GEO1016

Lecture 4
 Two View Geometry

Liangliang Nan

Today's Agenda

- Review of Previous Lecture
- Camera calibration
- Epipolar geometry

Learning objectives

- Understand and explain the relationship between two cameras

Review of Camera Calibration

- Camera calibration
- Recovering K
- Recovering R and T

$$
\mathbf{P}^{\prime}=\mathcal{M} \mathbf{P}_{w}
$$

External (extrinsic) parameters

Review of Camera Calibration

- How many parameters to recover?
- 5 intrinsic parameters

$$
\left.\begin{array}{rl}
\mathbf{P}^{\prime} & =\mathcal{M} \mathbf{P}_{w} \\
& =\mathcal{K}[\mathcal{R} \quad \mathbf{T}
\end{array}\right] \mathbf{P}_{w}
$$

- 2 for offset
- 1 for skewness
- 6 extrinsic parameters
- 3 for rotation
- 3 for translation

$$
\mathrm{K}=\left[\begin{array}{ccc}
\boldsymbol{\alpha} & -\boldsymbol{\alpha} \cot \boldsymbol{\theta} & \mathrm{u}_{\mathrm{o}} \\
0 & \frac{\boldsymbol{\beta}}{\sin \boldsymbol{\theta}} & \mathrm{v}_{\mathrm{o}} \\
0 & 0 & 1
\end{array}\right]
$$

$$
\mathrm{R}=\left[\begin{array}{c}
\mathbf{r}_{1}^{\mathrm{T}} \\
\mathbf{r}_{2}^{\mathrm{T}} \\
\mathbf{r}_{3}^{\mathrm{T}}
\end{array}\right]
$$

$$
\mathrm{T}=\left[\begin{array}{c}
\mathrm{t}_{\mathrm{x}} \\
\mathrm{t}_{\mathrm{y}} \\
\mathrm{t}_{\mathrm{z}}
\end{array}\right]
$$

Review of Camera Calibration

- 11 parameters to recover
- Corresponding 3D-2D point pairs
- Each 3D-2D point pair -> 2 constraints
- 11 unknown -> 6 point correspondence
- Use more to handle noisy data

$$
\mathbf{p}_{i}=\left[\begin{array}{c}
u_{i} \\
v_{i}
\end{array}\right]=M \mathbf{P}_{i}=\left[\begin{array}{l}
\frac{\mathbf{m}_{1} \mathbf{P}_{i}}{\mathbf{m}_{3} \mathbf{P}_{i}} \\
\frac{\mathbf{m}_{2}}{\mathbf{P}_{3}} \mathbf{P}_{i}
\end{array}\right] \quad \begin{aligned}
& u_{i}\left(\mathbf{m}_{3} \mathbf{P}_{i}\right)-\mathbf{m}_{1} \mathbf{P}_{i}=0 \\
& v_{i}\left(\mathbf{m}_{3} \mathbf{P}_{i}\right)-\mathbf{m}_{2} \mathbf{P}_{i}=0
\end{aligned}
$$

Review of Camera Calibration

- 11 parameters to recover
- Corresponding 3D-2D point pairs
- How to solve it?
$-m=0$ always a trivial solution
$-k^{*} m$ (k is non-zero) is also a solution

$$
\left[\begin{array}{ccc}
\mathbf{P}_{1}^{T} & 0^{T} & -u_{1} \mathbf{P}_{1}^{T} \\
0^{T} & \mathbf{P}_{1}^{T} & -v_{1} \mathbf{P}_{1}^{T} \\
& \vdots & \\
\mathbf{P}_{n}^{T} & 0^{T} & -u_{n} \mathbf{P}_{n}^{T} \\
0^{T} & \mathbf{P}_{n}^{T} & -v_{n} \mathbf{P}_{n}^{T}
\end{array}\right]\left[\begin{array}{l}
\mathbf{m}_{1}^{T} \\
\mathbf{m}_{2}^{T} \\
\mathbf{m}_{3}^{T}
\end{array}\right]=P \mathbf{m}=0
$$

