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Abstract

We show that surface reconstruction from oriented points can be cast as a spatial Poisson problem. This Poisson
formulation considers all the points at once, without resorting to heuristic spatial partitioning or blending, and
is therefore highly resilient to data noise. Unlike radial basis function schemes, our Poisson approach allows a
hierarchy of locally supported basis functions, and therefore the solution reduces to a well conditioned sparse
linear system. We describe a spatially adaptive multiscale algorithm whose time and space complexities are pro-
portional to the size of the reconstructed model. Experimenting with publicly available scan data, we demonstrate

reconstruction of surfaces with greater detail than previously achievable.

1. Introduction

Reconstructing 3D surfaces from point samples is a well
studied problem in computer graphics. It allows fitting of
scanned data, filling of surface holes, and remeshing of ex-
isting models. We provide a novel approach that expresses
surface reconstruction as the solution to a Poisson equation.

Like much previous work (Section 2), we approach the
problem of surface reconstruction using an implicit function
framework. Specifically, like [Kaz05] we compute a 3D in-
dicator function ) (defined as 1 at points inside the model,
and O at points outside), and then obtain the reconstructed
surface by extracting an appropriate isosurface.

Our key insight is that there is an integral relationship be-
tween oriented points sampled from the surface of a model
and the indicator function of the model. Specifically, the gra-
dient of the indicator function is a vector field that is zero
almost everywhere (since the indicator function is constant
almost everywhere), except at points near the surface, where
it is equal to the inward surface normal. Thus, the oriented
point samples can be viewed as samples of the gradient of
the model’s indicator function (Figure 1).

The problem of computing the indicator function thus re-
duces to inverting the gradient operator, i.e. finding the scalar
function y whose gradient best approximates a vector field
V defined by the samples, i.e. miny [|[Vy — V||. If we apply
the divergence operator, this variational problem transforms
into a standard Poisson problem: compute the scalar func-
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Figure 1: Intuitive illustration of Poisson reconstruction in 2D.

tion y whose Laplacian (divergence of gradient) equals the
divergence of the vector field V,

Ay =V-Vy=V.V.
We will make these definitions precise in Sections 3 and 4.

Formulating surface reconstruction as a Poisson problem
offers a number of advantages. Many implicit surface fitting
methods segment the data into regions for local fitting, and
further combine these local approximations using blending
functions. In contrast, Poisson reconstruction is a global so-
lution that considers all the data at once, without resorting
to heuristic partitioning or blending. Thus, like radial basis
function (RBF) approaches, Poisson reconstruction creates
very smooth surfaces that robustly approximate noisy data.
But, whereas ideal RBFs are globally supported and non-
decaying, the Poisson problem admits a hierarchy of locally
supported functions, and therefore its solution reduces to a
well-conditioned sparse linear system.
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Moreover, in many implicit fitting schemes, the value
of the implicit function is constrained only near the sam-
ple points, and consequently the reconstruction may con-
tain spurious surface sheets away from these samples. Typ-
ically this problem is attenuated by introducing auxiliary
“off-surface” points (e.g. [CBC*01, OBA*03]). With Pois-
son surface reconstruction, such surface sheets seldom arise
because the gradient of the implicit function is constrained at
all spatial points. In particular it is constrained to zero away
from the samples.

Poisson systems are well known for their resilience in the
presence of imperfect data. For instance, “gradient domain”
manipulation algorithms (e.g. [FLWO02]) intentionally mod-
ify the gradient data such that it no longer corresponds to any
real potential field, and rely on a Poisson system to recover
the globally best-fitting model.

There has been broad interdisciplinary research on solv-
ing Poisson problems and many efficient and robust methods
have been developed. One particular aspect of our problem
instance is that an accurate solution to the Poisson equation
is only necessary near the reconstructed surface. This allows
us to leverage adaptive Poisson solvers to develop a recon-
struction algorithm whose spatial and temporal complexities
are proportional to the size of the reconstructed surface.

2. Related Work

Surface reconstruction The reconstruction of surfaces
from oriented points has a number of difficulties in prac-
tice. The point sampling is often nonuniform. The positions
and normals are generally noisy due to sampling inaccuracy
and scan misregistration. And, accessibility constraints dur-
ing scanning may leave some surface regions devoid of data.
Given these challenges, reconstruction methods attempt to
infer the topology of the unknown surface, accurately fit (but
not overfit) the noisy data, and fill holes reasonably.

Several approaches are based on combinatorial structures,
such as Delaunay triangulations (e.g. [Boi84, KSO04]), al-
pha shapes [EM94, BBX95, BMR*99]), or Voronoi dia-
grams [ABK98, ACKO1]. These schemes typically create a
triangle mesh that interpolates all or a most of the points.
In the presence of noisy data, the resulting surface is often
jagged, and is therefore smoothed (e.g. [KSO04]) or refit to
the points (e.g. [BBX95]) in subsequent processing.

Other schemes directly reconstruct an approximating sur-
face, typically represented in implicit form. We can broadly
classify these as either global or local approaches.

Global fitting methods commonly define the implicit
function as the sum of radial basis functions (RBFs) centered
at the points (e.g. [Mur91, CBC*01, TO02]). However, the
ideal RBFs (polyharmonics) are globally supported and non-
decaying, so the solution matrix is dense and ill-conditioned.
Practical solutions on large datasets involve adaptive RBF
reduction and the fast multipole method [CBC*01].

Local fitting methods consider subsets of nearby points at
a time. A simple scheme is to estimate tangent planes and
define the implicit function as the signed distance to the tan-
gent plane of the closest point [HDD*92]. Signed distance
can also be accumulated into a volumetric grid [CL96]. For
function continuity, the influence of several nearby points
can be blended together, for instance using moving least
squares [ABCO*01,SOS04]. A different approach is to form
point neighborhoods by adaptively subdividing space, for
example with an adaptive octree. Blending is possible over
an octree structure using a multilevel partition of unity, and
the type of local implicit patch within each octree node can
be selected heuristically [OBA*03].

Our Poisson reconstruction combines benefits of both
global and local fitting schemes. It is global and therefore
does not involve heuristic decisions for forming local neigh-
borhoods, selecting surface patch types, and choosing blend
weights. Yet, the basis functions are associated with the am-
bient space rather than the data points, are locally supported,
and have a simple hierarchical structure that results in a
sparse, well-conditioned system.

Our approach of solving an indicator function is sim-
ilar to the Fourier-based reconstruction scheme of Kazh-
dan [Kaz05]. In fact, we show in Appendix A that our basic
Poisson formulation is mathematically equivalent. Indeed,
the Fast Fourier Transform (FFT) is a common technique
for solving dense, periodic Poisson systems. However, the
FFT requires O(r>logr) time and O(r) space where r is
the 3D grid resolution, quickly becoming prohibitive for fine
resolutions. In contrast, the Poisson system allows adaptive
discretization, and thus yields a scalable solution.

Poisson problems The Poisson equation arises in numer-
ous applications areas. For instance, in computer graph-
ics it is used for tone mapping of high dynamic range im-
ages [FLWO02], seamless editing of image regions [PGB03],
fluid mechanics [LGF04], and mesh editing [YZX*04].
Multigrid Poisson solutions have even been adapted for effi-
cient GPU computation [BFGS03, GWL*03].

