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In one slide :)

1. Detect keypoints

2. Triangulate a sparse set of initial matches

3. Iteratively expand matches to nearby locations

4. Use visibility constraints to filter out false matches
5. Perform surface reconstruction
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c(p): center of the patch c¢(p) < {Trlangulatlon from f and f'},

n(p): normal of the patch n(p) <« ¢(po (1,)/|c(p) (1 )|
R(p): reference image with p R(p)




normalized cross correlation: quick glance
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Photometric Discrepancy Function oy B4
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V(p): initial set of images where patch p is potentially visible




Photometric Discrepancy Function
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V*(p): set of images where patch is truly visible
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Optimize over c(p) and n(p) that minimizes g*(p)




Image model
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V(p): set of images where patch may be visible :
V*(p): set of images where patch truly visible 8ol I

C_i(x,y): regular grid cell g x g pixels
Q_i(x,y): the set of “may be” visible patches that projects to C_i(x,y)
Q*_i(x,y): the set of “truly visible”"patches that projects to C_i(x,y)



Flow diagram
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Quick glance to corners: Aperture problem




¢/ Detected features M / W Features satisfying epipolar
(Harris/DoG)

Feature Detection

1. Divide grid to cells (32x32)

2. Use Harris Detector and DoG to find corners ---

3. Try to find 4 good corners in each cell (uniform coverage)



Quick glance: typical feature matching pipeline
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Feature Matching

1. Epipolar line test for right matches
2. Initialization of patches
c(p) « {Trlangulatlon from f and f'},
n(p) — e(p)O0)/|c(p)O(H).
R(p) < I
V(p) — {1In(p) -¢(p)O(1)/Ie(p)O(L)] > cos(1) }
|1 €V(p),h(p,1,R(p)) < o}

Vilp) =

3. Refine patch geometry

*/* Detected features M / W Features satisfying epipolar
consnstency (Hams/DoG)

(Hams/DoG)
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/* Detected features M / W Features satisfying epipolar
(Harris/DoG) consistency (Harris/DoG)
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Feature Matching = |4&d (A

4. Update the V(p) and V*(p) with
refined patch geometry

""" » Epipolar line ‘f F={m 0.1 ‘ }
Input: Features detected in each image.

5. Check if patch truly visible in at least y images |ouput midal sparse set of patches P.
P—9¢;
H H For each image / with optical center O(/
6. Add valid patches to corresponding Q and Q* | e v opea sener o0
F «— {Features satisfying the epipolar consistency };
Sort F in an increasing order of distance from O(/));
For each feature f' € F
/I Test a patch candidate p;
Initialize ¢(p),n(p) and R(p); // Egs. (4, 5, 6)
Initialize V(p) and V*(p); // Egs. (2. 7)
Refine ¢(p) and n(p); // (Sect.ll-C)
Update V(p) and V*(p); // Eqgs. (2, 7)
If [V*(p)| <7
Go back to the innermost For loop (failure);
Add p to the corresponding Q;(x,y) and Qj(x,y):
Remove features from the cells where p was stored;
Add p to P;
Exit innermost For loop;




Expansion

1. ldentify neighboring cells for possible expansion

C(p) = {G(¥,Y)|p € Qi(x,y), |x—X|+|y—y| =1}

2. Testif there is already patch very close to that region

|(e(p) —c(p)) -n(p)|+|(c(p) —c(p) -n(p)| < 2p g
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3. Test for depth discontinuity S



Expansion

4. Initialize candidate patch
5. Refine patch geometry

6. Update the V(p) and V*(p) with
refined patch geometry (loosen thresholds)

7. Check if patch truly visible in at least y images
8. Add valid patches to corresponding Q and Q*

Input: Patches P from the feature matching step.
Output: Expanded set of reconstructed patches.

While P is not empty
Pick and remove a patch p from P;
For each image cell C;(x,y) containing p
Collect a set C of image cells for expansion;
For each cell C;(x,y") in C
/I Create a new patch candidate p’
n(p’) —n(p). R(p')=R(p). V() <V*(p)
Update V*(p'); // Eq. (2)
Refine ¢(p’) and n(p'); // (Sect.11-C)
Add visible images (a depth-map test) to V(p');
Update V*(p'); // Eq. (2)
If V' (p)] < 7
Go back to For-loop (failure);
Add p to P;
Add p' to corresponding Q;(x,y) and Q7 (x,);




Filtering

A Correct patch

First filter: Global visibility consistency
iOutlier

Vi(p)l(1-g"(p)) < X 1-g"(p)

7 pIEU )
Second filter: Depth map test
check if patch truly visible in at least y images after depth map test

Third filter: Check if patches have some neighbors in reference and other images.



In one slide :)

1. Detect keypoints

2. Triangulate a sparse set of initial matches

3. Iteratively expand matches to nearby locations

4. Use visibility constraints to filter out false matches
5. Perform surface reconstruction













VisualSFM+PMVS



http://www.youtube.com/watch?v=NdeD4cjLI0c

MVSNet: Depth Inference for
Unstructured Multi-view Stereo

Authors: Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan
WSS presenter: Nail Ibrahimli —




PMVS x MVSNet Textureless

Non-lambertian areas
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2D CNN: quick glance

Input image Pooling Fully Connected
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Convolution + ReLU + Max Pooling Fully Connected Layer |

Feature Extraction in multiple hidden layers Classification in the output layer




3D CNN: quick glance

(b) 3D convolution
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Figure 3. lllustration of 3D convolution: (a) illustration of a 3D kernel to extract spatial-spectral features;
(b) illustration of multiple 3D kernels to extract different kinds of spatial-spectral local feature patterns.




Source Images

Reference Image

MVSNET Architecture
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onv+ BN + ReLU, Stride=1
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Shared Weights

Source Images

MVSNET
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Refined Depth Map

Feature Differentiable Cost Volume Depth Map
Extraction Homography Regularization Refinement

End-to-end MVS learning framework
Camera geometry encoded as differentiable homography

Variance based cost metric
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Image features

8 convolutional layers

32 channel pixel descriptor Images {I,-}f\i’:l} 2D CNN,, Deep Features {Fi}a;l]




Differentiable homography warping

Use intrinsic/extrinsic parameters "’ | 5
Warp features to the Feature volumes ! | W

Volume dimension W/4xH/4xDxF

Projection Parameters
N J > Feature Volumes {Vi}i_;,

There are N feature Volumes Deep Features {F;}{i_,,

t Eti ‘IIT
Hi(d) =K Ri- (1- 8T8 80 T k7




Cost Volume

Calculate the element wise

cost of feature volumes ) * i

Dimension W/4xH/4xDxF

Feature Volumes {V;}fi_;, Variance, Cost Volume C
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C=M(Vy,---,V§) = N




Cost Volume Regularization

3D Unet Architecture

Initial dimension W/4xH/4xDxF

Cost Volume C =2, Probability Volume P




Depth Map regression

Regressed depth based on expected value

Dimension W/4xH/4xD -> W/4xH/4

Expectation value

Probability Volume P > Depth Map D




Refine Depth map

2D CNN
D > D

refine




Loss

Refined Depth Map

Loss= Yy |d(p) - di(p)lls +A- |ld(p) — dr(p)llL

PEPvalid Loss0 Lossl




Source Images

Reference Image

MVSNET Architecture
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Filtering

Photometric filtering:
P(d)>0.8
Geometric filtering:

3 View visible




Filtering

T depth map

(a) Inferred depth map (b) Filtered depth map

(©) G

(d) Reference image (e) Fused point cloud () GT point cloud



Results
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