

GEO1016 Photogrammetry and 3D Computer Vision

Lecture 2 Camera Models

Liangliang Nan

- Projection of the scene on the image plane
- Digital (discrete) image

A matrix of integer values

	$\xrightarrow{\mathcal{J}}$							
i	62	79	23	119	120	105	4	0
	10	10	9	62	12	78	34	0
↓	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

A color image: R, G, B channels

$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

"vector-valued" function

Today's Agenda

- Images
- Camera Models

Through our eyes...

• We see the world

Through our eyes...

Through their eyes...

Camera is structurally the same the eye Lens does similarly as our lens and cornea Sensor receives the light signals to form images

Through their eyes...

Camera is structurally the same the eye Aperture controls the amount of light

Camera vs. eye

- Similarities
 - Image focusing
 - Light adjustment
- Differences (to name a few)
 - Lens focus
 - Camera: lens moves closer/further from the film
 - Eye: lens changes shape to focus
 - Sensitivity to light
 - Camera: A film is uniformly sensitive to light
 - Eye: retina is not; has greater sensitivity in dark

Imaging...

- Images are 2D projections of real-world scenes
- Images capture two kinds of information:
 - Geometric: points, lines, curves, etc.
 - Photometric: intensity, color.
- Complex 3D-2D relationships
 - Camera models approximate relationships.

Camera models

- Pinhole camera model
- Perspective projection model
 - Most commonly used model

• One-to-one mapping

• Right-handed coordinate system

• 3D point $\mathbf{P} = (X, Y, Z)^{\mathsf{T}}$ projected to 2D image point $\mathbf{p} = (x, y)^{\mathsf{T}}$.

• 3D point $\mathbf{P} = (X, Y, Z)^{\mathsf{T}}$ projected to 2D image point $\mathbf{p} = (x, y)^{\mathsf{T}}$.

20

Pinhole camera model

• 3D point $\mathbf{P} = (X, Y, Z)^{\mathsf{T}}$ projected to 2D image point $\mathbf{p} = (x, y)^{\mathsf{T}}$.

Simplest form of perspective projection

• Assumption: aperture is a single point.

- Sharpness vs. brightness?
- Lens

Refract light and converge to a singe point

- Sharpness vs. brightness?
- Lens
 - Focus parallel light rays to the focal point

$$x = f\frac{X}{Z}, \quad y = f\frac{Y}{Z}$$

Camera sensor's pixels not exactly square

$$x = kf\frac{X}{Z}, \quad y = lf\frac{Y}{Z}$$

x, y: coordinates (pixels)
k, l: scale parameters (pixels/mm)
f: focal length (m or mm)

$$x = kf\frac{X}{Z}, \quad y = lf\frac{Y}{Z}$$

- \circ x, y : coordinates
- \circ k, l : scale parameters
- f: focal length
- We can rewrite (in pixels) $f_x = kf$ $f_y = lf$ $\implies x = f_x \frac{X}{Z}, \quad y = f_y \frac{Y}{Z}$

$$x = kf\frac{X}{Z}, \quad y = lf\frac{Y}{Z}$$

- \circ x, y : coordinates
- \circ k, l : scale parameters
- \circ f: focal length

. .

• We can rewrite (in pixels)

$$f_x = kf$$
 $f_y = lf$ $\implies x = f_x \frac{X}{Z}, \quad y = f_y \frac{Y}{Z}$

- Image center (or principal point) c may not be at origin
 - Pinhole: the origin of the image coordinate system is located at the image center

We must consider: an unknown translation between the origin of the digital image coordinate system and the origin of the image plane

$$x = kf\frac{X}{Z}, \quad y = lf\frac{Y}{Z}$$

- \circ x, y : coordinates
- \circ k, l : scale parameters
- \circ f: focal length

• We can rewrite (in pixels)

$$f_x = kf$$
 $f_y = lf$ $\implies x = f_x \frac{X}{Z}, \quad y = f_y \frac{Y}{Z}$

- Image center (or principal point) c may not be at origin
 - Denote location of c in image plane as c_x , c_y .

$$x = kf\frac{X}{Z}, \quad y = lf\frac{Y}{Z}$$

- \circ x, y : coordinates
- \circ k, l : scale parameters
- \circ f: focal length

• We can rewrite (in pixels)

$$f_x = kf$$
 $f_y = lf$ $\implies x = f_x \frac{X}{Z}, \quad y = f_y \frac{Y}{Z}$

- Image center (or principal point) c may not be at origin
 - Denote location of c in image plane as c_x , c_y .

