
Course Notes 4: Reconstruct 3D Geometry∗

1 Introduction

So far, we covered camera models (i.e., image formation), camera calibration (i.e., recov-
ering camera intrinsic and extrinsic parameters), and how adding additional viewpoints
of a scene can greatly enhance our knowledge of the said scene. In the previous note, we
focused on epipolar geometry to relate points of one image plane to points in the other
without knowing any information about the 3D scene. We also discussed how to compute
the fundamental matrix from point correspondences. In this lecture note, we will discuss
how to recover information about the 3D scene from multiple 2D images. We mainly use
two images to explain the methodology.

2 Camera Matrices from the Fundamental Matrix

We can extract an accurate, initial estimate of camera matrices by using the Essential
matrix, which is a special case of the Fundamental matrix for normalized coordinates.
Recall that, by using the Essential matrix E, we assume that we have calibrated the cam-
era and thus know the intrinsic camera matrix K. We can either compute the Essential
matrix E either from the normalized image coordinates directly or from its relationship
with the Fundamental matrix F and intrinsic matrix K:

E = KTFK (2.1)

Because the Essential matrix assumes that we have calibrated cameras, we should
remember that it only has five degrees of freedom, as it only encodes the extrinsic pa-
rameters: the rotation R and translation t between the cameras. Luckily, this is exactly
the information that we want to extract to create our motion matrix. First, recall that
the Essential matrix E can be represented as

E = [t]×R (2.2)

As such, perhaps we can find a strategy to factor E into its two components. First,
we should notice that the cross product matrix [t]× is skew-symmetric. We define two
matrices that we will use in the decomposition:

W =

0 −1 0
1 0 0
0 0 1

 , Z =

 0 1 0
−1 0 0
0 0 0

 (2.3)

∗The contents are from
- D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach (2nd Edition).
- R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision (2nd Edition)
- K. Hata and S. Savarese. Course notes of Stanford CS231A
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One important property we will use later is that Z = diag(1, 1, 0)W up to a sign. Simi-
larly, we will also use the fact that ZW = ZW T = diag(1, 1, 0) up to a sign.

As a result of eigenvalue decomposition, we can create a block decomposition of a
general skew-symmetric matrix known up to scale. Thus, we can write [t]× as

[t]× = UZUT (2.4)

where U is some orthogonal matrix. Therefore, we can rewrite the decomposition as:

E = Udiag(1, 1, 0)(WUTR) (2.5)

Looking at this expression carefully, we see that it closely resembles the singular value
decomposition E = UΣV T , where Σ contains two equal singular values. If we know E
up to scale and we assume that it takes the form E = Udiag(1, 1, 0)V T , then we arrive
at the following factorizations of E:

[t]× = UZUT , R = UWV T or UW TV T (2.6)

We can prove that the given factorizations are valid by inspection. We can also prove
that there are no other factorizations. The form of [t]× is determined by the fact that its
left null space must be the same as the null space of E. Given unitary matrices U and
V , any rotation R can be decomposed into UXV T where X is another rotation matrix.
After substituting these values in, we get ZX = diag(1, 1, 0) up to scale. Thus, X must
be equal to W or W T .

Note that this factorization of E only guarantees that the matrices UWV T and
UW TV T are orthogonal. To ensure that R is a valid rotation, we simply make sure
that the determinant of R is positive:

R = (detUWV T )UWV T or (detUW TV T )UW TV T (2.7)

Similar to how the rotation R can take on two potential values, the translation vector
t can also take on several values. From the definition of cross product, we know that

t× t = [t]×t = UZUT t = 0 (2.8)

Knowing that U is unitary, we can find that the ‖[t]×‖F =
√

2. Therefore, our estimate
of t from this factorization will come from the above equation and the fact that E is
known up to scale. This means that

t = ±U

0
0
1

 = ±u3 (2.9)

where u3 is the third column of U . By inspection, we can also verify that we get the same
results by reformatting [t]× = UZUT into the vector t known up to a sign.