The Poisson equation is also used in heat transfer and
diffusion problems. Interestingly, Davis et al [DMGLO02]
use diffusion to fill holes in reconstructed surfaces. Given
boundary conditions in the form of a clamped signed dis-
tance function d, their diffusion approach essentially solves
the homogeneous Poisson equation Ad = 0 to create an im-
plicit surface spanning the boundaries. They use a local iter-
ative solution rather than a global multiscale Poisson system.

Nehab et al [NRDROS5] use a Poisson system to fit a 2.5D
height field to sampled positions and normals. Their ap-
proach fits a given parametric surface and is well-suited to
the reconstruction of surfaces from individual scans. How-
ever, in the case that the samples are obtained from the union
of multiple scans, their approach cannot be directly applied
to obtain a connected, watertight surface.

(© The Eurographics Association 2006.
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3. Our Poisson reconstruction approach

The input data S is a set of samples s € S, each consisting of a
point s.p and an inward-facing normal s.N, assumed to lie on
or near the surface dM of an unknown model M. Our goal is
to reconstruct a watertight, triangulated approximation to the
surface by approximating the indicator function of the model
and extracting the isosurface, as illustrated in Figure 2.

The key challenge is to accurately compute the indicator
function from the samples. In this section, we derive a rela-
tionship between the gradient of the indicator function and
an integral of the surface normal field. We then approximate
this surface integral by a summation over the given oriented
point samples. Finally, we reconstruct the indicator function
from this gradient field as a Poisson problem.

Defining the gradient field Because the indicator function
is a piecewise constant function, explicit computation of its
gradient field would result in a vector field with unbounded
values at the surface boundary. To avoid this, we convolve
the indicator function with a smoothing filter and consider
the gradient field of the smoothed function. The following
lemma formalizes the relationship between the gradient of
the smoothed indicator function and the surface normal field.

Lemma: Given a solid M with boundary dM, let x), de-
note the indicator function of M, Nj),(p) be the inward
surface normal at p € M, F(q) be a smoothing filter, and
Fy(q) = F(q—p) its translation to the point p. The gradient
of the smoothed indicator function is equal to the vector field
obtained by smoothing the surface normal field:

V(e F) (@) = [ Folao)om(p)dp. (D

Proof: To prove this, we show equality for each of the com-
ponents of the vector field. Computing the partial derivative
of the smoothed indicator function with respect to x, we get:

J / N
5 F(q—p)dp
0x | y=go M

/M(*%F(qofp))dp
*/MV'(F(qoprO,O)dp

= (F»(90),0,0) ,Naps(p) ) dp.
! )

(The first equality follows from the fact that x,, is equal to
zero outside of M and one inside. The second follows from
the fact that (9/dq)F(q— p) = —(2/dp)F (q— p). The last
follows from the Divergence Theorem.)

ox (ZM *F) -

q0

A similar argument shows that the y-, and z-components
of the two sides are equal, thereby completing the proof. [J

Approximating the gradient field Of course, we cannot
evaluate the surface integral since we do not yet know the
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Figure 2: Points from scans of the “Armadillo Man” model (left),
our Poisson surface reconstruction (right), and a visualization of the
indicator function (middle) along a plane through the 3D volume.

surface geometry. However, the input set of oriented points
provides precisely enough information to approximate the
integral with a discrete summation. Specifically, using the
point set S to partition dM into distinct patches Py C IM,
we can approximate the integral over a patch &7, by the value
at point sample s.p, scaled by the area of the patch:

V(xm*F)(q Z/ @)Now(p)dp
seS

@

—

~ Z | Zs] Fs.p(‘]) s.N

seS

V(g).

It should be noted that though Equation 1 is true for any
smoothing filter F, in practice, care must be taken in choos-
ing the filter. In particular, we would like the filter to satisfy
two conditions. On the one hand, it should be sufficiently
narrow so that we do not over-smooth the data. And on the
other hand, it should be wide enough so that the integral over
P is well approximated by the value at s.p scaled by the
patch area. A good choice of filter that balances these two
requirements is a Gaussian whose variance is on the order of
the sampling resolution.

Solvmg the Poisson problem Having formed a vector field
V, we want to solve for the function ¥ such that V§ = V.
However, V is generally not integrable (i.e. it is not curl-
free), so an exact solution does not generally exist. To find
the best least-squares approximate solution, we apply the di-
vergence operator to form the Poisson equation

A =V.-V.

In the next section, we describe our implementation of
these steps in more detail.

4. Implementation

We first present our reconstruction algorithm under the as-
sumption that the point samples are uniformly distributed
over the model surface. We define a space of functions with
high resolution near the surface of the model and coarser
resolution away from it, express the vector field V as a linear
sum of functions in this space, set up and solve the Poisson
equation, and extract an isosurface of the resulting indicator
function. We then extend our algorithm to address the case
of non-uniformly sampled points.
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4.1. Problem Discretization

First, we must choose the space of functions in which to dis-
cretize the problem. The most straightforward approach is
to start with a regular 3D grid [Kaz05], but such a uniform
structure becomes impractical for fine-detail reconstruction,
since the dimension of the space is cubic in the resolution
while the number of surface triangles grows quadratically.

Fortunately, an accurate representation of the implicit
function is only necessary near the reconstructed surface.
This motivates the use of an adaptive octree both to repre-
sent the implicit function and to solve the Poisson system
(e.g. [GKS02,LGF04]). Specifically, we use the positions of
the sample points to define an octree ¢ and associate a func-
tion F, to each node o € & of the tree, choosing the tree and
the functions so that the following conditions are satisfied:

1. The vector field V can be precisely and efficiently repre-
sented as the linear sum of the F,,.

2. The matrix representation of the Poisson equation, ex-
pressed in terms of the F, can be solved efficiently.

3. A representation of the indicator function as the sum of
the F, can be precisely and efficiently evaluated near the
surface of the model.

Defining the function space Given a set of point samples
S and a maximum tree depth D, we define the octree & to be
the minimal octree with the property that every point sample
falls into a leaf node at depth D.

Next, we define a space of functions obtained as the span
of translates and scales of a fixed, unit-integral, base func-
tion F : R3 — R. For every node o € U, we set F, to be the
unit-integral “node function” centered about the node o and
stretched by the size of o:

Fo(q)zF(q_O'c> 1

ow ) owd’

where o.c and o.w are the center and width of node o.

This space of functions .%4 = Span{F, } has a multires-
olution structure similar to that of traditional wavelet repre-
sentations. Finer nodes are associated with higher-frequency
functions, and the function representation becomes more
precise as we near the surface.

Selecting a base function In selecting a base function F,
our goal is to choose a function so that the vector field V,
defined in Equation 2, can be precisely and efficiently repre-
sented as the linear sum of the node functions {F,}.

If we were to replace the position of each sample with the
center of the leaf node containing it, the vector field V could
be efficiently expressed as the linear sum of {F, } by setting:

Fo=r (%)

This way, each sample would contribute a single term (the
normal vector) to the coefficient corresponding to its leaf’s

node function. Since the sampling width is 272 and the sam-
ples all fall into leaf nodes of depth D, the error arising from
the clamping can never be too big (at most, on the order of
half the sampling width). In the next section, we show how
the error can be further reduced by using trilinear interpola-
tion to allow for sub-node precision.

Finally, since a maximum tree depth of D corresponds to a
sampling width of 272, the smoothing filter should approxi-
mate a Gaussian with variance on the order of 2~2. Thus, F
should approximate a Gaussian with unit-variance.

