What | describe today is basically this paper

Streaming Computation of Delaunay Triangulations

Martin Isenburg Yuanxin Liu
University of California University of North Carolina
at Berkeley at Chapel Hill

Jonathan Shewchuk Jack Snoeyink
University of California University of North Carolina
at Berkeley at Chapel Hill

Figure 1: Streaming computation of Delaunay triangulations in 2D (Neuse River) and 3D. Blue quadrants or octants are unfinalized space where future points will arrive. Purple
triangles and tetrahedra are in memory. Black points and their triangles and tetrahedra have already been written to disk or piped to the next application.

Abstract

We show how to greatly accelerate algorithms that compute Delau-
nay triangulations of huge, well-distributed point sets in 2D and 3D
by exploiting the natural spatial coherence in a stream of points. We
achieve large performance gains by introducing spatial finalization
into point streams: we partition space into regions, and augment
a stream of input points with finalization tags that indicate when a
point is the last in its region. By extending an incremental algo-
rithm for Delaunay triangulation to use finalization tags and pro-

duce streaming mesh output, we compute a billion-triangle terrain
renrecentation for the Nence River evetem from 11 2GR of T TDAR

Delaunay triangulator, by Agarwal, Arge, and Y1 [2005]; see Sec-
tion 6. We also construct a nine-billion-triangle, 152 GB triangula-
tion in under seven hours using 166 MB of main memory.

A streaming computation makes a small number of sequential
passes over a data file (ideally, one pass), and processes the data us-
ing a memory buffer whose size is a fraction of the stream length.
We have implemented two- and three-dimensional triangulators that
read streams of points as input, and produce Delaunay triangu-
lations in streaming mesh formats. The memory footprint of the

2D triangulator is typically less than 0.5% of the output mesh size
(sometimes much less). The memory footprint of the 3D triangu-

O W Wavefront .obj file - Wikipedia X +

The Free Encyclopedia

Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate

Contribute

Help

Learn to edit
Community portal
Recent changes
Upload file

Tools

What links here
Related changes
Special pages
Permanent link
Page information
Cite this page
Wikidata item

Print/export

Download as PDF
Printable version

Languages

Deutsch
Frangais
ltaliano
BAFE
Portugués
Pycckumn

C @

O 8 https://fen.wikipedia.org/wiki/Wavefront_.obj_file

5 % =2 vy o 0 2 = & @

»

= Not logged in Talk Contributions Create account Log in

Article Talk Read Edit View history ‘Search Wikipedia

Wavefront .obj file

Q|

From Wikipedia, the free encyclopedia

For other uses, see Obj (disambiguation).

OBJ (or .OBJ) is a geometry definition file format first developed by Wavefront Technologies for its Advanced
Visualizer animation package. The file format is open and has been adopted by other 3D graphics application
vendors.

The OBJ file format is a simple data-format that represents 3D geometry alone — namely, the position of each
vertex, the UV position of each texture coordinate vertex, vertex normals, and the faces that make each
polygon defined as a list of vertices, and texture vertices. Vertices are stored in a counter-clockwise order by
default, making explicit declaration of face normals unnecessary. OBJ coordinates have no units, but OBJ files
can contain scale information in a human readable comment line.

Contents [hide]
1 File format

1.1 Geometric vertex

1.2 Parameter space vertices

1.3 Face elements
1.3.1 Vertex indices
1.3.2 Vertex texture coordinate indices
1.3.3 Vertex normal indices
1.3.4 Vertex normal indices without texture coordinate indices
1.3.5 Line elements

1.4 Other geometry formats

1.5 Reference materials

1.6 Relative and absolute indices

2 Material template library
2.1 Basic materials

2.2 Texture maps
2.3 Texture options
2.4 Vendor specific alterations
2.4.1 Physically-based Rendering

3 See also

OBJ geometry format

Filename .0bj

extension

Internet media type model/obj [

Developed by Wavefront
Technologies

Type of format 3D model format

Unix pipes for streaming

136 12 Handling and processing massive terrains

£ Streaming is realised with Unix pipes

The key to implementing streaming of geometries is to use Unix pipes
(also called pipelines).