Review of Camera Calibration

- 11 parameters to recover
- Corresponding 3D-2D point pairs
- How to solve it?
$-m=0$ always a trivial solution
$-k^{*} m$ (k is non-zero) is also a solution
- Constrained optimization

$$
\left[\begin{array}{ccc}
\mathbf{P}_{1}^{T} & 0^{T} & -u_{1} \mathbf{P}_{1}^{T} \\
0^{T} & \mathbf{P}_{1}^{T} & -v_{1} \mathbf{P}_{1}^{T} \\
& \vdots & \\
\mathbf{P}_{n}^{T} & 0^{T} & -u_{n} \mathbf{P}_{n}^{T} \\
0^{T} & \mathbf{P}_{n}^{T} & -v_{n} \mathbf{P}_{n}^{T}
\end{array}\right]\left[\begin{array}{c}
\mathbf{m}_{1}^{T} \\
\mathbf{m}_{2}^{T} \\
\mathbf{m}_{3}^{T}
\end{array}\right]=P \mathbf{m}=0 \quad \square \begin{array}{cc}
\operatorname{minimize}
\end{array}\|P \mathbf{m}\|^{2}
$$

Review of Camera Calibration

- Solved using SVD

Last column of V gives \boldsymbol{m}

(Why? See page 593 of Hartley \& Zisserman. Multiple view geometry in computer vision)

Review of Camera Calibration

- Not always solvable
- Pis cannot lie on the same plane
- $\mathrm{P}_{\mathrm{i}} \mathrm{S}$ cannot lie on the intersection curve of two quadric surfaces

When should we re-calibrate the camera intrinsic matrix?
(a) When zooming in.
(b) When rotating the camera around its local origin.
(c) When changing the resolution of the image.
(d) When the camera is moved.

Today's Agenda

- Review of Previous Lecture
- Camera calibration
- Epipolar Geometry气

Recovering 3D Geometry

- Camera calibration from a single view
- Camera intrinsic parameters
- Camera orientation
- Camera translation

Recovering 3D Geometry

- Camera calibration from a single view
- Camera intrinsic parameters
- Camera orientation
- Camera translation
- Can structure/geometry be recovered from a single view?

Recovering 3D Geometry

- Camera calibration from a single view
- Recover 3D geometry from a single view?
- Intrinsic ambiguities of 3D -> 2D
- Two eyes help

Core Problems in Recovering 3D Geometry

- Correspondence: Given a point in one image, how can I find the corresponding point in another one?
- Camera geometry: Given corresponding points in two images, establish the relations between multi-views. Epipolar Geometry
- Scene geometry: Find coordinates of 3D point from its projection into 2 or multiple images.

Epipolar Geometry

- The geometry of stereo vision
- Geometric relations between 3D points and their images points
- Define constraints between the image points
- Derived using the pinhole camera model

Epipolar Geometry

- Baseline
- The line between the two camera centers

Epipolar Geometry

- Baseline
- The line between the two camera centers
- Epipolar plane
- The plane defined by $\mathrm{X}, \mathrm{O}_{1}$, and O_{2}

Epipolar Geometry

- Baseline
- The line between the two camera centers
- Epipolar plane
- The plane defined by $\mathrm{X}, \mathrm{O}_{1}$, and O_{2}
- Epipoles
$-\cap$ of baseline and image plane
- Projection of the other camera center

Epipolar Geometry

- Baseline
- The line between the two camera centers
- Epipolar plane
- The plane defined by $\mathrm{X}, \mathrm{O}_{1}$, and O_{2}
- Epipoles
$-\cap$ of baseline and image plane
- Projection of the other camera center
- Epipolar lines
$-\cap$ of epipolar plane with the image plane

Epipolar Geometry

- Example
- Converging image planes
- Parallel Image Planes
- Baseline intersects the image plane at infinity!
- Epipoles are at infinity!
- Epipolar lines are parallel to U axis of image plane

Epipolar Geometry

- Example
- Converging image planes
- All epipolar lines intersect at the epipole

Epipolar Geometry

- The relations between different views?
- How to use for recovering 3D geometry?
- Unknown: 3D points
- Known: image points; camera parameters

Epipolar Geometry

- Constraints between images (without knowing 3D structure)
- Epipolar lines determined by just camera centers and an image point
- The image point on the second image must be on its Epipolar line

Epipolar Constraint

- Given a point on left image, find the corresponding point on right image?
- Two views of the same object
- Known camera positions and camera matrices

Epipolar Constraint

- Potential matches for p have to lie on the corresponding epipolar line l^{\prime}.
- Potential matches for p^{\prime} have to lie on the corresponding epipolar line $/$.

