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Today’'s Agenda

» Machine Learning basics
— Definition & Scope of machine learning
— Bayes classifier
— Linear classifier (Fisher, SVM)

» Deep Learning for 3D urban applications
— Deep learning intuition

— Deep neural networks for 3D classification and
segmentation of point clouds
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Machine Learning

» Learning from examples
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Machine Learning Scope
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Bayes Classifier

Source: Google image
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Bayes Classifier

* A simple scenario:
— If the day Is sunny, I go for pizza
— If it is raining that day, | go for hotpot

- One day you observed that | had
hotpot as dinner. What the
weather of that day do you guess
to be?
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Bayes Classifier
* It's very likely to be rainy!

* But how do machines interpretate
the word “likely™?
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Bayes Classifier: Probabillity basics

* Product rule:

P(A,B) = P(A) P(B|A)

- Bayes rule:

P(B) P(A|B) = P(4) P(B|A)
P(A) P(B|A)
P(A|B) = 5
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Bayes Classifier: Probabillity basics

We have an observation, assuming X Is the
measurement, and w Is the class label

P(w) P(x|w)
P(x)

P(w|x) =

* P(x | w): class conditional probability
* P(w): class prior probability
* P(w | X): class posterior probability
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Bayes Classifier: Probability basics

» Recap the problem of weather
prediction by food

- Assume equal priors in both
sunny days and rainy days

P(w=s)=Plw=r)=05
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Bayes Classifier: Probability basics

« Assume we have the class
conditional probabilities as follows

P(hotpot|w = s) = 0.2
P(pizza|lw = s) = 0.8

P(hotpot|w =r) = 0.75
P(pizza|lw = 1) = 0.25
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Bayes Classifier: Probabillity basics

+ With the observation of “hotpot”,
what Is the posterior probability of
the weather?
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Bayes Classifier: Probabillity basics

sSunny:

P(w = s) P(hotpot|w = s
P(w = s|hotpot) = ( ) P(hotpot )

P(hotpot)
0.5 % 0.2

- P(hotpot)

Rainy:

P(w = 1) P(hotpot|w =1
P(w = r|hotpot) = ( ) P(hotpot )

P(hotpot)
0.5%0.75

N P(hotpot)
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Bayes Classifier

* Prior:
P(w=s)=Plw=r)

* Posterior:

P(w = s|hotpot) K P(w = r|hotpot)
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Bayes Classifier

* The Bayes rule provides an approach of
describing the uncertainty quantitatively, allowing
for the optimal prediction given the observations
present.

* Bayes serves as the foundation for the modern
machine learning
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Bayes Classifier

* We can interpretate the observations as a vector:
— T
X = (X1,X2,X3 ... Xpp)
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Bayes Classifier

» Regarding point clouds:
x=(x,v,271,4g,b,intensity ..)"
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Bayes Classifier

» Each observation is linked with a label w
» Bayes aims to model the joint distribution:

P(x, w)
Or
P(w) P(x|w)
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Bayes Classifier
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Bayes Classifier

. Compute the class posterior probabilities

. Assign objects to the class with the highest
posterior probability

Gaussian Data

pwifx)

p(wa|x)
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Bayes Classifier

» Approaches modeling P(x, w) are called
Generative approaches

* The distribution of P(x, w) can be complex and
hard to model

* |t's impossible to obtain the true distributions in
real world
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An Alternative

 Distinctive approaches: Model a function that
directly map from input x to the output label w :

w = f(x)

X = (xl, X2, X3 ...xp)T

— Linear mappings (Fisher, SVM)

— Non-linear mappings (decision trees, neural networks,
deep learning)
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Linear Regression Recap

¢ yl-=wai+b

Hours vs Percentage

— x; = (%1, %9, X3 .. )" B0 -
— W= (Wy, Wy, W3 ... Wp) ém-
- bisthe bias scalar ~ § |
— y; IS the output scalar
which should be 2
continuous T 2 3 & 3§ & 71 8 9

