
GEO1015/2018 Lesson 10

Handling massive terrains

Lesson 10∗

1 Raster Pyramids 2

2 Indexing points in 3D space with the kd-tree 3

3 Streaming paradigm to construct massive TINs and grids 7

4 Notes & comments 7

In this lesson we discuss 3 methods to deal with massive terrains (or input datasets).
“Massive” is a vague and undefined term in GIS, and it is continuously changing: 10 years

ago a point cloud dataset containing 5 million points was considered massive, while in 2018
it is not. There are some massive datasets even in small areas, eg a Lidar one of Dublin1,
containing around 1.4 billion points with a density of 300pts/m2, which was collected with
airborne laser scanners. The Lidar dataset of the Netherlands, AHN2, has about 10pts/m2

covering the whole country, thus comprising more than 700 billion points which can be freely
downloaded.

For the purposes of this course, we define as “massive” a dataset that does not fit into
the main memory of a standard computer, which is usually around 16GB. This definition
makes practical sense because working with data outside of the main memory of a com-
puter is substantially slower (about 2 orders of magnitude for solid state drives and 5 for
hard drives), causing many standard data processing algorithms to become impractical with
massive datasets. Keep in mind that not only the (xyz) coordinates of the points of a point
cloud need to be stored, but also often attributes for each point (LAS has several standard
ones). Also, in the case of TINs, the geometry of the triangles—and potentially the topological
relationships between them—need to be explicitly stored.

What is ironic is that while datasets like AHN3 are being collected in several countries, in
practice they are seldom used since the tools that practitioners have, and are used to, usually
cannot handle such massive datasets. Indeed, the traditional GISs and terrain modelling tools
are limited by the main memory of computers: if a dataset is bigger then operations will be
very slow, and will most likely not finish.

∗cba Hugo Ledoux, Ravi Peters, Ken Arroyo Ohori. This work is licensed under a Creative Commons Attri-
bution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)
(last update: December 10, 2018)

1https://www.gim-international.com/content/news/world-s-densest-urban-aerial-lidar-dataset-released
2Actueel Hoogtebestand Nederland: http://www.ahn.nl

http://creativecommons.org/licenses/by/4.0/
https://www.gim-international.com/content/news/world-s-densest-urban-aerial-lidar-dataset-released
http://www.ahn.nl

GEO1015/2018 Lesson 10

original grid y

x

x/2

y/2

x/4

y/4

x/8
y/8

(a)

1212

7 5 6 8

812

4 9

622

58

7

9 8.5

5 4.8

6.8

(b)

Figure 1: (a) The pyramid for a given raster file. (b) One 4x4 raster downsampled twice with
average-method.

1 Raster Pyramids

Raster pyramids are a well-known, standardised, and widely used mechanism to deal with
large grids. They are also used for images (and called ‘tiled pyramidal images’ or ‘overview
images’) and many software support them since they optimise visualisation and thus the
speed of a software dealing with large images.

As shown in Figure 1, a pyramid means creating recursively copies at lower-resolutions of
an original raster (having x columns and y rows), the first copy having a size (x

2 , y
2), the second

(x
4 , y

4), and so on (the number of images is arbitrary and defined by the user). Notice that the
extra storage will be maximum 1

3 of the original raster: the first pyramid is 1
4 , the second 1

16 ,
the third 1

64 , etc.
Each lower-resolution copy of the raster is obtained with downsampling. The most common

method is based on averaging the 4 pixels that are merged into one (as shown in Figure 1b), but
other methods are possible such as nearest neighbour (interpolation method as see in Lesson
04)

In practice: gdaladdo For certain formats, eg GeoTIFF, the lower-resolutions rasters can
be stored directly in the same file as the original raster, and this is standardised. For
other formats in GIS, eg the ASCII format ‘.asc’, the pyramids are stored in an auxiliary
file with the extension ‘.ovr’, which is actually in TIFF format.

The GDAL utility gdaladdo (https://www.gdal.org/gdaladdo.html) allows us to cre-
ate automatically the pyramids for a few formats. The downsampling method can be
chosen.