Epipolar Constraint

- The relationship between the two image points
- Assume the world reference system aligned with the left camera
- The right camera has offset T and orientation R

Camera projection matrices

$$
\begin{array}{ll}
\mathrm{M}=\mathrm{K}\left[\begin{array}{ll}
\mathrm{I} & 0
\end{array}\right] & \mathrm{M}^{\prime}=\mathrm{K}\left[\begin{array}{ll}
\mathrm{R} & \mathrm{~T}
\end{array}\right] \\
\mathrm{P} \rightarrow \mathrm{MP}=\left[\begin{array}{l}
\mathrm{u} \\
\mathrm{v} \\
1
\end{array}\right] & \mathrm{P} \rightarrow \mathrm{M}^{\prime} \mathrm{P}=\left[\begin{array}{l}
\mathrm{u}^{\prime} \\
\mathrm{v}^{\prime} \\
1
\end{array}\right]
\end{array}
$$

Epipolar Constraint

- The relationship between the two image points
- Canonical cameras
- K is identity
p^{\prime} in camera 1's coordinate system

Epipolar Constraint

- The relationship between the two image points
- Canonical cameras
- K is identity
p^{\prime} in camera 1's coordinate system $\quad R^{T}\left(p^{\prime}-T\right)$
O^{\prime} in camera 1's coordinate system

Epipolar Constraint

- The relationship between the two image points
- Canonical cameras
- K is identity
p^{\prime} in camera 1's coordinate system $\quad R^{T}\left(p^{\prime}-T\right)$
O^{\prime} in camera 1 's coordinate system

$$
R^{T}\left(O^{\prime}-T\right)=-R^{T} T
$$

Normal of the Epipolar plane

Epipolar Constraint

- The relationship between the two image points
- Canonical cameras
- K is identity
p^{\prime} in camera 1's coordinate system $\quad R^{T}\left(p^{\prime}-T\right)$
O^{\prime} in camera 1 's coordinate system

$$
R^{T}\left(O^{\prime}-T\right)=-R^{T} T
$$

Normal of the Epipolar plane

$$
R^{T} T \times\left[R^{T}\left(p^{\prime}-T\right)\right]=R^{T}\left(T \times p^{\prime}\right)
$$

Op lies in the Epipolar plane

Epipolar Constraint

- The relationship between the two image points
- Canonical cameras
- K is identity
p^{\prime} in camera 1's coordinate system $\quad R^{T}\left(p^{\prime}-T\right)$
O^{\prime} in camera 1's coordinate system

$$
R^{T}\left(O^{\prime}-T\right)=-R^{T} T
$$

Normal of the Epipolar plane
$R^{T} T \times\left[R^{T}\left(p^{\prime}-T\right)\right]=R^{T}\left(T \times p^{\prime}\right)$
Op lies in the Epipolar plane

$$
\left[R^{T}\left(T \times p^{\prime}\right)\right]^{T} p=0
$$

Epipolar Constraint

- The relationship between the two image points
- Canonical cameras
- K is identity
p^{\prime} in camera 1's coordinate system $\quad R^{T}\left(p^{\prime}-T\right)$
O^{\prime} in camera 1 's coordinate system

$$
R^{T}\left(O^{\prime}-T\right)=-R^{T} T
$$

Normal of the Epipolar plane

$$
R^{T} T \times\left[R^{T}\left(p^{\prime}-T\right)\right]=R^{T}\left(T \times p^{\prime}\right)
$$

Op lies in the Epipolar plane

$$
\left[R^{T}\left(T \times p^{\prime}\right)\right]^{T} p=0 \square\left(T \times p^{\prime}\right)^{T} R p=0
$$

Epipolar Constraint

- The relationship between the two image points
- Canonical cameras
- K is identity
p^{\prime} in camera 1's coordinate system

$$
R^{T}\left(p^{\prime}-T\right)
$$

Cross product as matrix-vector multiplication

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{ccc}
0 & -\mathbf{a}_{z} & \mathbf{a}_{y} \\
\mathbf{a}_{z} & 0 & -\mathbf{a}_{x} \\
-\mathbf{a}_{y} & \mathbf{a}_{x} & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{b}_{x} \\
\mathbf{b}_{y} \\
\mathbf{b}_{z}
\end{array}\right]=\left[\mathbf{a}_{\times}\right] \mathbf{b}
$$

