

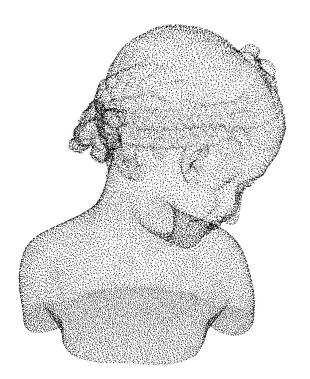
Lecture 7 **Surface Reconstruction**

Liangliang Nan

Today's Agenda

- Smooth object reconstruction
 - The pioneer work of Hoppe *et al.* (1992)
 - Poisson reconstruction [Kazhdan et al. 2006]
 - Piecewise smooth reconstruction
- Piecewise planar object reconstruction [Nan and Wonka. 2017]

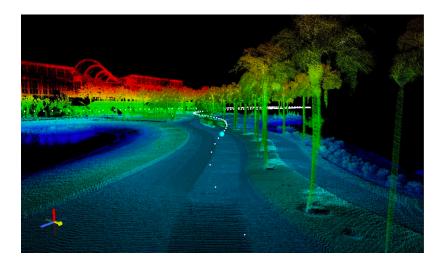
- Data sources
 - Laser scanning

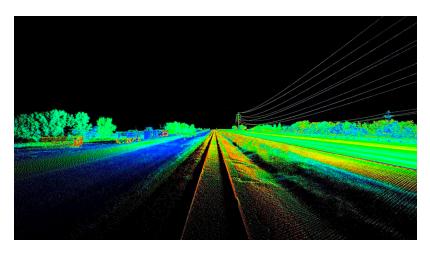


- Data sources
 - Laser scanning

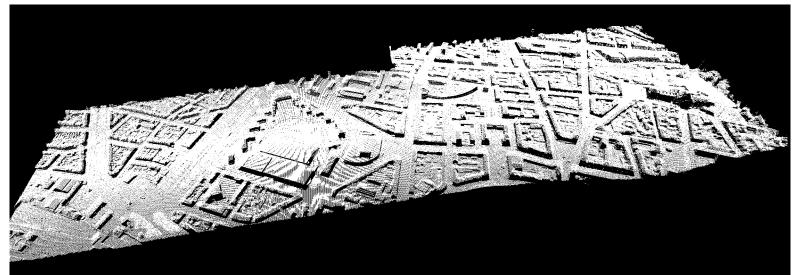
- Data sources
 - Laser scanning

- Data sources
 - Laser scanning

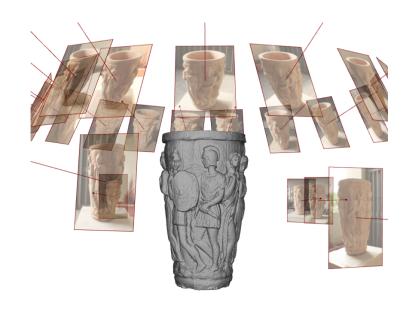




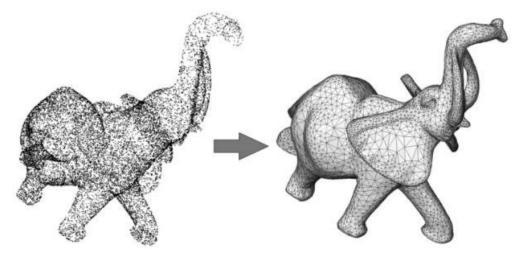
- Data sources
 - Laser scanning



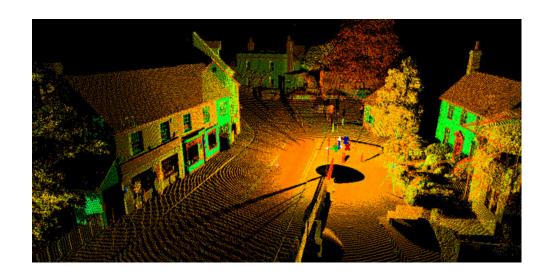
- Data sources
 - Laser scanning
 - Structure from Motion (SfM) and Multi-view stereo (MVS)



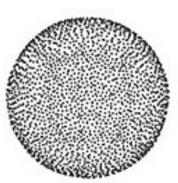
- Surface reconstruction
 - Input: point set P sampled over a surface S
 - Non-uniform sampling
 - With holes
 - With uncertainty (noise)
 - Output: surface approximating S in terms of topology and geometry
 - Desired
 - Watertight
 - Intersection free

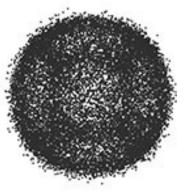


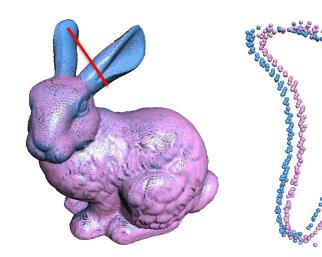
- Challenges
 - The point samples may not be uniformly distributed
 - Oblique scanning angles
 - Laser energy attenuation



- Challenges
 - The point samples may not be uniformly distributed
 - The positions and normals are generally noisy
 - Sampling inaccuracy
 - Scan misregistration



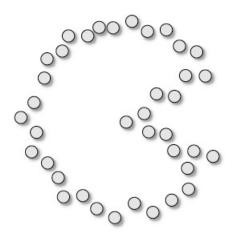




- Challenges
 - The point samples may not be uniformly distributed
 - The positions and normals are generally noisy
 - Missing data
 - Material properties, inaccessibility, occlusion, etc.

Challenges

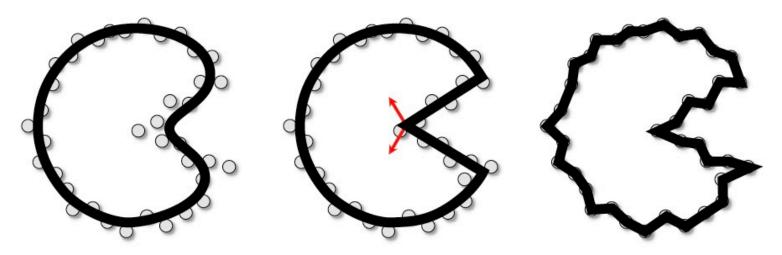
- The point samples may not be uniformly distributed
- The positions and normals are generally noisy
- Missing data
- Ill-posed problem



Challenges

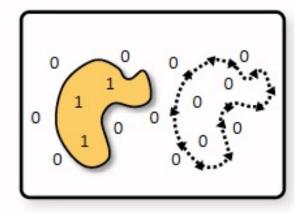
- The point samples may not be uniformly distributed
- The positions and normals are generally noisy
- Missing data
- Ill-posed problem

How to pick?

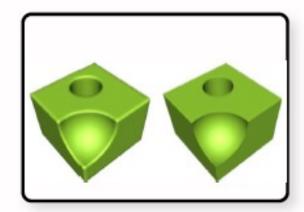


Surface Smoothness Priors

Global Smoothness

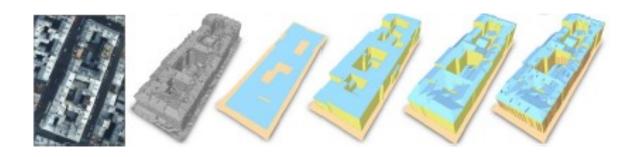


Piecewise Smoothness

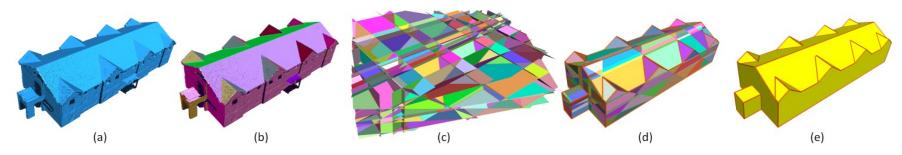


General Ideas

• Domain-Specific Priors

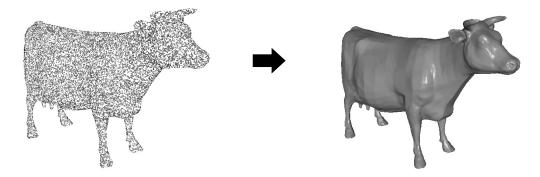


[Verdie et al, 2015]

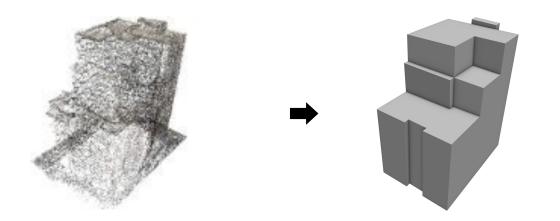


[Nan and Wonka 2017]

