GEO1016

Lecture 5
 Reconstruct 3D Geometry

Liangliang Nan

Today's Agenda

- Review of Epipolar Geometry
- Image Matching (self study)
- Reconstruct 3D Geometry
- 3D from 2 views
- Estimate fundamental matrix
- Recover relative pose
- Triangulation
- 3D from more views
- Structure from motion
- Bundle adjustment

Review of Epipolar Geometry

- Epipolar Geometry
- Baseline
- The line between the two camera centers
- Epipolar plane
- The plane defined by $\mathrm{X}, \mathrm{O}_{1}$, and O_{2}
- Epipoles
- \cap of baseline and image plane
- Projection of the other camera center
- Epipolar lines
- \cap of epipolar plane with the image plane

Review of Epipolar Geometry

- Essential matrix
- Canonical camera assumption

$$
p^{\prime T} E p=0, E=\left[T_{\mathrm{X}}\right] R \quad K=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Fundamental matrix (most important concept in 3DV)

$$
p^{\prime T} F p=0, F=K^{\prime-T}\left[T_{\times}\right] R K^{-1}
$$

- Relate matching points of different views
- No need 3D point location
- No need intrinsic parameters
- No need extrinsic parameters

Review of Epipolar Geometry

- Fundamental matrix
-3 by 3
- homogeneous matrix
- 7 degrees of freedom

$$
p^{\prime T} F p=0, \quad F=K^{\prime-T}\left[T_{\times}\right] R K^{-1}
$$

- 9 elements
- scale ambiguity (scale doesn't matter)
- determinant $(\mathrm{F})=0$

Review of Epipolar Geometry

- Fundamental matrix
-3 by 3
- homogeneous matrix
- 7 degrees of freedom
- 9 elements
- scale ambiguity (scale doesn't mat
- determinant $(F)=0$
$-\operatorname{rank}(F)=2$

Left: Uncorrected F - epipolar lines are not coincident.
Right: Epipolar lines from corrected F.

Review of Epipolar Geometry

- Recover F from corresponding image points
- 8 unknown parameters
- Each point pair gives a single linear constraint

$$
\begin{aligned}
& \left\{\begin{array}{l}
p_{i}=\left(u_{i}, v_{i}, 1\right) \\
p_{i}^{\prime}=\left(u_{i}^{\prime}, v_{i}^{\prime}, 1\right)
\end{array}\right. \\
& p^{\prime T} F p=0, \\
& {\left[\begin{array}{lllllllll}
u_{i} u_{i}^{\prime} & v_{i} u_{i}^{\prime} & u_{i}^{\prime} & u_{i} v_{i}^{\prime} & v_{i} v_{i}^{\prime} & v_{i}^{\prime} & u_{i} & v_{i} & 1
\end{array}\right]\left[\begin{array}{l}
F_{11} \\
F_{12} \\
F_{13} \\
F_{21} \\
F_{22} \\
F_{23} \\
F_{31} \\
F_{32} \\
F_{33}
\end{array}\right]=0}
\end{aligned}
$$

Review of Epipolar Geometry

- Recover F from corresponding image points
- 8 unknown parameters
- Each point pair gives a single linear constraint
-8-point algorithm (>= 8 pairs)
- 7-point algorithm does exist but less popular