2 of 8

https://www.gdal.org/gdaladdo.html

GEO1015/2018 Lesson 10

Figure 2: QGIS has the option to create the pyramids automatically.

x

y

z

x

y

z

splitting dimension

Figure 3: Example of kd-tree in 3D, with the dimensions used at each level.

In QGIS, one can call gdaladdo, or there is also a built-in mechanism, as can be seen in
Figure 2

2 Indexing points in 3D space with the kd-tree

A k-dimensional tree, kd-tree in short, is a data structure to organise points in a k-dimensional
space; it also partitions the space into regions. In the context of terrains, k is in most cases
either 2 or 3. Notice that in practice we would never say a “2d-tree” or a “3d-tree”: we call
them “kd-tree of dimension 2 (or 3)”.

As shown in Figure 3, a kd-tree is a binary tree (thus each node has a maximum of 2 children,
if any), and the main idea is that each level of the tree compares against one specific dimension.
We ‘cycle through’ the dimensions as we walk down the levels of the tree.

Let S be a set of points in Rk, and let κ be the kd-tree of dimension k of S. Each point pi in S
is a node of κ. A node implies a hyperplane that divides the space into 2 halfspaces according
to one dimension; the hyperplane is perpendicular to the dimension of the node (which is
linked to the level in the tree). Points with a lower coordinate value than the node along that

3 of 8

GEO1015/2018 Lesson 10

5

10

1050

(1, 3)

(2, 7)(2, 7)

(4, 8)

(5, 6)

(8, 9)

(9, 5)

(6, 4)

(9, 1)

(5, 6)

(2, 7)

(1, 3) (4, 8)

(9, 5)

(6, 4)

(9, 1)

(8, 9)

x

x

y

y

Figure 4: Example of kd-tree for 8 points in the R2.

dimension (corresponding to ‘left’ or ‘under’ the hyperplane) are put into the left subtree of
the node, and the other ones into the right subtree.

Consider the kd-tree in 2D in Figure 4. The first dimension splits the data into 2 halfplanes
along the line x = 5, then each of these halfplanes is independently split according to the y
dimension (with the lines y = 7 and y = 5), then the 4 regions are split according to the x
dimension, and so on recursively.

Construction of a kd-tree. In theory, any point could be used to divide the space according
to each dimension, and that would yield a valid kd-tree. However, selecting the median point
creates a balanced binary tree, which is desirable because it will improve searching and visiting
the tree (see below). The tree in Figure 4 is balanced, but if for instance (1, 3) had been selected
as the root, then there would be no children on the left, and all of them would be on the right.

The median point is the one whose value for the splitting dimension is the median of all
the points involved in the operation. This implies that to construct the kd-tree of a set S of n
points, as a first step n values need to be sorted, which is a rather slow operation. In practice,
most software libraries will not sort n values, but rather sample randomly a subset of them
(say 1%), and then then use the median of this subset as the splitting node in the graph. While
this does not guarantee a balanced tree, in practice the tree should be close to balanced.

The tree is built incrementally, ie points are added in the tree one after the other, and after
each insertion the tree is updated. Each insertion is simple: traverse the tree starting from the
root, go left or right depending on the splitting dimension value, and insert the new point as
a new leaf in the tree. Figure 5 illustrates this for one point.

Observe that this insertion renders the tree unbalanced. Methods to balance a kd-tree exists
but are out of scope for this course.

Nearest neighbour query in kd-trees. The nearest neighbour query aims to find the point c
in a set S that is the nearest (according to the Euclidean distance) to a query point q. It can be
performed brute-force (comparing distance to all points in S), but this is slow. An alternative
is to construct the Voronoi diagram (actually the Delaunay triangulation), and navigate in the
cells; this works but is in practice not as efficient as using a kd-tree.

First observe that the obvious method to find the cell in the kd-tree containing q does not
work because q can be far away in the tree. Figure 6a illustrates this: c is (6, 4) but is located in
the right subtree of the root, while q is in the left subtree.