Hours Studied

Source: https://stackabuse.com/linear-regression-in-python-with-scikit-learn/
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Fisher Classifier
* Vi = WTxi + b

— In classification, y is the output labels which are
discrete

— In a 1D feature, 2 class problems, we assume y;=+1
for positive class, y;=-1 for negative class

*—0 000000 >

P Fisher also represent a feature mapping method, but here we refer “Fisher” only
TUDelft to the standard linear classification g



Fisher Classifier

ty
y=+1 e .__._._ [ — _. _________________
0 "X
=1 —mrmmim . o-0!- -0:0 -0 - -- -
y=wlx+b

o]
TUDelft

30



Fisher Classifier

| X
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Support Vector Machine

* Assume the dataset is linearly separable

» Constrain the weights so that the output is always
larger than 1 or smaller than -1

erx,- +b=>+1 if y;=+1
\wa,- +b < -1 lf Vi = —1

4
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Support Vector Machine

wlix+b>+1
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Support Vector Machine

* maxp

o wlx; +b>+1 if y;=+1
S wlxi+b<-1 if yy=-1e S wixdb=0

(; .
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Support Vector Machine
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References

 Pattern Recognition and Machine Learning

https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-
Pattern-Recoqgnition-and-Machine-Learning-2006.pdf

— Probabilities and Bayes: Section 1.2-1.2.4
— Linear models: Section 3.1-3.1.1

 Pattern recognition

https://darmanto.akakom.ac.id/pengenalanpola/Pattern%20Recognition%20
4th%20Ed.%20(2009).pdf

— SVM: Section 3.7
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Perceptron

» Consider a 2-class problem, the perceptron is
formalized as:

y = f(wl'x + b),
where f(-) defines an activation function:

+1, a=0
f(a)_{—l, a<0
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Perceptron

* f(-) defines a linear boundary

t X t X2 wa-l- b=0
+. 9 ° t *
00 @ X1 .O * X1
_|_
wlix+b=0
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Perceptron

- How to define a boundary for the following case?

4 xz
. EIEEEE
0 0 +1
0 1 1
70 ¢ X1 1 0 1
1 1 +1
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Multi-Layer Perceptron (MLP)

X2
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Multi-Layer Perceptron (MLP)

B
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Multi-Layer Perceptron (MLP)

* The more layers and perceptron units we have,
the more capable of the machine to model
complex non-linear distributions

o]
TUDelft

43



Deep Learning: Artificial Neural Network

Input features Hidden layers Output
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Deep Learning

» Capability: MLP has the abllity of modeling any
finite input distributions in theory.

http://www.vision.jhu.edu/teaching/learning/deeplearningl8/assets/Hornik-91.pdf

* Flexibility: learning to represent the world as a
nested hierarchy of concepts, first with simple
concepts and then building more complex
concepts upon them.
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Deep Learning
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Source: Deep Learning by lan Goodfellow (https://www.deeplearningbook.org/)
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Deep Learning

1940s — 1960s: Perceptron concept developed

1980s — 1990s: Connectionism; Back propagation

1990s — 2006s: Decline of the wave

2006s — Now: Breakthrough and Prosperity

2015s — Now: Widely applied in 3D data (point clouds)

o]
TUDelft

47



Deep Learning vs. Neuro-Science

X 1120 ) WL -
fMRI pain rest pilot m 52000 Acceleration

Source: https://www.nottingham.ac.uk/psychology/research/computational-neuroscience.aspx
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Motivation

* 20% - 30% cost
of the AHN
project goes to
classification

- Manual labelling
IS the prior choice

]
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PointNet (QI et al, 2016)

Classification Network
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PointNet (Qi et al, 2016)

- Max Pooling

Source: https://timesofindia.indiatimes.com/life-style/relationships/pets/5-things-that-scare-and-stress-your-
cat/articleshow/67586673.cms;

TU De I ft https://blog.bricsys.com/point-cloud-to-a-bim-model-modeling-a-church-1-the-outside/>3