As illustrated in Figure 1, there are four potential R, t pairings since there exists two
options for both R and t. Intuitively, the four pairings include all possible pairings of
rotating a camera in a certain direction or rotating the camera in the opposite direction
combined with the option of translating it in a certain direction or the opposite direc-
tion. Therefore, under ideal conditions, we would only need to triangulate one point to
determine the correct R, t pair. For the correct R, t pair, the triangulated point P̂ exists
in front of both cameras, which means that it has a positive z-coordinate with respect
to both camera reference systems. Due to measurement noise, we often do not rely on
triangulating only one point, but will instead triangulate many points and determine
the correct R, t pair as the one that contains the most of these points in front of both
cameras.
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Figure 1: There are four possible solutions for extracting the relative camera rotation R
and translation t from the Essential matrix. However, only in (a) is the reconstructed
point in front of both of the cameras. (Figure taken from Hartley and Zisserman textbook
page 260)

3 Triangulation

One of the most fundamental problems in multiple view geometry is the problem of
triangulation, the process of determining the location of a 3D point given its projections
into two or more images.

Figure 2: The setup of the triangulation problem when given two views.

In the triangulation problem with two views, we have two cameras with known camera
intrinsic parameters K and K ′ respectively. We also know the relative orientations and
offsets R, T of these cameras with respect to each other. Suppose that we have a point
P in 3D, which can be found in the images of the two cameras at p and p′ respectively.
Although the location of P is currently unknown, we can measure the exact locations of
p and p′ in the image. Because K,K ′, R, T are known, we can compute the two lines of
sight ` and `′, which are defined by the camera centers O1, O2 and the image locations
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p, p′. Therefore, P can be computed as the intersection of ` and `′.

Figure 3: The triangulation problem in real-world scenarios often involves minimizing
the reprojection error.

Although this process appears both straightforward and mathematically sound, it
does not work very well in practice. In the real world, because the observations p and p′

are noisy and the camera calibration parameters are not precise, finding the intersection
point of ` and `′ may be problematic. In most cases, it will not exist at all, as the two
lines may never intersect.

A few variant methods are available for finding the optimal location of a 3D point
given its projections in two views. For the discussion of some of these methods, please
refer to Hartley and Strum (1997)1. In the following, we will discuss two commonly used
methods: the linear method and the non-linear method.

3.1 A linear method for triangulation

In this section, we describe a simple linear triangulation method that solves the lack of an
intersection point between rays. We are given two points in the images that correspond
to each other p = MP = (x, y, 1) and p′ = M ′P = (x′, y′, 1). By the definition of the
cross product, p× (MP ) = 0. We can explicitly use the equalities generated by the cross
product to form three constraints:

x(M3P )− (M1P ) = 0

y(M3P )− (M2P ) = 0

x(M2P )− y(M1P ) = 0

(3.1)

where Mi is the i-th row of the matrix M . Similar constraints can be formulated for p′

and M ′. Using the constraints from both images, we can formulate a linear equation of
the form AP = 0 where

A =


xM3 −M1

yM3 −M2

x′M ′
3 −M ′

1

y′M ′
3 −M ′

2

 (3.2)

This equation can be solved using SVD to find the best linear estimate of the point
P . Another interesting aspect of this method is that it can handle triangulating from

1R. Hartley and P. Strum. Triangulation. Computer vision and image understanding. 1997.
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multiple views as well. To do so, one simply appends additional rows to A corresponding
to the added constraints by the new views.

3.2 A nonlinear method for triangulation

Compared with the linear method, the triangulation problem for real-world scenarios is
often mathematically characterized as solving a minimization problem:

min
P̂
‖MP̂ − p‖2 + ‖M ′P̂ − p′‖2 (3.3)

In the above equation, we seek to find a P̂ in 3D that best approximates P by finding
the best least-squares estimate of the reprojection error of P̂ in both images. The
reprojection error for a 3D point in an image is the distance between the projection of
that point in the image and the corresponding observed point in the image plane. In the
case of our example in Figure 3, since M is the projective transformation from 3D space
to image 1, the projected point of P̂ in image 1 is MP̂ . The matching observation of P̂ in
image 1 is p. Thus, the reprojection error for point P in image 1 is the distance ‖MP̂−p‖.
The overall reprojection error found in Equation 3.3 is the sum of the reprojection errors
across all the points in the image. For cases with more than two images, we would simply
add more distance terms to the objective function.

min
P̂

∑
i

‖MP̂i − pi‖2 (3.4)

In practice, there exists a variety of very sophisticated optimization techniques that
result in good solutions to the problem2.

