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Until now, we have described the shape of a terrain using the boundary representation.
The boundary representation, or B-rep, is the most commonly used shape representation for
DTMs, ie we model a terrain by describing explicitly its boundary surface, eg using points,
grid cells, triangles, or contour lines. The medial axis transform (MAT) gives us another way
to represent shape. Contrary to the B-rep, the MAT describes a shape by its skeleton instead
of its boundary (compare Figures 1b and 1c).

The MAT can be considered a dual representation to the B-rep, similar to how the Voronoi
diagram is dual to the Delaunay triangulation. Both the MAT and the B-rep contain exactly
the same information and it is possible to convert one to the other without loss of informa-
tion. However, the two different representations expose different properties of a shape which
means they both have their own unique use cases.

For example, the MAT allows us to split a shape into parts simply by looking at the branches
of the skeleton. The resulting shape parts often turn out to be meaningful in practice. Observe
for instance that for the gingerbread man in Figure 1, its arms, legs, torso and head each have
one corresponding branch in its medial axis (compare Figures 1a and 1c). For DTMs, equally
meaningful decompositions into parts can be made, eg the MAT allows us to decompose a
DTM into separate hills, watercourses and other objects on top the DTM (see Figure 2).

In the context of DTMs both the 2D and the 3D MAT are used. The 2D MAT is used for
operations on sets of 2D curves, such as isolines or river networks. In these cases no elevation
information is used to construct the MAT. With the 3D MAT on the other hand, the whole
surface of the terrain, including the elevation, is used during construction.
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Figure 1: Different ways to represent the shape of gingerbread man

watercourse
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Figure 2: For a terrain the MAT is typically subdivided into open clusters that correspond to
features such as hills, buildings and watercourses in the terrain. Shown here is a vertical
cross section of a DTM. Exterior MAT in light blue, interior MAT in dark blue.
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1 Defining the MAT

There are two equivalent definitions of the MAT1. One is based on the distance transform,
and one is based on medial balls. Both definitions describe how to obtain the MAT from the
boundary, denoted B of an object (Figure 1b). And both can be applied to both 2D and 3D
shapes.

Grassfire analogy Imagine that everything is made of grass and that all the points on B are
simultaneously set on fire at time t = 0. The fire spreads evenly to all directions at
constant speed. Now, the MAT is defined as the set of points where the fire front meets
itself. This concept is illustrated in Figure 1e, where each contour can be seen as a fire
front at some constant time t. The medial axis is drawn where the fire front meets itself.

Medial balls A medial ball is a ball that fits completely inside B and does not contain any other
ball that would fit inside B. The MAT is defined as the set of points that are the centres
of all medial balls of B (see Figure 1d). Notice that each medial ball touches B in at least
two points, called its feature points.

As illustrated in Figure 1c, the MAT can be subdivided into medial branches and junctions.
Junctions are locations where three or more medial branches coincide. The points of the MAT
are called medial atoms, or simply atoms. Observe that if an atom has exactly two feature points,
it is part of a medial branch, and if it has more than two feature points it lies on a junction or on
the tip of a medial branch. The medial branches, its junctions and how those are are connected
define the medial structure.

For a 2D object, such as in Figure 1, the medial branches are curves and the the junctions are
points. However, for a 3D object, the medial branches can also be surfaces (see Figure 3), and
the junctions can also be curves. The branches of the 3D MAT are therefore also called medial
sheets.

1.1 Medial geometry

The medial geometry describes how atoms are related to the object boundary B. It is defined
for each medial atom that is part of a medial sheet. Figure 4 illustrates the complete medial

1Sometimes the MAT is referred to as medial axis function, stick figure, skeleton or surface skeleton. Inventor
Harry Blum finally settled on symmetry axis, as he considered symmetry to be the crucial role of the MAT
(Blum, 1973).