Smooth surface reconstruction



• Piecewise-planar object reconstruction

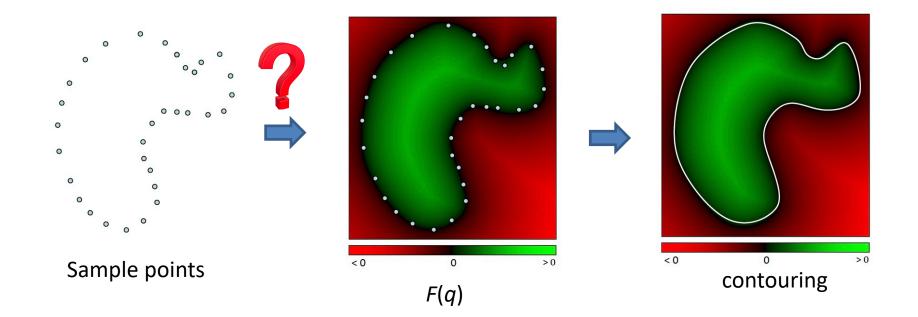


Today's Agenda

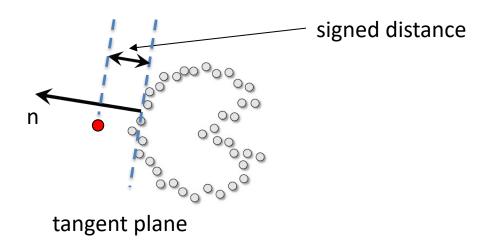
- Introduction
- Smooth object reconstruction

- The pioneer work of Hoppe et al. (1992)
- Poisson reconstruction [Kazhdan et al. 06]
- Piecewise smooth reconstruction
- Piecewise planar object reconstruction [Nan and Wonka. 2017]

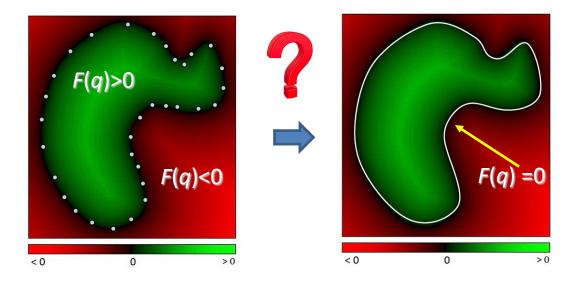
- Two main steps
 - Estimate signed geometric distance to the unknown surface
 - Extract the zero-set of the distance field using a contouring algorithm



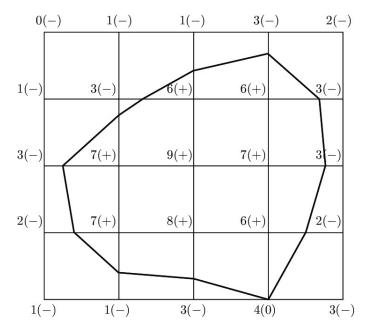
- Define a signed distance function (SDF)
 - Associate an oriented plane (tangent plane) with each of the data points
 - Tangent plane is a local linear approximation to the surface.
 - Used to define signed distance function to surface.

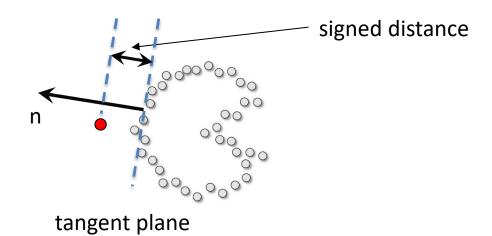


- Contour tracing
 - Extract 0-set iso-surface from the scalar field
 - Marching cubes



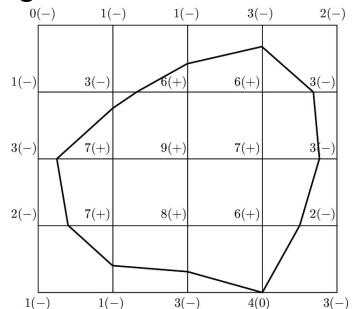
- Contour tracing
 - Extract 0-set iso-surface from the scalar field
 - Marching cubes

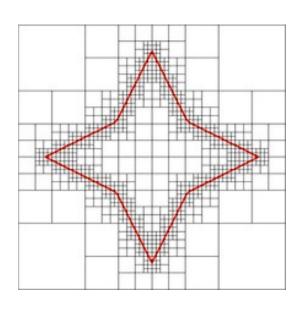




22

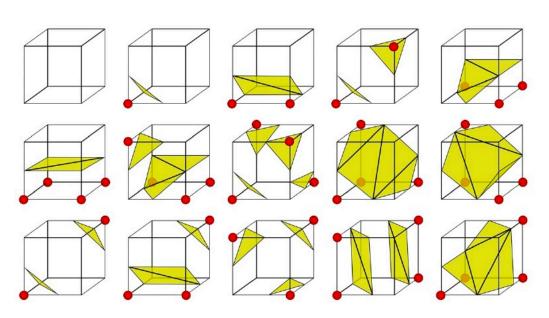
- Contour tracing
 - Extract 0-set iso-surface from the scalar field
 - Marching cubes
 - Irregular grid

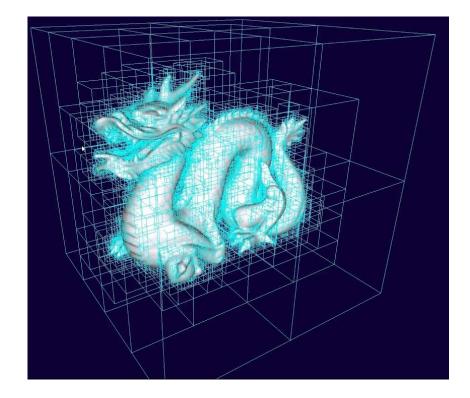




TUDelft 3Dgeoinfo

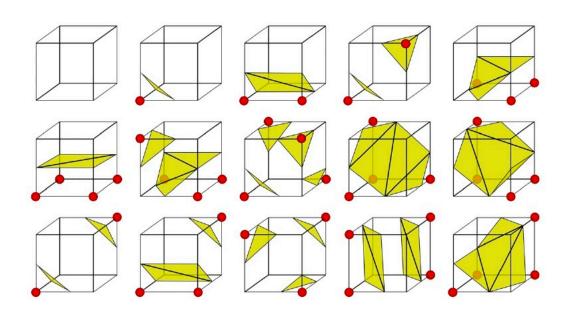
- Contour tracing
 - Extract 0-set iso-surface from the scalar field
 - Marching cubes

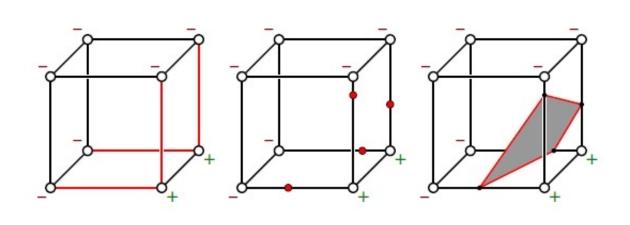




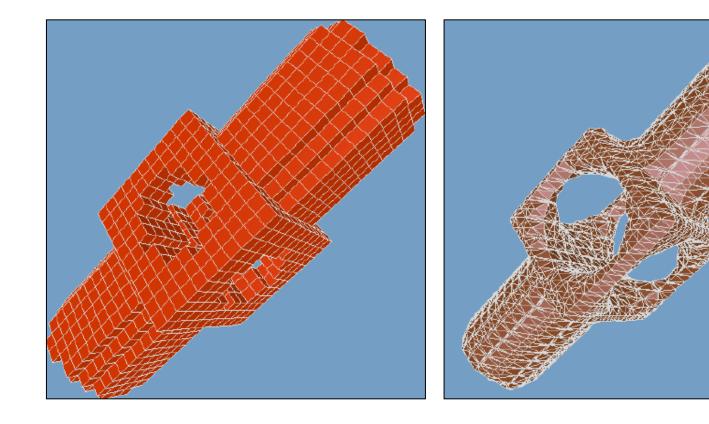
TUDelft 3Dgeoinfo

- Contour tracing
 - Extract 0-set iso-surface from the scalar field
 - Marching cubes

