbf{P}$$

$\mathbf{p} = M\mathbf{P}$ $= K\begin{bmatrix} R & \mathbf{t} \end{bmatrix} \mathbf{P}$

- What information to use?
 - Corresponding 3D-2D point pairs
 - How many pairs do we need?

- What information to use?
 - Corresponding 3D-2D point pairs
 - How many pairs do we need?
 - How much information each pair of corresponding point can provide?

$$\mathbf{p} = M \mathbf{P} \implies \mathbf{p}_i = \begin{bmatrix} u_i \\ v_i \end{bmatrix} = M \mathbf{P}_i = \begin{bmatrix} \frac{\mathbf{P}_i^T \mathbf{m}_1}{\mathbf{P}_i^T \mathbf{m}_3} \\ \frac{\mathbf{P}_i^T \mathbf{m}_2}{\mathbf{P}_i^T \mathbf{m}_3} \end{bmatrix} \implies \begin{array}{l} \mathbf{P}_i^T \mathbf{m}_1 - u_i (\mathbf{P}_i^T \mathbf{m}_3) = 0 \\ \mathbf{P}_i^T \mathbf{m}_2 - v_i (\mathbf{P}_i^T \mathbf{m}_3) = 0 \end{array}$$

 \mathbf{m}_1 , \mathbf{m}_2 , \mathbf{m}_3 : the three rows of the projection matrix M

 \mathbf{m}_1 , \mathbf{m}_2 , \mathbf{m}_3 : the three rows of the projection matrix M

General Idea

- What information to use?
 - Corresponding 3D-2D point pairs
 - How many pairs do we need?
 - Each 3D-2D point pair -> 2 equations
 - 11 unknown -> 6 point correspondence
 - Use more to handle noisy data

$$\mathbf{p} = M\mathbf{P} \implies \mathbf{p}_i = \begin{bmatrix} u_i \\ v_i \end{bmatrix} = M\mathbf{P}_i = \begin{bmatrix} \mathbf{P}_i^T \mathbf{m}_1 \\ \mathbf{P}_i^T \mathbf{m}_3 \\ \frac{\mathbf{P}_i^T \mathbf{m}_2}{\mathbf{P}_i^T \mathbf{m}_3} \end{bmatrix} \implies \begin{array}{l} \mathbf{P}_i^T \mathbf{m}_1 - u_i(\mathbf{P}_i^T \mathbf{m}_3) = 0 \\ \mathbf{P}_i^T \mathbf{m}_2 - v_i(\mathbf{P}_i^T \mathbf{m}_3) = 0 \end{bmatrix}$$

Constraints from one pair

Equations from n pairs

What is the dimension of the *P* matrix? What is the dimension of **m**?

Details: the derivation of the linear system

• The equations $\mathbf{p} = M\mathbf{P}$ $[X, Y, Z]^T \rightarrow [u, v]^T$

$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$su = m_{11}X + m_{12}Y + m_{13}Z + m_{14}$$

$$sv = m_{21}X + m_{22}Y + m_{23}Z + m_{24}$$

$$s = m_{31}X + m_{32}Y + m_{33}Z + m_{34}$$

$$u = \frac{m_{11}X + m_{12}Y + m_{13}Z + m_{14}}{m_{31}X + m_{32}Y + m_{33}Z + m_{34}}$$

$$v = \frac{m_{21}X + m_{22}Y + m_{23}Z + m_{24}}{m_{31}X + m_{22}Y + m_{23}Z + m_{24}}$$

Details: the derivation of the linear system

• The equations $u = \frac{m_{11}X + m_{12}Y + m_{13}Z + m_{14}}{m_{31}X + m_{32}Y + m_{33}Z + m_{34}}$ $v = \frac{m_{21}X + m_{22}Y + m_{23}Z + m_{24}}{m_{31}X + m_{32}Y + m_{33}Z + m_{34}}$

$$(m_{31}X + m_{32}Y + m_{33}Z + m_{34})u = m_{11}X + m_{12}Y + m_{13}Z + m_{14}$$
$$(m_{31}X + m_{32}Y + m_{33}Z + m_{34})v = m_{21}X + m_{22}Y + m_{23}Z + m_{24}$$

$$m_{11}X + m_{12}Y + m_{13}Z + m_{14} - m_{31}uX - m_{32}uY - m_{33}uZ - m_{34}u = 0$$

$$m_{21}X + m_{22}Y + m_{23}Z + m_{24} - m_{31}vX - m_{32}vY - m_{33}vZ - m_{34}v = 0$$

 m_{11}

 m_{12}

 m_{13}

Details: the derivation of the linear system

• The equations

For every pair of 3D-2D corresponding points

 $m_{11}X + m_{12}Y + m_{13}Z + m_{14} - m_{31}uX - m_{32}uY - m_{33}uZ - m_{34}u = 0$ $m_{21}X + m_{22}Y + m_{23}Z + m_{24} - m_{31}vX - m_{32}vY - m_{33}vZ - m_{34}v = 0$