Figure 3: An example of the 3D MAT (Amenta et al., 2001).
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Symbol Description

B(c, r) medial ball
c medial atom
r radius
p, q feature points
~sp, ~sq spoke vectors
θ separation angle
~b medial bisector

Figure 4: The geometry of a medial atom.

geometry of an atom. The medial ball B has the atom c at its center and has a radius r, ie the
shortest distance from c to B. The medial ball B touches the boundary B at the feature points
p and q. The vectors from c to p and q are called the spoke vectors, denoted ~sp and ~sq. The
angle between the spoke vectors is called the separation angle, denoted θ and the bisector of the
spoke vectors is called the medial bisector, denoted~b.

Using the medial geometry we can describe a number of interesting properties of the MAT.

1. Any atom c is always medial to B, ie it is equidistant to the feature points of c (hence the
name of the MAT).

2. The medial ball B is always tangential to B at the feature points.

3. The radius r can be used to define the ‘thickness’ of an object, since it measured the
distance to the ‘middle’ of the object where the MAT is located.

1.2 Exterior MAT and the MAT of a DTM

The MAT can be divided into an interior part and an exterior part. So far we have only looked
at the interior MAT, which consists of medial balls that reside entirely on the inside of an
object. However, in many cases it is also possible to define medial balls that reside entirely on
the outside of an object. That part of the MAT is called the exterior MAT. An object can only
have an exterior MAT if the shape of that object is non-convex, since for convex object it is not
possible to find exterior medial balls with a finite radius.

The separation between inside and outside is very clear and unambiguous for a an object
with a closed boundary such as the gingerbread man of Figure 1. But, a DTM typically only
covers part of the surface of the planet. This means it is not a closed boundary, unless we have
a DTM of the entire planet’s surface. We then follow the convention that the ‘ground side‘ of
the DTM is the interior, and the ‘sky side’ is the exterior, as follows from Figure 5. Following
this convention, we can still define the interior and exterior MAT of a DTM, see for instance
Figure 2.

A second peculiarity for DTMs is that both its interior and its exterior MAT can consist of
multiple disjoint parts (also visible in Figure 2), whereas for closed objects, the interior MAT
always consists of one connected part. This is again a side effect of the open boundary. These
disjoint parts are called medial clusters. In most cases, one object on the terrain corresponds to
one medial cluster.
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Figure 5: The interior and exterior of a DTM.

2 Computing the MAT

Computing the MAT from the boundary B of an object is typically done in two steps. During
the first step, ie MAT approximation, a noisy approximation of the MAT is obtained, and during
the second step, ie pruning, the noise is removed.

2.1 MAT approximation

For DTMs the MAT is typically appoximated using the Voronoi diagram in case the 2D MAT
is needed, or using the shrinking-ball algorithm in case the 3D MAT is needed.

2.1.1 Methods based on the Voronoi diagram

If you compute the Voronoi diagram (VD) of a set of points on the boundary of an object, the
MAT can be found by taking a subset of the edges of that VD. This can be seen in Figure 6a.
Notice that the MAT approximation becomes more accurate if more boundary points are used
to compute the VD. Voronoi-based methods revolve around selecting the correct edges from
the VD that approximate the MAT.

A simple way to check if a Voronoi edge is part of the MAT is based on so-called ‘duality
circles’. A duality circle is defined for each pair of dual edges, ie one edge from the VD and one
from the DT that are each others dual. The duality circle is drawn through the two endpoints
of the Delaunay edge and one point of the Voronoi edge (see the two circles in Figure 6b). If
and only if the second point of the Voronoi edge lies inside the duality circle, the Voronoi edge
is part of the MAT.

2.1.2 The shrinking-ball algorithm

The shrinking-ball algorithm works well for robustly approximating the MAT of 3D objects
that are represented with boundary points, eg a noisy aerial lidar point cloud of a terrain
would be a good candidate. It is a simple and fast algorithm that can be made robust to
noise in the boundary points. This means that pruning the MAT after approximation is not
necessary with the shrinking-ball algorithm. The shrinking-ball algorithm takes an oriented
point cloud as input, ie a point cloud that includes a normal vector for each point. It outputs
a disjoint set of medial atoms.

The algorithm is based on the observation that the medial atom corresponding to a bound-
ary point p must be positioned somewhere on the line L through the normal ~n of p. This
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(a) Approximation of the MAT with a subset of the VD
(left column). The complete VD is show in the right
colomn. The number of used boundary points in-
creases from top to bottom (Attali and Montanvert,
1996).