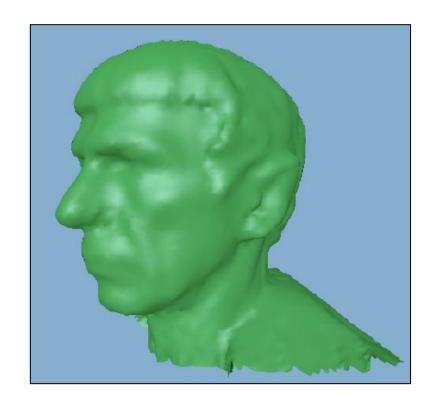


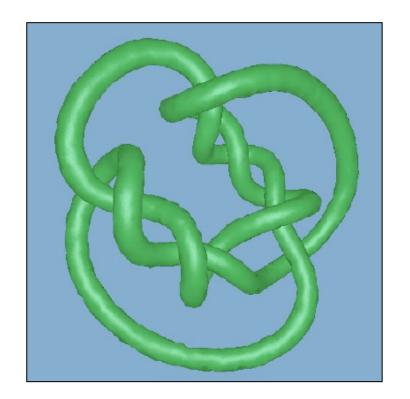


Contour tracing



Reconstruction results



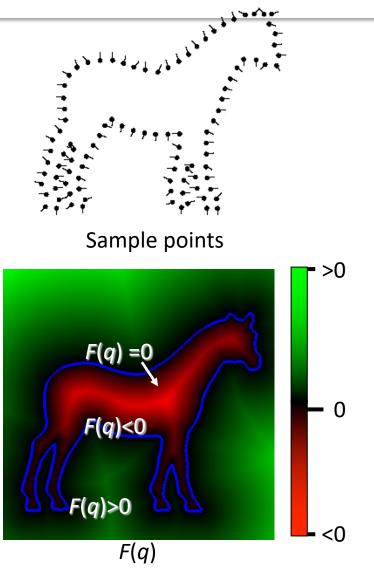


Today's Agenda

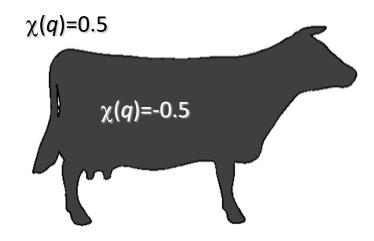
- Introduction
- Smooth object reconstruction
 - The pioneer work of Hoppe *et al.* (1992)
 - Poisson reconstruction [Kazhdan et al. 06]

- Piecewise smooth reconstruction
- Piecewise planar object reconstruction [Nan and Wonka. 2017]

- Implicit function fitting
 - Define a 3D scalar function
 - Zero values at the points
 - Positive values outside
 - Negative values inside
 - Extract the zero isosurface



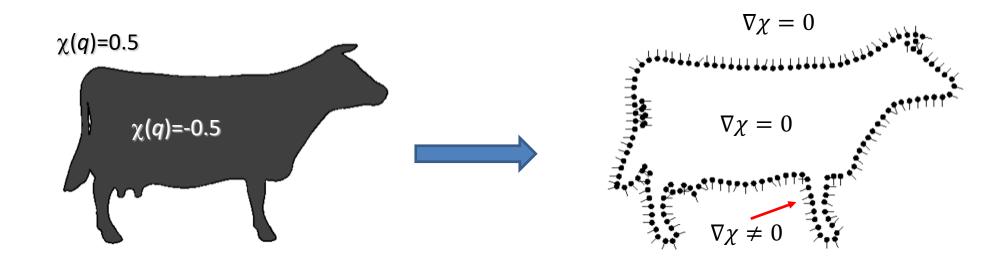
- The idea
 - The indicator function (χ)
 - Interior: constant negative value
 - Exterior: constant positive value



• The idea

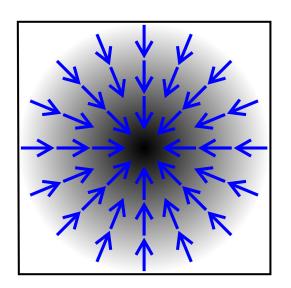
Gradient?

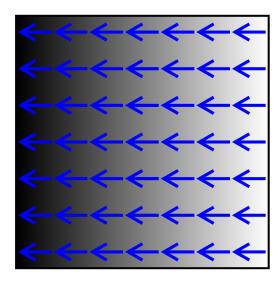
- The indicator function (χ)
- The gradient of the indicator function $(\nabla \chi)$
 - Zero everywhere except close to the boundary



- Gradient (∇f) is a vector at a point
 - Direction: the greatest rate of increase of \boldsymbol{f}
 - Magnitude: the rate of increase in that direction

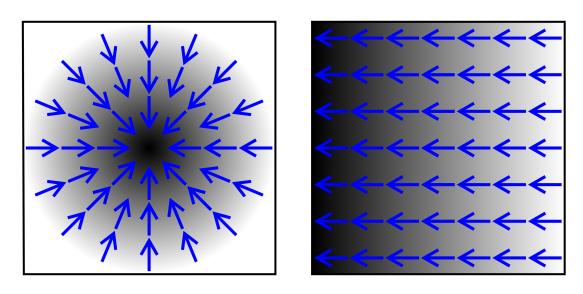
- Gradient (∇f) is a vector at a point
 - Direction: the greatest rate of increase of \boldsymbol{f}
 - Magnitude: the rate of increase in that direction

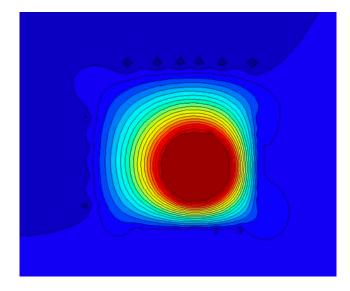




Gradient of colors

- Gradient (∇f) is a vector at a point
 - Direction: the greatest rate of increase of \boldsymbol{f}
 - Magnitude: the rate of increase in that direction

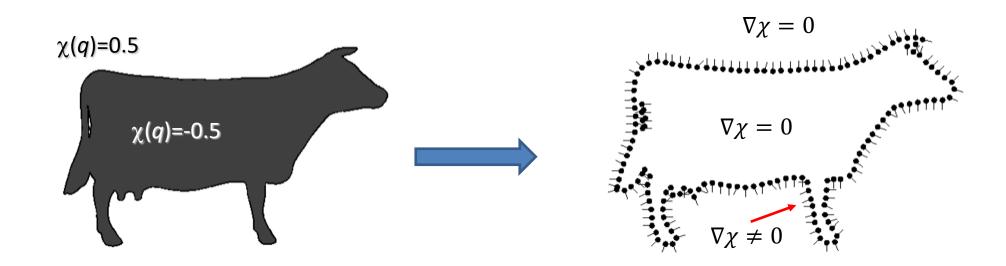




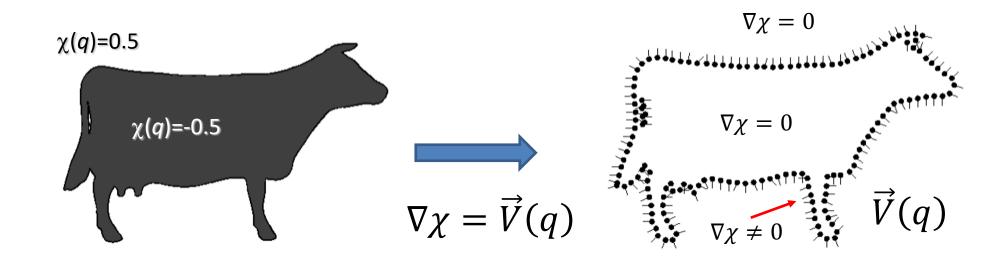
Gradient of colors

Heat source (2D)

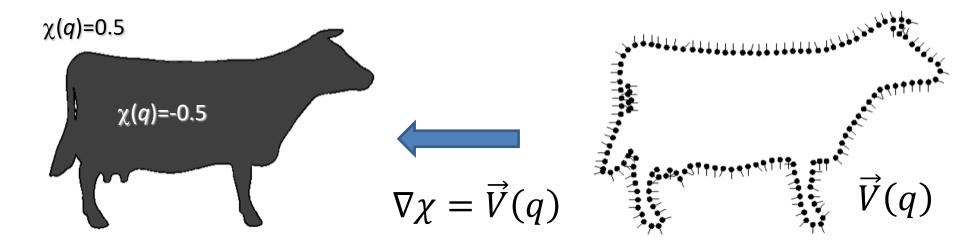
- The idea
 - The indicator function (χ)
 - The gradient of the indicator function $(\nabla \chi)$
 - Zero everywhere except close to the boundary