Pipelines were designed by Douglas Mcllroy at Bell Labs during
the development of Unix, and they allow to chain several processes
together. The output of a process becomes the input of the next one,
and so on (the data flowing through the process is the stream). Given 2
processes, the 2nd one can usually start before the 1st one has finished
processing all the data.

In Unix, the pipe operator is the vertical line “|”, and several com-
mands can be chained with it: “cmdl | cmd2 | cmd3”. A simple
example would be “1s -1 | grep json | wc -1” which would:

lllll

1. list all the files in the current directory (one file name per line);

2. send this to the operator grep which would discard all lines not
having the keyword "json";

3. send this to the operator “wc -1” which counts the number of
line.

AA

startin Delaunay triangulator

triangles 388

P -

@® Insert , '

. »
Delete . J v
! - < B B p
. b/ y .
Insert random points ;
| ES
200 ; v v
Clear { 5
’ -
a
777 > » a
A .
ES A
.) | El
E -
- +
2 &
» 5
= - . . ,
*
o
-
“ » A
. =
. >
o "
X e
. B
y - s &
"
a &
- -
& -
o - ’
B I 4
a & Y !
[» y 4
= - % A4
> .
-
r -
Rl
- & N & .
£l
g n
]
Es -
.
a "
* * \ g
=z
= R v) e .)
- " K B
B \ - |
s
- -
- - "

If all in-memory it’s “easy”

Streaming DT architecture

output
triangulation

Triangulating
each cell

QT cells

|

Finaliser based on quadtree

© 00 J O Ot i Wi+

9 points and a "normal” stream

. XY Z
. XY Z
. XY Z
. XY Z
. XY Z
. XY Z
. XY Z
. XY Z
. XY Z

l. xyz
2. XV Z
3. XYy Z
finalise c3
4. Xy 7
finalise co
D. Xy Z
6. Xy Z
7. Xy Z
finalise cg
8. Xy Z
9. Xy z
finalise cq

9 points and a stream with finalisation tags

= -
T O
| O
| O m
O > 0p)
D > o
2 §
S - —
C Q O
4 =
n -
e = 3
[
d s
O < D
O e
e — .hl
= Q
K - W

N O

NS

|
’ J -
7~
N
N
RN
| \\\\ /
~ \ /
N //// ,\\\
\ | h s
N 72
\ / o
N
"\ /N s
_ /
\ / - _
N, 7
_ \ /
S / \
~ \\ 2

X

O Ay
; ~<

L\&MW\/’V‘V\

/ N /
/ // /
—— - ===
” \ RN
\ _/ s - =
N "
Ly

Spatial coherence

position in file/stream

V\\
- last point position
/

first point position

AHN3 - 37EN1

order in file

B 0 '
120M .
240M
360M

Bl 430M

low spatial coherence

high spatial coherence

Spatial coherence

position in file/stream

V\\
- last point position
/

first point position

low spatial coherence

high spatial coherence

Spatial coherence

SBE AR occupied cells — | , A ;g
b e - : - am Ints .
AR of grid at depth six - TIPS Pl Sy [T (-
— S g o . - = of the actual terrain ,
. es=s - AR A : > ‘wb‘f' e - \ all
- - -1 ﬁ:m: 79 a o éE*F"‘:‘E&NT. - 1
. LA AR T points from
it A - RS R S T e 'é.?é‘:a’l'"’j}’%lf" - -
AT R e S S Gt BT beginning of
R ey e . T LT) I ey e BTy S BT . .
i B L EEBataamcaia g msepse T inal LGS T all points from stream
Sl s e L R N S e e L I E L A e T e . d of i
A SRy o e e L S R S ST S A SR A L — cendotstream — points from
LA AL B B LR B L . : : : : : : : - : | b . . d
E e T R Lo eginning an
LB IR AL Mimis miwmiwl»- d
EEEEEEEaa e end of stream
i e | . S |
B == : b e e e | |
e e M o I
= 1 e e =
‘ | -1 - -] I - - T
S T P VY, S LA T T o 2 ke T A B RIS o T L I e ey 1701 i = ! ! | H 11 -
—er 72 T S e TR a3 e = = | = -
B A R e - SES==s==
;gh—-i ?13%:(.LL; ;ii'v'i Sn.-s ,"" -, !-‘ ‘;“?‘ 2 I ‘ 5 L 1 o141
i ML g % o i
~ - ‘ A T b d el et d i] | —— ! |
color codes deadmgete B e cenler color ‘ -k i e, S /
e P L1 el Ein goh N e . .) | - . .
position of point L L indicates first point ~ boundary color i
- N . l 2‘-;.7)-51 3 . ‘. .
In stream \ 1 indicates last point =