$$
\left[\begin{array}{lllllllll}
u_{1} u_{1}^{\prime} & v_{1} u_{1}^{\prime} & u_{1}^{\prime} & u_{1} v_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1}^{\prime} & u_{1} & v_{1} & 1 \\
u_{2} u_{2}^{\prime} & v_{2} u_{2}^{\prime} & u_{2}^{\prime} & u_{2} v_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2}^{\prime} & u_{2} & v_{2} & 1 \\
u_{3} u_{3}^{\prime} & v_{3} u_{3}^{\prime} & u_{3}^{\prime} & u_{3} v_{3}^{\prime} & v_{3} v_{3}^{\prime} & v_{3}^{\prime} & u_{3} & v_{3} & 1 \\
u_{4} u_{4}^{\prime} & v_{4} u_{4}^{\prime} & u_{4}^{\prime} & u_{4} v_{4}^{\prime} & v_{4} v_{4}^{\prime} & v_{4}^{\prime} & u_{4} & v_{4} & 1 \\
u_{5} u_{5}^{\prime} & v_{5} u_{5}^{\prime} & u_{5}^{\prime} & u_{5} v_{5}^{\prime} & v_{5} v_{5}^{\prime} & v_{5}^{\prime} & u_{5} & v_{5} & 1 \\
u_{6} u_{6}^{\prime} & v_{6} u_{6}^{\prime} & u_{6}^{\prime} & u_{6} v_{6}^{\prime} & v_{6} v_{6}^{\prime} & v_{6}^{\prime} & u_{6} & v_{6} & 1 \\
u_{7} u_{7}^{\prime} & v_{7} u_{7}^{\prime} & u_{7}^{\prime} & u_{7} v_{7}^{\prime} & v_{7} v_{7}^{\prime} & v_{7}^{\prime} & u_{7} & v_{7} & 1 \\
u_{8} u_{8}^{\prime} & v_{8} u_{8}^{\prime} & u_{8}^{\prime} & u_{8} v_{8}^{\prime} & v_{8} v_{8}^{\prime} & v_{8}^{\prime} & u_{8} & v_{8} & 1
\end{array}\right]\left[\begin{array}{c}
F_{11} \\
F_{12} \\
F_{13} \\
F_{21} \\
F_{22} \\
F_{23} \\
F_{31} \\
F_{32} \\
F_{33}
\end{array}\right]=0
$$

$W \mathbf{f}=0$

Today's Agenda

- Review of Epipolar Geometry
- Image Matching (self study)
- Reconstruct 3D Geometry
- 3D from 2 views
- Estimate fundamental matrix
- Recover relative pose
- Triangulation
- 3D from more views
- Structure from motion
- Bundle adjustment

Image Matching

- SIFT, Surf ...
- RANSAC

Image Matching

- SIFT

David Lowe

Computer Science Dept., University of British Columbia
Verified email at cs.ubc.ca - Homepage
Computer Vision Object Recognition

Distinctive image features from scale-invariant keypoints
International journal of computer vision 60 (2), 91-110

Image Matching

Today's Agenda

- Review of Epipolar Geometry
- Image Matching (self study)
- Reconstruct 3D Geometry
- 3D from 2 views
- Estimate fundamental matrix

- Recover relative pose
- Triangulation
- 3D from more views
- Structure from motion
- Bundle adjustment

3D from 2 Views

- The general idea

3D from 2 Views

- What information is needed?
- Corresponding image points
- Image matching techniques
- Intrinsic camera parameters
- Camera calibration
- Extrinsic camera parameters
- Recover from image points?

$$
\begin{aligned}
& p^{\prime T} F p=0, \\
& F=K^{\prime-T}\left[T_{\times}\right] R K^{-1}
\end{aligned}
$$

Today's Agenda

- Review of Epipolar Geometry
- Reconstruct 3D Geometry
- 3D from 2 views
- Estimate fundamental matrix
- Recover relative pose
- Triangulation
- 3D from more views
- Structure from motion
- Bundle adjustment
- Image Matching

Recover F from Matched Image Points

- 8-point algorithm (>= 8 point pairs)
- Sensitive to noise
- Sensitive to origin of coordinates
- Sensitive to scales

Same scale, different origins

Image taken using different focal lengths

Recover F from Matched Image Points

- 8-point algorithm (>= 8 point pairs)
- Normalized 8-point algorithm
- Idea: normalize before constructing the equations
- Translation: the centroid of the image points is at origin
- Scaling: average distance of points from origin is $\sqrt{2}$

$$
q_{i}=T p_{i} \quad q_{i}^{\prime}=T^{\prime} p_{i}^{\prime}
$$

Recover F from Matched Image Points

- 8-point algorithm (>= 8 point pairs)
- Normalized 8-point algorithm
- Idea: normalize before constructing the equations
- Construct linear system using the normalized points
- Same as in the original 8-point algorithm
- Solve using SVD
- Same as in the original 8-point algorithm