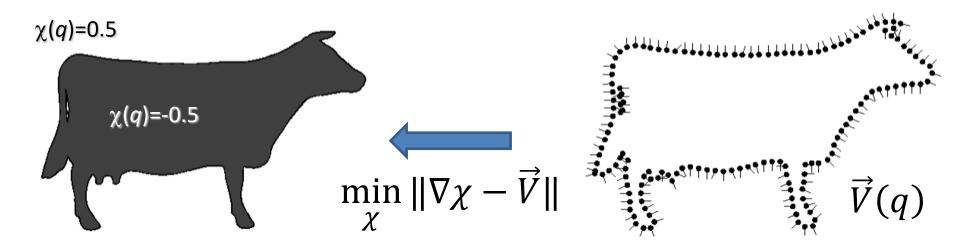
- The idea
 - The indicator function (χ)
 - The gradient of the indicator function $(\nabla \chi)$
 - Oriented points $\vec{V}(q) \approx \text{samples of gradient}$



- The idea
 - The indicator function (χ)
 - The gradient of the indicator function $(\nabla \chi)$
 - Oriented points $\vec{V}(q) \approx \text{samples of gradient}$
 - Reconstruction



- The idea
 - The indicator function (χ)
 - The gradient of the indicator function $(\nabla \chi)$
 - Oriented points $\vec{V}(q) \approx \text{samples of gradient}$
 - Reconstruction: finding the indicator function



- Reconstruction: finding the indicator function
 - Continues vector field?

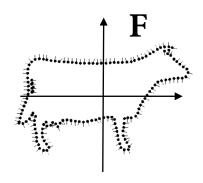
$$\nabla \chi = \vec{V}(q)$$

- The best least-squares approximate solution
- Apply the divergence operator

$$\min_{\chi} \|\nabla\chi - \vec{V}\|$$
 Laplace operator (or Laplacian): $\nabla \cdot \nabla$, ∇^2 , or Δ - Divergence of the gradient of a function
$$\nabla \cdot \nabla \chi = \nabla \cdot \vec{V} \iff \Delta \chi = \nabla \cdot \vec{V}$$
 Poisson equation

- Pipeline
 - Point samples -> Continuous vector field

$$\mathbf{F} = \mathbf{U} \vec{i} + \mathbf{V} \vec{j} + \mathbf{W} \vec{k}$$



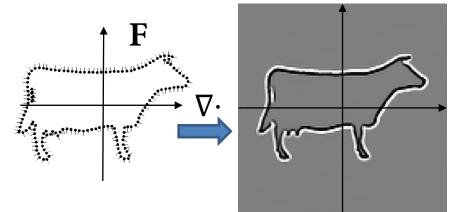
Pipeline

– Point samples -> Continuous vector field

$$\mathbf{F} = \mathbf{U} \vec{i} + \mathbf{V} \vec{j} + \mathbf{W} \vec{k}$$

– Compute the divergence $(\nabla \cdot)$

 $\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot (U, V, W) = \frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z}$

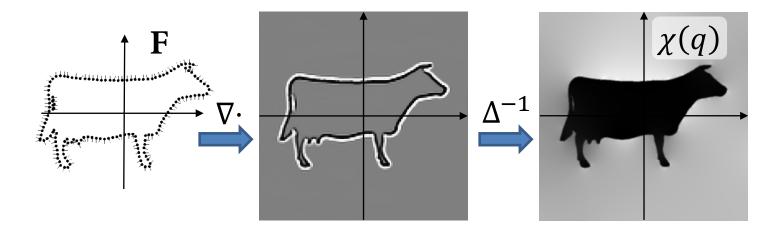


the sum of the first-order partial derivative

Pipeline

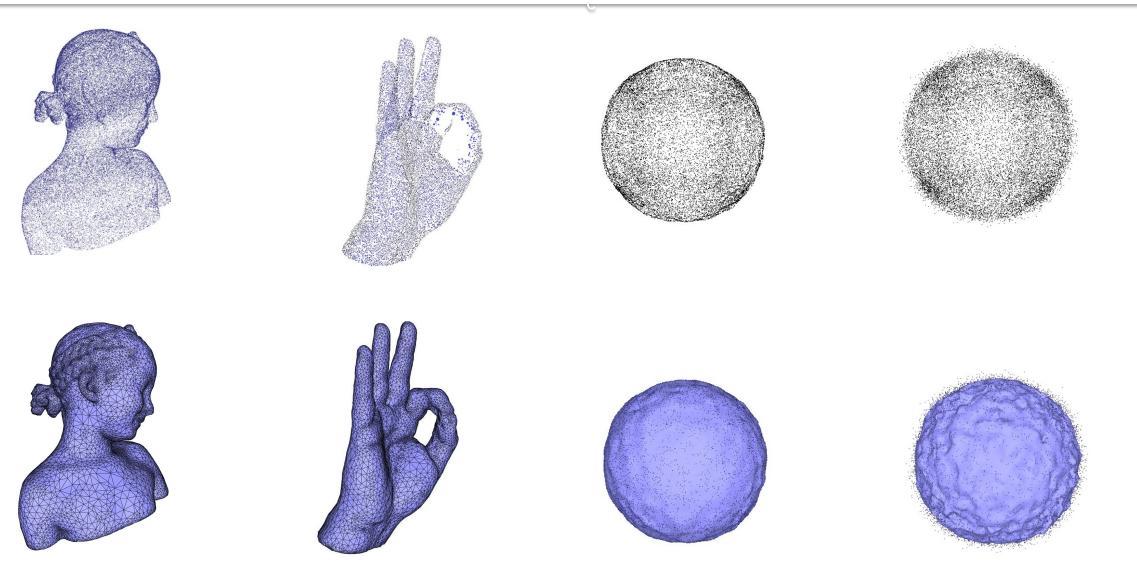
- Point samples -> Continuous vector field
- Compute the divergence $(\nabla \cdot)$
- Solve the Poisson equation

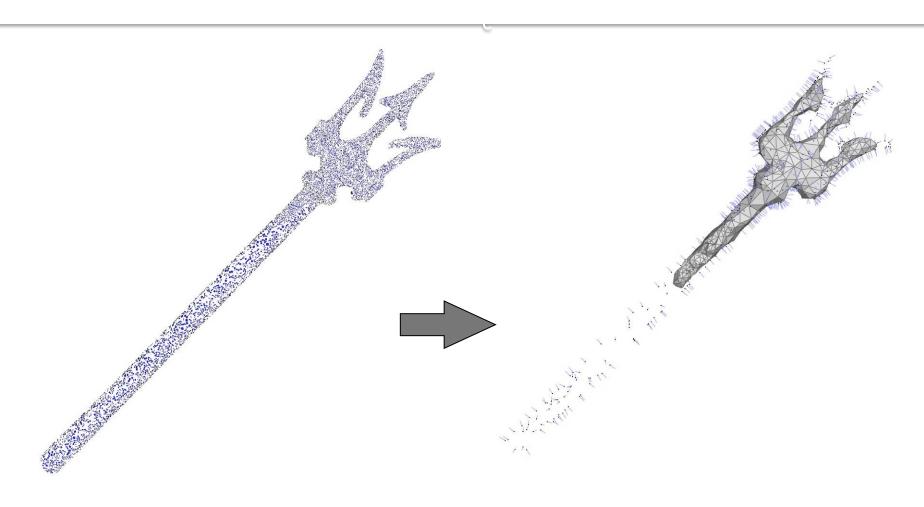
$$\Delta \chi = \nabla \cdot \mathbf{F}$$



Pipeline

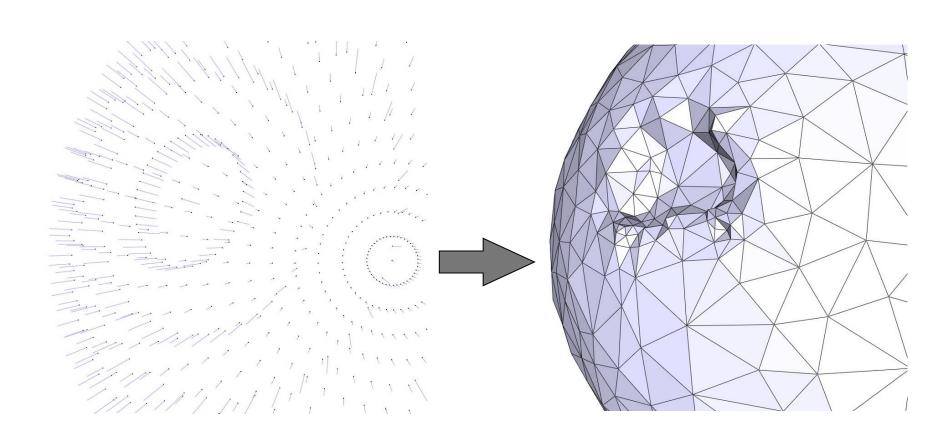
- Point samples -> Continuous vector field
- Compute the divergence $(\nabla \cdot)$
- Solve the Poisson equation
- Iso-surface extraction
 - Marching cubes