Given n pairs of 3D-2D corresponding points

$$\begin{bmatrix} X_{1} & Y_{1} & Z_{1} & 1 & 0 & 0 & 0 & 0 & -u_{1}X_{1} & -u_{1}Y_{1} & -u_{1}Z_{1} & -u_{1} \\ 0 & 0 & 0 & 0 & X_{1} & Y_{1} & Z_{1} & 1 & -v_{1}X_{1} & -v_{1}Y_{1} & -v_{1}Z_{1} & -v_{1} \\ \vdots & & & & & \\ X_{n} & Y_{n} & Z_{n} & 1 & 0 & 0 & 0 & 0 & -u_{n}X_{n} & -u_{n}Y_{n} & -u_{n}Z_{n} & -u_{n} \\ 0 & 0 & 0 & 0 & X_{n} & Y_{n} & Z_{n} & 1 & -v_{n}X_{n} & -v_{n}Y_{n} & -v_{n}Z_{n} & -v_{n} \end{bmatrix} \begin{bmatrix} m_{14} \\ m_{21} \\ m_{22} \\ m_{23} \\ m_{24} \\ m_{31} \\ m_{32} \\ m_{33} \\ m_{34} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

- How to solve it?
 - It is a homogeneous linear system
 - It is overdetermined

$$\begin{bmatrix} \mathbf{P}_1^T & \mathbf{0}^T & -u_1 \mathbf{P}_1^T \\ \mathbf{0}^T & \mathbf{P}_1^T & -v_1 \mathbf{P}_1^T \\ \vdots & & \\ \mathbf{P}_n^T & \mathbf{0}^T & -u_n \mathbf{P}_n^T \\ \mathbf{0}^T & \mathbf{P}_n^T & -v_n \mathbf{P}_n^T \end{bmatrix} \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_3 \end{bmatrix} = P\mathbf{m} = \mathbf{0}$$

2

- How to solve it?
 - m = 0 always a trivial solution
 - if $\mathbf{m} \neq 0$ is a solution, then any $k * \mathbf{m}$ is also a solution

$$\begin{bmatrix} \mathbf{P}_1^T & \mathbf{0}^T & -u_1 \mathbf{P}_1^T \\ \mathbf{0}^T & \mathbf{P}_1^T & -v_1 \mathbf{P}_1^T \\ \vdots & & \\ \mathbf{P}_n^T & \mathbf{0}^T & -u_n \mathbf{P}_n^T \\ \mathbf{0}^T & \mathbf{P}_n^T & -v_n \mathbf{P}_n^T \end{bmatrix} \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_3 \end{bmatrix} = P\mathbf{m} = \mathbf{0}$$

- How to solve it?
 - m = 0 always a trivial solution
 - if $\mathbf{m} \neq 0$ is a solution, then any $k * \mathbf{m}$ is also a solution
 - Constrained optimization

$$\begin{bmatrix} \mathbf{P}_{1}^{T} & \mathbf{0}^{T} & -u_{1}\mathbf{P}_{1}^{T} \\ \mathbf{0}^{T} & \mathbf{P}_{1}^{T} & -v_{1}\mathbf{P}_{1}^{T} \\ \vdots & & \\ \mathbf{P}_{n}^{T} & \mathbf{0}^{T} & -u_{n}\mathbf{P}_{n}^{T} \\ \mathbf{0}^{T} & \mathbf{P}_{n}^{T} & -v_{n}\mathbf{P}_{n}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{m}_{1} \\ \mathbf{m}_{2} \\ \mathbf{m}_{3} \end{bmatrix} = P\mathbf{m} = \mathbf{0} \quad \Longrightarrow \quad \begin{array}{l} \minininize & \|P\mathbf{m}\|^{2} \\ \operatorname{subject to} & \|\mathbf{m}\|^{2} = 1 \\ \operatorname{subject to} & \|\mathbf{m}\|^{2} = 1 \end{bmatrix}$$

SVD

- Singular Value Decomposition
 - Generalization of the eigen-decomposition of a square matrix to any m by n matrix

$$A = U \Sigma V^{-1} \Sigma = \begin{bmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & & \ddots & \\ & & & & \sigma_N \end{bmatrix}$$