4 Structure from motion

At the end of Section 3.1, we hinted how we can go beyond two views of a scene to gain
information about the 3D scene. We will now explore the extension of the geometry
of two cameras to multiple cameras. By combining observations of points from multiple
views, we will be able to simultaneously determine both the 3D structure/geometry of the
scene and the parameters of the camera in what is known as structure from motion.

Here, we formally introduce the structure from motion problem. Suppose we have
m cameras with camera transformations Mi encoding both the intrinsic and extrinsic
parameters for the cameras. Let Xj be one of the n 3D points in the scene. Each 3D
point may be visible in multiple cameras at the location xij, which is the projection of
Xj to the image of the camera i using the projective transformation Mi. Structure from
motion is to recover both the structure of the scene (the n 3D points Xj) and the motion
of the cameras (the m projection matrices Mi) from all the observations xij.

In the general case with projective cameras, each camera matrix Mi contains 11
degrees of freedom, as it is defined up to scale:

Mi =

a11 a12 a13 b1
a21 a22 a23 b2
a31 a32 a33 1

 (4.1)

2 https://en.wikipedia.org/wiki/Non-linear_least_squares
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Figure 4: The setup of the general structure from motion problem.

We can set up the general structure from motion problem as estimating both the m
motion matrices Mi and n 3D points Xj from mn observations xij. Because cameras
and points can only be recovered up to a 4× 4 projective transformation up to scale (15
parameters), we have 11m + 3n− 15 unknowns in 2mn equations. From these facts, we
can determine the number of views and observations that are required to solve for the
unknowns.

4.1 An example structure from motion pipeline

After extracting the camera matrices from the Essential matrix, the estimates of the 3D
scenes can be known up to scale. The 3D points can be computed from the estimated
camera matrices via the triangulation methods described earlier.

The extension to the multi-view case can be done by chaining pairwise cameras.
We can use the Essential matrix or the algebraic approach (see Appendix B) to obtain
solutions for the camera matrices and the 3D points for any pair of cameras, provided that
there are enough point correspondences. The reconstructed 3D points are associated with
the point correspondences available between the camera pair. Those pairwise solutions
may be combined and optimized together in an approach called bundle adjustment as we
will see next.

4.2 Bundle adjustment

Bundle adjustment is a nonlinear method for solving the structure from motion prob-
lem. In the optimization, we aim to minimize the reprojection error, which is the pixel
distance between the projection of a reconstructed point into the estimated cameras and
its corresponding observations for all the cameras and all the points. Previously, when
discussing nonlinear optimization methods for triangulation, we focused primarily on the
two-camera case, in which we naturally assumed that each camera saw all the corre-
spondences between the two. However, since bundle adjustment handles several cameras,
it only calculates the reprojection error for only the observations that can be seen by
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each camera. Ultimately though, this optimization problem is very similar to the one we
introduced when talking about nonlinear methods for triangulation.

Two common approaches for solving bundle adjustment’s nonlinear optimization in-
clude the Gauss-Newton algorithm and the Levenberg-Marquardt algorithm. You can
refer to Appendix A about details on the Gauss-Newton algorithm and refer to the Hart-
ley and Zisserman textbook for more details on the Levenberg-Marquardt algorithm.

In conclusion, bundle adjustment has some important advantages and limitations
when compared with some other methods (e.g., the algebraic approach described in Ap-
pendix B). It is particularly useful because it can handle a large number of views smoothly
and also handle cases when particular points are not observable by every image. However,
the main limitation is that it is a particularly large minimization problem, as the param-
eters grow with the number of views. Additionally, it requires a good initial condition
since it relies on nonlinear optimization techniques. For this reason, bundle adjustment
is often used as the final step of most structure from motion implementations (e.g., after
the algebraic approach), as the algebraic approach may provide a good initial solution
for the optimization problem.