(a) 6 million point Baisman Run dataset in Broadmoor, (b) 500 million point Neuse river basin dataset in North
Maryland Carolina

Figure 2.4: Spatial coherence as inherent property of real-world datasets. Adapted from Isenburg et al.
[2006b, p. 3].

(geol015) ~/projects/sst git:(develop) (5m 1.94s)
-vv /Users/hugo/data/ahn3/c_37enl_big_delft.laz 20 |

-vv > /dev/null

LYLO=UL=1UI1I 10.
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:
2023-01-10T16:

L4 .

24 :
24:
24:
24:
24 :
24:
24:
24:
24:
24:
24:
24:
24:
24:
24 :
24:
24:
24:
24:
24:
24:
24:
24:
24:
24:
24 :
24:
24:
24:
24:
24:
24:
24:
24:
24:
24:

55 LULL.

sstdt2:
sstdt2:
sstdt2:
sstdt2:
sstdt2:
sstdt2:
sstdt2:
sstdt2:
sstdt2:
sstdt2:
sstdt2:
sstdt2:
sstdt2:
sstdt2:
sstdt2:
sstdt2:
sstdt2:
sstdt2:

sstfin
sstfin

sstdt2:
sstdt2:
sstdt2:
sstdt2:
sstdt2:
sstdt2:
sstdt2:
sstdt2:
sstdt2:
sstdt2:
sstdt2:
sstdt2:

sstdt2
sstdt2
sstdt2
sstdt2

« LI LAllyu LawLuli
:triangulator
:triangulator
:triangulator
:triangulator
:triangulator
:triangulator
:triangulator
:triangulator
:triangulator
:triangulator
:triangulator
:triangulator
:triangulator
:triangulator
:triangulator
:triangulator
:triangulator
:triangulator

WAlLRN.O

walk.4
walk.3

Cell 43--74 finalised (3775 vertices)

walk.3
walk.4

Cell 43--75 finalised (4637 vertices)
Cell qtcl[1, 2, 0, 3, 0, 3] finalised
Cell qtcl[1, 2, 0, 3, 0] finalised

walk.3
walk.4

Cell 43--76 finalised (5503 vertices)

walk.3

Cell 43--77 finalised (10477 vertices)
Cell qgtc[l1, 2, 0, 3, 1, 2] finalised

walk.3
walk.3
walk.3
walk.3

Third pass %

7

:triangulator
:triangulator
:triangulator
:triangulator
:triangulator
:triangulator
:triangulator
:triangulator
:triangulator
:triangulator
:triangulator
:triangulator

dt.number_of

Cell 43--78 finalised (7309 vertices)

walk.3
walk.4

Cell 43--79 finalised (1294 vertices)
Cell qtcl[1, 2, 0, 3, 1, 3] finalised

Cell qtcl[1, 2, 0, 3,

1] finalised

Cell qtcl[1, 2, 0, 3] finalised
Cell qtcl[1, 2, 0] finalised

Cell gtc[1, 2] finalised
Cell gtc[1] finalised

Cell gtc[] finalised

Finalise the quadtree root cell

_vertices() = 0

max # points in DT during process: 242733
max # triangles in DT during process: 300567

7

Some questions

= The raw point clouds are seldom used, instead gridded terrains (at for instance 0.5mX0.5m) are
used. How are these created?

= Theideas behind streaming are very useful for certain local problems, but unfortunately they

cannot be used directly for global problems such as visibility or flow modelling”. Explain why that
is with a concrete example.