For efficiency, we approximate the unit-variance Gaussian
by a compactly supported function so that (1) the resulting
Divergence and Laplacian operators are sparse and (2) the
evaluation of a function expressed as the linear sum of F, at
some point g only requires summing over the nodes o € &
that are close to g. Thus, we set F' to be the n-th convolution
of a box filter with itself resulting in the base function F:

1 |f]<0.5

F(x,y,2) = (B(x)B(y)B(z))"" with B(t):{ 0 otherwise

Note that as n is increased, F more closely approximates
a Gaussian and its support grows larger; in our implemen-
tation we use a piecewise quadratic approximation with
n = 3. Therefore, the function F' is supported on the domain
[-1.5,1.5]% and, for the basis function of any octree node,
there are at most 5°-1 = 124 other nodes at the same depth
whose functions overlap with it.

4.2. Vector Field Definition

To allow for sub-node precision, we avoid clamping a sam-
ple’s position to the center of the containing leaf node and
instead use trilinear interpolation to distribute the sample
across the eight nearest nodes. Thus, we define our approxi-
mation to the gradient field of the indicator function as:

V=Y Y

s€S 0eNgbr, (s)

0 sFo(q)s.N (3)

where Ngbrp,(s) are the eight depth-D nodes closest to s.p
and {0} are the trilinear interpolation weights. (If the
neighbors are not in the tree, we refine it to include them.)

Since the samples are uniform, we can assume that the
area of a patch 2 is constant and V is a good approxima-
tion, up to a multiplicative constant, of the gradient of the
smoothed indicator function. We will show that the choice
of multiplicative constant does not affect the reconstruction.

4.3. Poisson Solution

Having defined the vector field V, we would like to solve for
the function ¥ € %  such that the gradient of ¥ is closest
to V, i.e. a solution to the Poisson equation A}y =V - V.

One challenge of solving for ¥ is that though ) and the

(© The Eurographics Association 2006.
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coordinate functions of V are in the space Z, g it is not
necessarily the case that the functions A} and V - V are.

To address this issue, we need to solve for the function ¥
such that the projection of A¥ onto the space .%  is closest
to the projection of V- V. Since, in general, the functions
F, do not form an orthonormal basis, solving this problem
directly is expensive. However, we can simplify the problem
by solving for the function ¥ minimizing:

Y |[az-v-v.F) \2 = Y |[az.F) - v-7.F)
o€l 0cl

Thus given the |&|-dimensional vector v whose o-th coordi-
nate is v, = (V- ‘77F(,), the goal is to solve for the function
X such that the vector obtained by projecting the Laplacian
of ¥ onto each of the F, is as close to v as possible.

To express this in matrix form, let ¥ = Y, x,F,, so that
we are solving for the vector x € R!Z!. Then, let us define the
|O| x |0 matrix L such that Lx returns the dot product of the
Laplacian with each of the F,. Specifically, for all 0,0’ € O,
the (0,0’)-th entry of L is set to:

_ /d%F, 9°F, J°F,
Loy = <W’FOI> + <TyzaFo’> + <TZZ7FU/> .

Thus, solving for ¥ amounts to finding

min ||Lx—v].
x€RI7|

Note that the matrix L is sparse and symmetric. (Sparse
because the F, are compactly supported, and symmetric be-
cause [ g = — [ f'¢’.) Furthermore, there is an inherent
multiresolution structure on .#4 r, so wWe use an approach
similar to the multigrid approach in [GKS02], solving the
restriction L, of L to the space spanned by the depth d func-
tions (using a conjugate gradient solver) and projecting the
fixed-depth solution back onto .7 r to update the residual.

Addressing memory concerns In practice, as the depth in-
creases, the matrix L; becomes larger and it may not be prac-
tical to store it in memory. Although the number of entries in
a column of L; is bounded by a constant, the constant value
can be large. For example, even using a piecewise quadratic
base function F, we end up with as many as 125 non-zero
entries in a column, resulting in a memory requirement that
is 125 times larger than the size of the octree.

To address this issue, we augment our solver with a block
Gauss-Seidel solver. That is, we decompose the d-th dimen-
sional space into overlapping regions and solve the restric-
tion of Ly to these different regions, projecting the local so-
lutions back into the d-dimensional space and updating the
residuals. By choosing the number of regions to be a func-
tion of the depth d, we ensure that the size of the matrix used
by the solver never exceeds a desired memory threshold.

(© The Eurographics Association 2006.

4.4. Isosurface Extraction

In order to obtain a reconstructed surface dM, it is necessary
to first select an isovalue and then extract the corresponding
isosurface from the computed indicator function.

We choose the isovalue so that the extracted surface
closely approximates the positions of the input samples. We
do this by evaluating ¥ at the sample positions and use the
average of the values for isosurface extraction:

1

OM={qeR| 7(q) =y} with y= 5

Z X(s.p).
ses

This choice of isovalue has the property that scaling ¥ does
not change the isosurface. Thus, knowing the vector field V
up to a multiplicative constant provides sufficient informa-
tion for reconstructing the surface.

To extract the isosurface from the indicator function, we
use a method similar to previous adaptations of the March-
ing Cubes [LC87] to octree representations (e.g. [WG92,
SFYC96, WKE99]). However, due to the nonconforming
properties of our tree, we modify the reconstruction ap-
proach slightly, defining the positions of zero-crossings
along an edge in terms of the zero-crossings computed by
the finest level nodes adjacent to the edge. In the case that an
edge of a leaf node has more than one zero-crossing associ-
ated to it, the node is subdivided. As in previous approaches,
we avoid cracks arising when coarser nodes share a face with
finer ones by projecting the isocurve segments from the faces
of finer nodes onto the face of the coarser one.

4.5. Non-uniform Samples

We now extend our method to the case of non-uniformly dis-
tributed point samples. As in [Kaz05], our approach is to es-
timate the local sampling density, and scale the contribution
of each point accordingly. However, rather than simply scal-
ing the magnitude of a fixed-width kernel associated with
each point, we additionally adapt the kernel width. This re-
sults in a reconstruction that maintains sharp features in ar-
eas of dense sampling and provides a smooth fit in sparsely
sampled regions.

Estimating local sampling density Following the ap-
proach of [Kaz05], we implement the density computation
using a kernel density estimator [Par62]. The approach is to
estimate the number of points in a neighborhood of a sam-
ple by “splatting” the samples into a 3D grid, convolving the
“splatting” function with a smoothing filter, and evaluating
the convolution at each of the sample points.

We implement the convolution in a manner similar to
Equation 3. Given a depth D < D we set the density esti-
mator to be the sum of node functions at depth D:

Wf)(q) = Z Z aa,sFa(q)'
s€S 0eNgbry (s)
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Since octree nodes at lower resolution are associated with
functions that approximate Gaussians of larger width, the
parameter D provides away for specifying the locality of the
density estimation, with smaller values of D giving sampling
density estimates over larger regions.

Computing the vector field Using the density estimator,
we modify the summation in Equation 3 so that each sam-
ple’s contribution is proportional to its associated area on the
surface. Specifically, using the fact that the area is inversely
proportional to sampling density, we set:

_ 1
Vig)= Z P Z 0o sF(q)-
W (5-P) ,eNgbr, (s

However, adapting only the magnitudes of the sample
contributions results in poor noise filtering in sparsely sam-
pled regions as demonstrated later in Figure 7. Therefore,
we additionally adapt the width of the smoothing filter F to
the local sampling density. Adapting the filter width lets us
retain fine detail in regions of dense sampling, while smooth-
ing out noise in regions of sparse sampling.