Recover F from Matched Image Points

- 8-point algorithm (>= 8 point pairs)
- Normalized 8-point algorithm
- Idea: normalize before constructing the equations
- Construct linear system using the normalized points
- Solve using SVD
- Constraint enforcement
- $\operatorname{rank}(F)=2$

Left : Uncorrected F - epipolar lines are not coincident.

Recover F from Matched Image Points

- 8-point algorithm (>= 8 point pairs)
- Normalized 8-point algorithm
- Idea: normalize before constructing the equations
- Construct linear system using the normalized points
- Solve using SVD
- Constraint enforcement
- $\operatorname{rank}(F)=2$

$$
\hat{F}=U \Sigma V^{T} \quad F=U\left[\begin{array}{ccc}
\Sigma_{1} & 0 & 0 \\
0 & \Sigma_{2} & 0 \\
0 & 0 & 0
\end{array}\right] V^{T}
$$

Recover F from Matched Image Points

- 8-point algorithm (>= 8 point pairs)
- Normalized 8-point algorithm
- Idea: normalize before constructing the equations
- Construct linear system using the normalized points
- Solve using SVD
- Constraint enforcement
- De-normalization
- Apply the inverse of the transformation

$$
q_{i}=T p_{i} \quad q_{i}^{\prime}=T^{\prime} p_{i}^{\prime}
$$

See handout on "Epipolar geometry"

$$
F=T^{\prime T} F_{q} T
$$

Today's Agenda

- Review of Epipolar Geometry
- Image Matching (self study)
- Reconstruct 3D Geometry
-3D from 2 views
- Estimate fundamental matrix
- Recover relative pose
- Triangulation
- 3D from more views
- Structure from motion
- Bundle adjustment

Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Known intrinsic parameters
- Estimation
- Calibration

$$
\begin{aligned}
& F=K^{\prime-T}\left[\mathrm{t}_{\times}\right] R K^{-1} \\
& E=\left[\mathrm{t}_{\times}\right] R={K^{\prime}}^{T} F K
\end{aligned}
$$

Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Relative pose from essential matrix

$$
E=\left[t_{\chi}\right] R
$$

Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
- SVD of E

$$
W=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad Z=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad E=U \Sigma V^{T}
$$

Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
- SVD of E
- determinant $(\mathrm{R})>0$
- Two potential values

$$
W=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad Z=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad E=U \Sigma V^{T}
$$

$$
R=\left(\operatorname{det} U W V^{T}\right) U W V^{T} \text { or }\left(\operatorname{det} U W^{T} V^{T}\right) U W^{T} V^{T}
$$

Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
- SVD of E
- determinant $(\mathrm{R})>0$
- Two potential values
- T up to a sign

$$
W=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad Z=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad E=U \Sigma V^{T}
$$

- Two potential values

$$
\begin{aligned}
& R=\left(\operatorname{det} U W V^{T}\right) U W V^{T} \text { or }\left(\operatorname{det} U W^{T} V^{T}\right) U W^{T} V^{T} \\
& t= \pm U\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]= \pm u_{3}
\end{aligned}
$$

Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
- R: two potential values
- T: two potential values

(a)

(d)

Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
- R: two potential values
- T: two potential values
- 3D points must be in front of both cameras

(a)

(d)

Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
- R: two potential values
- T: two potential values
- 3D points must be in front of both cameras
- Reconstruct 3D points
- using all potential pairs of R and t
- Count the number of points in front of cameras
- The pair giving max front points is correct

(a)

(d)

Relative Pose from Fundamental Matrix

- Essential matrix from fundamental matrix
- Relative pose from essential matrix
- R: two potential values
- T: two potential values
- 3D points must be in front of both cameras
- First camera
- P.z>0 ?
- Second camera
$-P$ in $2^{\text {nd }}$ camera's coordinate system: $Q=R$ * $P+t$
- Q. z > 0 ?