$$x = f_x \frac{X}{Z} + c_x, \quad y = f_y \frac{Y}{Z} + c_y$$

$$x = f_x \frac{X}{Z} + c_x, \quad y = f_y \frac{Y}{Z} + c_y$$

Image frame may not be exactly rectangular

Common aberration: referred to as radial distortion Reason: different portions of the lens have differing focal lengths.

$$x = f_x \frac{X}{Z} + c_x, \quad y = f_y \frac{Y}{Z} + c_y$$

Image frame may not be exactly rectangular
 Let θ denote skew angle between x- and y-axis

$$x = f_x \frac{X}{Z} - f_x \cot \theta \frac{Y}{Z} + c_x, \quad y = \frac{f_y}{\sin \theta} \frac{Y}{Z} + c_y$$

What if $\theta = \pi/2$?

Intrinsic Parameters

$$x = f_x \frac{X}{Z} - f_x \cot \theta \frac{Y}{Z} + c_x, \quad y = \frac{f_y}{\sin \theta} \frac{Y}{Z} + c_y$$

• Combine all the parameters

$$\tilde{\mathbf{x}} = \frac{1}{Z} \mathbf{K} \mathbf{X}, \quad \mathbf{K} = \mathbf{Y}$$

Intrinsic Parameters

$$x = f_x \frac{X}{Z} - f_x \cot \theta \frac{Y}{Z} + c_x, \quad y = \frac{f_y}{\sin \theta} \frac{Y}{Z} + c_y$$

• Combine all the parameters

$$\begin{split} \tilde{\mathbf{x}} &= \frac{1}{Z} \mathbf{K} \mathbf{X}, \quad \mathbf{K} = \begin{bmatrix} f_x & -f_x \cot \theta & c_x \\ 0 & \frac{f_y}{\sin \theta} & c_y \\ 0 & 0 & 1 \end{bmatrix} \text{Intrinsic} \\ \begin{array}{c} \text{parameter} \\ \text{matrix} \\ \end{array} \end{split}$$

homogeneous coordinates

Intrinsic Parameters

• For simplicity, people use a simpler form of K

$$\mathbf{K} = \begin{bmatrix} f_x & -f_x \cot \theta & c_x \\ 0 & \frac{f_y}{\sin \theta} & c_y \\ 0 & 0 & 1 \end{bmatrix} \implies \mathbf{K} = \begin{bmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix}$$

s: skew parameter

• Internal characteristics

- focal length, skew, distortion, and image center.

Extrinsic Parameters

- Camera frame is not aligned with world frame
- Camera can move and rotate

Extrinsic Parameters

- Camera frame is not aligned with world frame
- Camera can move and rotate
- Rigid transformation between them

$$C\mathbf{X} = \begin{bmatrix} C \\ W \end{bmatrix} \begin{bmatrix} W \\ W \end{bmatrix} + \begin{bmatrix} C \\ W \end{bmatrix} \begin{bmatrix} C \\ W \end{bmatrix} \\ World frame$$

- 1. Coordinates of 3D scene point in camera frame.
- 2. Coordinates of 3D scene point in world frame.
- 3. Rotation matrix of world frame in camera frame.
- 4. Position of world frame's origin in camera frame.

From 3D points to pixels

• Combine intrinsic and extrinsic parameters

$$\tilde{\mathbf{x}} = \frac{1}{Z} \mathbf{K} \mathbf{X}$$
 $^{C}\mathbf{X} = {}^{C}_{W} \mathbf{R}^{W} \mathbf{X} + {}^{C}_{W} \mathbf{T}$ $\rho = \frac{1}{Z}$

$$\rho \,\tilde{\mathbf{x}} = \mathbf{K}^{\,C} \mathbf{X} = \mathbf{K} \left({}^{C}_{W} \mathbf{R}^{\,W} \mathbf{X} + {}^{C}_{W} \mathbf{T} \right)$$

• Use a simpler notation

$\tilde{\mathbf{x}} = \mathbf{K}(\mathbf{R}\mathbf{X} + \mathbf{T}) = \mathbf{M}\mathbf{X}$

Note: in many text books, the 1/Z (rho) is absorbed in K and M.

M: projection matrix

Summary Camera Models

- Simplest camera model: pinhole model.
- Most commonly used model: perspective model.
- Intrinsic parameters:
 - Focal length, principal point (image center), skew factor
- Extrinsic parameters:
 - Camera rotation and translation.

Further reading :

R. Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010.

- Camera models: Section 2.1.5
- Lens distortion: Section 2.1.6

Next Lecture

Camera Calibration