PointNet (QI et al, 2016)

The pioneer work to first apply deep learning in
3D point clouds

Simple, clearly-structured, elegant

Taking per individual point into computation,
lacking consideration for the context information

Focused on global rather than local features
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PointNet++ (Qil et al, 2017)

sampling + 2nd sampling + 3rd sampling +

grouping , grouping . grouping
pointnet pointnet
(I
® O. . .
Sige— [) Wy W ®0)
& ' @
@ ®
o ® 3 B &
N points in (x,y) N1 points in (x,y,f) N2 points in (x,y,f")
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PointNet++ (Qi et al, 2017)

* Involving local features by aggregating features
In the neighborhoods

- Making efforts to achieve hierarchical learning

- Still considering per point in its local region
Independently
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KP-Conv (Thomas et al, 2019)

* Traditional 2D convolution

| / "}I-_.:] [Dout]

Kernel responses Output features
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KP-Conv (Thomas et al, 2019)

» 3D convolution using kernel points

Input Kernel
R Output
L T B
[ oy -
|. II’ l“,‘rf ..................... \\‘
. \.4/;, ---------- -:.:l‘ [Da-u{]
K ’ Ouiput features
Point features p - Kernel responses
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Visualizing the Segmentation (KP-Conv)

.r window column

B wall table
B clutter chair
" bookcase

KP-Conv Segmentation

|

uth

¥ rund tr
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Segmenting Evaluation

- Evaluation is made via mloU (Mean Intersection
over Union):

Methods Scannet Sem3D S3DIS PL3D
Pointnet [26] - - 41.1 -
Pointnet++ [27] 33.9 - - -
SnapNet [+] - 59.1 - -
SPLATNet [34] 39.3 - - -
SegCloud [37] - 61.3 48.9 -
RF_MSSF [35] - 62.7 49.8 56.3
Predictions Eff3DConv [50] - - 51.8
TangentConv [30] 43.8 - 52.6 -
MSDVN [30] - 65.3 54.7 66.9
RSNet [15] - - 56.5 -
FCPN [25] 44.7 - - -
_ PointCNN [20] 45.8 - 57.3 -
oo PCNN [2] 49.8 - - -
Where the prediction is correct SPGraph [17] ) 73.9 58.0 )
ParamConv [4 ] - - 58.3 -
SubSparseCNN [V]  72.5 - - -
KPConv rigid 68.6 74.6 65.4 72.3

KPConv deform 68.4 73.1 67.1 75.9
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Project Resources

* Pointnet
— Tensorflow: https://github.com/charlesg34/pointnet
— Pytorch: https://github.com/fxia22/pointnet.pytorch

 Pointnet++

— Tensorflow: https://github.com/charlesq34/pointnet2
— Pytorch: https://github.com/yanx27/Pointnet _Pointnet2 pytorch

 KP-Conv
— Tensorflow: https://qithub.com/HuguesTHOMAS/KPConv
— Pytorch: https://github.com/HuguesTHOMAS/KPConv-PyTorch
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A Small Challenge (Optional)

 The exercise IS about
Bayes classifier

« 2-classes, 1D feature
space

* Questions together
with answers will be
shared
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Figure 1.1: The class-conditional probabilities of two classes p(a|wy ) (dashed blue line) and

Pl |_-,'! | [.~Gn|i=| black line) in a I-dimensional feature Space,

1. Two class conditional probability density functions are given m the figure above. The first
class w; 1s represented by a dashed blue line and the second class w, is represented with a
solid black line. Two classes have equal prior probability:

(a) Use the Bayes' rule to derive the class posterior probabilities of the following objects:
s x=-05;
e x=+035;
e xX=3;
To which class are the objects therefore assigned?

(b) What 1s the decision boundary of the Bayes classifier?

2. Revisit the question 1, assume the prior probabilities of two classes have changed:

Plwy) =

Plw;) =

Wl Wl

Again, what 1s the decision boundary of the Bayes classifier?
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Thank you! Questions?
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