GEO1016

Lecture 3
 Camera Calibration

Liangliang Nan

Today's Agenda

- Review of Lecture 2: Camera models
- Camera calibration
- General idea
- Calibration
- Find correspondences
- Solve for projection matrix
- Extract the parameters
- Assignment 1: Camera calibration

Images

A color image: R, G, B channels

$$
f(x, y)=\left[\begin{array}{l}
r(x, y) \\
g(x, y) \\
b(x, y)
\end{array}\right]
$$

"vector-valued" function

Pinhole camera model

Pinhole camera model

- 3D point $\boldsymbol{P}=(X, Y, Z)^{\top}$ projected to 2 D image $\boldsymbol{p}=(x, y)^{\top}$

$$
x=f \frac{X}{Z}, \quad y=f \frac{Y}{Z}
$$

Perspective projection model

- Camera sensor's pixels not exactly square $x=k f \frac{X}{Z}, \quad y=l f \frac{Y}{Z}$

Perspective projection model

- Camera sensor's pixels not exactly square $x=k f \frac{X}{Z}, \quad y=l f \frac{Y}{Z}$
- Image center or principal point c may not be at origin

$$
x=f_{x} \frac{X}{Z}+c_{x}, \quad y=f_{y} \frac{Y}{Z}+c_{y}
$$

Perspective projection model

- Camera sensor's pixels not exactly square $x=k f \frac{X}{Z}, \quad y=l f \frac{Y}{Z}$
- Image center or principal point c may not be at origin

$$
x=f_{x} \frac{X}{Z}+c_{x}, \quad y=f_{y} \frac{Y}{Z}+c_{y}
$$

- Distortion (image frame may not be exactly rectangular)

$$
x=f_{x} \frac{X}{Z}-f_{x} \cot \theta \frac{Y}{Z}+c_{x}, \quad y=\frac{f_{y}}{\sin \theta} \frac{Y}{Z}+c_{y}
$$

Perspective projection model

$$
x=f_{x} \frac{X}{Z}-f_{x} \cot \theta \frac{Y}{Z}+c_{x}, \quad y=\frac{f_{y}}{\sin \theta} \frac{Y}{Z}+c_{y}
$$

- Intrinsic parameters
- Intrinsic parameter matrix

$$
\tilde{\mathbf{x}}=\frac{1}{Z} \mathbf{K X}, \quad \mathbf{K}=\left[\begin{array}{ccc}
f_{x} & -f_{x} \cot \theta & c_{x} \\
0 & \frac{f_{y}}{\sin \theta} & c_{y} \\
0 & 0 & 1
\end{array}\right] \quad \square \mathbf{K}=\left[\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Perspective projection model

- Camera motion
- Camera coordinate system is not aligned with world coordinate system
- Camera can move and rotate

$$
{ }^{C} \mathbf{X}={ }_{W}^{C} \mathbf{R}{ }^{W} \mathbf{X}+{ }_{W}^{C} \mathbf{T}
$$

Intrinsic/Extrinsic Parameters

- The complete transformation

$$
\mathbf{P}^{\prime}=\mathcal{M} \mathbf{P}_{w}
$$

$$
=\mathcal{K}\left[\begin{array}{ll}
\mathcal{R} & \mathbf{T}
\end{array}\right] \mathbf{P}_{w}
$$

Internal (intrinsic) parameters
External (extrinsic) parameters

Today's Agenda

- Review of Lecture 2: Camera models
- Camera calibration
- General idea
- Camera calibration
- Find correspondences
- Solve for projection matrix
- Extract the parameters
- Assignment 1: Camera calibration

General Idea

- Precise 3D -> 2D projection
- Given 3D scene, camera location and orientation
- Intrinsic parameters unknow

$$
\begin{aligned}
\mathbf{P}^{\prime} & =\mathcal{M} \mathbf{P}_{w} \\
& =\mathcal{K}\left[\begin{array}{ll}
\mathcal{R} & \mathbf{T}
\end{array}\right] \mathbf{P}_{w}
\end{aligned}
$$

General Idea

- Precise 3D -> 2D projection
- Given 3D scene, camera location and orientation
- Intrinsic parameters unknow