O^{\prime} in camera 1's coordinate system

$$
R^{T}\left(O^{\prime}-T\right)=-R^{T} T
$$

Normal of the Epipolar plane
Op lies in the Epipolar plane

$$
\begin{aligned}
& R^{T} T \times\left[R^{T}\left(p^{\prime}-T\right)\right]=R^{T}\left(T \times p^{\prime}\right) \\
& {\left[R^{T}\left(T \times p^{\prime}\right)\right]^{T} p=0 \square\left(T \times p^{\prime}\right)^{T} R p=0}
\end{aligned}
$$

Epipolar Constraint

- The relationship between the two image points
- Canonical cameras
- K is identity
p^{\prime} in camera 1's coordinate system $\quad R^{T}\left(p^{\prime}-T\right)$
O^{\prime} in camera 1's coordinate system $\quad R^{T}\left(O^{\prime}-T\right)=-R^{T} T$

Normal of the Epipolar plane

$$
R^{T} T \times\left[R^{T}\left(p^{\prime}-T\right)\right]=R^{T}\left(T \times p^{\prime}\right)
$$

Op lies in the Epipolar plane

$$
\left[R^{T}\left(T \times p^{\prime}\right)\right]^{T} p=0 \square\left(T \times p^{\prime}\right)^{T} R p=0
$$

$$
T \times p^{\prime}=\left[T_{x}\right] p^{\prime}
$$

$$
\left(\left[T_{\times}\right] p^{\prime}\right)^{T} R p=0
$$

Epipolar Constraint

- The relationship between the two image points
- Canonical cameras
- K is identity
p^{\prime} in camera 1's coordinate system $\quad R^{T}\left(p^{\prime}-T\right)$
O^{\prime} in camera 1's coordinate system $\quad R^{T}\left(O^{\prime}-T\right)=-R^{T} T$

Normal of the Epipolar plane

$$
R^{T} T \times\left[R^{T}\left(p^{\prime}-T\right)\right]=R^{T}\left(T \times p^{\prime}\right)
$$

Op lies in the Epipolar plane

$$
\left[R^{T}\left(T \times p^{\prime}\right)\right]^{T} p=0 \square\left(T \times p^{\prime}\right)^{T} R p=0
$$

$$
T \times p^{\prime}=\left[T_{x}\right] p^{\prime}
$$

$$
\left(\left[T_{\times}\right] p^{\prime}\right)^{T} R p=0
$$

$$
p^{\prime T}\left[T_{\mathrm{X}}\right] R p=0
$$

Epipolar Constraint

- Essential matrix
- Establish constraints between matching image points
- Determine relative position and orientation of two cameras

$$
\begin{gathered}
p^{\prime T}\left[T_{\mathrm{X}}\right] R p=0 \\
\quad E=\left[T_{\mathrm{X}}\right] R \\
p^{\prime T} E p=0
\end{gathered}
$$

Essential matrix

Epipolar Constraint

- How to generalize Essential matrix?
- Canonical cameras
- K is identity

$$
E=\left[T_{\mathrm{X}}\right] R \quad p^{\prime T} E p=0
$$

$$
\left.\begin{array}{lll}
M=\left[\begin{array}{ll}
I & 0
\end{array}\right] & K\left[\begin{array}{cc}
\left.1 \begin{array}{cc}
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
\end{array}\right] & M^{\prime}=\left[\begin{array}{ll}
R & T
\end{array}\right] \\
\mathrm{M}=\mathrm{K}\left[\begin{array}{ll}
\mathrm{I} & 0
\end{array}\right] & \text { Kis unknown } & \mathrm{M}^{\prime}=\mathrm{K}[\mathrm{R} \\
\mathrm{T}
\end{array}\right] .
$$

Epipolar Constraint

$$
\begin{aligned}
& M=\left[\begin{array}{ll}
I & 0
\end{array}\right] \\
& \mathrm{K}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned} \quad M^{\prime}=\left[\begin{array}{ll}
R & T
\end{array}\right] \quad \Longleftrightarrow \quad p^{\prime T} E p=0, E=\left[\begin{array}{ll}
T_{\mathrm{X}}
\end{array}\right] R .
$$