4 of 8

GEO1015/2018 Lesson 10

5

10

1050

(1, 3)

(2, 7)(2, 7)

(4, 8)

(5, 6)

(8, 9)

(9, 5)

(6, 4)

(9, 1)

(5, 6)

(2, 7)

(1, 3) (4, 8)

(9, 5)

(6, 4)

(9, 1)

(8, 9)

x

x

y

y

(7, 3)

(7, 3) x

Figure 5: Insertion of a new point (7, 3) in a kd-tree.

The idea of the algorithm we are presenting here is to traverse the whole tree (in depth-first
order), but use the properties of the tree to quickly eliminate large portions of the tree. The
eliminated subtrees are based on their bounding boxes. As we traverse the tree, we must keep
track of the closest point ctemp so far visited.

The algorithm starts at the root, stores the current closest point ctemp as the root, and visits
the nodes in the tree in the same order as for the insertion of a new point. This order is the
one that is most promising, because we expect c to be close to the insertion location (albeit this
is not always the case). At each node ni it updates ctemp if it is closer. For this, the Euclidean
distance is used. For the example in Figure 6b, point (5, 6) is the first ctemp, and then although
(2, 7) and (1, 3) are visited, neither is closer and thus after that step ctemp = (5, 6).

The algorithm then recursively visits the other subtrees, and checks whether there could be
any points, on the other side of the splitting hyperplane, that are closer to q than ctemp. The
idea behind this step is that most of the subtrees can be eliminated by verifying whether the
region of the bounding box of the subtree is closer than the current dist(q, ctemp), dist() being
the Euclidean distance between 2 points. If that distance is shorter, then it is possible that one
point in the subtree is closer than ctemp, and thus that subtree must be visited. If not, then the
whole subtree can be skipped, and the algorithm continues.

Figure 6c shows this idea after (1, 3) has been visited. ctemp is (5, 6), and we must decide
whether the subtree right of (2, 7) must be visited. In this case it must not be visited because
the bounding box (light blue region) is 3.0unit from q, and dist(q, ctemp) is around 2.07; it is
thus impossible that one point inside the subtree be closer than (5, 6).

The next step is verifying whether the subtree right of the root could contain a point closer
than ctemp. In the Figure 6d, this is possible since the bounding box is only 0.5unit from q, and
thus the subtree must be visited.

The algorithm continues until all subtrees have either been visited or eliminated. At the
end, c is (6, 4).

The algorithm can be extended in several ways by simple modifications. It can provide the
m nearest neighbours to a point by maintaining m current closest points instead of just one. A
branch is only eliminated when m points have been found and the branch cannot have points
closer than any of the m current bests.

5 of 8

GEO1015/2018 Lesson 10

5

10

1050

(1, 3)

(2, 7)(2, 7)

(4, 8)

(5, 6)

(8, 9)

(9, 5)

(6, 4)

(9, 1)

(5, 6)

(2, 7)

(1, 3) (4, 8)

(9, 5)

(6, 4)

(9, 1)

(8, 9)

x

x

y

y

q = (4.5, 4)

(4.5, 4)

far

(a)

5

10

1050

(1, 3)

(2, 7)(2, 7)

(4, 8)

(5, 6)

(8, 9)

(9, 5)

(6, 4)

(9, 1)

(5, 6)

(2, 7)

(1, 3) (4, 8)

(9, 5)

(6, 4)

(9, 1)

(8, 9)

x

x

y

y

q = (4.5, 4)

(b)

5

10

1050

(1, 3)

(2, 7)(2, 7)

(4, 8)

(5, 6)

(8, 9)

(9, 5)

(6, 4)

(9, 1)

(5, 6)

(2, 7)

(1, 3) (4, 8)

(9, 5)

(6, 4)

(9, 1)

(8, 9)

x

x

y

y

?
q = (4.5, 4)

dist

(c)

5

10

1050

(1, 3)

(2, 7)(2, 7)

(4, 8)

(5, 6)

(8, 9)

(9, 5)

(6, 4)

(9, 1)

(5, 6)

(2, 7)

(1, 3) (4, 8)

(9, 5)

(6, 4)

(9, 1)

(8, 9)

x

x

y

y

?

q = (4.5, 4)

(d)

Figure 6: Several states for the nearest neighbour query based on a kd-tree.