4.3 Reconstruction ambiguity

In this section, we discuss the inherent ambiguities involved in the reconstruction of a
scene from point correspondences. This topic will be discussed in a general context,
without reference to a specific method of carrying out the reconstruction.

Without some knowledge of a scene’s placement with respect to a 3D coordinate frame,
it is generally not possible to reconstruct the absolute position or orientation of a scene
from a pair of views (or in fact from any number of views). This is true independently
of any knowledge which may be available about the internal parameters of the cameras,
or their relative placement. For instance, the exact latitude and longitude of a house (or
any scene) cannot be computed, nor is it possible to determine whether its corridor runs
north-south or east-west. This may be expressed by saying that the scene is determined
at best up to a Euclidean transformation (rotation and translation) with respect to the
world frame.

Only slightly less obvious is the fact that the overall scale of the scene cannot be
determined. For example, it is impossible based on the images alone to determine the
height of a building. It may be 4 meters, 3 meters ... It is even possible that this is an
image of a doll’s house and the corridor is 10 cm wide. Our common experience leads us
to expect that ceilings are approximately 3m from the floor, which allows us to perceive
the real scale of the scene. This extra information is an example of subsidiary knowledge
of the scene not derived from image measurements. Without such knowledge therefore
the scene is determined by the image only up to a similarity transformation (rotation,
translation, and scaling).

Appendix A Gauss-Newton methgod for triangula-

tion

The general nonlinear least-squares problem is to find an x ∈ Rn that minimizes

‖r(x)‖2 =
m∑
i=1

ri(x)2 (A.1)
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where r is any residual function r : Rn → Rm such that r(x) = f(x) − y for some
function f , input x, and observation y. The nonlinear least-squares problem reduces to
the regular, linear least-squares problem when the function f is linear. However, recall
that, in general, our camera matrices are not affine. Because the projection into the
image plane often involves a division by the homogeneous coordinate, the projection into
the image is generally nonlinear.

Notice that if we set ei to be a 2 × 1 vector ei = MP̂i − pi, then we can reformulate
our optimization problem to be:

min
P̂

∑
i

ei(P̂ )2 (A.2)

which can be perfectly represented as a nonlinear least-squares problem.
In the following, we will explain how we can use the popular Gauss-Newton algorithm

to find an approximate solution to this nonlinear least-squares problem. First, let us
assume that we have a somewhat reasonable estimate of the 3D point P̂ , which we can
compute by the previous linear method. The key insight of the Gauss-Newton algorithm
is to update our estimate by correcting it towards an even better estimate that minimizes
the reprojection error. At each step we want to update our estimate P̂ by some δP :
P̂ = P̂ + δP .

But how do we choose the update parameter δP ? The key insight of the Gauss-Newton
algorithm is to linearize the residual function near the current estimate P̂ . In the case of
our problem, this means that the residual error e of a point P can be thought of as:

e(P̂ + δP ) ≈ e(P̂ ) +
∂e

∂P
δP (A.3)

Subsequently, the minimization problem transforms into

min
δP
‖ ∂e
∂P

δP − (−e(P̂ ))‖2 (A.4)

When we formulate the residual like this, we can see that it takes the format of the
standard linear least-squares problem. For the triangulation problem with N images, the
linear least-squares solution is

δP = −(JTJ)−1JT e (A.5)

where

e =

 e1...
eN

 =

p1 −M1P̂
...

pn −MnP̂

 (A.6)

and

J =


∂e1

∂P̂1

∂e1

∂P̂2

∂e1

∂P̂3
...

...
...