Using the fact that node functions at smaller depths corre-
spond to wider smoothing filters, we define

V=Y

o sk (q) .
Wh(s. ’
S5 Wp(s-p) 0ENEDI Doy (s ) 5)

In this definition, Depth(s.p) represents the desired depth of
a sample point s € S. It is defined by computing the average
sampling density W over all of the samples and setting:

Depth(s.p) = min (D, D +logy (W (s.p) /W))

so that the width of the smoothing filter with which s con-
tributes to V is proportional to the radius of its associated
surface patch F.

Selecting an isovalue Finally, we modify the surface ex-
traction step by selecting an isovalue which is the weighted
average of the values of ¥ at the sample positions:
L Xsp)
_ - . h(s.p)
8M:{q€R3 | X(qg)=v} with y= gil.
Wp(s.p)

5. Results

To evaluate our method we conducted a series of experi-
ments. Our goal was to address three separate questions:
How well does the algorithm reconstruct surfaces? How
does it compare to other reconstruction methods? And, what
are its performance characteristics?

Much practical motivation for surface reconstruction de-
rives from 3D scanning, so we have focused our experiments
on the reconstruction of 3D models from real-world data.

5.1. Resolution

We first consider the effects of the maximum octree depth
on the reconstructed surface.

Figure 3 shows our reconstruction results for the “dragon”
model at octree depths 6, 8, and 10. (In the context of recon-
struction on a regular grid, this would correspond to reso-
lutions of 643, 2563, and 10243, respectively.) As the tree
depth is increased, higher-resolution functions are used to fit
the indicator function, and consequently the reconstructions
capture finer detail. For example, the scales of the dragon,
which are too fine to be captured at the coarsest resolution
begin appearing and become more sharply pronounced as
the octree depth is increased.

Figure 3: Reconstructions of the dragon model at octree depths 6
(top), 8 (middle), and 10 (bottom).

5.2. Comparison to Previous Work

We compare the results of our reconstruction algorithm
to the results obtained using Power Crust [ACKOI1], Ro-
bust Cocone [DGO04], Fast Radial Basis Functions (Fas-
tRBF) [CBC*01], Multi-Level Partition of Unity Implicits
(MPU) [OBA*03], Surface Reconstruction from Unorga-
nized Points [HDD*92], Volumetric Range Image Process-
ing (VRIP) [CL96], and the FFT-based method of [Kaz05].

(© The Eurographics Association 2006.
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Figure 4: Reconstructions of the Stanford bunny using Power
Crust (a), Robust Cocone (b), Fast RBF (c), MPU (d), Hoppe et al.’s
reconstruction (e), VRIP (f), FFT-based reconstruction (g), and our
Poisson reconstruction (h).

Our initial test case is the Stanford “bunny” raw dataset of
362,000 points assembled from ten range images. The data
was processed to fit the input format of each algorithm. For
example, when running our method, we estimated a sample’s
normal from the positions of the neighbors; Running VRIP,
we used the registered scans as input, maintaining the regu-
larity of the sampling, and providing the confidence values.

Figure 4 compares the different reconstructions. Since the
scanned data contains noise, interpolatory methods such as
Power Crust (a) and Robust Cocone (b) generate surfaces
that are themselves noisy. Methods such as Fast RBF (c¢) and
MPU (d), which only constrain the implicit function near

(© The Eurographics Association 2006.

the sample points, result in reconstructions with spurious
surface sheets. Non-interpolatory methods, such as the ap-
proach of [HDD*92] (e), can smooth out the noise, although
often at the cost of model detail. VRIP (f), the FFT-based
approach (g), and the Poisson approach (h) all accurately re-
construct the surface of the bunny, even in the presence of
noise, and we compare these three methods in more detail.

Figure 5: Reconstructions of a fragment of the Forma Urbis Ro-
mae tablet using VRIP (left) and the Poisson solution (right).

Comparison to VRIP A challenge in surface reconstruc-
tion is the recovery of sharp features. We compared our
method to VRIP by evaluating the reconstruction of sam-
ple points obtained from fragment 661a of the Forma Ur-
bis Romae (30 scans, 2,470,000 points) and the “Happy
Buddha” model (48 scans, 2,468,000 points), shown in Fig-
ures 5 and 6. In both cases, we find that VRIP exhibits a
“lipping” phenomenon at sharp creases. This is due to the
fact that VRIP’s distance function is grown perpendicular to
the view direction, not the surface normal. In contrast, our
Poisson reconstruction, which is independent of view direc-
tion, accurately reconstructs the corner of the fragment and
the sharp creases in the Buddha’s cloak.

Comparison to the FFT-based approach As Fig-
ure 4 demonstrates, our Poisson reconstruction (h) closely
matches the one obtained with the FFT-based method (g).
Since our method provides an adaptive solution to the same
problem, the similarity is a confirmation that in adapting
the octree to the data, our method does not discard salient,
high-frequency information. We have also confirmed that
our Poisson method maintains the high noise resilience al-
ready demonstrated in the results of [Kaz05].

Though theoretically equivalent in the context of uni-
formly sampled data, our use of adaptive-width filters (Sec-
tion 4.5) gives better reconstructions than the FFT-based
method on the non-uniform data commonly encountered in
3D scanning. For example, let us consider the region around
the left eye of the “David” model, shown in Figure 7(a). The
area above the eyelid (highlighted in red) is sparsely sam-
pled due to the fact that it is in a concave region and is seen
only by a few scans. Furthermore, the scans that do sample
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Figure 6: Reconstructions of the “Happy Buddha” model using
VRIP (left) and Poisson reconstruction (right).

the region tend to sample at near-grazing angles resulting
in noisy position and normal estimates. Consequently, fixed-
resolution reconstruction schemes such as the FFT-based ap-
proach (b) introduce high-frequency noise in these regions.
In contrast, our method (c), which adapts both the scale and
the variance of the samples’ contributions, fits a smoother re-
construction to these regions, without sacrificing fidelity in
areas of dense sampling (e.g. the region highlighted in blue).

Limitation of our approach A limitation of our method
is that it does not incorporate information associated with
the acquisition modality. Figure 6 shows an example of this
in the reconstruction at the base of the Buddha. Since there
are no samples between the two feet, our method (right)
connects the two regions. In contrast, the ability to use sec-
ondary information such as line of sight allows VRIP (left)
to perform the space carving necessary to disconnect the two
feet, resulting in a more accurate reconstruction.

5.3. Performance and Scalability

Table 1 summarizes the temporal and spatial efficiency of
our algorithm on the “dragon” model, and indicates that the

Figure 7: Reconstruction of samples from the region around the
left eye of the David model (a), using the fixed-resolution FFT ap-
proach (b), and Poisson reconstruction (c).

memory and time requirements of our algorithm are roughly
quadratic in the resolution. Thus, as we increase the oc-
tree depth by one, we find that the running time, the mem-
ory overhead, and the number of output triangles increases
roughly by a factor of four.

Tree Depth | Time | Peak Memory | # of Tris.
7 6 19 21,000
8 26 75 90,244
9 126 155 374,868
10 633 699 | 1,516,806

Table 1: The running time (in seconds), the peak memory usage (in
megabytes), and the number of triangles in the reconstructed model
for the different depth reconstructions of the dragon model. A kernel
depth of 6 was used for density estimation.