MAT edges

Delaunay edges
non-MAT edges

One VD point
outside circle

Both VD points
inside circle

(b) Selecting MAT edges from the VD by
checking the ‘duality circles’. Bound-
ary points drawn in black.

Figure 6: MAT approximation with the Voronoi Diagram

observation is used to restrict the search space for the medial ball of p to the line L. As illus-
trated by Figure 7, the algorithm begins with a very large candidate ball for p that is centered
on L. At each consecutive iteration, a new candidate ball is constructed that is smaller than
the previous one and closer to the final medial ball. Every ball is constructed so that it touches
p and is centred on L. Only the candidate feature point q changes with each iteration. A new
q, denoted qnext, is found by selecting the closest point from the centre c of the current ball.
Using p,~n, qnext we can compute the centre of the next ball cnext, at which point we move on
to the next iteration. The algorithm terminates when an empty ball is found, which is the case
when the radius no longer shrinks. Algorithm 1 gives the pseudo-code for the shrinking-ball
algorithm.

The algorithm is run for each point in the input point cloud. If the normal vectors point
away from the interior, the interior MAT is computed. And by flipping the orientation of
the normal vector, the exterior MAT can also be computed. If normals are not available for
a point cloud, these can be estimated using local plane fitting, ie by fitting a plane to the
k nearest neighbours of each boundary point. The vector perpendicular to that plane then
becomes the estimated normal vector. A KD-tree is typically used to speed up the nearest
neighbour searches, both for normal estimation and the shrinking-ball algorithm. Figure 8
gives an example result of the shrinking-ball algorithm for a terrain point cloud. Observe how
the MAT describes the valleys (exterior MAT) and ridges (interior MAT) in the terrain with its
skeletal structure.
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(a) Initial ball (b) Second iteration. (c) Third iteration. (d) Fourth iteration.

Figure 7: Ball shrinking iterations with the shrinking-ball algorithm. The final iteration yields
a medial ball. A legend is given in b.

(a) Interior MAT. (b) Terrain points (c) Exterior MAT

Figure 8: MAT approximation (a,c) of a lidar terrain point cloud (b) obtained with the
shrinking-ball algorithm. Top view.
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Algorithm 1: The shrinking-ball algorithm.
Input : a KD-tree of the surface point cloud T,

a surface point p
it’s normal vector~n, and
the initial ball radius rinit

Output: the medial ball centre c,
the medial ball radius r

1 r ← rinit
2 c← the centre of the ball that touches p is centered on~n with a radius r
3 repeat
4 qnext ← the nearest point to c, obtained quickly using T
5 rnext ← radius of the next ball that touches p and qnext and is centred on~n
6 cnext ← centre of the next ball, can be computed with p,~n, and rnext
7 if rnext = r then
8 break

9 c← cnext
10 r ← rnext

11 until a break statement is executed

2.2 Pruning

Pruning is the process of retracting or removing unimportant branches from the MAT. It is
often necessary because the MAT is unstable, ie it is extremely sensitive to small bumps in B.
As illustrated in Figures 9 and 10a, tiny deviations in B can lead to big spurious branches in
the structure of the MAT. This is especially problematic when B has some noise as is the case
with the typical DTM. The resulting MAT can become so distorted by the spurious branches
that it becomes hard to distinguish its main medial structure. The main aim of pruning is to
remove these spurious branches.

Most pruning methods are based on the properties of the medial geometry. Based on these
properties, an importance measure for each medial atom is defined, which is then used as a
threshold to filter medial atoms. The resulting (pruned) MAT is usually a subset of the original
MAT. Some methods preserve topology, others do not or do so only up to a certain level.
The main challenge is often selecting the optimal threshold value—a compromise between
removing noisy MAT parts and not removing fine detail, ieoften the endpoints of good MAT
branches are also affected by pruning. Examples of importance measures for pruning are
the separation angle θ (recall this is the angle between the spoke vectors) and the separation
distance λ, iethe distance between the two feature points of a medial atom. These values are
typically low for noisy parts of the MAT. Figure 10 gives an example of pruning with the
separation distance.