∂eN

∂P̂1

∂eN

∂P̂2

∂eN

∂P̂3

 (A.7)

Recall that the residual error vector of a particular image ei is a 2× 1 vector because
there are two dimensions in the image plane. Consequently, in the simplest two camera
case (N = 2) of triangulation, this results in the residual vector e being a 2N × 1 = 4× 1
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vector and the Jacobian J being a 2N × 3 = 4 × 3 matrix. Notice how this method
handles multiple views seamlessly, as additional images are accounted for by adding the
corresponding rows to the e vector and J matrix. After computing the update δP , we can
simply repeat the process for a fixed number of steps or until it numerically converges.
One important property of the Gauss-Newton algorithm is that our assumption that the
residual function is linear near our estimate gives us no guarantee of convergence. Thus,
it is always useful in practice to put an upper bound on the number of updates made to
the estimate.

Appendix B The algebraic approach to structure from

motion

Figure 5: In the algebraic approach, we consider sequential, camera pairs to determine
camera matrices M1 and M2 up to a perspective transformation. We then find a perspec-
tive transformation H such that M1H = [I 0] and M2H = [A B]

.

We will now cover the algebraic approach, which leverages the concept of the
fundamental matrix F for solving the structure from motion problem for two cameras.
As shown in Figure 5, the main idea of the algebraic approach is to compute two camera
matrices M1 and M2, which can only be computed up to a perspective transformation H.
Since each Mi can only be computed up a perspective transformation H, we can always
consider a H such that the first camera projection matrix M1H

−1 is canonical. Of course,
the same transformation must also be applied to the second camera which leads to the
form shown:

M1H
−1 = [I 0] M2H

−1 = [A b] (B.1)

In order to accomplish this task, we must first compute the fundamental matrix F
using the eight point algorithm covered in the previous course notes. We now will use F
to estimate the projective camera matrices M1 and M2. In order to do this estimation,
we define P to be the corresponding 3D point for the corresponding observations in the
images p and p′. Since we have applied H−1 to both camera projection matrices, we must
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also apply H to the structure, giving us P̃ = HP . Therefore, we can relate the pixel
coordinates p and p′ to the transformed structure as follows:

p = M1P = M1H
−1HP = [I | 0]P̃

p′ = M2P = M2H
−1HP = [A | b]P̃

(B.2)

An interesting property between the two image correspondences p and p′ occur by some
creative substitutions:

p′ = [A|b]P̃
= A[I|0]P̃ + b

= Ap+ b

(B.3)

Using Equation B.3, we can write the cross product between p′ and b as:

p′ × b = (Ap+ b)× b = Ap× b (B.4)

By the definition of cross product, p′ × b is perpendicular to p′. Therefore, we can write:

0 = p′T (p′ × b)
= p′T (Ap× b)
= p′T · (b× Ap)
= p′T [b]×Ap

(B.5)

Looking at this constraint should remind you of the general definition of the Fundamental
matrix p′TFp = 0. If we set F = [b]×A, then extracting A and b simply breaks down to
a decomposition problem.

Let us begin by determining b. Again, by the definition of cross product, we can
simply write Fb as

Fb = [b]×Ab = (b× A)b = 0. (B.6)

Since F is singular, b can be computed as a least-square solution of Fb = 0, with ‖b‖ = 1,
using SVD.

Once b is known, we can now compute A. If we set A = −[b]×F , then we can verify
that this definition satisfies F = [b]×A:

[b×]A′ = −[b×][b×]F

= (bbT − |b|2I)F

= bbTF + |b|2F
= 0 + 1 · F
= F

(B.7)

Consequently, we determine the two expressions for our camera matrices M1H
−1 and

M2H
−1:

M̃1 = [I 0] M̃2 = [−[b×]F b] (B.8)
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Before we conclude this section, we want to give a geometrical interpretation for b. We
know b satisfies Fb = 0. Remember the epipolar constraints we derived in the previous
course notes, which found that the epipoles in an image are the points that map to zero
when transformed by the Fundamental matrix (i.e. Fe2 = 0 and F T e1 = 0). We can
see, therefore, that b is an epipole. This provides a new set of equations for the camera
projection matrices (Eqs. B.9).

M̃1 = [I 0] M̃2 = [−[e×]F e] (B.9)
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