Today's Agenda

- Review of Epipolar Geometry
- Image Matching (self study)
- Reconstruct 3D Geometry
- 3D from 2 views
- Estimate fundamental matrix
- Recover relative pose
- Triangulation
- 3D from more views
- Structure from motion
- Bundle adjustment

Triangulation

- Find coordinates of 3D point from its projection into two views
- Known camera intrinsic parameters (K)
- Known relative orientation (R) and offset (T)

Triangulation

- Find coordinates of 3D point from its projection into two views
- Known camera intrinsic parameters (K)
- Known relative orientation (R) and offset (T)
- In theory, P is \cap of the two lines of sight

Triangulation

- Find coordinates of 3D point from its projection into two views
- Known camera intrinsic parameters (K)
- Known relative orientation (R) and offset (T)
- In theory, P is \cap of the two lines of sight
- Straightforward and mathematically sound
- Do not work well
- Noisy in observation
- K, R, T are not precise

Triangulation

- Find coordinates of 3D point from its projection into two views
- Known camera intrinsic parameters (K)
- Known relative orientation (R) and offset (T)
- In theory, P is \cap of the two lines of sight
- Straightforward and mathematically sound
- Do not work well
- Noisy in observation
$-K, R, T$ are not precise
- A linear method for triangulation
- A non- linear method for triangulation

A Linear Method for Triangulation

Two image points

$$
\begin{aligned}
& p=M P=(x, y, 1) \\
& p^{\prime}=M^{\prime} P=\left(x^{\prime}, y^{\prime}, 1\right)
\end{aligned}
$$

By the definition of the cross product

$$
p \times(M P)=0
$$

A Linear Method for Triangulation

Two image points

$$
\begin{aligned}
& p=M P=(x, y, 1) \\
& p^{\prime}=M^{\prime} P=\left(x^{\prime}, y^{\prime}, 1\right)
\end{aligned}
$$

By the definition of the cross product

$$
p \times(M P)=0
$$

Similar constraints can also be formulated for p^{\prime} and M^{\prime}.

$$
\begin{array}{r}
x\left(M_{3} P\right)-\left(M_{1} P\right)=0 \\
y\left(M_{3} P\right)-\left(M_{2} P\right)=0 \\
x\left(M_{2} P\right)-y\left(M_{1} P\right)=0
\end{array}
$$

A Linear Method for Triangulation

Two image points

$$
\begin{aligned}
& p=M P=(x, y, 1) \\
& p^{\prime}=M^{\prime} P=\left(x^{\prime}, y^{\prime}, 1\right)
\end{aligned}
$$

By the definition of the cross product

$$
p \times(M P)=0
$$

Similar constraints can also be formulated for p^{\prime} and M^{\prime}.

$$
A=\left[\begin{array}{c}
x M_{3}-M_{1} \\
y M_{3}-M_{2} \\
x^{\prime} M_{3}^{\prime}-M_{1}^{\prime} \\
y^{\prime} M_{3}^{\prime}-M_{2}^{\prime}
\end{array}\right]
$$

$$
\begin{array}{r}
x\left(M_{3} P\right)-\left(M_{1} P\right)=0 \\
y\left(M_{3} P\right)-\left(M_{2} P\right)=0 \\
x\left(M_{2} P\right)-y\left(M_{1} P\right)=0
\end{array}
$$

$$
A P=0
$$

A Linear Method for Triangulation

- Advantages
- Easy to solve and very efficient

$$
A P=0
$$

- Any number of corresponding image points
- Can handle multiple views
- Used as initialization to advanced methods

$$
A=\left[\begin{array}{c}
x M_{3}-M_{1} \\
y M_{3}-M_{2} \\
x^{\prime} M_{3}^{\prime}-M_{1}^{\prime} \\
y^{\prime} M_{3}^{\prime}-M_{2}^{\prime}
\end{array}\right]
$$