General Idea

- Precise 3D -> 2D projection
- Given 3D scene, camera location and orientation
- Recover intrinsic parameters
- Camera calibration
- Recovering K
- Recovering R and T

$$
\mathbf{P}^{\prime}=\mathcal{M} \mathbf{P}_{w}
$$

General Idea

- How many parameters to recover?

$$
\mathbf{P}^{\prime}=\mathcal{M} \mathbf{P}_{w}
$$

$$
=\mathbb{R} \quad \mathbf{T}
$$

Internal (intrinsic) parameters
External (extrinsic) parameters

General Idea

- How many parameters to recover?

$$
\begin{aligned}
\mathbf{P}^{\prime} & =\mathcal{M} \mathbf{P}_{w} \\
& =\mathcal{K}\left[\begin{array}{ll}
\mathcal{R} & \mathbf{T}
\end{array}\right] \mathbf{P}_{w}
\end{aligned}
$$

Internal (intrinsic) parameters
$\mathbf{K}=\left[\begin{array}{ccc}f_{x} & s & c_{x} \\ 0 & f_{y} & c_{y} \\ 0 & 0 & 1\end{array}\right]$

General Idea

- How many parameters to recover?

$$
\begin{gathered}
\mathbf{P}^{\prime}=\mathcal{M} \mathbf{P}_{w} \\
=\mathcal{K}\left[\begin{array}{ll}
\mathcal{R} \quad \mathbf{T}
\end{array} \mathbf{P}_{w}\right. \\
\mathrm{R}=\left[\begin{array}{l}
\mathbf{r}_{1}^{\mathrm{T}} \\
\mathbf{r}_{2}^{\mathrm{T}} \\
\mathbf{r}_{3}^{\mathrm{T}}
\end{array}\right] \quad \mathrm{T}=\left[\begin{array}{c}
\mathrm{t}_{\mathrm{x}} \\
\mathrm{t}_{\mathrm{y}} \\
\mathrm{t}_{\mathrm{t}}
\end{array}\right]
\end{gathered}
$$

General Idea

- How many parameters to recover?
- 5 intrinsic parameters
- 2 for focal length
- 2 for offset (image center)
- 1 for skewness
- 6 extrinsic parameters
- 3 for rotation
- 3 for translation

$$
\mathbf{K}=\left[\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right] \quad \mathrm{R}=\left[\begin{array}{c}
\mathbf{r}_{1}^{\mathrm{T}} \\
\mathbf{r}_{2}^{\mathrm{T}} \\
\mathbf{r}_{3}^{\mathrm{T}}
\end{array}\right] \quad \mathrm{T}=\left[\begin{array}{c}
\mathrm{t}_{\mathrm{x}} \\
\mathrm{t}_{\mathrm{y}} \\
\mathrm{t}_{\mathrm{z}}
\end{array}\right]
$$

General Idea

- How many parameters to recover?
- What information to use?

General Idea

- How many parameters to recover?
- What information to use?

- Corresponding 3D-2D point pairs

$$
\begin{aligned}
\mathbf{P}^{\prime} & =\mathcal{M} \mathbf{P}_{w} \\
& =\mathcal{K}\left[\begin{array}{ll}
\mathcal{R} & \mathbf{T}
\end{array}\right] \mathbf{P}_{w}
\end{aligned}
$$

General Idea

- How many parameters to recover?
- What information to use?
- Corresponding 3D-2D point pairs
- How many pairs do we need?

11 unknow parameters $\quad \mathbf{K}=\left[\begin{array}{ccc}f_{x} & s & c_{x} \\ 0 & f_{y} & c_{y} \\ 0 & 0 & 1\end{array}\right] \quad \mathrm{R}=\left[\begin{array}{l}\mathbf{r}_{1}^{\mathrm{T}} \\ \mathbf{r}_{2}^{\mathrm{T}} \\ \mathbf{r}_{3}^{\mathrm{T}}\end{array}\right] \quad \mathrm{T}=\left[\begin{array}{c}\mathrm{t}_{\mathbf{x}} \\ \mathrm{t}_{\mathrm{y}} \\ \mathrm{t}_{\mathrm{z}}\end{array}\right]$

General Idea

- How many parameters to recover?
- What information to use?
- Corresponding 3D-2D point pairs
- How many pairs do we need?

$$
p_{i}=\left[\begin{array}{l}
u_{i} \\
v_{i}
\end{array}\right]=M P_{i}=\left[\begin{array}{l}
\frac{m_{1} P_{i}}{m_{3} P_{i}} \\
\frac{m_{2} P_{i}}{m_{3} P_{i}}
\end{array}\right]
$$