Left: 50K points sampled on Neptune trident

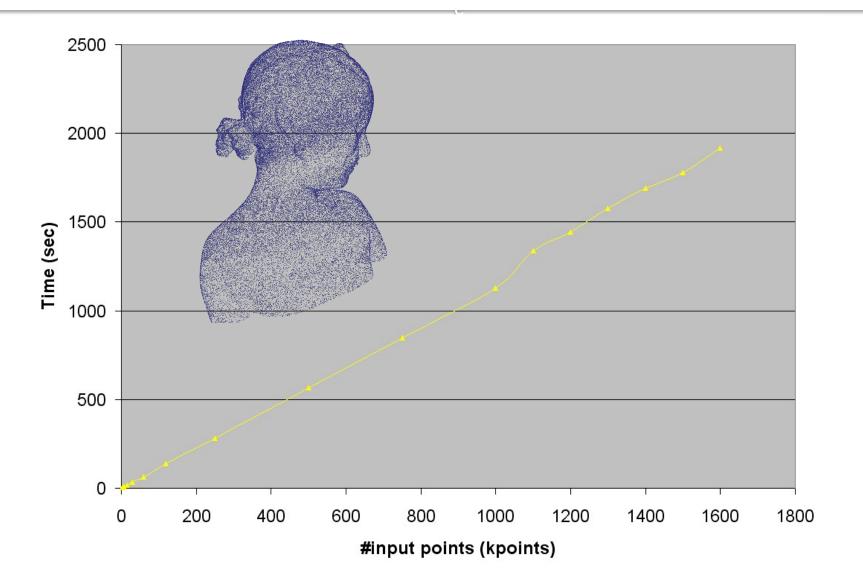
Right: point set simplified to 1K then reconstructed



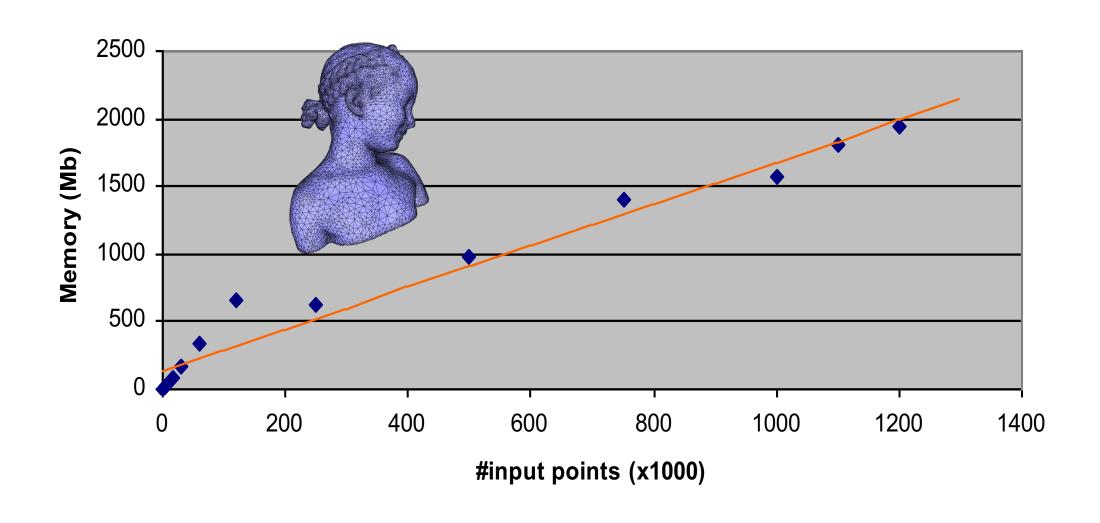
Left: points sampled on a sphere with flipped normals

Right: reconstructed surface

Poisson duration wrt #input points

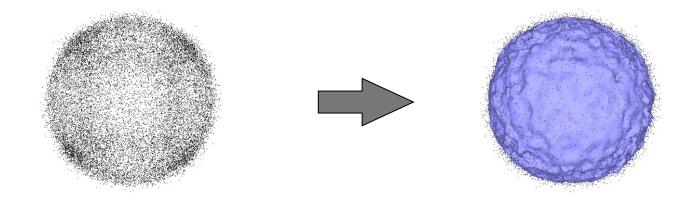


Memory wrt #input points



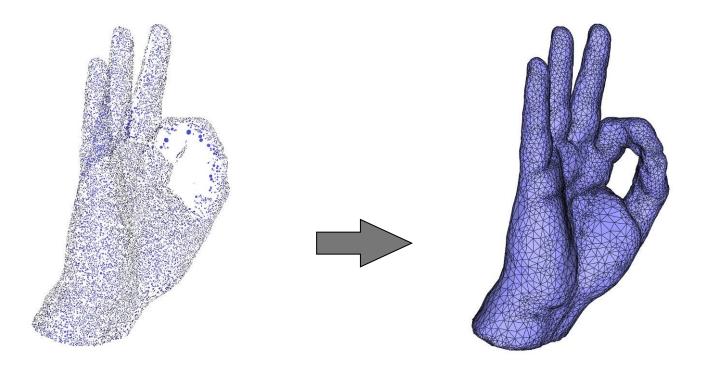
Properties

✓ Supports noisy, non-uniform data



Properties

- ✓ Supports noisy, non-uniform data
- ✓ Can fill reasonably large holes

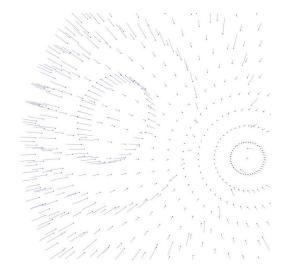


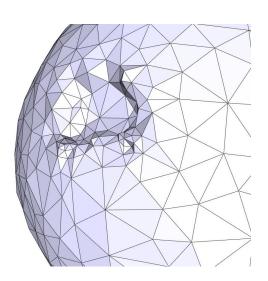
Properties

- ✓ Supports noisy, non-uniform data
- ✓ Can fill reasonably large holes

Limitations

It requires good normal information



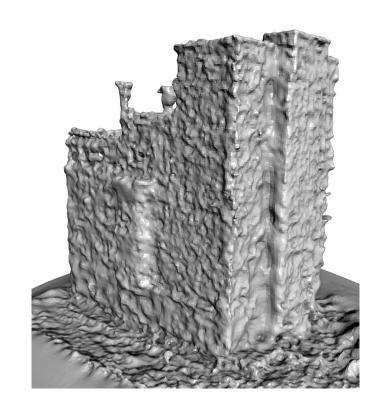


Properties

- ✓ Supports noisy, non-uniform data
- ✓ Can fill reasonably large holes

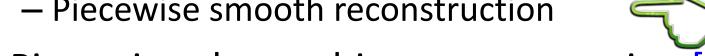
Limitations

- It requires good normal information
- Sharp features are oversmoothed
 - Not good for piecewise planar objects



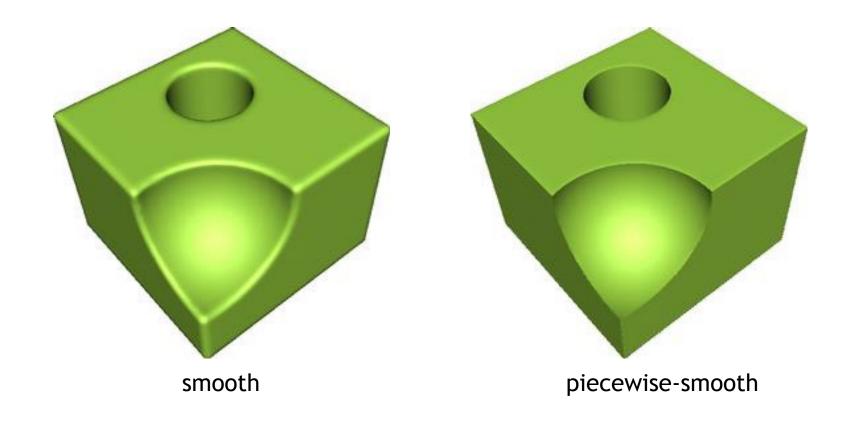
Today's Agenda

- Introduction
- Smooth object reconstruction
 - The pioneer work of Hoppe et al. (1992)
 - Poisson reconstruction [Kazhdan et al. 06]
 - Piecewise smooth reconstruction