The running time and memory performance of our method
in reconstructing the Stanford Bunny at a depth of 9 is com-
pared to the performance of related methods in Table 2. Al-
though in this experiment, our method is neither fastest nor
most memory efficient, its quadratic nature makes it scalable
to higher resolution reconstructions. As an example, Fig-
ure 8 shows a reconstruction of the head of Michelangelo’s
David at a depth of 11 from a set of 215,613,477 samples.
The reconstruction was computed in 1.9 hours and 5.2GB
of RAM, generating a 16,328,329 triangle model. Trying
to compute an equivalent reconstruction with methods such
as the FFT approach would require constructing two voxel
grids at a resolution of 20483 and would require in excess of
100GB of memory.

(© The Eurographics Association 2006.
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Figure 8: Several images of the reconstruction of the head of Michelangelo’s David, obtained running our algorithm with a maximum tree
depth of 11. The ability to reconstruct the head at such a high resolution allows us to make out the fine features in the model such as the inset
iris, the drill marks in the hair, the chip on the eyelid, and the creases around the nose and mouth.

Method Time | Peak Memory | # of Tris.
Power Crust 380 2653 554,332
Robust Cocone 892 544 272,662
FastRBF 4919 796 | 1,798,154
MPU 28 260 925,240
Hoppe et al 1992 70 330 950,562
VRIP 86 186 | 1,038,055
FFT 125 1684 910,320
Poisson 263 310 911,390

Table 2: The running time (in seconds), the peak memory usage
(in megabytes), and the number of triangles in the reconstructed
surface of the Stanford Bunny generated by the different methods.

6. Conclusion

‘We have shown that surface reconstruction can be expressed
as a Poisson problem, which seeks the indicator function that
best agrees with a set of noisy, non-uniform observations,
and we have demonstrated that this approach can robustly
recover fine detail from noisy real-world scans.

There are several avenues for future work:
e Extend the approach to exploit sample confidence values.

(© The Eurographics Association 2006.

o Incorporate line-of-sight information from the scanning
process into the solution process.

e Extend the system to allow out-of-core processing for
huge datasets.
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Appendix A:

The solution to surface reconstruction described in this paper
approaches the problem in a manner similar to the solution
of [Kaz05] in that the reconstructed surface is obtained by
first computing the indicator function and then extracting the
appropriate isosurface.

While the two methods seem to approach the problem
of computing the indicator function in different manners
( [Kaz05] uses Stokes’ Theorem to define the Fourier co-
efficients of the indicator function while we use the Poisson
equation), the two methods are in fact equivalent.

To show this, we use the fact that the Poisson equation
Au = f where f is periodic can be solved using the Fourier
transform. The Fourier series expansion is —|{|?a(¢) =

f(C) or equivalently 4(§) = ﬁf(()

Thus, our Poisson equation Ay =V - V can be solved us-
ing § = ﬁv .V. With the well known identity f/ = —i{

~

i

and its generalization V-V = —i( - \g/ we get ¥ = WC
which is identical to [Kaz05].

Sl)

(© The Eurographics Association 2006.
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Abstract

We propose a novel framework for reconstructing
lightweight polygonal surfaces from point cloud Unlike
traditional methods that focus on either extracting good
geometric primitives or obtaining proper arrangements of
primitives, the emphasis of this work lies in intersecting
the primitives (planes only) and seeking for an appropriate
combination of them to obtain a manifold polygonal
surface model without boundary.

We show that reconstruction from point clouds can be
cast as a binary labeling problem. Our method is based on
a hypothesizing and selection strategy. We first generate a
reasonably large set of face candidates by intersecting the
extracted planar primitives. Then an optimal subset of the
candidate faces is selected through optimization. Our opti-
mization is based on a binary linear programming formula-
tion under hard constraints that enforce the final polygonal
surface model to be manifold and watertight. Experiments
on point clouds from various sources demonstrate that our
method can generate lightweight polygonal surface models
of arbitrary piecewise planar objects. Besides, our method
is capable of recovering sharp features and is robust to
noise, outliers, and missing data.

1. Introduction

Reconstructing 3D models from sampled points has been
a major problem in both computer vision and computer
graphics. Although it has been extensively researched in
the past few decades [8} 13}, 122} [11} 3L 117, 27, 25 112} |2, [15]
20\, 26, [16], obtaining faithful reconstructions of real-world
objects from unavoidable noisy and possibly incomplete
point clouds remains an open problem.

In this work, we focus on reconstructing piecewise
planar objects (i.e., man-made objects such as buildings).
Our inputs are point clouds sampled from real-world objects
that could be captured by various means (e.g., drones, hand-
held scanners, and depth cameras). Our goal is to achieve

IThe source code of PolyFit is available under https://github.
com/LiangliangNan/PolyFit.

Peter Wonka
Visual Computing Center, KAUST

pwonka@gmail.com

lightweight polygonal surface models of the objects.

We consider a method to be effective to this problem if it
meets the following requirements. First, the reconstructed
model should be an oriented 2-manifold and watertight,
ensuring physically valid models. This is essential for many
applications, e.g., simulation and fabrication. Second, it
should be able to recover sharp features of the objects.
Third, the method should not closely follow surface details
due to imperfections (i.e., noise, outliers, and missing data).
Instead, a lightweight representation is more preferred and
beneficial for many applications (e.g., Augmented Real-
ity/Virtual Reality) that may involve many objects and
large scenes. Besides, it is also helpful to provide a way
to control the detail levels of the reconstructed models
within the reconstruction pipeline. We proposed a novel
reconstruction framework that all the above requirements
are satisfied in a single optimization process.

Instead of fitting dense smooth polygonal surfaces [8} |13}
22| |[11]], we seek for a more compact representation (i.e.,
simple polygonal surfaces) for piecewise planar objects.
Our method is based on a hypothesizing and selection
strategy. Specifically, we chose an optimal set of faces from
a large number of candidate faces to assemble a compact
polygonal surface model. The optimal set of faces is select-
ed through optimization that encourages good point support
and compactness of the final model. The manifold and
watertight requirements are enforced as hard constraints.
Figure[I|shows an example of our reconstruction. Our work
makes the following contributions:

e we cast polygonal surface reconstruction from point
clouds as a binary labeling problem based on a hypoth-
esizing and selection strategy.

e a surface reconstruction framework that is dedicated to
reconstructing piecewise planar objects.

e a binary linear programming formulation for face se-
lection that guarantees lightweight, manifold, and wa-
tertight reconstructions and meanwhile recovers sharp
features of the objects.
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Figure 1. Pipeline. (a) Input point cloud. (b) Planar segments. (c) Supporting planes of the initial planar segments. (d) Supporting planes
of the refined planar segments. (e) Candidate faces. (f) Reconstructed model. All planar segments and faces are randomly colored.

2. Related Work

In literature, a large body of research on polygonal
surface reconstruction from point clouds aim at obtaining
dense polygonal surfaces 8] (13,22} [11]]. In the last decades,
extracting geometric primitives and identifying their com-
bination to infer higher-level structures have become the
most popular technique for reconstructing piecewise planar
objects. In this section, we mainly review approaches that
focus on primitive extraction, primitive regularization, and
primitive- and hypothesis-based reconstruction.

Primitive extraction. Researches falling in this cate-
gory aim at extracting high-quality instances of basic geo-
metric primitives (e.g., plane, cylinder) from point clouds
corrupted by noise and outliers. The common practice
for this particular task is the Random Sample Consensus
(RANSAC) algorithm [6] and its variants [28] 24| [14].
These methods are reliable when the input data is contam-
inated by noise and outliers. So in our work, we use an
efficient implementation of the RANSAC algorithm [24] to
extract initial planar primitives.