General Idea

- How many parameters to recover?
- What information to use?
- Corresponding 3D-2D point pairs
- How many pairs do we need?
- Each 3D-2D point pair -> 2 constraints
- 11 unknown -> 6 point correspondence

$$
p_{i}=\left[\begin{array}{l}
u_{i} \\
v_{i}
\end{array}\right]=M P_{i}=\left[\begin{array}{l}
\frac{m_{1} P_{i}}{m_{3} P_{i}} \\
\frac{m_{2} P_{i}}{m_{3} P_{i}}
\end{array}\right]
$$

- Use more to handle noisy data

$$
\begin{aligned}
& u_{i}\left(m_{3} P_{i}\right)-m_{1} P_{i}=0 \\
& v_{i}\left(m_{3} P_{i}\right)-m_{2} P_{i}=0
\end{aligned}
$$

General Idea

- How many parameters to recover?
- What information to use?
- Corresponding 3D-2D point pairs

$$
\begin{gathered}
u_{1}\left(m_{3} P_{1}\right)-m_{1} P_{1}=0 \\
v_{1}\left(m_{3} P_{1}\right)-m_{2} P_{1}=0 \\
\vdots \\
u_{n}\left(m_{3} P_{n}\right)-m_{1} P_{n}=0 \\
v_{n}\left(m_{3} P_{n}\right)-m_{2} P_{n}=0
\end{gathered} \quad \square\left[\begin{array}{ccc}
\mathbf{P}_{1}^{T} & 0^{T} & -u_{1} \mathbf{P}_{1}^{T} \\
0^{T} & \mathbf{P}_{1}^{T} & -v_{1} \mathbf{P}_{1}^{T} \\
& \vdots & \\
\mathbf{P}_{n}^{T} & 0^{T} & -u_{n} \mathbf{P}_{n}^{T} \\
0^{T} & \mathbf{P}_{n}^{T} & -v_{n} \mathbf{P}_{n}^{T}
\end{array}\right]\left[\begin{array}{l}
\mathbf{m}_{1}^{T} \\
\mathbf{m}_{2}^{T} \\
\mathbf{m}_{3}^{T}
\end{array}\right]=P \mathbf{m}=0
$$

General Idea

- How many parameters to recover?
- What information to use?
- How to solve it?

$$
\left[\begin{array}{ccc}
\mathbf{P}_{1}^{T} & 0^{T} & -u_{1} \mathbf{P}_{1}^{T} \\
0^{T} & \mathbf{P}_{1}^{T} & -v_{1} \mathbf{P}_{1}^{T} \\
& \vdots & \\
\mathbf{P}_{n}^{T} & 0^{T} & -u_{n} \mathbf{P}_{n}^{T} \\
0^{T} & \mathbf{P}_{n}^{T} & -v_{n} \mathbf{P}_{n}^{T}
\end{array}\right]\left[\begin{array}{l}
\mathbf{m}_{1}^{T} \\
\mathbf{m}_{2}^{T} \\
\mathbf{m}_{3}^{T}
\end{array}\right]=P \mathbf{m}=0
$$

General Idea

- How many parameters to recover?
- What information to use?
- How to solve it?
$-m=0$ always a trivial solution
$-k^{*} m$ (k is non-zero) is also a solution

$$
\left[\begin{array}{ccc}
\mathbf{P}_{1}^{T} & 0^{T} & -u_{1} \mathbf{P}_{1}^{T} \\
0^{T} & \mathbf{P}_{1}^{T} & -v_{1} \mathbf{P}_{1}^{T} \\
& \vdots & \\
\mathbf{P}_{n}^{T} & 0^{T} & -u_{n} \mathbf{P}_{n}^{T} \\
0^{T} & \mathbf{P}_{n}^{T} & -v_{n} \mathbf{P}_{n}^{T}
\end{array}\right]\left[\begin{array}{l}
\mathbf{m}_{1}^{T} \\
\mathbf{m}_{2}^{T} \\
\mathbf{m}_{3}^{T}
\end{array}\right]=P \mathbf{m}=0
$$