Epipolar Constraint

- Fundamental matrix

$$
\begin{aligned}
& M=\left[\begin{array}{ll}
I & 0
\end{array}\right] \quad k-\left[\begin{array}{cc}
{\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]}
\end{array} \quad M^{\prime}=\left[\begin{array}{ll}
R & T
\end{array}\right] \quad \Rightarrow p^{\prime T} E p=0, E=\left[T_{\mathrm{X}}\right] R\right. \\
& \mathrm{M}=\mathrm{K}\left[\begin{array}{ll}
\mathrm{I} & 0
\end{array}\right] \text { к is unknown } \quad \mathrm{M}^{\prime}=\mathrm{K}\left[\begin{array}{ll}
\mathrm{R} & \mathrm{~T}
\end{array}\right] \Rightarrow p^{\prime T} F p=0, F=K^{\prime-T}\left[T_{\times}\right] R K^{-1}
\end{aligned}
$$

Hint for derivation

$$
\begin{aligned}
& \left\{\begin{array}{l}
p \rightarrow K^{-1} p \\
p^{\prime} \rightarrow K^{\prime-1} p^{\prime}
\end{array}\right. \\
& p^{\prime T} \frac{K^{\prime-T}\left[T_{\times}\right] R K^{-1}}{F} p=0
\end{aligned}
$$

Epipolar Constraint

- Fundamental matrix F is a matrix product of camera parameters
- Encode Epipolar geometry of 2 views \& camera parameters
$p^{\prime T} F p=0, \quad F=K^{\prime-T}\left[T_{\times}\right] R K^{-1}$

Epipolar Constraint

- Fundamental matrix F is a matrix product of camera parameters
- Encode Epipolar geometry of 2 views \& camera parameters
- How is the fundamental matrix useful?
- A 3D point's image in one image -> the Epipolar line in the other image
- No need 3D point location
- No need camera extrinsic parameters
- No need camera intrinsic parameters
$p^{\prime T} F p=0, \quad F=K^{\prime-T}\left[T_{\times}\right] R K^{-1}$.

Epipolar Constraint

- Fundamental matrix F is a matrix product of camera parameters
- Encode Epipolar geometry of 2 views \& camera parameters
- How is the fundamental matrix useful?
- A 3D point's image in one image -> the image point in the other image
- No need 3D point location
- No need camera extrinsic parameters
- No need camera intrinsic parameters
- Powerful tool in:
-3D reconstruction
- Multi-view object/scene matching

Epipolar Constraint

- Fundamental matrix F is a matrix product of camera parameters
- Encode Epipolar geometry of 2 views \& camera parameters
- How is the fundamental matrix useful?
- How to recover F?
- From image correspnndences

$$
p^{\prime T} F p=0, \quad F=K^{\prime-T}\left[T_{\times}\right] R K^{-1}
$$

Epipolar Constraint

- Fundamental matrix F is a matrix product of camera parameters
- Encode Epipolar geometry of 2 views \& camera parameters
- How is the fundamental matrix useful?
- How to recover F?
- From image correspondences
$-F$ has 7 degrees of freedom
- How many point pairs needed?

Recovering Fundamental Matrix

Assume a correspondence

$$
\left\{\begin{array}{l}
p_{i}=\left(u_{i}, v_{i}, 1\right) \\
p_{i}^{\prime}=\left(u_{i}^{\prime}, v_{i}^{\prime}, 1\right)
\end{array} \quad \Perp \quad p^{\prime T} F p=0,\right.
$$