Primitive regularization. By exploiting the prior
knowledge about the structure of an object, researchers
further regularize the extracted primitives. Li et.al.
discover global mutual relations between basic primitives
and use such information as constraints to refine the
initial primitives base on local fitting and constrained
optimization. Monszpart et. al. [19]] further exploit this idea
to extract regular arrangements of planes. These methods
focus on inferring and regularizing potential relationship
between structures. However, obtaining manifold and
watertight surface models from the regularized primitives
remains unsolved. In our work, we provide a promising
framework to this challenging problem based on a
hypothesizing and selection strategy.

Primitive-based reconstruction. In contrast with ap-
proaches that focus on obtaining dense polygonal sur-
faces, exploiting high-level primitives for man-made ob-
jects became popular in the last years [25] [12]
26l [16]. Arikan et al. [1] proposed an optimization-based
interactive tool that can reconstruct architectural models

from a sparse point cloud. Lin et al. [I8] reconstruct
coarse building models by decomposing and fitting a set
of piecewise building blocks to the point clouds. By
structuring and resampling planar primitives, Lafarge and
Alliez [12] consolidate the point clouds and then obtain
surface models by solving a graph-cut problem. Using
a min-cut formulation, Verdie et. al. [26] reconstruct
watertight buildings from an initial arrangement of planar
segments. These approaches specialize in reconstructing
urban buildings. Thus, they may not be suitable to handle
general piecewise planar objects. Based on space parti-
tioning and volumetric presentations, [3] and [2] obtain
piecewise planar reconstruction by determining if cells are
occupied or not. These two techniques require visibility
information from the acquisition process as input while our
approach does not require this information.
Hypothesis-based reconstruction. By making stronger
assumptions on the objects, researchers further regularize
the reconstruction problem and fit compound shapes (i.e.,
a combination of multiple basic primitives) to the point
clouds [9,[16]. In Li et.al. [16], a set of axis-aligned boxes is
assembled to approximate the geometry of a building. Their
strategy is generating a non-uniform grid and then selecting
a subset of its cells that have good data support and are
smooth. In our work, we generalize this idea to reconstruct
general piecewise planar objects, and our reconstruction is
based on optimization under hard constraints that guarantee
manifold and watertight polygonal surface models.

3. Overview

Our method takes as input a point cloud (possibly noisy,
incomplete, and with outliers) of a piecewise planar object
and outputs a lightweight polygonal surface model. Our
method consists of two main parts (see Figure [I):

Candidate face generation. We first extract a set of
planar segments from the point cloud using RANSAC [24]].
Considering the detected planar segments may contain
undesired elements due to noise, outliers, and missing data,
we refine these planar segments by iteratively merging
plane pairs and fitting new planes. We then clip these
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Figure 2. Two planes intersect with each other resulting in four parts (a). (b) to (g) show all possible combinations to ensure a 2-manifold
surface. The edge in (b) and (c) connects two co-planar parts, while in (d) to (g) it introduces sharp edges in the final model.

planes by an enlarged bounding box of the point cloud
and compute pairwise intersections of the clipped planes to
hypothesize of the object’s faces.

Face selection. We choose an optimal subset of the
candidate faces to assemble a manifold and watertight
polygonal surface model. To do so, we formulate the face
selection as a binary linear programming problem. Our
objective function combines three terms that favor data
fitting, point coverage, and model complexity, respectively.
We also formulate hard constraints that ensure the final
model is manifold and watertight.

4. Candidate Face Generation

The input to this step is a point cloud P of a piecewise
planar object, and the goal is to generate a reasonably large
number of candidate faces.

Plane extraction. We use the RANSAC-based primitive
detection method proposed by Schnabel et al. to detect
a set of initial planar segments S = {s;} from the point
cloud P. Here s; is a set of points whose distances are
smaller than a threshold ¢ to a plane and each points can be
assigned to no more than one plane. This plane is denoted
as the supporting plane of s;.

Plane refinement. Due to the presence of noise and
outliers (especially for point clouds computed from Multi-
view Stereo), RANSAC may produce a few undesired
planar segments. We observed that the undesired planar
segments usually have arbitrary orientations and poor point
support. Although the later optimization-based face se-
lection procedure is designed to be capable of handling
such outliers, there may still cause problems. First, these
arbitrarily oriented planes may result in long but very
thin faces and small bumps in the final model. In some
extreme cases, it may also introduce degenerate faces due
to the limit of floating point precision. This degeneracy
usually makes the manifold and watertight hard constraints
(see Section @ impossible to be satisfied. Second, the
undesired candidate faces results in a larger optimization
problem that is more expensive to be solved.

To tackle this issue, we iteratively refine the initial planar
segments using an improved plane refinement algorithm
proposed in [15]. Specifically, we first compute the angle

of the supporting planes for each pair of planar segments.
Then, starting from the pair (s;, s;) with the smallest angle,
we test if the following two conditions are met. First, the
angle between the two planes is lower than a threshold,
ie., angle(s;,s;) < 6;. Second, more than a specified
number (denoted as NV;) of points lie on the supporting
planes of both segments. If both conditions are satisfied,
we merge the two planar segments and fit a new supporting
plane using PCA [10]. We iterate this process until no more
segment pair can be merged. In our experiments, we choose
6, = 10° and N; = min(|s;],|s;|)/5, where |s;| denotes
the number of supporting points of s;. Figure [I] (¢) and
(d) show the extracted planes before and after refinement
respectively. It should be noted that an alternative approach,
e.g., [17]], can also be used to extract planar segments.

Pairwise intersecting. To hypothesize the object’s
faces, we crop the supporting planes of all planar segments
by the bounding box of the point cloud. Then, the candidate
faces (i.e., a superset of the faces of the object) can be
obtained by intersecting the cropped planes. For simplicity,
we compute pairwise intersections of the cropped planes
(see Figure |I| (e)). It should be noted that pairwise inter-
sections introduce redundant candidate faces. Since most
of the redundant faces do not represent actual structures of
an object, they are supported by no or very few (due to noise
and outliers) point samples. The subsequent optimization-
based face selection is designed to favor choosing the most
confident faces while satisfying certain constraints.

The pairwise intersections maintain incidence informa-
tion of the faces and edges. Each edge of a candidate face
is either connecting four neighboring candidate faces or
representing a boundary. For example in Figure[2](a), edge e
connects four faces while others are boundaries. We rely on
such incidence information to formulate our manifold and
watertight constraints for face selection (see Section[5.2)).

5. Face Selection

Given N candidate faces FF = {f;|]1 < i < N}
generated in the previous step, we select a subset of these
candidate faces that can best describe the geometry of the
object and ensure that the chosen faces form a manifold and
watertight polygonal surface. This is achieved through op-



timization. We define multiple energy terms that constitute
our objective function.

5.1. Energy terms

Let variable x; encode if a candidate face f; is chosen
(i.e., z; = 1) or not chosen (i.e., xz; = 0), our objective
function consists of three energy terms: data-fitting, model
complexity, and point coverage.