General Idea

- How many parameters to recover?
- What information to use?
- How to solve it?
$-m=0$ always a trivial solution
$-k^{*} m$ (k is non-zero) is also a solution
- Constrained optimization

$$
\left[\begin{array}{ccc}
\mathbf{P}_{1}^{T} & 0^{T} & -u_{1} \mathbf{P}_{1}^{T} \\
0^{T} & \mathbf{P}_{1}^{T} & -v_{1} \mathbf{P}_{1}^{T} \\
& \vdots & \quad \\
\mathbf{P}_{n}^{T} & 0^{T} & -u_{n} \mathbf{P}_{n}^{T} \\
0^{T} & \mathbf{P}_{n}^{T} & -v_{n} \mathbf{P}_{n}^{n}
\end{array}\right]\left[\begin{array}{l}
\text { minimize }
\end{array}\|P \mathbf{m}\|^{2}\right.
$$

Camera calibration

- How to find the corresponding point?
$->=6$ 3D-2D point pairs
- 3D points with known 3D coordinates
- Corresponding image points with known 2D coordinates

Camera calibration

- How to find the corresponding point?
$->=6$ 3D-2D point pairs
- 3D points with known 3D coordinates
- Corresponding image points with known 2D coordinates

Corresponding points

- Calibration rig - a special apparatus
$-P_{1}, \ldots P_{n}$ with known positions in $\left[O_{w}, i_{w}, j_{w}, k_{w}\right]$

Corresponding points

- Calibration rig - a special apparatus
$-P_{1}, \ldots P_{n}$ with known positions in $\left[O_{w}, i_{w}, j_{w}, k_{w}\right]$
$-p_{1}, \ldots p_{n}$ known positions in the image

Corresponding points

- Calibration rig - a special apparatus
$-P_{1}, \ldots P_{n}$ with known positions in $\left[O_{w}, i_{w}, j_{w}, k_{w}\right]$
$-p_{1}, \ldots p_{n}$ known positions in the image
- >= 6 correspondences

Corresponding points

- Calibration rig - a special apparatus
$-P_{1}, \ldots P_{n}$ with known positions in $\left[O_{w}, i_{w}, j_{w}, k_{w}\right]$
$-p_{1}, \ldots p_{n}$ known positions in the image
- >= 6 correspondences
- Goal
- Intrinsic parameters
- Extrinsic parameters

Calibration

- The equations

$$
\begin{aligned}
\mathbf{P}^{\prime} & =\mathcal{M} \mathbf{P}_{w} \\
& =\mathcal{K}\left[\begin{array}{ll}
\mathcal{R} & \mathbf{T}
\end{array}\right] \mathbf{P}_{w}
\end{aligned}
$$

$$
p_{i}=\left[\begin{array}{l}
u_{i} \\
v_{i}
\end{array}\right]=M P_{i}=\left[\begin{array}{c}
\frac{m_{1} P_{i}}{m_{3} P_{i}} \\
\frac{m_{2} P_{i}}{m_{3} P_{i}}
\end{array}\right]
$$

$$
\begin{aligned}
u_{i}\left(m_{3} P_{i}\right)-m_{1} P_{i} & =0 \\
v_{i}\left(m_{3} P_{i}\right)-m_{2} P_{i} & =0
\end{aligned}
$$

Calibration

- The equations

$$
\begin{gathered}
{\left[\begin{array}{l}
u_{i} \\
v_{i}
\end{array}\right]=\left[\begin{array}{l}
\frac{m_{1} P_{i}}{m_{3} P_{i}} \\
\frac{m_{2} P_{i}}{m_{3} P_{i}}
\end{array}\right]} \\
\mathrm{u}_{\mathrm{i}}=\frac{\mathbf{m}_{1} \mathrm{P}_{\mathrm{i}}}{\mathbf{m}_{3} \mathrm{P}_{\mathrm{i}}} \rightarrow \mathrm{u}_{\mathrm{i}}\left(\mathbf{m}_{3} \mathrm{P}_{\mathrm{i}}\right)=\mathbf{m}_{1} \mathrm{P}_{\mathrm{i}} \rightarrow \mathrm{u}_{i}\left(\mathbf{m}_{3} \mathrm{P}_{i}\right)-\mathbf{m}_{1} \mathrm{P}_{i}=0 \\
\mathrm{v}_{\mathrm{i}}=\frac{\mathbf{m}_{2} \mathrm{P}_{\mathrm{i}}}{\mathbf{m}_{3} \mathrm{P}_{\mathrm{i}}} \rightarrow \mathrm{v}_{\mathrm{i}}\left(\mathbf{m}_{3} \mathrm{P}_{\mathrm{i}}\right)=\mathbf{m}_{2} \mathrm{P}_{\mathrm{i}} \rightarrow \mathrm{v}_{i}\left(\mathbf{m}_{3} \mathrm{P}_{i}\right)-\mathbf{m}_{2} \mathrm{P}_{i}=0
\end{gathered}
$$