6 of 8

GEO1015/2018 Lesson 10

3 Streaming paradigm to construct massive TINs and grids

The incremental construction algorithm for the Delaunay triangulation, presented in Les-
son 05, will not work if the size of the input dataset is larger than the main memory. Or if
it works, it will be very slow.

To deal with massive datasets, one can also design external memory algorithms. These
basically use disks to store temporarily files that do not fit in memory, and instead of using
the mechanism of the operating system, they design explicit rules for the swapping of data
between the disk and the memory. The main drawbacks of this approach are that the design
of such algorithms is rather complex, and that for different problems different solutions have
to be designed.

An alternative approach to dealing with massive datasets is spatial streaming, which mixes
ideas from external memory algorithms with different ways to keep the memory footprint
very low. The basic idea of this paradigm is that of a streaming mesh: a format for representing
triangulations (or meshes) as a set of interleaved vertices, triangles and vertex finalization tags
that indicate when a vertex will not be used anymore. Standard mesh formats do not use
finalization and can therefore suffer if the mesh is larger than memory. These tags allows us
to keep in memory only a small part of a large dataset.

A streaming mesh basically documents the spatial coherence of a dataset, which Isenburg
et al. (2006a) defines as: “a correlation between the proximity in space of geometric entities
and the proximity of their representations in [the file]”. They also demonstrate that real-world
point cloud datasets often have natural spatial coherence and they exploit this coherence to
compute Delaunay triangulations of massive datasets (instead of reordering the points, which
is expensive); this coherence is expected since LiDAR samples are often stored in the order
they were collected.

The ideas behind streaming are very useful for certain local problems (eg interpolation and
creation of grids), but unfortunately they cannot be used directly (or it would be extremely
challenging) for global problems such as visibility or flow modelling.

You need to watch this YouTube video. It explains how the streaming concepts can be
applied to constructing the Delaunay triangulation of massive datasets. You do not need
to read the full paper, which is Isenburg et al. (2006a).
https://youtu.be/DRCGTF2y_tM

You need to read the following paper. It summarises the other paper and shows how
large rasters can be constructed with spatial interpolation.

Isenburg M, Liu Y, Shewchuk JR, Snoeyink J, and Thirion T (2006b). Generating raster
DEM from mass points via TIN streaming. In Geographic Information Science—GIScience
2006, volume 4197 of Lecture Notes in Computer Science, pages 186–198. Münster, Germany
PDF: http://dx.doi.org/10.1007/11863939_13

4 Notes & comments

The description of the kd-tree and the nearest neighbour query is adapted from Wikipedia
(https://en.wikipedia.org/wiki/K-d_tree) and the lecture notes entitled “kd-Trees—CMSC

7 of 8

https://youtu.be/DRCGTF2y_tM
http://dx.doi.org/10.1007/11863939_13
https://en.wikipedia.org/wiki/K-d_tree

GEO1015/2018 Lesson 10

420” from Carl Kingsford (available at https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/
kdtrees.pdf).

(Vitter, 2001) provides an overview of external algorithms..

References & further reading

Isenburg M, Liu Y, Shewchuk JR, and Snoeyink J (2006a). Streaming computation of Delaunay
triangulations. ACM Transactions on Graphics, 25(3):1049–1056.

Isenburg M, Liu Y, Shewchuk JR, Snoeyink J, and Thirion T (2006b). Generating raster DEM
from mass points via TIN streaming. In Geographic Information Science—GIScience 2006, vol-
ume 4197 of Lecture Notes in Computer Science, pages 186–198. Münster, Germany.

Vitter JS (2001). External memory algorithms and data structures: dealing with massive data.
ACM Computing Surveys, 33(2):209–271.

8 of 8

https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/kdtrees.pdf
https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/kdtrees.pdf

	Raster Pyramids
	Indexing points in 3D space with the kd-tree
	Streaming paradigm to construct massive TINs and grids
	Notes & comments