Data-fitting. This term is intended to evaluate the fitting
quality of the faces to the point cloud while accounting for
an appropriate notion of confidence [21]]. It is defined to
measure a confidence-weighted percentage of points that do
not contribute to the final reconstruction

By =1-152 sz support(f:), (1)

where | P| is the total number of points in P. support(f;)
accounts for a notion of confidence and is defined at each
point considering its local neighborhood

support(f) = > (1f%pvf>

p,fldist(p,f)<e

) - conf(p),
2

where dist(p, f) measures the Euclidean distance between
a point p and a face f. We consider only points that are
e-close to f, i.e., points p satisfying dist(p, f) < . The
confidence term con f(p) measures the local quality of the
point cloud at a point p. It is computed by examining the
local covariance matrices defined at p, as in [23]. In this
work, we compute for p the covariance matrices of its local
neighbors at three static scales (i.e., different neighborhood
sizes). Then, con f(p) is defined as

1< 3L A2

conf(p) =3 ;u T @
where A} < A2 < \? are the three eigenvalues of the
covariance matrix at scale . con f(p) encode two geometric
properties of the point samples near point p. The first
property 1 — 3A1/(A! 4+ A2 + A3) evaluates the quality of
fitting a local tangent plane at p, whose value of 0 indicates
the worst point distribution and value of 1 indicates a
perfectly fitted plane. The second property A% /A3 evaluates
the local sampling uniformity. Each eigenvalue ratio takes
on a value in the range [0, 1] with boundary values 0 and 1
corresponding to a perfect line distribution and a uniform
disc distribution correspondingly.

Intuitively, the data-fitting term favors choosing faces
that are close to the input points and are supported by
densely sampled uniform regions. This term has a value
in the range [0, 1] where a value of 1 indicates a noise-free
and outlier-free input data.

14

Tbyoss

(a) 0.93

Figure 3. Two examples of point coverage. The a-shape meshes
are in yellow and the candidate faces are in purple. The value
below each figure indicates the coverage ratio of each face.

Model complexity. Given incomplete point clouds
due to occlusions, the data-fitting term defined in Equa-
tion [I] tends to stubbornly comply with the incomplete
data, resulting in gaps in the final model. Besides, noise
and outliers also tend to introduce gaps and protrusions
in the reconstructed models. To avoid these defects, we
introduce a model complexity term to encourage simple
structures (i.e., large planar regions). Considering gaps and
protrusions result in additional sharp edges, we define the
model complexity term as the ratio of sharp edges in the
model

|E|

E., |E| Z corner(e;), %)

where | E| denotes the total number of pairwise intersections
in the candidate face set. corner(e;) is an indicator function
whose value is determined by the configuration of the two
selected faces connected by an edge e;. The intersecting
edges can be either planar or sharp. For example, the
intersecting edges e in Figure 2] (b) and (c) are planar edges
yielding larger planar polygons, but edges in (d) to (g) are
sharp edges that will introduce sharp features (if they are
selected in the final model). So corner(e;) will have a value
of 1 if the faces associated with e; introduce a sharp edge
in the final model. Otherwise, corner(e;) has a zero value
meaning the two faces are coplanar.

Point coverage. To handle missing data caused by oc-
clusions, the unsupported regions (i.e., regions not covered
by points) of the final model should be as small as possible.
To measure the coverage of a face f;, we first project all
e-close points onto f;. We then extract a mesh M by
constructing a 2D «-shape [3] from the projected points
(see Figure [3). We use only the points whose projections
are inside f; for a-shape construction. We call M an a-
shape mesh. Intuitively, the a-shape mesh of a set of points
ensures that any three points with a circumradius 7. < /&
are spanned by a triangle face. Given an appropriate value
of r., the area of the a-shape mesh surface can provide us a
reliable measure of the coverage of a candidate face by the



input points. Thus, our point coverage energy is defined as
the ratio of the uncovered regions in the model
1 N

E,. = W ;zz -(area(f;) — area(M)), (5)
where area(M), area(f;), and area(Mf) denote the
surface areas of the final model, a candidate face f;,
and the a-shape mesh M of f;, respectively. In our
implementation, we chose the radius 7 to be 5-density(P),
where density(P) denotes the average spacing of all the
points to their £ nearest neighbors, k being set to 6.

Using the exact model area, i.e., Zfil x; - area(f;), as
the denominator ensures that the value of the point coverage
term is within the range [0, 1]. However, this results in a
non-linear objective function that is difficult to optimize.
Considering the actual surface area of the final model is
comparable to the area of the point cloud’s bounding box,
we replace the exact model area with the area of the point
cloud’s bounding box, i.e., area(M) ~ area(bbox(P)).

5.2. Optimization

With the above energy terms, the optimal set of faces can
be obtained by minimizing a weighted sum of these terms
under certain hard constraints enforcing the final model to
be manifold without boundary.

Remember that the candidate faces are obtained by the
pairwise intersection of planes. Thus an edge is connected
to either one (for boundary faces) or four faces (for inner
faces). See Figure 2] (a) for an example. It is quite obvious
that the necessary and sufficient condition for manifold
and watertight polygonal surfaces is that each edge of the
model connects only two adjacent faces. Thus, the final
formulation for face selection can be written as

min A By + A B+ A - B

> x;=2 or 0, 1<i<I[E] (6)
S.t. FEN (1)

z; € {0,1}, 1<i<N

where >\, %; counts the number of faces connected
by an edge e;. This value is enforced to be either O or 2,
meaning none or two of the faces are selected (see Figure 2]
(b) - (g) for possible selections). These hard constraints
guarantee that the final model is manifold and closed.

The problem defined in Equation [6] is a binary linear
program. We solve it using the Gurobi solver [7]. After
optimization, the union of the selected faces (i.e., faces
having a corresponding variable z; = 1) comprises a
polygonal surface model approximating the object.

6. Results and Discussion

We implemented our method using C++. The a-shapes
are constructed using the CGAL library [S]. We tested
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(a)

Figure 5. Reconstruction of a building with completely missing
planes (top row). By adding an extra plane, model with different
structures can be obtained (bottom row).

our method on various real-world objects of different com-
plexity. Experiments demonstrated the advantages of our
hypothesizing and selection strategy.

Reconstruction results. Our method can reconstruct
piecewise planar objects such as buildings and other man-
made objects. Figuresm andE| (a) - (d) show the reconstruc-
tion of five buildings of different styles. The input of these
buildings are point clouds computed from images using
Multi-View Stereo techniques. Although the point clouds
are quite noisy and contain significant amounts of outliers
and missing data, our method faithfully reconstructed these
buildings. In Figures E| (e) and (f), two indoor scenes
consisting of multiple rooms are reconstructed. These two
scenes were captured by Google Tango tablets. Due to the
cluttered nature of indoor scenes, the datasets contains large
holes. Our hypothesizing and selection strategy fills in the
missing regions and reconstructed the permanent structures
(i.e., walls and roofs) of these scenes.

Besides the buildings, we also tested our method on
other man-made objects. In Figure ] (g), our method took
the laser scan of a small packing foam box as input and
faithfully reconstructed all its structures with sharp features.
We consider this as the first advantage of our approach. In
(h) and (i), two sofas of different styles are reconstructed.
These pieces of furniture were scanned by PrimeSense
RGB-D cameras in the form of dense triangular meshes [4].
Our method took the vertices of the meshes as input and
produced lightweight polygonal surface models.

In rare cases where few planes are completely missing,
our method may still generate plausible reconstructions. In
Figure [3] (top), a building with its back roof completely
missing is reconstructed. It is interesting to see that by
adding few extra planes, models with distinct structures can
also be obtained (bottom row). Thanks to the manifold
and watertight constraints, our method guarantees the re-
constructed models to be manifold without boundary. We
consider this as the second advantage of our approach.