U, V = orthogonal matrix

SVD

Calibration: solve for projection matrix

Last column of *V* gives **m**

(Why? See page 593 of <u>Hartley & Zisserman</u>. Multiple View Geometry in Computer Vision)

Least-squares solution of homogeneous equations

This problem is solvable as follows. Let $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$. The problem then requires us to minimize $\|\mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}\mathbf{x}\|$. However, $\|\mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}\mathbf{x}\| = \|\mathbf{D}\mathbf{V}^{\mathsf{T}}\mathbf{x}\|$ and $\|\mathbf{x}\| = \|\mathbf{V}^{\mathsf{T}}\mathbf{x}\|$. Thus, we need to minimize $\|\mathbf{D}\mathbf{V}^{\mathsf{T}}\mathbf{x}\|$ subject to the condition $\|\mathbf{V}^{\mathsf{T}}\mathbf{x}\| = 1$. We write $\mathbf{y} = \mathbf{V}^{\mathsf{T}}\mathbf{x}$, and the problem is: minimize $\|\mathbf{D}\mathbf{y}\|$ subject to $\|\mathbf{y}\| = 1$. Now, D is a diagonal matrix with its diagonal entries in descending order. It follows that the solution to this problem is $\mathbf{y} = (0, 0, \dots, 0, 1)^{\mathsf{T}}$ having one non-zero entry, 1 in the last position. Finally $\mathbf{x} = \mathbf{V}\mathbf{y}$ is simply the last column of V. The method is summarized in algorithm A5.4.

Objective

Given a matrix A with at least as many rows as columns, find x that minimizes ||Ax|| subject to $||\mathbf{x}|| = 1$.

Solution

x is the last column of V, where $A = UDV^T$ is the SVD of A.

Algorithm A5.4. Least-squares solution of a homogeneous system of linear equations.

Page 593 of Hartley & Zisserman. Multiple View Geometry in Computer Vision

Richard Hartley and Andrew Zisserman

Camera parameters from project matrix

$$\begin{split} M &= K \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \\ K &= \begin{bmatrix} f_x & s & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \alpha & -\alpha \cot \theta & u_0 \\ 0 & \frac{\beta}{\sin \theta} & v_0 \\ 0 & 0 & 1 \end{bmatrix} \quad R = \begin{bmatrix} \mathbf{r}_1^T \\ \mathbf{r}_2^T \\ \mathbf{r}_3^T \end{bmatrix}, \ \mathbf{t} = \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} \\ M &= \begin{bmatrix} \alpha \mathbf{r}_1^T - \alpha \cot \theta \mathbf{r}_2^T + u_0 \mathbf{r}_3^T & \alpha t_x - \alpha \cot \theta t_y + u_0 t_z \\ \frac{\beta}{\sin \theta} \mathbf{r}_2^T + v_0 \mathbf{r}_3^T & \frac{\beta}{\sin \theta} t_y + v_0 t_z \\ \mathbf{r}_3^T & t_z \end{bmatrix} \\ \text{SVD-solved projection matrix is known up to scale, i.e., } \rho \mathcal{M} = \mathcal{M} \leftarrow \text{ The true values of project matrix} \\ \mathcal{M} &= \frac{1}{\rho} \mathcal{M} = \frac{1}{\rho} \begin{bmatrix} \alpha \mathbf{r}_1^T - \alpha \cot \theta \mathbf{r}_2^T + u_0 \mathbf{r}_3^T & \alpha t_x - \alpha \cot \theta t_y + u_0 t_z \\ \frac{\beta}{\sin \theta} \mathbf{r}_2^T + v_0 \mathbf{r}_3^T & \alpha t_x - \alpha \cot \theta t_y + u_0 t_z \\ \frac{\beta}{\sin \theta} \mathbf{r}_2^T + v_0 \mathbf{r}_3^T & \alpha t_x - \alpha \cot \theta t_y + u_0 t_z \\ \frac{\beta}{\sin \theta} \mathbf{r}_2^T + v_0 \mathbf{r}_3^T & \frac{\beta}{\sin \theta} t_y + v_0 t_z \\ \mathbf{r}_3^T & t_z \end{bmatrix}$$

 b_1

 b_2

 b_3

Camera parameters from project matrix

$$\mathcal{M} = \frac{1}{\rho} \begin{bmatrix} \alpha \mathbf{r}_{1}^{T} - \alpha \cot \theta \mathbf{r}_{2}^{T} + u_{0} \mathbf{r}_{3}^{T} & \alpha t_{x} - \alpha \cot \theta t_{y} + u_{0} t_{z} \\ \frac{\beta}{\sin \theta} \mathbf{r}_{2}^{T} + v_{0} \mathbf{r}_{3}^{T} & \frac{\beta}{\sin \theta} t_{y} + v_{0} t_{z} \\ \mathbf{r}_{3}^{T} & t_{z} \end{bmatrix}$$