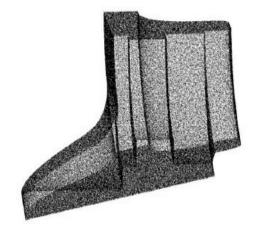


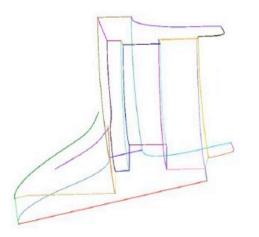
Piecewise planar object reconstruction [Nan and Wonka. 2017]

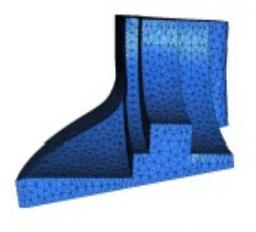
Piecewise-smooth



- Feature detection
 - Extract a set of sharp features
 - Decompose the point cloud into smooth patches
- Smooth reconstruction patch by patch
- Stitch the patches



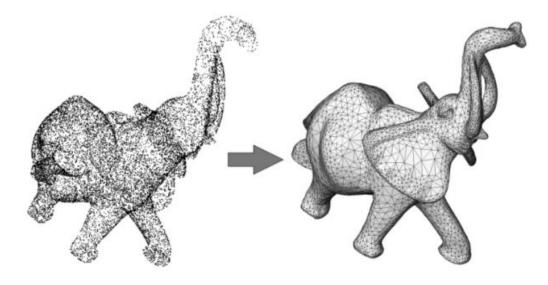




Today's Agenda

- Introduction
- Smooth object reconstruction
 - The pioneer work of Hoppe et al. (1992)
 - Poisson reconstruction [Kazhdan et al. 06]
 - Piecewise smooth reconstruction
- Piecewise planar object reconstruction

- Surface Reconstruction Methods
 - Smooth surfaces
 - Fit noisy data; infer topology; fill (small) holes

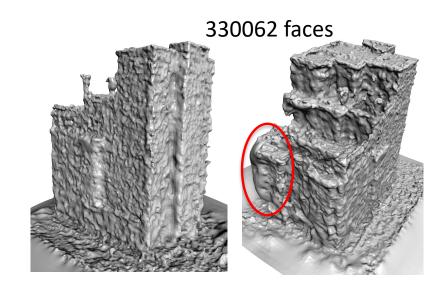


Poisson Surface Reconstruction [Kazhdan et al. 06]

- Surface Reconstruction Methods
 - Smooth surfaces
 - Piecewise planar objects

- Surface Reconstruction Methods
 - Smooth surfaces
 - Piecewise planar objects

- Surface Reconstruction Methods
 - Smooth surfaces
 - Piecewise planar objects

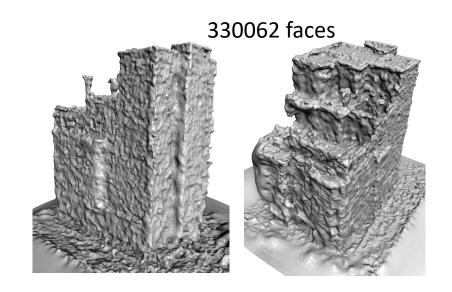


Result of [Kazhdan et al. 06]

- Unsatisfied results
 - Bumpy
 - Large number of faces
 - Unacceptable hole filling
- Rare direct applications
 - Post-processing required
 - Topologically correct
 - Simplified

Polygonal Surface Reconstruction

- Surface Reconstruction Methods
 - Smooth surfaces
 - Piecewise planar objects

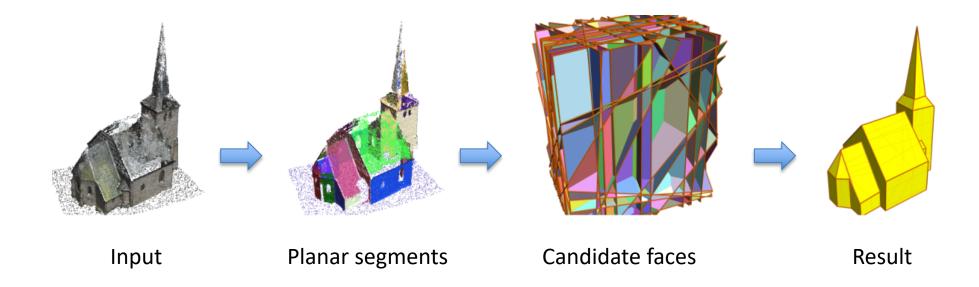


25 faces

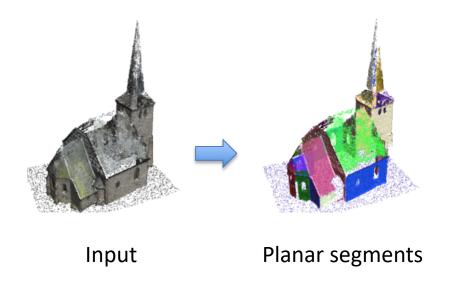
Result of [Kazhdan et al. 06]

[Nan and Wonka 17]

Overview



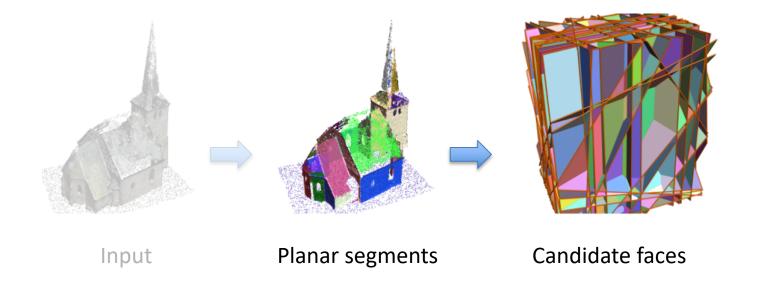
Overview



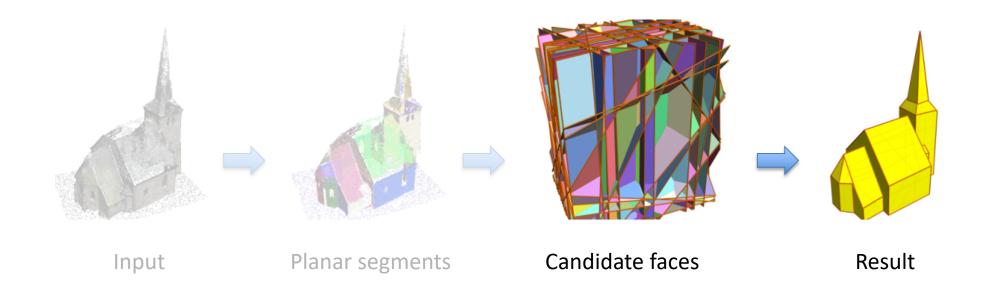
RANSAC algorithm

- Random 3 points -> plane
- Scoring, accept or reject
- Repeat
 - Plane from the remaining points
 - Stop if no plane can be extracted

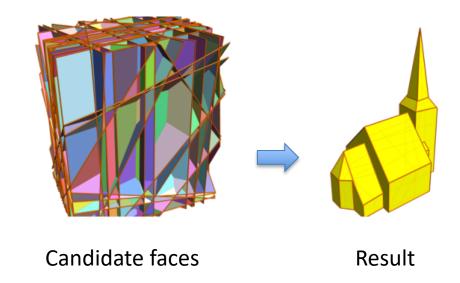
- Candidate Generation
 - Supporting plane clipping
 - Pairwise intersection



Face Selection



- Face Selection
 - Labeling problem
 - Linear integer program



$$N$$
 candidate faces $F = \{f_i | 1 \le i \le N\}$
Variables: $x_i = \begin{cases} 1, & \text{face } f_i \text{ will be chosen} \\ 0, & \text{face } f_i \text{ will } \mathbf{not} \text{ be chosen} \end{cases}$

- Objective Function
 - Data fitting
 - Favors selecting faces with more support
 - Percentage of unused points

$$E_f = 1 - \frac{1}{|P|} \sum_{i=1}^{N} x_i \cdot support(f_i)$$

- Objective Function
 - Data fitting
 - Favors selecting faces with more support
 - Percentage of unused points

$$E_f = 1 - \frac{1}{|P|} \sum_{i=1}^{N} x_i \cdot support(f_i)$$

Confidence weighted $support(f) = \sum_{p,f|dist(p,f) < \varepsilon} (1 - \frac{dist(p,f)}{\varepsilon}) \cdot conf(p)$ number of supporting point