The Non-linear Method for Triangulation

- Minimize the reprojection error

$$
\min _{\hat{P}} \sum_{i}\left\|M \hat{P}_{i}-p_{i}\right\|^{2}+\left\|M^{\prime} \hat{P}_{i}-p_{i}^{\prime}\right\|^{2}
$$

Reprojection error

- Gauss-Newton's method
- Levenberg-Marquardt

Today's Agenda

- Review of Epipolar Geometry
- Image Matching (self study)
- Reconstruct 3D Geometry
- 3D from 2 views
- Estimate fundamental matrix
- Recover relative pose
- Triangulation
- 3D from more views
- Structure from motion
- Bundle adjustment

Structure from Motion

- Structure?
- 3D geometry of the scene/object
- Motion?
- Camera locations and orientations

Structure from Motion

- Structure
- 3D geometry of the scene/object
- Motion
- Camera locations and orientations
- Structure from Motion
- Compute the geometry from moving cameras?
- Simultaneously recovering structure and motion

Structure from Motion

Bundle Adjustment

- Minimize sum of squared re-projection errors:

$$
g(\mathbf{X}, \mathbf{R}, \mathbf{T})=\sum_{i=1}^{m} \sum_{j=1}^{n} \underbrace{w_{i j}}_{\substack{\text { indicator variable: }}} \cdot\|\underbrace{\| \mathbf{P}\left(\mathbf{x}_{i}, \mathbf{R}_{j}, \mathbf{t}_{j}\right)}_{\begin{array}{c}
\text { predicted } \\
\text { image points }
\end{array}}-\underbrace{\left[\begin{array}{c}
u_{i, j} \\
v_{i, j}
\end{array}\right]}_{\begin{array}{c}
\text { observed } \\
\text { image points }
\end{array}}\|^{2}
$$

Bundle Adjustment

- Minimize sum of squared re-projection errors:

$$
g(\mathbf{X}, \mathbf{R}, \mathbf{T})=\sum_{i=1}^{m} \sum_{j=1}^{n} w_{i j} \cdot\left\|\mathbf{P}\left(\mathbf{x}_{i}, \mathbf{R}_{j}, \mathbf{t}_{j}\right)-\left[\begin{array}{l}
u_{i, j} \\
v_{i, j}
\end{array}\right]\right\|^{2}
$$

- Minimizing this function is called bundle adjustment
- Optimized using non-linear least squares,
e.g. Levenberg-Marquardt

Bundle Adjustment

- Minimize sum of squared re-projection errors:

$$
g(\mathbf{X}, \mathbf{R}, \mathbf{T})=\sum_{i=1}^{m} \sum_{j=1}^{n} w_{i j} \cdot\left\|\mathbf{P}\left(\mathbf{x}_{i}, \mathbf{R}_{j}, \mathbf{t}_{j}\right)-\left[\begin{array}{l}
u_{i, j} \\
v_{i, j}
\end{array}\right]\right\|^{2}
$$

- Minimizing this function is called bundle adjustment
- Initialization
- From chained 2-view reconstruction
- Relative motion can be estimated from the corresponding images points
- 3D points can be estimated from the relative motion using triangulation
- Global optimization techniques when the poses and the 3D structure are initialized arbitrarily.

Bundle Adjustment

- What are the variables?
- Camera intrinsic parameters, extrinsic parameters
- Coordinates of the 3D points
- How many variables per camera?
- How many variables per point?

500 input photos
100,000 3D points
= Very large optimization problem

Incremental SfM

Structure from Motion

Failure Cases

- Repetitive structures

Next Lecture

- Multi-view Stereo
- Obtaining dense point clouds

Images + camera information

Dense 3d point cloud