Recovering Fundamental Matrix

- 8-point algorithm

Recovering Fundamental Matrix

- 8-point algorithm
- Solved using SVD

$$
W \mathbf{f}=0
$$

$$
\left[\begin{array}{lllllllll}
u_{1} u_{1}^{\prime} & v_{1} u_{1}^{\prime} & u_{1}^{\prime} & u_{1} v_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1}^{\prime} & u_{1} & v_{1} & 1 \\
u_{2} u_{2}^{\prime} & v_{2} u_{2}^{\prime} & u_{2}^{\prime} & u_{2} v_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2}^{\prime} & u_{2} & v_{2} & 1 \\
u_{3} u_{3}^{\prime} & v_{3} u_{3}^{\prime} & u_{3}^{\prime} & u_{3} v_{3}^{\prime} & v_{3} v_{3}^{\prime} & v_{3} & u_{3} & v_{3} & 1 \\
u_{4} u_{4}^{\prime} & v_{4} u_{4}^{\prime} & u_{4}^{\prime} & u_{4}^{v_{4}^{\prime}} & v_{4}^{v_{4}^{\prime}} v_{4}^{\prime} & u_{4} & v_{4} & 1 \\
u_{5} u_{5}^{\prime} & v_{5}^{u_{5}^{\prime}} & u_{5}^{\prime} & u_{5}^{v_{5}^{\prime}} & v_{5} v_{5}^{\prime} & v_{5}^{\prime} & u_{5} & v_{5} & 1 \\
u_{6} u_{6}^{\prime} & v_{6} u_{6}^{\prime} & u_{6}^{\prime} & u_{6} v_{6}^{\prime} & v_{6} v_{6}^{\prime} & v_{6}^{\prime} & u_{6} & v_{6} & 1 \\
u_{7} u_{7}^{\prime} & v_{7} u_{7}^{\prime} & u_{7}^{\prime} & u_{7} v_{7}^{\prime} & v_{7} v_{7}^{\prime} & v_{7}^{\prime} & u_{7} & v_{7} & 1 \\
u_{8} u_{8}^{\prime} & u_{8}^{\prime} & u_{8} v_{8}^{\prime} & v_{8} v_{8}^{\prime} & v_{8}^{\prime} & u_{8} & v_{8} & 1
\end{array}\right]\left[\begin{array}{l}
F_{11} \\
F_{12} \\
F_{13} \\
F_{21} \\
F_{22} \\
F_{23} \\
F_{23} \\
F_{31} \\
F_{32} \\
F_{33}
\end{array}\right]=0
$$

Recovering Fundamental Matrix

- 8-point algorithm
- Solved using SVD

Just the idea on how to recover F .

$$
W \mathbf{f}=0
$$

Advanced techniques exist to improve robustness. Details in the lecture note 3.

Normalized 8-point algorithm

$$
\left[\begin{array}{lllllllll}
u_{1} u_{1}^{\prime} & v_{1} u_{1}^{\prime} & u_{1}^{\prime} & u_{1} v_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1}^{\prime} & u_{1} & v_{1} & 1 \\
u_{2} u_{2}^{\prime} & v_{2} u_{2}^{\prime} & u_{2}^{\prime} & u_{2} v_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2}^{\prime} & u_{2} & v_{2} & 1 \\
u_{3} u_{3}^{\prime} & v_{3} u_{3}^{\prime} & u_{3}^{\prime} & u_{3} v_{3}^{\prime} & v_{3} v_{3}^{\prime} & v_{3} & u_{3} & v_{3} & 1 \\
u_{4} u_{4}^{\prime} & v_{4} u_{4}^{\prime} & u_{4}^{\prime} & u_{4}^{v_{4}^{\prime}} & v_{4}^{v_{4}^{\prime}} & v_{4}^{\prime} & u_{4} & v_{4} & 1 \\
u_{5} u_{5}^{\prime} & v_{5}^{u_{5}^{\prime}} & u_{5}^{\prime} & u_{5}^{v_{5}^{\prime}} & v_{5} v_{5}^{\prime} & v_{5}^{\prime} & u_{5} & v_{5} & 1 \\
u_{6} u_{6}^{\prime} & v_{6} u_{6}^{\prime} & u_{6}^{\prime} & u_{6} v_{6}^{\prime} & v_{6} v_{6}^{\prime} & v_{6}^{\prime} & u_{6} & v_{6} & 1 \\
u_{7} u_{7}^{\prime} & v_{7} u_{7}^{\prime} & u_{7}^{\prime} & u_{7} v_{7}^{\prime} & v_{7} v_{7}^{\prime} & v_{7}^{\prime} & u_{7} & v_{7} & 1 \\
u_{8} u_{8}^{\prime} & u_{8}^{\prime} & u_{8} v_{8}^{\prime} & v_{8} v_{8}^{\prime} & v_{8}^{\prime} & u_{8} & v_{8} & 1
\end{array}\right]\left[\begin{array}{l}
F_{11} \\
F_{12} \\
F_{13} \\
F_{21} \\
F_{22} \\
F_{22} \\
F_{23} \\
F_{31} \\
F_{32} \\
F_{33}
\end{array}\right]=0
$$

Next Lecture

- Image Matching
- Find corresponding image points
- Triangulation
- Structure from Motion
- Go beyond two views
- Simultaneously determine 3D structure \& camera parameters