Calibration

- The equations

Write it using matrix-vector product

$$
\left\{\begin{array}{l}
u_{1}\left(\mathbf{m}_{3} P_{1}\right)-\mathbf{m}_{1} P_{1}=0 \\
v_{1}\left(\mathbf{m}_{3} P_{1}\right)-\mathbf{m}_{2} P_{1}=0
\end{array}\right.
$$

$$
u_{i}\left(\mathbf{m}_{3} P_{i}\right)-\mathbf{m}_{1} P_{i}=0
$$

$$
v_{i}\left(\mathbf{m}_{3} P_{i}\right)-\mathbf{m}_{2} P_{i}=0
$$

$$
u_{n}\left(\mathbf{m}_{3} P_{n}\right)-\mathbf{m}_{1} P_{n}=0
$$

$$
v_{n}\left(\mathbf{m}_{3} P_{n}\right)-\mathbf{m}_{2} P_{n}=0
$$

Calibration

- The equations
$\left\{\begin{array}{cc}-u_{1}\left(\mathbf{m}_{3} P_{1}\right)+\mathbf{m}_{1} P_{1}=0 & \\ -v_{1}\left(\mathbf{m}_{3} P_{1}\right)+\mathbf{m}_{2} P_{1}=0 \\ \vdots & \\ -u_{n}\left(\mathbf{m}_{3} P_{n}\right)+\mathbf{m}_{1} P_{n}=0 & \text { Homogenous linear system } \\ -v_{n}\left(\mathbf{m}_{3} P_{n}\right)+\mathbf{m}_{2} P_{n}=0 & \end{array}\right.$

$$
\mathcal{P} \stackrel{\text { def }}{=}\left(\begin{array}{ccc}
\boldsymbol{P}_{1}^{T} & \mathbf{0}^{T} & -u \boldsymbol{P}_{1}^{T} \\
\mathbf{0}^{T} & \boldsymbol{P}_{1}^{T} & -v_{1} \boldsymbol{P}_{1}^{T} \\
\ldots & \ldots & \ldots \\
\boldsymbol{P}_{n}^{T} & \mathbf{0}^{T} & -u_{n} \boldsymbol{P}_{n}^{T} \\
\mathbf{0}^{T} & \boldsymbol{P}_{n}^{T} & -v_{n} \boldsymbol{P}_{n}^{T}
\end{array}\right)_{2 \mathrm{n} \times 12}
$$

$$
\boldsymbol{m}=\left(\begin{array}{c}
\mathbf{m}_{1}^{\mathrm{T}} \\
\mathbf{m}_{2}^{\mathrm{T}} \\
\mathbf{m}_{3}^{\mathrm{T}}
\end{array}\right)_{12 \times 1}^{4 \times 1}
$$

Calibration

- The equations
-M : number of equations $=2 \mathrm{n}$
-N : number of unknown $=11$

Rectangular system ($\mathrm{M}>\mathrm{N}$)

- 0 is always a solution
- To find non-zero solution Minimize $|\mathbf{P m}|^{2}$ under the constraint $|m|^{2}=1$
- Solve using SVD
- Singular Value Decomposition
- Generalization of the eigen-decomposition of a square matrix to any m by n matrix
$A=U \Sigma V^{-1} \quad \Sigma=\left[\begin{array}{llll}\sigma_{1} & & & \\ & \sigma_{2} & & \\ & & & \\ & & & \sigma_{N}\end{array}\right]$

Calibration

Last column of V gives \boldsymbol{m}

(Why? See page 593 of Hartley \& Zisserman. Multiple View Geometry in Computer Vision)

Calibration

Objective

Given a matrix A with at least as many rows as columns, find \mathbf{x} that minimizes $\|\mathbf{A x}\|$ subject to
$\|x\|=1$.
Solution
x is the last column of V, where $A=U D V^{\top}$ is the SVD of A.