In Table [I] we give statistics of our quantitative results.
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Figure 4. Reconstruction of a set of piecewise planar objects from various data sources. The input for (a) - (d) are computed from images
using Multi-View Stereo; (e) and (f) are acquired by Google Tango tablets; (g) is captured by a laser scanner [17]]; (h) and (i) are acquired
by PrimeSense Carmine RGB-D cameras [4]]. From left to right: input point clouds, extracted planar segments, candidate faces (randomly
colored), reconstructed models, and models overlaid with the original point clouds (rendered with a smaller point size).
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Table 1. Statistics on the examples presented in Figure [d]

Model index in FigureEI (a) (b) (c) (d) (e) ) (g) (h) @)
# points 129K | 101K | 73K | 577K | 186 K | 176 K | 382K | 756 K | 911 K
# planar segments 36 21 22 22 28 33 52 17 19
# candidate faces 6239 472 946 959 1778 | 2770 | 7540 580 523
# faces of the final model 38 18 25 29 26 35 52 16 14
Primitive extraction (sec) 0.21 0.14 | 0.09 1.17 0.45 0.13 0.93 1.04 1.54
Candidate generation (sec) 0.05 0.01 0.01 0.02 0.01 0.02 0.06 0.02 0.03
Face selection (optimization) (sec) | 2.73 1.46 1.17 8.26 2.90 3.05 7.39 13.26 | 16.01

(b)

Figure 6. Result without (a) and with (b) plane refinement step.
In (a), the top comprises ten faces originating from three different
planes. The red arrows indicate long but very thin polygonal faces.

As can be seen from the number of faces in the final models,
our method can produce lightweight 3D models. We
consider this as the third main advantage of our approach.

Timings. Table [I] shows the running times of each
step for the examples presented in Figure ] We can see
that the face selection step is slower compared to primitive
extraction and candidate face generation. It should be noted
that the construction of the a-shape meshes dominated this
step. Down-sampling of input point clouds may speed up
this process.

Effect of plane refinement. We tested our algorithm
on a few data sets by omitting the refinement step. One
such example is shown in Figure[6] We can see that even
without the plane refinement step, our optimization still
recovers the main structure of this building. However,
we observe that the two models have some differences in
the details. First, the top-most face of the reconstructed
polyhedron in (a) is composed of ten candidate faces lying
on three different planes, while in (b) it comprises fewer
faces originating from the same plane. Second, some
undesired bumpy structures can be avoided with the plane
refinement step. This is because some initial faces are
quite close to each other, making the energy terms less
distinguishable. Another benefit of the plane refinement
step is the gain in efficiency. With plane refinement,
the total number of candidate faces is reduced from 1185
to 348. Accordingly, the run-time of the optimization
decreased from 1.25 seconds to 0.31 seconds, i.e., more
than four times faster.

Effect of the energy terms. The core of our reconstruc-

(@)

Figure 7. A building (a) reconstructed without (b) and with (c) the
complexity term. The red arrows indicate bumps and gaps.

tion method lies in the optimization-based face selection
that is designed to favor different aspects necessary for
high-quality reconstructions. Both data fitting and coverage
are essential requirements. We observed that having only
these two terms works perfectly for reasonably complete
datasets, but it is still not sufficient for point clouds with
significant imperfections (i.e., noise, outliers, and missing
data). Figure |Z| (b) shows such an example. We can see that
the reconstructed model demonstrates some desired bumps
and gaps. In contrast, with our model complexity term, the
reconstructed model is cleaner and compact (c). To further
evaluate the behavior of the model complexity term, we
ran our face selection on a dataset by gradually increasing
the weight (see Figure [9). Not surprisingly, increasing the
influence of the model complexity term resulted in less
detailed 3D models. Thus, the model complexity term also
provides control over the model details.

Parameters. The parameters for most examples are as
follows: Ay = 0.46, A\, = 0.27, and \,, = 0.27 (Note
that weights in a wide range can produce the same results).
Slightly different weights (A\y = 0.3, Ac = 0.4, and A,,, =
0.3) are used for the sofa example in Figure E| (i), where the
background (ground plane) has a much higher density than
the object (sofa), thus the smaller data fitting weight.

Robustness and accuracy. We evaluated the robustness
of our approach by reconstructing from synthetic data
with an increasing amount of noise (see Figure [I0). In
(c), the standard deviation of the noise distribution is
0.6 meters high, our method still obtained topologically
accurate reconstruction. However, a much higher level
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(b) (c)

Figure 8. Comparison with four state-of-the-art methods on a building dataset. (a) Input point cloud. (b) Model reconstructed by the
Poisson surface reconstruction algorithm [T1]]. (c) The result of the 2.5D Dual Contouring approach [27]. (d) The result of [13]. (€) The
result of [16]. (f) Our result. The number under each sub-figure indicates the total number of faces in the corresponding model.

(b) ( (d)

Figure 9. Reconstruction of the building shown in Figure [5] by
gradually increasing the influence of the model complexity term.
The values are the weights used in the corresponding optimization.

om A
!

666,

(a)o=0.Im (b) o =0.4m (c)o=0.6m (d) 0=0.8m
Figure 10. Reconstruction from synthetic data with increasing
noise. Top: input. Middle: reconstruction. Bottom: reconstruction

error. o indicates the standard deviation of the Gaussian noise.

of noise may further pollute the structures of the object,
resulting in large errors in the final model.

Comparison. Figure [§] shows the comparison of our
approach with four other methods on a building dataset.
We can see that both Poisson [11] and 2.5D Dual Con-
touring generate dense surfaces with large numbers of
bumps. The method in [13]] uses only the roof information
and also produce a 2.5D reconstruction. By making the
Manhattan-World assumption, the result of [16] is more
regularized. However, these two methods both produce
undesired structures. In contrast, our approach generates
the most compact and clean model. Besides, we can also
observe that our result is less regular than that of [16].
However, this can be improved by a post-processing step
using the coarse model optimization technique proposed

in [20].

Limitations. Our hypothesizing and selection based
reconstruction strategy is intended for reconstructing simple
polygonal surfaces. It may encounter computation bot-
tlenecks for large complex objects (e.g., urban scenes of
many buildings). Running on such objects results in a huge
number of candidate faces and the computation may not be
affordable. In our experiments, we did not encounter such
situations because we only tested our method on problems
of manageable scales.

7. Conclusions and Future Work

We introduced a novel framework that casts polygonal
surface reconstruction from point clouds as a binary label-
ing problem. Our framework is based on a hypothesizing
and selection strategy, and we proposed a novel optimiza-
tion formulation to obtain lightweight, watertight polygonal
surface models. We demonstrated the effectiveness of our
method on datasets captured by a range of devices. Since
our approach seeks to find an optimal combination of the in-
tersected planes under manifold and watertight constraints,
it is guaranteed to produce lightweight, manifold models
without boundary.

Future direction. Our current implementation exploit-
s planar primitives and it is suitable for reconstructing
piecewise planar objects. However, the hypothesizing and
selection strategy is general and has the potential to handle
various types of basic primitives. In future work, we
would like to extend our method to incorporate more types
of geometric primitives, such as cylinders and spheres.
To handle data with completely missing planes, we plan
to infer the missing planes by exploiting structural priors
(e.g., symmetry, parallelism, and orthogonality) to obtain
complete reconstructions.
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