$$\det \mathcal{M} = \begin{bmatrix} A \quad \mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1}^{T} & b_{1} \\ \mathbf{a}_{2}^{T} & b_{2} \\ \mathbf{a}_{3}^{T} & b_{3} \end{bmatrix}$$

$$\frac{1}{\rho} \begin{bmatrix} \alpha \mathbf{r}_{1}^{T} - \alpha \cot \theta \mathbf{r}_{2}^{T} + u_{0} \mathbf{r}_{3}^{T} & \alpha t_{x} - \alpha \cot \theta t_{y} + u_{0} t_{z} \\ \frac{\beta}{\sin \theta} \mathbf{r}_{2}^{T} + v_{0} \mathbf{r}_{3}^{T} & \frac{\beta}{\sin \theta} t_{y} + v_{0} t_{z} \\ \mathbf{r}_{3}^{T} & t_{z} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1}^{T} \\ \mathbf{a}_{2}^{T} \\ \mathbf{a}_{3}^{T} \\ \mathbf{a}_{3}^{T} \end{bmatrix}$$

Solving for the intrinsic and extrinsic parameters

Camera parameters from project matrix

Intrinsic parameters: $\rho = \pm \frac{1}{\|\mathbf{a_3}\|}$ $u_0 = \rho^2(\mathbf{a_1} \cdot \mathbf{a_3})$ $v_0 = \rho^2(\mathbf{a_2} \cdot \mathbf{a_3})$ $\cos \theta = -\frac{(\mathbf{a_1} \times \mathbf{a_3}) \cdot (\mathbf{a_2} \times \mathbf{a_3})}{\|\mathbf{a_1} \times \mathbf{a_3}\| \cdot \|\mathbf{a_2} \times \mathbf{a_3}\|}$ $\alpha = \rho^2 \|\mathbf{a_1} \times \mathbf{a_3}\| \sin \theta$ $\beta = \rho^2 \|\mathbf{a_2} \times \mathbf{a_3}\| \sin \theta$

Extrinsic parameters:

$$\mathbf{r_1} = \frac{\mathbf{a_2} \times \mathbf{a_3}}{\|\mathbf{a_2} \times \mathbf{a_3}\|}$$
$$\mathbf{r_2} = \mathbf{r_3} \times \mathbf{r_1}$$
$$\mathbf{r_3} = \rho \mathbf{a_3}$$
$$\mathbf{t} = \rho K^{-1} \mathbf{b}$$

- At least 6 3D-2D point pairs
 - 3D points with known 3D coordinates
 - Corresponding image points with known 2D coordinates

tape measure

- Calibration rig a special apparatus
 - $-P_1, \dots P_n$ with known positions in $[O_w, i_w, j_w, k_w]$

- Calibration rig a special apparatus
 - $-P_1, \dots P_n$ with known positions in $[O_w, i_w, j_w, k_w]$
 - $-p_1, \dots p_n$ known positions in the image

- Calibration rig a special apparatus
 - $-P_1, \dots P_n$ with known positions in $[O_w, i_w, j_w, k_w]$
 - $-p_1, \dots p_n$ known positions in the image
 - At least 6 pairs

- Calibration rig a special apparatus
 - $-P_1, \dots P_n$ with known positions in $[O_w, i_w, j_w, k_w]$
 - $-p_1, \dots p_n$ known positions in the image
 - At least 6 pairs
- Goal
 - Intrinsic parameters
 - Extrinsic parameters

Calibration

• Always solvable?

Calibration

- Always solvable?
 - $\{P_i\}$ cannot lie on the same plane
 - $\{P_i\}$ cannot lie on the intersection curve of two quadric surfaces

See Section 1.3 of Forsyth & Ponce. Computer Vision: A Modern Approach

Calibration

- Always solvable?
 - $\{P_i\}$ cannot lie on the same plane
 - $\{P_i\}$ cannot lie on the intersection curve of two quadric surfaces

a.Sphere b.Ellipsoid d.Elliptic e.Parabolic c.Elliptic cylinder paraboloid cylinder h.Hyperboloid f.Quadric cone g.Hyperbolic i.Hyperbolic j.Hyperboloid of one sheet cylinder of two sheets paraboloid

A1: Camera calibration

Next Lecture

• Epipolar Geometry