Algorithm A5.4. Least-squares solution of a homogeneous system of linear equations.

Page 593 of Hartley \& Zisserman. Multiple View Geometry in Computer Vision

Calibration

$$
\begin{aligned}
\mathbf{P}^{\prime} & =\mathcal{M} \mathbf{P}_{w} \\
& =\mathcal{K}\left[\begin{array}{ll}
\mathcal{R} & \mathbf{T}
\end{array}\right] \mathbf{P}_{w}
\end{aligned}
$$

Intrinsic

$$
\begin{aligned}
& \rho=\frac{ \pm 1}{\left|\mathbf{a}_{3}\right|} \\
& u_{0}=\rho^{2} \mathbf{a}_{1}^{\top} \mathbf{a}_{3} \\
& v_{0}=\rho^{2} \mathbf{a}_{2}^{\top} \mathbf{a}_{3} \\
& \cos \theta=-\frac{\left(\mathbf{a}_{1} \times \mathbf{a}_{3}\right)^{\top}\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)}{\left|\mathbf{a}_{1} \times \mathbf{a}_{3}\right| \cdot\left|\mathbf{a}_{2} \times \mathbf{a}_{3}\right|}
\end{aligned}
$$

Calibration

$$
\begin{aligned}
\mathbf{P}^{\prime} & =\mathcal{M} \mathbf{P}_{w} \\
& =\mathcal{K}\left[\begin{array}{ll}
\mathcal{R} & \mathbf{T}
\end{array}\right] \mathbf{P}_{w}
\end{aligned}
$$

Calibration

$$
\begin{aligned}
\mathbf{P}^{\prime} & =\mathcal{M} \mathbf{P}_{w} \\
& =\mathcal{K}\left[\begin{array}{ll}
\mathcal{R} & \mathbf{T}
\end{array}\right] \mathbf{P}_{w}
\end{aligned}
$$

$$
\begin{aligned}
& \rho \mathcal{M}=(\begin{array}{c}
\alpha \mathbf{r}_{1}^{\top}-\alpha \cos \theta \mathbf{r}_{2}^{\top}+u_{0} \mathbf{r}_{3}^{\top} \\
\frac{\beta}{\sin \theta} \mathbf{r}_{2}^{\top}+v_{0} \mathbf{r}_{3}^{\top} \\
\mathbf{r}_{3}^{\top}
\end{array} \overbrace{1}^{\alpha t_{x}-\alpha \cot \theta t_{y}+u_{0} t_{z}} \begin{array}{c}
\frac{\beta}{\sin \theta} t_{y}+v_{0} t_{z} \\
t_{z}
\end{array})=\mathcal{K}\left[\begin{array}{ll}
\mathcal{R} & \mathbf{T}
\end{array}\right] \\
& \mathcal{A} \\
& \mathbf{b} \quad \mathcal{K}=\left[\begin{array}{ccc}
\alpha & -\alpha \cot \theta & u_{0} \\
0 & \frac{\leftrightarrow}{\sin \theta} & v_{0} \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\mathcal{A}=\left[\begin{array}{c}
{\left[\begin{array}{c}
\mathbf{a}_{1}^{\top} \\
\mathbf{a}_{2}^{\top} \\
\mathbf{a}_{3}^{\top}
\end{array}\right]} \\
\\
\text { Estimated values }
\end{array} \quad\right] \quad \begin{aligned}
& \mathbf{r}_{1}=\frac{\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)}{\left|\mathbf{a}_{2} \times \mathbf{a}_{3}\right|} \\
& \mathbf{r}_{2}=\mathbf{r}_{3} \times \mathbf{r}_{1} \\
& \mathbf{T}=\boldsymbol{\rho} \mathbf{a}_{3} \\
& \hline 1
\end{aligned}
$$

Calibration

- Always solvable?

Calibration

- Always solvable?
- Pis cannot lie on the same plane
- $\mathrm{P}_{\mathrm{i}} \mathrm{S}$ cannot lie on the intersection curve of two quadric surfaces

Calibration

- Always solvable?
- Pis cannot lie on the same plane
- $\mathrm{P}_{\mathrm{i}} \mathrm{S}$ cannot lie on the intersection curve of two quadric surfaces

Assignment 1: Camera calibration

Two View Geometry