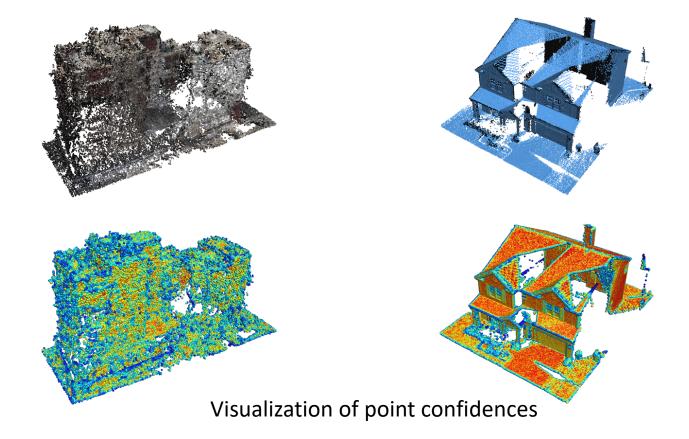
- Objective Function
 - Data fitting
 - Favors selecting faces with more support
 - Percentage of unused points

$$E_f = 1 - \frac{1}{|P|} \sum_{i=1}^{N} x_i \cdot support(f_i)$$

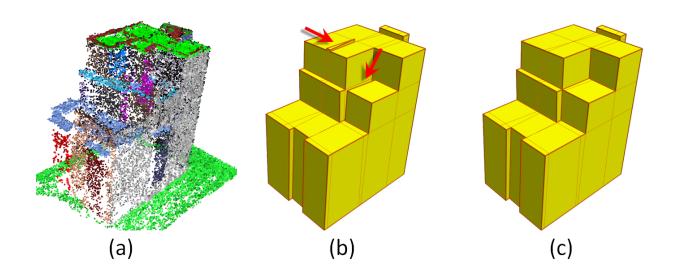
Confidence weighted
$$support(f) = \sum_{p,f \mid dist(p,f) < \varepsilon} (1 - \frac{dist(p,f)}{\varepsilon}) \cdot conf(p)$$
 number of supporting point

$$\text{Point confidence} \quad conf(p) = \frac{1}{3} \sum_{i=1}^3 (1 - \frac{3\lambda_i^1}{\lambda_i^1 + \lambda_i^2 + \lambda_i^3}) \cdot \frac{\lambda_i^2}{\lambda_i^3} \quad \lambda_i^1 \ \leq \ \lambda_i^2 \ \leq \ \lambda_i^3$$

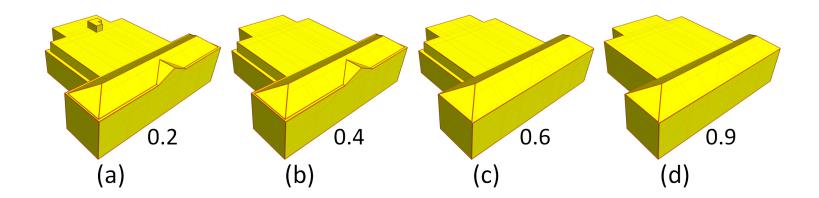
- Objective Function
 - Data fitting



- Objective Function
 - Data fitting
 - Model complexity
 - Penalize sharp corners

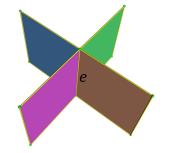


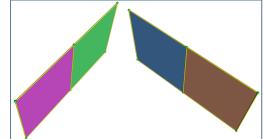
- Objective Function
 - Data fitting
 - Model complexity
 - Penalize sharp corners

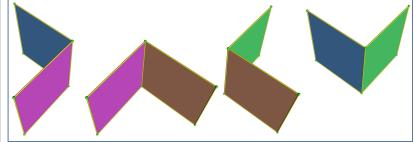


- Objective Function
 - Data fitting
 - Model complexity
 - Penalize sharp corners

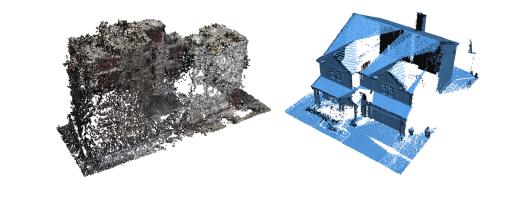
$$E_m = \frac{1}{|E|} \sum_{i=1}^{|E|} corner(e_i)$$

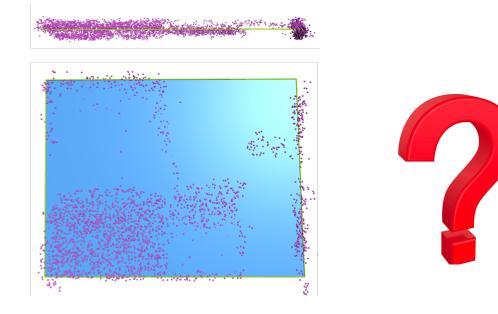






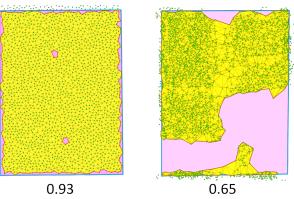
- Objective Function
 - Data fitting
 - Model complexity
 - Point coverage



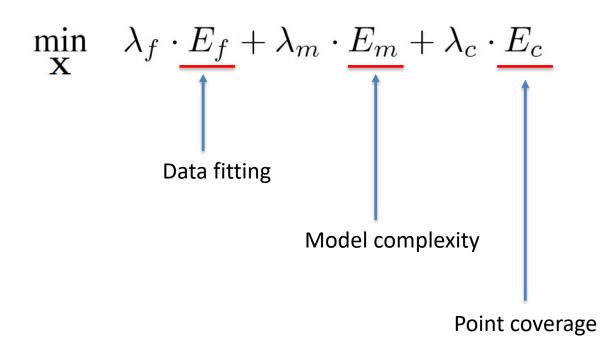


- Objective Function
 - Data fitting
 - Model complexity
 - Point coverage

$$E_c = \frac{1}{area(M)} \sum_{i=1}^{N} x_i \cdot (area(f_i) - area(M_i^{\alpha})),$$



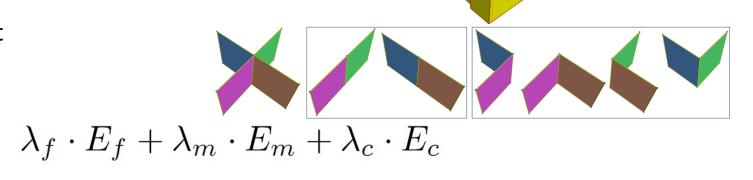
- Face Selection
 - Linear integer program



- Face Selection
 - Linear integer program
 - Constraints
 - Watertight

min X

Manifold



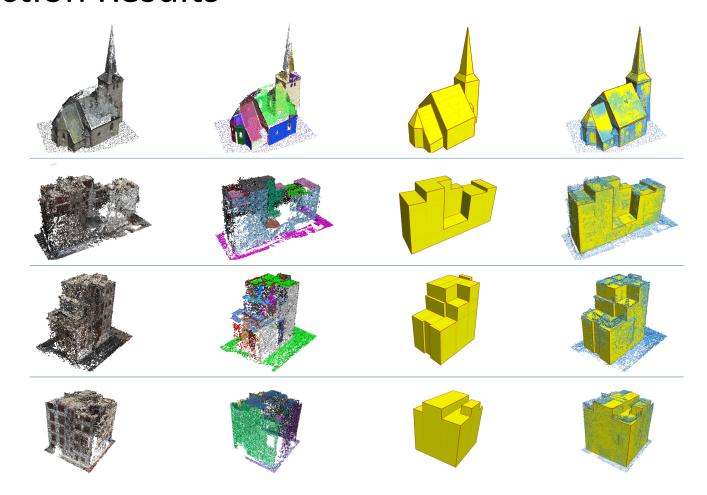
s.t.
$$\begin{cases} \sum_{j \in \mathcal{N}(e_i)} x_j = 2 \quad \text{or} \quad 0, \quad 1 \leq i \leq |E| \\ x_i \in \{0,1\}, \qquad \qquad 1 \leq i \leq N \end{cases}$$

- Face Selection
 - Linear integer program
 - Constraints
 - Solvers (SCIP, CBC, GLPK, Gurobi...)