3 Applications of the MAT for DTMs

There are several applications of the 2D MAT. Often it is applied on sets of lines such as isolines
or river networks to perform operations that require the preservation of topology, ie there
should not be any self-intersections or intersection between neighbouring lines. This is often a
problem with methods that treat the lines separately without considering the complete system
of lines. However, by working on the MAT, and keeping the boundary in sync during the MAT
processing, this requirement can be satisfied rather easily.
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central MAT sheet

protruding sheets

bumps in surface

(a) Small bumps in the boundary can cause
big spurious branches to appear. Object
boundary drawn in red, MAT in blue.

(b) Spurious branches can appear in the MAT due
to a small amount of noise in the boundary.

Figure 9: Instability of the MAT.

(a) MAT without pruning (λ = 0) (b) Reconstructed object for λ = 0.

(c) MAT with medium pruning (λ = 6)

(d) Reconstructed object for λ = 6.
Despite the pruned MAT, the corre-
sponding boundary remains almost
unchanged.

(e) MAT with strong pruning (λ = 10).

(f) Reconstructed object for λ = 10. No-
tice how the tree is separated from the
the ground and that edges have be-
come rounder.

Figure 10: The effect of different levels of pruning on the MAT.
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(a) Perspective view of exterior MAT and ground
points of a terrain with several watercourse.

(b) Plan view of exterior skeleton sheets.
The medial sheets reflect the structure
of the watercourses.

Figure 11: Water course detection wiht the 3D MAT. Each distinct medial sheet was assigned
a random colour. The surface points are coloured by elevation (yellow = low; blue = high).

For example, Gold et al. (2001) generalise the isolines, ie to simplify their appearance for
(small scale) map production. This is achieved by pruning spurious branches from the MAT
and then reconstructing the isolines from the pruned MAT. The method also works for river
networks.

Karimipour et al. (2013) describe a way to estimate catchment areas based solely on the MAT
of an existing river network. A catchment area is a hydrological unit where precipitations that
fall into this area, eventually end up in the same river. Ideally, these areas are computed
based on the elevation of a DEM by simulating the natural flow of water. However, this can
be a very time consuming process and the elevation data may not always be available, and
with the MAT, a quick and reasonable approximation of catchment areas can be obtained.
The catchment areas are polygons that are constructed by connecting several simplified MAT
branches.

Finally, Dakowicz and Gold (2003) demonstrate how the MAT can be used to solve the
wedding cake effect for TINs that was described in Lesson 08. Recall that this effect happens
because sometimes flat triangles are created between the vertices of one isoline. The problem
is solved by adding points with a plausible elevation along the MAT between the isolines prior
to triangulation.

The idea of applying the 3D MAT to digital terrain modelling is still relatively new. As
mentioned in the introduction of this lesson, one interesting application is object detection
in a terrain. Broersen et al. (2017) show how the 3D MAT, computed with the shrinking-ball
algorithm, can be used to detect watercourses in the Dutch landscape (see Figure 11). Here
the bottom edges of the medial sheets are projected to the xy plane to obtain 2D lines that
delineate the watercourses. Peters (2018) gives some examples of how the 3D MAT can be
used to perform building detection in lidar point clouds.

A second application of the 3D MAT is visibility analysis in point clouds (Peters et al., 2015).
Here the difficulty is that point do not have an area and can thus not be used to obstruct
visibility rays. However, the medial balls of the interior MAT do represent the interior volume
of objects and can thus be used to obstruct the visibility rays.
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4 Notes and comments

The Medial Axis Transform was originally introduced in 1967 by Harry Blum, a biologist
(Blum, 1967).

The algorithm to approximate the 2D MAT from the VD is described in detail by Gold (1999)
and Gold and Snoeyink (2001).

Ma et al. (2012) introduced the shrinking ball algorithm. Peters (2018) explains how to make
the algorithm robust so that it can be successfully applied to lidar point cloud inputs and how
to obtain a sheet segmentation using a region-growing approach.
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