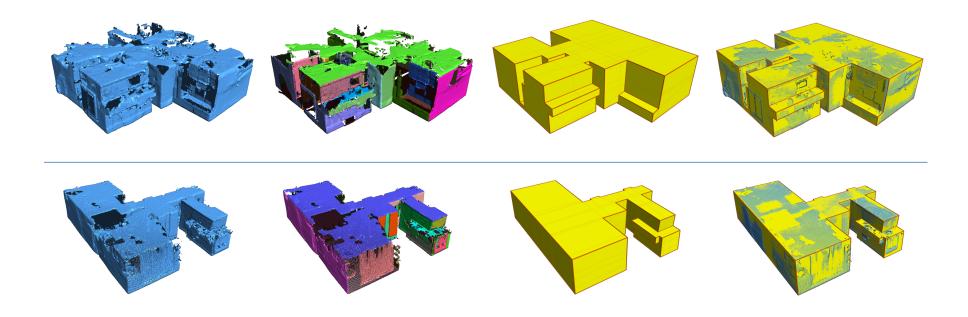
$$\min_{\mathbf{X}} \quad \lambda_f \cdot E_f + \lambda_m \cdot E_m + \lambda_c \cdot E_c$$

s.t.
$$\begin{cases} \sum_{j \in \mathcal{N}(e_i)} x_j = 2 \quad \text{or} \quad 0, \quad 1 \leq i \leq |E| \\ x_i \in \{0, 1\}, \qquad \qquad 1 \leq i \leq N \end{cases}$$

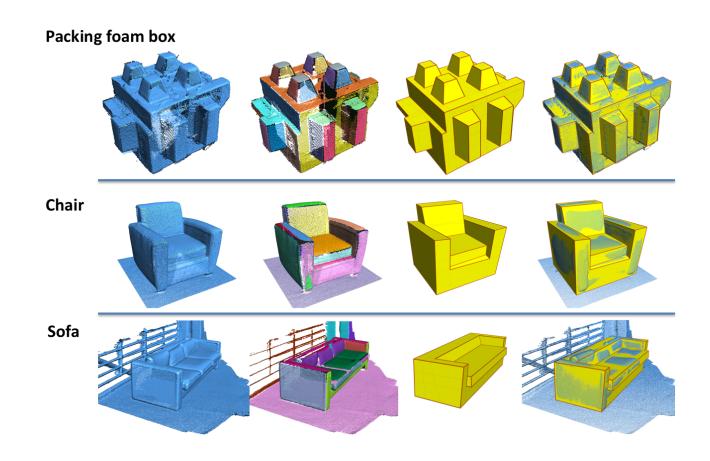
Reconstruction Results



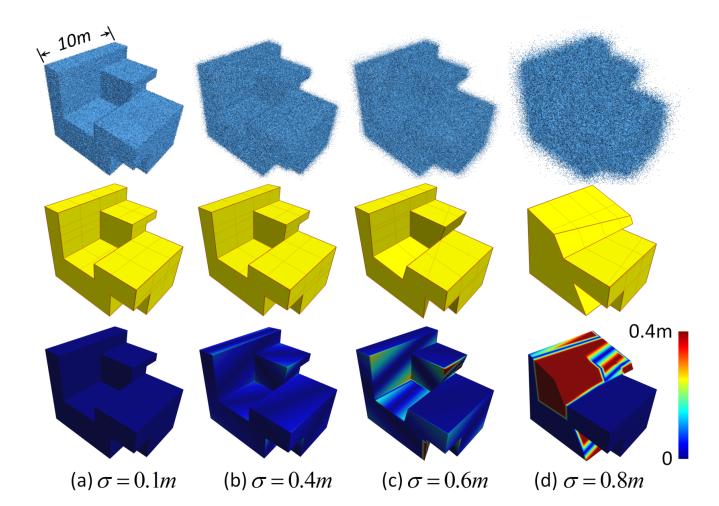
Reconstruction Results



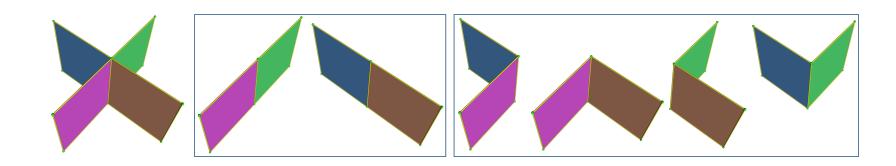
Reconstruction Results



Robustness to noise

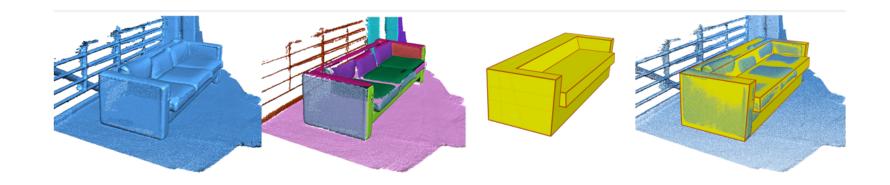


Open surfaces



s.t.
$$\begin{cases} \sum_{j \in \mathcal{N}(e_i)} x_j = 2 \text{ or } 0, & 1 \le i \le |E| \\ x_i \in \{0, 1\}, & 1 \le i \le N \end{cases}$$

Open surfaces



s.t.
$$\begin{cases} \sum_{j \in \mathcal{N}(e_i)} x_j = 2 \quad \text{or} \quad 0, \quad 1 \leq i \leq |E| \\ x_i \in \{0, 1\}, \qquad \qquad 1 \leq i \leq N \end{cases}$$

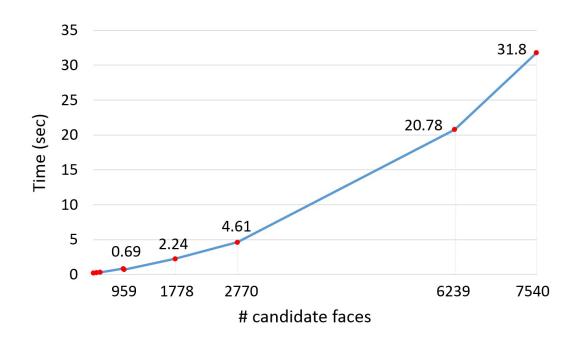
Limitations

- Open surfaces
- Finer surface details
 - Fence
 - Façade decorations
 - Door handle

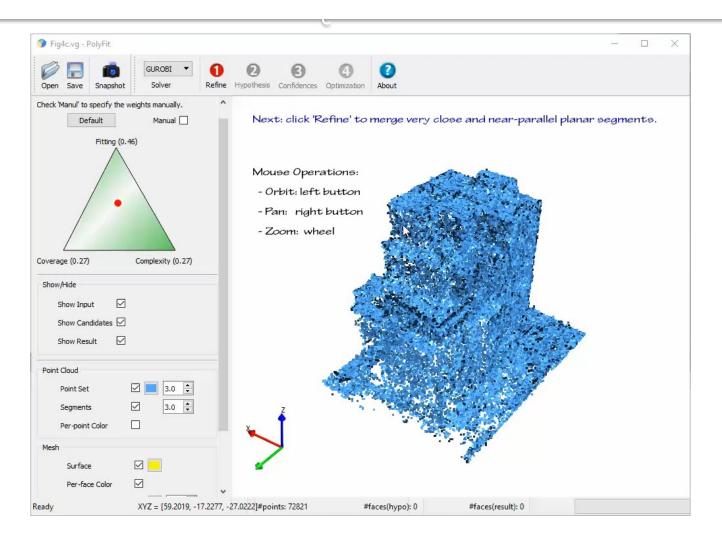
— ...

Limitations

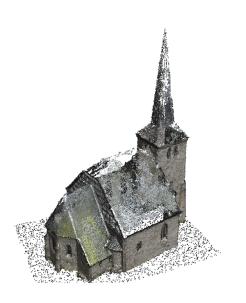
- Open surfaces
- Finer surface details
- Complexity of the algorithm

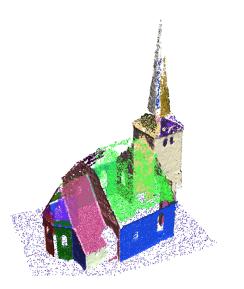


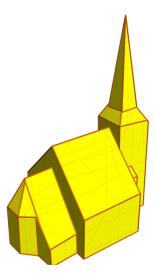
Demo



Questions?







Machine learning for point cloud segmentation/classification

